
 
 

University of Birmingham

Identification of different side effects between PARP
inhibitors and their polypharmacological multi-
target rationale
Sandhu, Daranjit; Antolin, Albert; Cox, Anthony; Jones, Alan M

DOI:
10.1111/bcp.15015

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Sandhu, D, Antolin, A, Cox, A & Jones, AM 2022, 'Identification of different side effects between PARP inhibitors
and their polypharmacological multi-target rationale', British Journal of Clinical Pharmacology, vol. 88, no. 2, pp.
742-752. https://doi.org/10.1111/bcp.15015

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1111/bcp.15015
https://doi.org/10.1111/bcp.15015
https://birmingham.elsevierpure.com/en/publications/c021e4aa-d774-4601-b308-c9333f4d6cc8


OR I G I N A L A R T I C L E

Identification of different side effects between PARP inhibitors
and their polypharmacological multi-target rationale

Daranjit Sandhu1 | Albert A. Antolin2 | Anthony R. Cox1 | Alan M. Jones1

1School of Pharmacy, Institute of Clinical

Sciences, College of Medical and Dental

Sciences, University of Birmingham,

Birmingham, UK

2Department of Data Science and Division of

Cancer Therapeutics, The Institute of Cancer

Research, London, UK

Correspondence

Dr Alan M. Jones, School of Pharmacy,

Institute of Clinical Sciences, College of

Medical and Dental Sciences, University of

Birmingham, Birmingham B15 2TT, UK.

Email: a.m.jones.2@bham.ac.uk

Funding information

Wellcome Trust

Aims: The aim of this study was to determine the differences and potential mechanis-

tic rationale for observed adverse drug reactions (ADRs) between four approved

PARP inhibitors (PARPi).

Methods: The Medicines and Healthcare products Regulatory Authority (MHRA) Yel-

low Card drug analysis profiles and NHS secondary care medicines database enabled

the identification of suspected ADRs associated with the PARPi in the UK from

launch to 2020. The polypharmacology of the PARPi were data-mined from several

public data sources.

Results: The overall ADRs per 100 000 Rx identified across the four PARPi are statis-

tically significant (χ2 test, P < .001). Rucaparib has the greatest relative suspected

ADRs, which can be explained by its least clean kinome and physicochemical proper-

ties. The suspected gastrointestinal ADRs of rucaparib and niraparib can be ascribed

to their kinase polypharmacology. Suspected blood and lymphatic system ADRs of

PARPi can be linked to their high volume of distribution (Vd). The thrombocytopenia

rate of niraparib > rucaparib > olaparib tracked with the Vd trend.

Hypertension is only associated with niraparib and could be explained by the thera-

peutically achievable inhibition of DYRK1A and/or transporters. Arrhythmia cases

are potentially linked to the structural features of hERG ion-channel inhibition found

in rucaparib and niraparib. Enhanced psychiatric/nervous disorders associated with

niraparib can be interpreted from the diverse neurotransporter off-targets reported.

Conclusions: Despite their similar mode of action, the differential polypharmacology

of PARP inhibitors influences their ADR profile.

K E YWORD S

clinical pharmacology, oncology, therapeutics

1 | INTRODUCTION

Poly-ADP ribose polymerase 1 (PARP1) inhibitors (PARPi) are

a new class of agents for the treatment of solid tumours that

provided the first clinical exemplification of synthetic lethality

in oncology.1 The combination of a breast cancer type

1 susceptibility protein 1 or 2 (BRCA1 or BRCA2) mutation

and PARPi leads to the inability of cancer cells to repair

themselves.2 PARPi show efficacy for high-grade and platinum-

resistant cancers. Clinical trials have demonstrated that PARPiThe authors confirm that the principal investigator for this paper is Dr Alan M. Jones.
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increase overall survival time and response rate of cancer

patients.3

The four PARPi included in this study are: olaparib, niraparib,

rucaparib and talazoparib. The PARPi were first licensed in the UK in

2014 (olaparib),4 2017 (niraparib),5 2018 (rucaparib)6 and 2019

(talazoparib),7 respectively. Olaparib, niraparib and rucaparib are cur-

rently used in the clinic for the treatment of ovarian cancer,8–11

fallopian cancer and peritoneal cancer,4–6 whereas talazoparib is used

in the clinic for the treatment of breast cancer.7 Olaparib is also

approved for prostate cancer. Indications in other cancer types are

being investigated or pending regulatory approval.

PARPi trap PARP1/2 at DNA lesions, abolishing PARylation-

mediated processes including DNA damage repair.12 PARP–DNA

complexes interfere with DNA replication, and PARP-trapping

leads to PARPi cytotoxicity which explains the differential cytotox-

icity of PARPi. Talazoparib is the most potent PARP-trapper

identified.12

Adverse drug reactions (ADRs) are unwanted reactions

which occur following drug administration. Approximately 6–7% of

hospital admissions are due to ADRs, so the health and financial

implications are significant.13 ADRs are an important consideration

with new medicines which have limited information about

their safety in the wider population. The MHRA Yellow Card

reporting scheme in the UK collects and monitors suspected medi-

cine safety.

The occurrence of ADRs is not necessarily predictable based

on a drug's specific therapeutic effect. Although the PARPi in

this study have the same mechanism of action, their binding affini-

ties to PARP isoforms and their polypharmacology are different.

Studies have assessed the kinase polypharmacology of PARPi14

or compared safety profiles15–21 but have not investigated the

relationship between polypharmacology and ADRs. Our

continuing research interest in the intersection of medicinal chem-

istry22 with clinical prescribing and associated ADRs23 offered an

opportunity to apply our techniques to better understand the

PARPi drug class polypharmacology and its relationship to

suspected ADRs.

2 | METHODS

2.1 | Prescribing data

NHS secondary care medicines data24 was extracted on processed

pharmacy stock from January 2019 to July 2020 (Figure S1 in the

Supporting Information). Data before January 2019 are not publicly

available due to publishing agreements with NHS trusts.

A formula was developed to estimate the total number of pre-

scriptions dispensed from the processed pharmacy stock for each

drug from January 2019 to July 2020:

Prescriptionspermonth¼Processed pharmacy stock�Strength of drug
Dose of drug�Number of days in month

Therefore, the suspected ADR rate of each PARPi (since their respec-

tive launch dates) is based on the prescribing data for the period

January 2019–July 2020.

2.2 | Adverse drug reactions

Reported ADR data was extracted from the Yellow Card Interactive

Drug Analysis Profile.25 Data was available from the year each drug

was licensed until August 2020. Significant ADRs were selected and

assessed within this study. The selection criteria included differential

ADRs across the PARPi (independent of ADR level above baseline) or

high levels of ADR within a particular organ class (above baseline).

The ADR data required standardisation to allow for comparisons

between the different drugs. ADRs per 100 000 Rx is a standard

approach in signal hypothesis generation.26 A formula was developed

to calculate the ADRs per 100 000 Rx:

1ÞScale factor¼ 100,000
Total number of prescriptions

2ÞADRsper100000Rx¼ADR�Scale factor

Figures S2 and S3 in the Supporting Information represent the

standardised data and reports of suspected fatal ADRs, respectively.

2.3 | Chemical properties and pharmacology

The Electronic Medicines Compendium27 and ChEMBL database28

were used to identify the chemical properties, pharmacokinetics and

What is already known about this subject

• Poly-ADP ribose polymerase 1 inhibitors (PARPi) have

provided the first clinical exemplification of synthetic

lethality in oncology.

• A diverse range of ADRs have been reported despite

their similar mode of action.

• An explanation for this divergence in ADRs is needed.

What this study adds

• Comprehensive data mining of the polypharmacology of

PARPi in conjunction with the MHRA Yellow Card data-

base identified emerging and predicted ADR signals.

• Despite their similar mode of action, the differential poly-

pharmacology of PARPi influences their ADR profile.
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pharmacology of the four PARPi (accessed on 20 October 2020

(Table 1). Parameters were calculated; pIC50 was calculated using the

median PARP1 IC50 of each drug; and lipophilic ligand efficiency (LLE)

was calculated as LLE = pIC50–clog10P. An LLE value of <5, is associ-

ated with increased toxicity.29 The threshold for BBB penetration was

set as molecular weight <450 Da; <6 hydrogen bond donors (HBD);

<2 hydrogen bond acceptors (HBA); neutral or basic drug molecule

(defined by pKa); topological polar surface area (tPSA) < 90 Å; logD7.4

1–3 and low affinity to efflux ABCB1 (P-glycoprotein, MDR1).26 The

Cmax peak serum concentration of each PARPi was calculated from

FDA data.30–34

2.4 | Target affinity

The canSAR database (accessed on 5 November 2020)35–37 was used

to gather quantitative measures between each PARPi and human pro-

teins. Bioactivity was compared using IC50 values, with a minimum

threshold set at 10 μM (to exclude weak interactions). Additional

information was extracted from niraparib's new drug application

(NDA)38 and literature.39 The mean IC50 gives an overview of the rela-

tive affinity between PARPi across multiple targets (Figure 1) and miti-

gates for the reproducibility/reliability issue of selecting a single IC50.

2.5 | Statistical analysis

Chi-squared (χ2) tests were performed on the standardised

ADR/100000 Rx data to determine statistically significant differ-

ences between the suspected ADRs and PARPi. A P-value of <.001

was set for statistical significance using Excel for Microsoft

365 (Table S1). As this exploratory study focused on: (1) differences

between the PARPi and not whether a particular ADR is related to

PARPi therapy and (2) because of the exploratory nature of this

study, the lack of data on potential confounders, and the relatively

low incidence of some of the ADRs (and low prescribing numbers),

disproportionate analysis and corrections for multiple comparisons

were not used.

TABLE 1 Physiochemical, blood–brain barrier, pharmacokinetic and pharmacological properties of the four PARPi

Variable Olaparib Rucaparib Niraparib Talazoparib

Molecular obesity and on-target efficiency metrics

clog10P 1.96 2.45 2.47 2.11

PARP1 pIC50 7.90 7.10 7.46 8.55

LLE 5.94 4.65 4.99 6.44

Blood–brain barrier penetrant properties

MW (Da) 434.47 323.37 320.40 380.36

pKa Neutral Base: 9.32 Base: 10.08 Neutral

tPSA (Å) 86.37 56.92 72.94 88.49

HB acceptors 4 2 4 6

HB donors 1 3 2 2

clog D7.4 1.96 0.55 �0.11 2.11

P-glycoprotein substrate Yes Yes Yes Yes

No. of BBB requirements met 6 4 3 4

Pharmacokinetics

Bioavailability – – 36% 73% 41%

Half-life (h) (T) 15 (C) 11.9 25.9 48–51 90

Tmax (h) (T) 1.5 (C) 1–3 1.9 3 1–2

Cmax (nM) 13 400 6000 2500 43

Hepatic metabolism Yes: CYP3A4 Yes: CYP2D6 Yes: carboxylesterases No

Renal excretion 44% 17.4% 47.5% 68%

Volume of distribution (L) (T) 158 (C) 167 420 1074 420

Clearance (L/h) (T) 7 (C) 8.6 6.5 16.2 6.5

PPB 82% 70.2% 83% 74%

Dosing BID (300 mg) BID (600 mg) OD (300 mg) OD (1 mg)

Abbreviations: (C), capsule formulation; clogD7.4, calculated log10D at pH 7.4; clog10P, calculated log10P; HB, hydrogen bond; MW, molecular weight; LLE,

lipophilic ligand efficiency; pIC50, �log10 (half maximum inhibitory concentration); pKa, acid dissociation constant; PPB, plasma protein binding; (T), tablet

formulation; Cmax, peak serum concentration; Tmax, time taken to reach Cmax; tPSA , total polar surface area.
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2.6 | Ethics approval

The study used anonymised patient data and does not require ethical

approval.

3 | RESULTS

3.1 | Chemical properties and pharmacokinetics

Properties of the PARPi relating to PARP1 inhibition (log10P, median

pIC50 and LLE) are shown in Table 1.

Niraparib was the most lipophilic drug studied (clog10P = 2.27).

Talazoparib was the most potent for PARP1 (pIC50 = 8.55).

Rucaparib and niraparib both had an LLE below 5 (4.65 and 4.99,

respectively).

Properties relevant to the risk of BBB penetration are shown

in Table 1. All the PARPi met the molecular weight

(MW) requirement: olaparib was the heaviest drug (434.47 Da). All

the PARPi are basic or neutral, and all have a tPSA <90 Å, meeting

the requirements. Talazoparib failed to meet the hydrogen bond

(HB) acceptor requirement (at 6 HB acceptors). Olaparib met the

<2 HB donor requirement. Olaparib and talazoparib met the

logD7.4 requirement. All PARPi are P-glycoprotein (PgP) substrates;

therefore, they do not meet this requirement but this PgP function

declines with age. In summary, olaparib had the most BBB pene-

trant properties (six out of seven), followed by talazoparib and

rucaparib (both four out of seven) and lastly niraparib (three out of

seven). These results agree with published evidence of low BBB

penetration and activity of PARPi in glioblastoma animal models, in

part due to PgP.43 Niraparib appears to have greater BBB penetra-

tion than olaparib, rucaparib or talazoparib44,45 and has shown

efficacy in brain metastasis.46

Niraparib had the largest volume of distribution (Vd) at 1074 L,

followed by talazoparib (420 L), rucaparib (262–113 L) and olaparib

(167–158 L). Talazoparib is the only PARPi that does not undergo

hepatic metabolism and had the longest half-life (90 h),47 whereas

olaparib had the shortest (15–11.9 h). The differences in behaviour of

the tablet and capsule formulation of olaparib affects half-life and

clearance.48

F IGURE 1 Chemical
structures of the four PARPi. The
benzamide pharmacophore
shared between the PARPi is
highlighted in green. The bottom
table shows the target selectivity
profile of the four PARPi (median
IC50 values in nM)
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3.2 | Target affinity

The polypharmacology profiles of the PARPi are shown in

Figure 1. This represents the most complete picture of the poly-

pharmacology of PARPi to date, facilitated by the integration of

several information sources spanning six different target families

(PARPs, kinases, transporters, GPCRs, enzymes and ion channels).49

The data on the inhibition of transporters has been largely over-

looked to date.

Talazoparib was most potent towards PARP1 (3 nM) and PARP2

(4 nM) and had the lowest number of off-target effects (n = 6).

Rucaparib was the least selective PARPi in a recent kinome

profiling,14 possessing off-target activity on kinases (n = 12), three in

the nanomolar range, and was least potent towards PARP1 (80 nM)

and PARP2 (83 nM). Niraparib had a distinct kinase polypharmacology

profile to rucaparib, a unique inhibition of dual specificity tyrosine

phosphorylation regulated kinase 1A (DYRK1A) and interacts with

various neurotransmitter transporters (Figure 1).38 Rucaparib and

niraparib have the least clean profiles.

3.3 | Total general ADRs and fatalities

To support the use of all suspected ADR data since launch to generate

the ADR rate/100000 Rx, the comparison of suspected ADRs to Rx for

the period 1 January 2019–7 July 2020 gave analogous trends

(Figure S4 in the Supporting Information). Table 2 shows the following

general trend: rucaparib had the highest number of reported ADRs

per 100 000 Rx (8898.31) followed by talazoparib (5319.15), niraparib

(4004.77) and olaparib (1696.55). Rucaparib also reported the highest

number of suspected fatalities per 100 000 Rx (529.66) followed by

olaparib (82.76). Niraparib and talazoparib are both yet to report any

suspected fatalities associated with usage.

3.4 | Blood/lymphatic system ADRs and fatalities

Blood/lymphatic system ADRs followed the general ADR reporting

trend, with rucaparib having the highest rate of ADRs, with 1218.22

(per 100 000 Rx). Talazoparib had the highest number of thrombocy-

topenia reports at 1063.83 per 100 000 Rx.

3.5 | Vascular ADRs and fatalities

Talazoparib had the most suspected vascular ADRs at 2127.66 per

100 000 Rx (Table 2). Talazoparib, rucaparib and olaparib all had

reports of hypotension (1063.83, 52.97 and 13.39 per 100 000 Rx,

respectively). Niraparib had no reported cases of hypotension;

instead, it was the only PARPi to exhibit hypertension (102.25 per

100 000 Rx).

3.6 | Cardiac ADRs and fatalities

Rucaparib had the highest number of cardiac ADRs at 211.86 per

100 000 Rx (Table 2). Olaparib and talazoparib had no reported reac-

tions. Rucaparib was the only PARPi to have a reported fatality with

52.97 suspected fatalities per 100 000 Rx. Rucaparib also had the

highest suspected rate of arrhythmias (105.93), followed by niraparib

(68.17).

3.7 | Nervous/psychiatric ADRs

Niraparib exhibited several psychiatric ADRs compared to both

olaparib and rucaparib (22 cases vs 1 case each, respectively, Table 2).

These included: sleep disorders (8 cases), schizophrenia, deliria (both 3

cases), anxiety, mania/bipolar, general psychiatric disorders (all cases),

depression, behavioural symptoms (both 1 case). With nervous system

disorders, the following ADR trend emerged: niraparib > olaparib >

rucaparib.

3.8 | Miscellaneous ADRs and fatalities

Rucaparib had the highest number of ADRs associated with infection/

infestation, at 529.66 per 100 000 Rx (Table 2). This is followed by

niraparib (51.12) and olaparib (27.59). Talazoparib had no cases.

Gastrointestinal ADRs follow the general ADR trend with

rucaparib having the highest number of ADRs (847.46) and fatalities

(52.97). Rucaparib and niraparib both had reported cases of nausea/

vomiting and constipation; rucaparib had the highest reports of

vomiting/nausea (423.73), whereas niraparib had the highest reports

of constipation (136.33).

Rucaparib had the highest number of ADRs linked to neoplasms

(423.73). From Table 2, half of the reported fatalities associated with

olaparib and rucaparib are due to neoplasms (41.38 and 264.83,

respectively).

4 | DISCUSSION

4.1 | Total ADRs and fatalities

Based on the chemical properties (Table 1), rucaparib was predicted

to have the greatest polypharmacology as it had the lowest LLE

(4.65). This proved to be the case. Rucaparib showed pan-PARPi activ-

ity, with poor selectivity for the main biological targets and several

significant off-target effects (Figure 1). Rucaparib also had the most

reported ADRs and the highest reporting rate of fatalities. This implied

the severity and frequency of ADRs is greatest with rucaparib out of

the four PARPi.

Talazoparib was licensed in 2019, which explains the low level of

prescriptions (Figure S1) and ADRs; this likely skewed the data, thus
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the data for talazoparib was excluded from discussions that drew a

conclusion as to risk. Rucaparib, niraparib and talazoparib are all black

triangle drugs and all suspected ADRs need to be reported regardless

of severity. There is likely to be a significant under-reporting of

suspected ADRs.50,51

4.2 | Blood/lymphatic system ADRs and fatalities

The results show that all PARPi had reported cases of ADRs

related to the blood/lymphatic system (Table 2). This is indicative

of a class effect due to their mechanism of action. Thrombocyto-

penia is associated with a reversible decrease in megakaryocyte

proliferation and maturation.52,53 Exposure to bone marrow is

determined by the volume of distribution (Vd) of a drug, with a

higher Vd leading to increased distribution into bone marrow.54

Niraparib has a Vd of 1074 L, significantly higher than talazoparib

(420 L), so would be expected to have a higher number of cases.15

Talazoparib has a higher proportion of thrombocytopenia-related

ADRs (1063.83 per 100 000 Rx), which could be attributable to its

higher PARP-trapping—an effect identified as driving bone marrow

toxicity.55 However, caution must be excised given the significantly

smaller number of prescriptions for talazoparib. This research indi-

cates a potential link between Vd and thrombocytopenia, balanced

by the trapping potential of each PARPi. Niraparib had a signifi-

cantly higher number of thrombocytopenia cases (P < .001) com-

pared to rucaparib and olaparib (Table S1 in the Supporting

Information). This was supported by LaFargue et al.15 who showed

thrombocytopenia was more pronounced with niraparib (61% of

367 patients).

TABLE 2 Summary of the reported ADRs within the UK, associated with the four PARPi

Olaparib Rucaparib Niraparib Talazoparib P-value

Total prescriptionsa 7250 1888 5868 94

Total ADRs 132 (1696.55) 168 (8898.31) 235 (4004.77) 5 (5319.15) <.001

Fatalities 6 (82.76) 10 (529.66) 0 0 <.001

Blood and lymphatic system

Total ADRs 11 (151.72) 23 (1218.22) 42 (715.75) 1 (1063.83) <.001

Fatalities 0 0 0 0 –

Thrombocytopenia 2 (27.59) 5 (264.83) 24 (408.96) 1 (1063.83) <.001

Vascular disorders

Total ADRs 1 (13.79) 1 (52.97) 8 (136.33) 2 (2127.66) <.001

Fatalities 0 0 0 0 –

Hypotension 1 (13.79) 1 (52.97) 0 1 (1063.83) <.001

Hypertension 0 0 6 (102.25) 0 <.001

Cardiac disorders

Total ADRs 0 4 (211.86) 6 (102.25) 0 <.001

Fatalities 0 1 (52.97) 0 0 <.001

Arrhythmias 0 2 (105.93) 4 (68.17) 0 <.001

Infections and infestations

Total ADRs 2 (27.59) 10 (529.66) 3 (51.12) 0 <.001

Fatalities 0 0 0 0 –

Gastrointestinal disorders

Total ADRs 3 (41.38) 16 (847.46) 27 (460.12) 0 <.001

Fatalities 0 1 (52.97) 0 0 <.001

Nausea/vomiting 0 8 (423.73) 7 (119.29) 0 <.001

Constipation 0 1 (52.97) 8 (136.33) 0 <.001

Neoplasms benign or malignant

Total ADRs 13 (179.31) 8 (423.73) 10 (170.42) 0 <.001

Fatalities 3 (41.38) 5 (264.83) 0 0 <.001

Nervous system 9 (124) 4 (212) 18 (307) 0 <.001

Psychiatric disorders 1 (14) 1 (53) 22 (375) 0 <.001

aFormulae were used to estimate the total number of prescriptions from the total number of items dispensed between January 2019 and July 2020.

Numbers in parentheses are reported ADRs per 100 000 Rx. P-values were obtained by chi-squared analysis. P-values included are derived from the chi-

squared test analysis of all four PARPi. Some P-values contain a dash (�) as a P-value could not be calculated.
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4.3 | Vascular ADRs and fatalities

Niraparib was the only PARPi to have reported cases of hypertension

(102.25 per 100 000 Rx)—an established side effect to niraparib56—

whereas the other PARPi had cases of hypotension. It has been hypo-

thesised that hypertension might be produced due to an off-target

disruption of dopamine57 and noradrenaline metabolism via the inhibi-

tion of DAT (dopamine transporter), NET (norepinephrine transporter)

and SERT (serotonin transporter) by niraparib (Figure 1).15 Despite the

complexity associated with blocking several transporters and its

potential opposing effects on blood pressure, it remains a plausible

hypothesis.58 The unique inhibition of DYRK1A (IC50 = 297 nM vs

Cmax 2500 nM) by niraparib could also contribute to the hypertension

reported. DYRK1A has been suggested to be involved in the turnover

of these neurotransmitters, with studies showing a strong relationship

between DYRK1A level and the dopaminergic system.59 Over-

expression of DYRK1A reduces levels of dopamine, serotonin and

noradrenaline in certain areas of the brain.59 As niraparib inhibits

DYRK1A, increased levels of these neurotransmitters would be seen,

which in turn have inotropic effects on the heart, causing high blood

pressure. DYRK1A also has a role in circadian rhythm. DYRK1A has

been shown to be a novel clock component, cooperating with GSK-

3β, and governing the Ser557 phosphorylation-triggered degradation

of cryptochrome-2 (CRY2).60 As blood pressure exhibits a circadian

rhythm,61 disruption may potentially cause hypertension. These

results could be important for the selection of PARPi for hypertensive

patients.

4.4 | Cardiac ADRs and fatalities

Niraparib and rucaparib were the only PARPi to have cases of cardiac

ADRs but the difference in the number of cases was not significant

(P = .004). These drugs share similar structural features. Arrhythmia is

not an established side effect of rucaparib or niraparib.56

Inhibition of the Kv11.1 (hERG) potassium ion channel causes QT

prolongation resulting in arrhythmia known as torsades de pointes.62

Niraparib and rucaparib are both weak, basic drug molecules, known

features of potential hERG inhibitors (Figure 1).63,64 In contrast,

olaparib and talazoparib had no reported cases of arrhythmia and do

not contain these structural features, which may explain why arrhyth-

mia cases are, so far, unique to niraparib and rucaparib.

Segan et al. found that the IC50 of rucaparib against the hERG

channel (IC50 = 22.6 μM) is 13-fold higher than the peak serum con-

centration, concluding significant potency of rucaparib against hERG

in patients with pre-existing long QT.65

Our interpretation of this differs (it is only �four fold higher).

Thus, hERG IC50 is not clinically achievable based on comparison of

the IC50s, as rucaparib's Cmax is 6 μM. A modest inhibitory effect on

hERG could potentially occur. Comparing in vitro and in vivo pharma-

cology can be complicated by accumulation and efflux events in vivo,

which may modulate the potency for hERG in man.

4.5 | Nervous/psychiatric ADRs

The disparity in psychiatric ADRs with niraparib vs olaparib/

rucaparib (Table 2) may be related to niraparib's pan-

neurotransmitter pharmacology (Figure 1). All are at clinically achiev-

able concentrations, in particular DAT inhibition is 51 nM

(Cmax = 2.5 μM). These neurotransmitters could be involved in the

sleep disorders that are the most common disorder observed with

niraparib.66 Dopamine also has a clear role in schizophrenia and

deliria, the second and third most observed psychiatric ADRs.66

However, niraparib has the least number of BBB penetrant proper-

ties and has been shown to have reduced BBB penetration,67,68

which may mitigate this risk.

Nervous system disorders also emerged as a potential ADR for

niraparib. A definitive link could not be drawn due to incomplete

reporting of all off-target profiles of PARPi. However, off-target inhi-

bition of the 5-HT4 receptor may warrant further investigation.69

4.6 | Miscellaneous ADRs and fatalities

PARPi can have a neutropenic effect, although the mechanism is not

completely understood. Neutropenia was the third most common

haematological toxicity observed in phase III trials. Assessment of the

efficacy and safety of PARPi in BRCA-positive ovarian patients found

that neutropenia occurred in 30% of all patients treated with

niraparib, 19% of people treated with olaparib and 18% of people

treated with rucaparib.70 Neutropenia leads to increased risk of

infection.15

Gastrointestinal toxicities are mediated via off-target kinase

inhibition. These types of ADRs (e.g. vomiting) are common for

kinase inhibitors.71 Other studies have shown vomiting and nausea

are most prevalent in rucaparib, at 76% and 37% of patients

respectively, with constipation being most prevalent in niraparib

(40%).15

PARPi are associated with hypercholesterolaemia and hyper-

transaminasemia. Rucaparib increased cholesterol levels of any

grade in 40–84% of patients; nevertheless, serious ADRs of grade

3/4 hypercholesterolaemia were only reported in 2–4% of patients.

There are also reports for elevation of alanine aminotransferase

1 (ALT) and aspartate aminotransferase (AST) in 36% and 28% of

patients treated with niraparib, respectively. Olaparib is better

tolerated with reported incidences of increased ALT and AST of

5% and 2%, respectively. PARPi may also elevate creatinine

concentrations; this might not affect the glomerular filtration rate

or lead to renal failure. Rucaparib inhibits kidney transporter

proteins multidrug and toxin extrusion (MATE1) and MATE2

(multidrug and toxin extrusion protein 2, MATE2-K), which affect

the secretion of creatinine, whilst niraparib does not inhibit MATE1

and is not related to elevated serum creatinine.72,73 Olaparib also

inhibits MATE1 with IC50 < 10 μM and is also associated with

elevated creatinine levels.74,75
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4.7 | Limitations

The Interactive Drug Analysis Profiles, from the MHRA, give a com-

plete listing of all the spontaneous suspected ADRs reported through

the Yellow Card scheme. While essential to safety monitoring, sponta-

neous reporting schemes have several inherent weaknesses. It is esti-

mated that only 6% of ADRs are reported to regulatory authorities,50

which may lead to the underestimation of any given ADR. Under-

reporting may vary by both reaction and by drug, even within the

same class. Publicity about an adverse effect,76 length of time on the

market, and novelty of the drug (such as the first-in-class) may also

affect reporting. This can mean that comparisons between drugs using

such reports can be problematic, particularly when small numbers are

involved. In our study, this is particularly seen with talazoparib, where

a single report can lead to a reporting rate of 1063 per 100 000 Rx.

Declines in reporting ADRs after the second year a drug has been on

the market, known as the Weber effect, have been reported, although

it has been documented that reporting rates in oncology drugs are

inconsistent and not in line with the Weber effect.77

Reporters are requested to report any suspected ADRs, and they

do not have to demonstrate a clear causal link with the drug. This

means that many reported ADRs may not be linked to the drug. Care

needs to be taken with suspected fatal cases, where reporters may be

more likely to err on the side of reporting due to the seriousness of

the reaction. Confounding may also occur from previous exposure to

platinum-based therapy, or concomitant disease, either causing or

contributing towards the reported ADR. Therefore, conclusions on

the safety and risks of medicines cannot be made on the information

obtained from the Drug Analysis Profiles alone. However, such data

can be useful for hypothesis generation as in this study and supported

by primary literature reports and case studies.

Secondary Care Medicines data was available from January 2019

and considered the total number of items processed in each NHS

organisation within England. A comprehensive summary of how these

drugs have been prescribed since their license date was not possible

and will be required for longer term research into PARPi. Prescribing

guidelines have changed since the first PARPi launched which will

affect their usage longitudinally. As the data considered the total num-

ber of items processed, prescribing data had to be estimated. This is

not an accurate representation of the true prescribing numbers. Che-

motherapy is highly patient specific. This will impact our estimation as

the standard dose was used to calculate the number of prescriptions

which may have deviated from the true value.

Differences between PARPi include chemical structure, preclinical

potency and dose regimen. Differences in size and rigidity are hypo-

thesised to be the basis for the distinct behaviour of each PARPi to

prevent the release of bound PARP1/2 from chromatin. This is associ-

ated with high myelosuppression, which results in variation of the rec-

ommended doses across PARPi.78

The available data on the polypharmacology of PARPi is incom-

plete.79,80 In this work, we have mitigated this risk by performing data

integration of the pharmacological effects of PARPi, integrating public

databases, literature and NDA documentation. However, not all PARPi

had been comprehensively tested against all the targets we identified

and their interactions with other target families remains unknown.

5 | CONCLUSIONS

The emergence of PARPi have revolutionised the treatment of several

cancer types. Therefore, it is essential that we understand the poly-

pharmacology and safety of these drugs.

This study has demonstrated that PARPi have clinically signifi-

cantly different suspected ADRs reported to the Yellow Card scheme

which may be tentatively linked to their unique pharmacological pro-

files. Established ADRs have a clear pharmacological relationship to

either the structure of the drug or polypharmacology. Our results illus-

trate that, despite having the same mechanism of action, the safety

profile based on spontaneously reported data of PARPi varies.

The research reinforced current knowledge, for example the link

between Vd and thrombocytopenia.

The research provided new insight into why certain ADRs occur,

such as DYRK1A inhibition and hypertension. Further research is still

required; currently, prescribing numbers of these drugs are low, as is

the number of reported ADRs, and so is the power of this study.

Based on these conclusions, in the short term, clinicians should be

aware of the safety profile of these drugs and the potential contrain-

dications. Prescribing rates are on the rise for PARPi, therefore it is

important to identify patients who may benefit from closer

monitoring.

6 | NOMENCLATURE OF TARGETS AND
LIGANDS

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, and

are permanently archived in the Concise Guide to PHARMACOLOGY

2019/20.40–42
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