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Advancing age is accompanied by significant remodelling of the immune system,

termed immune senescence, and increased systemic inflammation, termed

inflammageing, both of which contribute towards an increased risk of developing

chronic diseases in old age. Age-associated alterations in metabolic homeostasis have

been linked with changes in a range of physiological functions, but their effects on

immune senescence remains poorly understood. In this article, we review the recent

literature to formulate hypotheses as to how an age-associated dysfunctional metab-

olism, driven by an accumulation of key host metabolites (saturated fatty acids,

cholesterol, ceramides and lactate) and loss of other metabolites (glutamine, trypto-

phan and short-chain fatty acids), might play a role in driving immune senescence and

inflammageing, ultimately leading to diseases of old age. We also highlight the

potential use of metabolic immunotherapeutic strategies targeting these processes in

counteracting immune senescence and restoring immune homeostasis in older adults.

K E YWORD S

immunesenescence, inflammaging, lactate, saturated fatty acids, short chain fatty acids

1 | INTRODUCTION

One of the most important triumphs of modern medicine and public

health policy over the last 200 years is the dramatic extension of

human lifespan. However, although we are living longer, we are

spending more years in ill health, as healthy life expectancy has not

kept pace with the expansion in lifespan (House of Lords Report,

2021). From 2016 to 2018, life expectancy in the United Kingdom

increased by 0.8 and 0.6 years for males and females, respectively.

In contrast, healthy life expectancy for males increased by 0.4 years

and females by only 0.2 years in the same period (Office for

National Statistics, 2016 to 2018). Advancing age is accompanied by

an increased risk of bacterial and viral infections (Yosikawa, 2000),

autoimmune conditions (Goronzy & Weyand, 2003), cancer

incidence (Falci et al., 2013), atherosclerosis (Dai et al., 2018), meta-

bolic diseases and impaired vaccine responses (Giudice et al., 2017),

all contributing towards ill health in older adults, making aged

individuals a vulnerable population. These data emphasise the
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importance of developing a deeper understanding of the biology of

ageing as targeting these processes holds the promise of

maintaining health for longer, as we age.

Ageing is a complex process accompanied by alterations in the

functional capacity of a wide range of body systems, including the

immune system. Indeed, a recent study in mice has suggested that an

aged immune system is sufficient to drive the development of many

age-related diseases (Yousefzadeh et al., 2021). Additionally, meta-

bolic alterations, such as increased visceral adiposity, altered circulat-

ing lipid composition and accumulation of lipids in primary lymphoid

organs, have been observed in older adults. It is becoming increasingly

clear that the immune and metabolic systems are closely

interconnected and play a critical role in the maintenance of immune

homeostasis, linking to several aspects of the ageing process

and associated chronic inflammatory conditions (Gerriets &

Rathmell, 2012). Immune cells sense and respond to exogenous meta-

bolic signals (Ganeshan & Chawla, 2014), including fatty acids, free

cholesterol, sphingosine-linked fatty acids, products of lipid metabo-

lism, amino acids and microbial-derived metabolites. However, our

understanding of the effects of the micro-environment on the

immune system and how this changes as we age is far from complete.

Thus, there is an increasing need to investigate this interrelationship,

as the prospect of resetting bioavailability of host metabolites and

reversing immune senescence is now being realised and is readily test-

able. In this review article, we will discuss the recent evidence in the

field to determine, beyond the association studies, what potential role

the aged micro-environment plays in immune ageing and the related

mechanisms leading to age-related chronic diseases.

2 | THE AGEING IMMUNE SYSTEM AND
INFLAMMAGEING

Advancing age is accompanied by profound remodelling of the innate

and adaptive arms of the immune system, resulting in a state of

immune dysregulation and a decline in the ability to mount a robust

immune response, termed ‘immune senescence’ (Duggal, 2018). The

underlying mechanisms driving immune senescence include many of

the core biological ageing processes, the so-called hallmarks of ageing

(Lopez-Otin et al., 2013), which include accumulation of DNA damage,

telomere shortening (Akbar & Fletcher, 2005), reduced mitochondrial

function (Callender et al., 2020), reduced autophagy (Alsaleh

et al., 2020), chronic inflammation (Jose et al., 2017) and epigenetic

changes (Goronzy et al., 2018) (Figure 1).

F IGURE 1 The ageing immune system and inflammageing. Many biological processes are involved in age-induced remodelling of the
immunological system, known as immune senescence, which is characterised by dysregulation of both the innate and adaptive immune systems.
Immune senescence, together with other age-related factors, leads to a chronic, low-grade inflammatory process known as inflammageing, which
involves altered levels of pro-inflammatory cytokines. CRP, C-reactive protein
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2.1 | Innate immunity

Neutrophils are key innate immune cells that provide immediate pro-

tection against bacterial and fungal infections, and their function is

compromised with age. Key features of neutrophil ageing include

reduced chemotaxis (Sapey et al., 2014), impaired phagocytosis

(Butcher et al., 2001) and reduced ability to extrude neutrophil extra-

cellular traps to entrap and eliminate bacteria (Hazeldine et al., 2014).

An age-dependent redistribution of monocyte subsets with an

increase in non-classical (CD14+veCD16++ve) monocytes that exhibit

a pro-inflammatory senescence-associated secretory phenotype

(SASP) (Ong et al., 2018) is also a hallmark of immune senescence.

Furthermore, age-associated alterations in cytokine production by

monocytes in response to challenge, decline in bactericidal properties

and delayed clearance of apoptotic cells have also been observed

(Albright et al., 2016). Additionally, impaired antigen presentation by

dendritic cells (Chougnet et al., 2015) and a reduced NK cell cytotoxic-

ity have been reported in older adults (Hazeldine et al., 2012)

(Figure 1). Taken together, these factors increase the vulnerability of

older adults to bacterial and viral infections, as shown very clearly dur-

ing the severe acute respiratory syndrome (SARS)-CoV-2 pandemic

(Cunha et al., 2020), and are likely to contribute to the increase in sys-

temic inflammation with age, so-called “inflammageing”.

2.2 | Adaptive immunity

Within the adaptive immune system, ageing is accompanied by thymic

involution, involving a reduction in naïve T-cell output that contrib-

utes towards an increased risk of novel pathogens (Cunha et al., 2020)

and a reduced response to vaccinations (Crooke et al., 2019) in older

adults. The driving factors for thymic involution include increased thy-

mic adiposity, reduced stromal and thymocyte cellularity and an

altered thymic micro-environment driven by reduced levels of thymo-

stimulatory cytokines (IL-7) and up-regulation of thymo-suppressive

cytokines (IL-6 and TNF-α) (Ventevogel & Sempowski, 2013). Addi-

tional hallmarks of T-cell immune senescence include accumulation of

highly differentiated memory EMRA T-cells and senescent T-cells that

secrete a range of extracellular modulators including pro-inflammatory

cytokines, chemokines, growth factors and bioactive lipids (SASP phe-

notype) (Callender et al., 2018; Di Mitri et al., 2011). Ageing is also

accompanied by a skewing of T-cell responses towards the Th17 cell

subset (Ouyang et al., 2011), which has been associated with an

increased risk of chronic inflammatory conditions and autoimmune

disorders. Furthermore, B-cell haematopoiesis is compromised in older

adults, resulting in an increase in ‘antigen-experienced’ B cells

(Riley, 2014), impaired antibody production and loss of B-cell diver-

sity, contributing to poor vaccination efficacy (Arsenovi�c-Ranin

et al., 2019). Lastly, ageing is accompanied by an expansion of regula-

tory T-cells, Tregs (Jagger et al., 2014), a potential compensatory mech-

anism to restore immune homeostasis that has been perturbed due to

excessive immune activation and pro-inflammatory immune

responses. However, on the other hand, we have reported an age-

associated numerical deficit and reduced anti-inflammatory cytokine

(IL-10) production for a subset of immunoregulatory CD24hiCD38hi B

cells (Duggal et al., 2013), which could contribute to reduced immune

tolerance with age (Figure 1).

Another universal feature of ageing is chronic, elevated levels of

pro-inflammatory cytokines (IL-6, TNF-α) and C-reactive protein (CRP)

with reduced IL-10 levels, and is a characteristic of inflammageing

(Franceschi & Campisi, 2014). There is mounting evidence suggesting

a role for inflammageing in a wide range of age-related diseases,

including dementia, cardiovascular disease, sarcopenia and cancer,

and it is a powerful predictor of mortality in older adults (Singh &

Newman, 2011). Inflammageing is a complex multifactorial process

driven by immune senescence, lifelong antigenic load, microbial

dysbiosis-inducing gut permeability, increased adiposity, accumulation

of senescent cells and physical inactivity (Fulop et al., 2018).

3 | HOST METABOLITES AS INDUCERS OF
IMMUNE SENESCENCE

The immune system is a tightly regulated network, which provides

defence against foreign antigens and tolerance towards self-antigens.

Our understanding of immune senescence is largely based on studies

focussed on individual immune cells investigating age-associated

phenotypic and functional alterations and intrinsic changes. However,

it is crucial to keep in mind the extensive crosstalk between the

complex network of immune cells and soluble factors in the micro-

environment. Host metabolites present in the micro-environment

have immune-modifying potential, which can skew the balance

between inflammation and immune tolerance (Figure 2). In this

review, we discuss the potential effects of immune senescence-

inducing metabolites.

3.1 | Saturated fatty acids and cholesterol

Fatty acids are carboxylic acids derived from foods and stored as

triacylglycerols in adipose tissue. They play a diverse range of physio-

logical roles, such as energy provision, signal transduction, cell mem-

brane constituents and synthesis of immunomodulatory lipids

(Pike, 2013). Fatty acids can be separated into three main groups: sat-

urated, monounsaturated and polyunsaturated fatty acids (PUFAs).

Saturated fatty acids derived from animal fats and tropical oils (palm

oil and coconut oil) are pro-inflammatory with elevated circulating

levels and a state of hypercholesterolaemia, frequently observed with

advancing age (Houtkooper et al., 2011). Elevated levels of saturated

fatty acids and free cholesterol have also been associated with insulin

resistance (Lee et al., 2006), sarcopenia (Welch et al., 2014), coronary

heart disease (Liu et al., 2019) and Alzheimer's disease (Gustafson

et al., 2020).

Saturated fatty acids, particularly palmitic acid, have been shown

to induce a pro-inflammatory phenotype in immune cells, such as

increased pro-inflammatory cytokine (IL-1β, IL-8 (CXCL8) and TNF-α)
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secretion by monocytes/macrophages, via toll-like receptor (TLR)-

mediated inflammasome activation (Samblas et al., 2019; Snodgrass

et al., 2013). Thus, raised levels of these fatty acids are thus potential

contributors to inflammageing. However, according to these studies,

DNA methylation modifications are not involved in saturated fatty

acid-mediated regulation of inflammatory genes and the mechanism

of action remains to be elucidated. Additionally, palmitic acid been

identified as a TLR4 ligand to induce IL-1β secretion by dendritic cells

(Nicholas et al., 2017) and most importantly impair DC antigen

presentation and ability to prime naïve T-cells and regulate T-cell

differentiation (Shaikh et al., 2008), contributing towards impaired

T-cell priming in older adults. Furthermore, CD4 T-cell exposure to

saturated fatty acids induces T-cell differentiation into pro-

inflammatory effector memory-like T-cells, via PI3K/Akt activation

(Mauro et al., 2017), skewing towards Th17 polarisation and reduced

Th2 differentiation (Hammer et al., 2017), which have all been

identified as hallmarks of T-cell ageing.

Age-associated hypercholesterolaemia results in the accumulation

of cholesterol crystals in macrophages, which induces lysosomal

damage via activation of the NOD-like receptor 3 (NLRP3)

inflammasome (Duewell et al., 2010) and triggers TLR-mediated

secretion of pro-inflammatory cytokines (IL-1β, IL-6, IL-8 and TNF-α)

(Køllgaard et al., 2017). Additionally, high cholesterol levels impair

neutrophil chemotaxis, driven by attenuation of calcium flux in

response to chemoattractants and a decreased neutrophil cytokine

transcription in response to inflammatory stimuli due to desensitisation

of signalling pathways (Palvinskaya et al., 2013). Cholesterol is known

to be crucial for the maintenance of cell membrane raft integrity and is

required for T-cell receptor (TCR) dimerisation. Therefore, increased

plasma cholesterol concentrations perturb T-cell homeostasis and

induce T-cell activation, predisposing to aggravated T-cell responses

(Mailer et al., 2017). Moreover, preliminary evidence from animal

studies has suggested a causal relationship between cellular cholesterol

accumulation and development of autoimmunity. Intracellular

cholesterol accumulation in antigen presenting cells results in the up-

regulation of NF-κB-dependent genes, such as those for BAFF and

APRIL, both B-cell proliferation factors, driving dysregulated antigen

presentation and the expansion of autoreactive B cells (Ito et al., 2016).

On the other hand, an expansion of peripheral anti-inflammatory Tregs

and up-regulation of transcription factor Foxp3 among thymocytes has

been observed in mice fed with a high cholesterol-containing diet

(Mailer et al., 2017), suggesting that hypercholesterolaemia affects

thymic development of Tregs, which could possibly serve as a compen-

satory mechanism to stabilise the immunological balance.

F IGURE 2 The effects of host metabolites on immune senescence and inflammageing. Host metabolites present in the micro-environment
have immune-modifying potential, skewing the balance between inflammation and immune tolerance. The figure summarises the potential effects
of immune senescence-inducing and immunomodulatory metabolites on different types of immune cells. Breg, regulatory B cell; FA, fatty acid;
M2, M2 polarised macrophages; PUFA, polyunsaturated fatty acid; Treg, regulatory T-cell
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3.2 | Ceramides

During lipid metabolism, palmitic acid can be converted into

ceramides by the rate-limiting enzyme serine palmitoyltransferase

(SPT) in the de novo synthesis pathway. Once generated, ceramides

can be converted into a variety of metabolites such as ceramide-1

phosphate and sphingosine, which also possess immunoregulatory

properties (Wigger et al., 2019). Sphingolipids, such as ceramides, act

as signalling molecules in a wide range of cellular processes including

cell growth, cell differentiation, apoptosis, cellular senescence,

autophagy and inflammation (Chaurasia & Summers, 2020). An age-

associated ceramide accumulation in plasma has been linked with an

increased risk of cardiovascular diseases, neurodegeneration, insulin

resistance, chronic inflammation and cancers. Interestingly, the disrup-

tion of ceramide production exerts pro-longevity effects (Johnson &

Stolzing, 2019).

The immunomodulatory potential of ceramide accumulation

includes skewing towards pro-inflammatory M1 macrophages and ele-

vated expression and secretion of IL-6, TNF-α, IL-1β and the chemo-

kine CCL2, contributing towards inflammageing (Chaurasia

et al., 2016; Hamada et al., 2014). Elevated ceramide levels have been

reported in macrophages with advancing age, resulting in increased

caspase-1 activation and IL-1β secretion in response to NLRP3

inflammasome activation (Vandanmagsar et al., 2011). This age-

associated increase in ceramide production contributes towards

increased COX-2 expression and PGE2 synthesis in macrophages

(Claycombe et al., 2002; Wu et al., 2007), both of which are associ-

ated with reduced macrophage phagocytic activity in older adults.

Ceramides can further induce a shift towards a pro-inflammatory

micro-environment, by serving as pro-apoptotic molecules and sup-

press the development and generation of iTregs (Zhou et al., 2016).

Furthermore, an age-associated accumulation of ceramides and lipids

in the thymus is linked with an increase in by-products of fatty acids

and lipid peroxidation that induce a shift towards a pro-inflammatory

micro-environment, serving as a precursor of age-associated defects

in thymic export of naïve T-cells (Dixit, 2012). The presence of

ceramides and free cholesterol also triggers caspase-1 activation lead-

ing to thymic tissue damage and this is also a potential driver of age-

associated thymic involution.

Together, these studies support the hypothesis that plasma lipid

imbalance is a contributing factor towards age-associated immune

dysfunction and inflammageing, suggesting that lipid removal could be

beneficial in restoring immune homeostasis in older adults and could

have therapeutic utility in reversing the age-associated increased risk

of novel infections and autoimmunity.

3.3 | Lactate

Aged organisms display an altered metabolic homeostasis resulting

in build-up of lactate at the expense of glucose in a range of

peripheral tissues. Using proton magnetic resonance spectroscopy

and HPLC, it has been shown that brain lactate levels are

increased twofold in both normally and prematurely aged mice.

The molecular link between accumulation of lactate in the brain of

mice and the ageing process has been found in an up-regulation of

LDH and LDH-A gene, a down-regulation of LDH-B gene expres-

sion and consequent increased conversion of pyruvate to lactate

(Ross et al., 2010). Lactate has long been considered a waste prod-

uct that accumulates at sites of inflammation. However, recent evi-

dence suggests that lactate is an active metabolite, a major carbon

source for cellular metabolism that can play an important role in

cell signalling. For instance, lactate represents an important source

of carbon for the tricarboxylic acid (TCA) cycle in both normal and

cancer tissues (Faubert et al., 2017; Hui et al., 2017). Lactate accu-

mulates in inflamed tissues such as atherosclerotic plaques and

joints in rheumatoid arthritis (RA) and regulates the function of

local immune cells, by influencing intracellular metabolism (Fujii

et al., 2015). Lactate accumulation contributes towards the up-

regulation of the lactate transporter SLC5A12 on human CD4 T-

cells, resulting in reprogramming of cellular metabolism, which sup-

ports a pro-inflammatory response by CD4 T-cells. In particular,

lactate has been shown to increase IL-17 production via PKM2/

STAT3 signalling (Pucino et al., 2019), and this switch towards

Th17 differentiation has also been identified as a key feature of

immune ageing (Ouyang et al., 2011). Furthermore, numerous age-

related inflammatory conditions, such as rheumatoid and psoriatic

arthritis, are associated with Th17 immune signatures (Stadhouders

et al., 2018). Interestingly, the immunomodulatory properties of

lactate extend to anti-inflammatory properties, including inhibition

of LPS-triggered pro-inflammatory cytokine production by murine

macrophages (Errea et al., 2016) and human monocytes (Ratter

et al., 2018).

Through metabolomic analysis, senescent fibroblasts have been

shown to shift towards glycolysis with increased glucose consumption

and lactate production (James et al., 2015). A similar shift towards

glycolysis also occurs in TEMRA cells, a subset of T-cells that acquire a

senescent phenotype (Callender et al., 2020). Furthermore, Th17 cells

induce senescence in healthy fibroblasts and that senescent fibro-

blasts, in turn, can polarise naïve T-cells towards a Th17 phenotype

(Faust et al., 2020). Advancing age is accompanied by an accumulation

of senescent cells, leading to the hypothesis that elevated lactate

production by senescent cells with advancing age can modulate the

phenotype and function of neighbouring immune cells, promoting a

sustained inflammatory response. These inflammatory cells may then

induce or support the senescence process of the surrounding cells.

For example, foamy macrophages expressing senescence markers

(SA-β-gal) are present in the subendothelial space, contributing to the

atherosclerotic process by enhancing the expression of pro-

inflammatory cytokines, suggesting the involvement of macrophage

ageing and senescence in the development of age-related diseases

(Childs et al., 2016). As lactate is increased locally in atherosclerotic

plaques, it is essential to investigate whether the release of lactate by

senescent macrophages can contribute to inducing senescence in sur-

rounding cells and how this may affect the age-associated elevated

risk of cardiovascular disease. Further studies are required to
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comprehensively determine whether high lactate concentrations in

the aged micro-environment play a role in the age-associated

increased risk of cancer and other diseases.

3.4 | Amino acid metabolism dysregulation

Amino acids are important signalling molecules that play a crucial role

in protein synthesis (Jackman et al., 2017), energy metabolism

(Li et al., 2007), cell growth (Shao et al., 2018), the gut microbiome

(Ren et al., 2014) and immune homeostasis. Findings from recent

studies indicate that amino acids, such as glutamine, arginine and

tryptophan, modulate immune responses by regulating the activation,

proliferation and redox state of immune cells and the production of

inflammatory mediators (Li et al., 2007). Ageing is associated with

dysregulated amino acid metabolism (Houtkooper et al., 2011),

which could possibly contribute towards immune senescence and

inflammageing. Indeed, imbalances in glutamine, arginine and trypto-

phan levels have been linked with the development of several age-

related diseases including frailty (Valdiglesias et al., 2018), Type

2 diabetes (Yu et al., 2012), cardiovascular disease (Tang et al., 2009)

and Alzheimer's disease (Huang et al., 2017).

Glutamine is the most abundant amino acid in the circulation, and

it is becoming increasingly clear that it is utilised by immune cells and

possesses immunomodulatory properties. Glutamine availability is

essential for proliferation, efficient phagocytosis, surface expression

of HLA-DR and cytokine production by macrophages under basal and

inflammatory conditions (Spittler et al., 1995). Recent research sug-

gests that glutamine utilisation has been linked with the skewing of

macrophages towards a pro-inflammatory M1 phenotype, associated

with its effects on the TCA cycle (Jha et al., 2015). This enhanced the

pro-inflammatory phenotype of brain-resident macrophages, increas-

ing the risk of neuroinflammation and cognitive impairment in mice

(Palmieri et al., 2017). In neutrophils, glutamine plays a vital role in the

production of reactive oxygen and nitrogen species, by regulating the

expression of components of NADPH oxidase (p22, gp91 and p47),

and also plays a role in the maintenance of neutrophil viability

(Pithon-Curi et al., 2002). Furthermore, glutamine can act as a respira-

tory fuel and enhances T-cell proliferation, via regulation of IL-2 pro-

duction (Newsholme, 2001) and the differentiation of B cells into

antibody-secreting cells (Crawford et al., 1995). Glutamine depletion

has been shown to inhibit T-cell production of the cytokine IFN-γ
(Carr et al., 2010) and impair Th1 polarisation (Nakaya et al., 2014).

However, the underlying molecular mechanisms of interactions

between glutamine and T-cells remain largely unknown.

Advancing age is accompanied by a decline in glutamine levels in

endothelial cells and reduced cellular synthesis (Huang et al., 2017).

Although no research so far has investigated the impact of the age-

associated decline in glutamine levels on immune senescence, we

speculate that lower glutamine levels might contribute towards the

age-associated functional defects in immune cells. Furthermore, we

propose that supplementation with glutamine could have a beneficial

effect on immune cell function. In support of this, in vitro studies have

shown that glutamine augments neutrophil and monocyte superoxide

generation (Furukawa et al., 2000) in animal (Yoo et al., 1997) and

human studies (Ziegler, 2000). Glutamine supplementation enhanced

neutrophil bactericidal killing by serving as an energy substrate and

increasing cellular ATP, resulting in a reduction in mortality after

infection.

Arginine, a crucial amino acid and substrate for inducible NOS

(iNOS) and arginase, serves to modulate the cellular immune

response, especially during infections. Adequate levels of arginine are

necessary for NK cell proliferation and cytotoxicity, as well as T-cell

proliferation and cytokine production (Choi et al., 2009; Tarasenko

et al., 2015). The absence of arginine during T-cell priming is associ-

ated with reduced expression of activation markers (CD25 and

CD62L) that result in functional alterations (Choi et al., 2009). Altered

arginine metabolism is also known to occur with advancing age, with

several studies reporting reduced levels in the plasma and brain of

aged rodents and a decline in Bergin et al. (2018) and Moretto

et al. (2017). Thus, arginine dysregulation could serve as a potential

amplifier of age-associated immunosuppression, opening new avenues

for clinical interventions.

Tryptophan, an essential amino acid that is metabolised mainly

through the kynurenine pathway (KP), can be catabolised by

tryptophan 2,3-dioxygenase (TDO) in the liver and by indoleamine

2,3-dioxygenase (IDO). It plays a crucial role in the maintenance of

immune homeostasis, and dysregulation of tryptophan metabolism

has been linked with various inflammatory disorders, such as

inflammatory bowel disease (IBD) and multiple sclerosis (Nikolaus

et al., 2017; Roger & Licht, 2018). Ageing is associated with an

increase in IDO-mediated tryptophan catabolism reflected by

decreased tryptophan and elevated kynurenine levels in serum

(Pertovaara et al., 2006; Ramos-Chávez et al., 2018). Tryptophan

depletion leads to reduced proliferation and increased apoptosis of

T-cells via caspase-8 activation. associated with Fas/FasL interac-

tions (Fallarino et al., 2002; Terness et al., 2002), which could

contribute towards defects in adaptive immunity with ageing. In

support of this, inhibition of IDO-induced tryptophan degradation

resulted in an expansion of IFN-γ-expressing cells during viral

infection and enhanced influenza vaccine efficacy in mice (Fox

et al., 2013). Induction of IDO is driven by pro-inflammatory

signals (Jürgens et al., 2009). The question arising here is whether

IDO inhibitors could restore age-associated impaired vaccine

responses in aged humans.

4 | POTENTIAL OF HOST METABOLITES IN
COMBATING IMMUNE SENESCENCE

In the previous sections, we have summarised the evidence for some

aspects of the aged micro-environment as drivers of immune ageing,

and we will now discuss the potential of immunomodulatory

metabolites such as ω-3 PUFAs and short-chain fatty acids (SCFAs) in

restoring immune homeostasis and enhancing immune responses

(Figure 2), especially in the context of advancing age.
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4.1 | Polyunsaturated fatty acids

Optimal nutrition is a key determinant of healthy ageing, which is

important for maintenance of physiological function and reducing

the risk of disease in old age. Dietary intake and composition is

altered, and nutrient absorption declines with advancing age,

increasing the risk of malnutrition (i.e., lower intake of essential

fatty acids, vitamins and minerals) in older adults (Elia &

Russell, 2009). ω-3 PUFAs such as eicosapentaenoic acid (EPA)

and docosahexaenoic acid (DHA) derived from fish and fish oil,

exhibit anti-inflammatory properties and are known for their

beneficial effects on several inflammatory diseases associated with

ageing (Jeffery et al., 2017).

The ω-3 PUFAs exert important immunomodulatory effects on

innate and adaptive immune cells and promote an anti-

inflammatory environment. In macrophages, EPA and DHA treat-

ment decreases LPS-induced secretion of pro-inflammatory cyto-

kines IL-1β, IL-6 and TNF-α (Allam-Ndoul et al., 2017) and

increases release of the anti-inflammatory cytokine IL-10 in vitro

(Jin et al., 2018), potentially driven by a reduction in NF-κB activa-

tion (Oliver et al., 2012). ω-3 PUFAs have also been reported to

induce polarisation of macrophages towards an anti-inflammatory

M2 phenotype through PPARγ signalling (Chang et al., 2015;

Kumar et al., 2016). Furthermore, ω-3 PUFAs induce an improve-

ment in the phagocytic capacity of monocytes and neutrophils

(Gorj~ao et al., 2006) and enhanced neutrophil recruitment during

endotoxin-induced inflammation (Arnardottir et al., 2013). Animal

studies have reported that supplementation with ω-3 PUFAs

reduces Th17 polarisation (Monk et al., 2013) via dampening

expression of RORγ and STAT3 and decreasing responsiveness to

Th17 polarising cytokines (Monk et al., 2013). Furthermore, EPA

has been reported to dampen adipose inflammation via

macrophage-mediated Treg induction in mice (Onodera et al., 2017).

Preclinical evidence in mice has reported the potential of DHA in

enhancing IgM and anti-inflammatory cytokine (IL-10) production

by B cells, driven by changes in B-cell membrane packaging of lipid

microdomains (Teague et al., 2014).

The ω-3 PUFAs exert their immunomodulatory effects via a range

of mechanisms; for example, they can be enzymically converted into

specialised pro-resolving mediators (SPMs), which include lipoxins,

resolvins, protectins and maresins. SPMs activate GPCRs on immune

cells to promote the uptake and clearance of apoptotic cells and cellu-

lar debris, enhance bacterial killing, regulate leukocyte trafficking to

inflammatory sites and suppress the production of pro-inflammatory

mediators (IL-1β and TNF-α) (Chiang et al., 2012; Cucchi et al., 2019;

Dalli et al., 2015). Furthermore, ω-3 PUFAs have been reported to

inhibit ceramide production by targeting de novo synthesis (Dong

et al., 2017; Jin et al., 2018), increase fatty acid oxidation and

decrease lipogenesis, reducing circulating triglyceride and cholesterol

levels (Green et al., 2020). PUFAs possess multiple double bonds in

their carbon chain and are also able to increase fluidity of cellular

membranes, which can in turn affect their cellular signalling function

(Hashimoto & Hossain, 2018).

4.2 | Short-chain fatty acids

Commensal gut bacteria produce metabolites, such as SCFAs

(butyrate, acetate and propionate), which are end-products of bac-

terial fermentation of non-digestible dietary fibres. Additionally,

amino acid fermentation and lactate metabolism also produce

SCFAs (Bourriaud et al., 2005). These microbiota-metabolised fatty

acids play a key role in the maintenance of health and serve as

energy sources for gut epithelial cells, enhance epithelial barrier

integrity, alter lipid metabolism, regulate appetite and body weight

and possess anti-inflammatory and immunomodulatory properties

(Morrison & Preston, 2016). Emerging evidence suggests that

SCFAs exert multiple effects on a range of immune cells. For

instance, butyrate enhances macrophage antimicrobial function,

mediated through inhibition of histone deacetylase 3 (HDAC3) and

a switch in glucose metabolism (Schulthess et al., 2019), and

inhibits inflammatory cytokine production (Usami et al., 2008).

SCFAs can act as chemoattractant for neutrophils and play a criti-

cal role in neutrophil chemotaxis, mediated by FFA2 receptors

(GPR43), during intestinal inflammation (Sina et al., 2009). Further-

more, SCFAs, in particular butyrate, promote differentiation of

naïve T-cells to Treg via HDAC inhibition at the Foxp3 locus

(Furusawa et al., 2013), activate aryl hydrocarbon receptor (AhR)-

dependent gene transcription in B cell to promote regulatory B-cell

differentiation (Rosser et al., 2020) and up-regulate anti-

inflammatory IL-10 expression while supressing Th17 polarisation

(Singh et al., 2014; Zhang et al., 2016).

Along with the decline in immune function with age, there is a

decline in gut commensal SCFA-producing bacteria, such as Clostrid-

ium leptum and Eubacterium rectale (Biagi et al., 2010), resulting in a

decline in stool and circulating SCFA levels (Rampelli et al., 2013).

Host–microbiota interactions drive inflammatory diseases beyond the

intestine; for instance, there is mounting evidence for a pathogenic

role in RA, with reduced levels of SCFA in stool samples of RA

patients (Rosser et al., 2020). Thus, from this and the previously men-

tioned effects of SCFAs on the immune system, it is not unreasonable

to suggest that this age-associated reduction in SCFAs may be

involved in disrupted immune homeostasis and inflammageing

(Conway et al., 2021).

5 | STRATEGIES FOR SLOWING IMMUNE
SENESCENCE AND EXTENDING
HEALTHSPAN

In the previous sections, we discussed evidence suggesting a

potential link between age-associated changes to the micro-envi-

ronment, driven by changes in the bioavailability of key metabolites

and inflammageing. Given that ageing is a malleable process, this

section will explore the immune stimulatory, anti-inflammatory and

healthspan extension effects of metabolite-based nutrient and

pharmacological intervention strategies (Figure 3).
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5.1 | Prebiotics

These are non-digestible food ingredients, such as inulin and

oligofructose, which are fermented by gut commensal bacteria to pro-

duce SCFAs, and have gained attention due to their potential for

enhancing the health of the gut microbiome (Wong et al., 2006). Addi-

tional health benefits of prebiotics including improved mineral absorp-

tion, lipid metabolism and mucin production have been reported (Roy

et al., 2006). The beneficial effects of prebiotics on the intestinal

mucosa and disease resolution have been shown in patients with a

variety of intestinal diseases, such as ulcerative colitis and irritable

bowel syndrome (Hamer et al., 2010; Kles & Chang, 2006). Multiple

studies have reported direct and indirect immunomodulatory effects

of prebiotics via the induction of SCFA production. For example, the

prebiotic composition of inulin and oligofructose decreases caecal

inflammation (IL-1β) in rats (Hoentjen et al., 2006). Human studies

investigating the effects of supplementation with galactans

(5.5 g�day�1) for 10 weeks showed increases in the production of

anti-inflammatory cytokine IL-10 and reduced production of pro-

inflammatory cytokines (IL-1, IL-6 and TNF-α) by leukocytes in older

adults (Vulevic et al., 2008). Moreover, anti-inflammatory effects of

other prebiotics, such as inulin, xylo-oligosaccharide and galacto-

oligosaccharides, have also been reported in young individuals

(Shokryazdan et al., 2017). Although manipulating the diet–gut

microbiome–host metabolism axis represents a relatively simple and

cost-effective prospect if targeted appropriately, these health-

promoting benefits of prebiotics are short-lived, with the gut microbial

profile returning to its pre-supplementation condition within weeks of

supplement discontinuation. This presents a challenge in translating

these initial promising findings into strategies that could improve

immune health with advancing age.

5.2 | Polyunsaturated fatty acids

Intake of specific nutrients, particularly ω-3 PUFAs, has been reported

to modify host lipid composition, improve cardiovascular health (Hu

et al., 2019), increase muscle mass and function (Smith et al., 2015),

improve cognitive health and reduce several morbidities (Buhr &

Bales, 2009). As discussed above, the ω-3 PUFAs possess immunoreg-

ulatory properties, shown in clinical trials in obese individuals

reporting that supplementation with ω-3 PUFAs reduced systemic

inflammation, via inhibition of inflammasome activation (Haghiac

et al., 2015; Lee et al., 2019). Other clinical trials have highlighted the

ability of fish oil supplements rich in ω-3 PUFAs to enhance neutrophil

chemotaxis (Gorj~ao et al., 2006), reduce peripheral IL-17 levels

F IGURE 3 The reversal of immune senescence via dietary modifications and pharmacological interventions. The close link between diet,
bioactive nutrients, supplements and immune function provides evidence of the crucial role of dietary strategies as regulators of the immune
response and immune senescence. Together with caloric restriction, the intake of prebiotics and nutraceuticals can help restore normal immune

system functions, leading to a reduction in the chronic inflammatory state. In addition, pharmacological approaches, that is, metformin and statins,
are promising treatments for several age-related pathologies, including immune senescence. CXCL2, CXCL3, chemokines; M1, M1 polarised
macrophages; M2, M2 polarised macrophages; PUFAs, polyunsaturated fatty acids; SCFAs, short-chain fatty acids; Treg, regulatory T-cells
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(Farjadian et al., 2016) and enhance B-cell differentiation towards

antibody-secreting cells (Ramon et al., 2012) in young individuals and

children. To our knowledge, there are only two studies that have

investigated the effects of supplementation with ω-3 PUFAs on

immune cell function in older adults. Fish oil consumption by older

women for 60 days improved neutrophil phagocytosis and ROS pro-

duction, increased T-cell proliferation, decreased TNF-α production

and increased IL-2, IL-10 and IFN-γ production by lymphocytes

(Rodacki et al., 2015). However, in another study, fish oil supplemen-

tation for 12 weeks decreased NK cell cytotoxicity (NKCC) in healthy

adults aged 55 and over (Thies et al., 2001). In conclusion, these

studies suggest the need for further studies in older adults to deter-

mine the optimal dose and duration of supplementation and the

potential of ω-3 PUFAs to reduce immune senescence.

5.3 | Short-chain fatty acids

The increased antibiotic consumption by older adults results in buty-

rate depletion, exerting a dampening effect on immunity. In recent

years, there has been an expansion in the number of research studies

reporting the therapeutic potential of SCFAs in treating inflammatory

conditions and colon cancer. Whether restoring butyrate levels can

reduce immune senescence is less clear, and the majority of studies

focus on inflammation. Animal studies have reported anti-

inflammatory effects of oral administration of sodium butyrate, includ-

ing reduced concentrations of TNF-α, IL-1β and NO in

bronchoalveolar lavage fluid, reduced infiltration of neutrophils and

lung injury caused by sepsis and improved survival rate (Ni

et al., 2010; Zhang et al., 2007). Additionally, a butyrate-

supplemented chow diet for 10 weeks suppressed macrophage migra-

tion and inflammation and increased collagen deposition in lesions

and plaque stability in apolipoprotein (apoE) knockout mice, resulting

in a 50% decline in atherosclerosis in the aorta (Aguilar et al., 2014).

These findings highlight the potential of SCFAs as a therapeutic strat-

egy for atherosclerosis. A study in human IBD patients has reported

that butyrate enema, alone or as a cocktail of SCFAs, was successful

in ameliorating colonic inflammation in these patients (Scheppach

et al., 1992). A pilot study in 12 older adults undergoing upper abdom-

inal surgery confirmed the feasibility of pharmacological butyrate

administration via enema in increasing butyrate concentrations in por-

tal vein blood (Van der Beek et al., 2015). Whether butyrate supple-

mentation enhances immune responses in older adults receiving

antibiotics is an important question that should be addressed in future

studies. This research will enable us to exploit the multifaceted roles

of SCFAs in protecting the body against deteriorating metabolic

control and increased inflammatory status with advancing age.

5.4 | Caloric restriction

The modulation of metabolic pathways via caloric restriction, the

practice of reducing ad libitum calorie intake by 20–40% while

maintaining intake of vitamins and minerals, has been reported to

extend lifespan, delay the onset of age-related diseases and reduce

visceral body fat accumulation (Mattison et al., 2017). Thus, it is not

surprising that caloric restriction has anti-inflammageing effects in ani-

mals (Willette et al., 2010) and humans (Das et al., 2017). Age-

associated lipid accumulation in the thymic space contributes towards

thymic involution. A mouse model of caloric restriction reported main-

tenance of thymic function and T-cell output driven by a reduction on

proadipogenic signalling (Yang et al., 2009). Another potential driver

of increased thymic output in calorie-restricted animals is reduced

levels of thymosuppressive pro-inflammatory cytokines such as

TNF-α. Furthermore, studies in calorie-restricted aged mice have

reported decreased senescent T-cell frequency, altered cytokine (IFN-

γ and TNF-α) secretion profile by T-cells (Messaoudi et al., 2006) and

improved memory T-cell responses (Collins, 2020). Whether these

findings can be replicated in humans remains to be established. Fur-

thermore, it is crucial to determine the period of caloric restriction

that is sufficient for inducing an anti-immune senescence effect and

whether aged individuals will be willing to adopt a calorie-restricted

diet for a prolonged period of time.

5.5 | Pharmacological alternatives

Although improving health in old age via dietary-based interventions

discussed above remains attractive, they are unlikely to be adopted at

a population level. Thus, pharmacological drugs with anti-immune

senescence properties are gaining attention (Figure 3). One such

agent is metformin, a diabetic drug that mimics some of the benefits

of caloric restriction, including healthspan extension and reduction in

cholesterol levels (Martin-Montalvo et al., 2013). Recent clinical

studies have reported an anti-inflammatory effect of metformin

(Saisho, 2015), driven by inhibition of the age-associated increase in

NF-κB (Sultuybek et al., 2019). An attenuation of Th17 differentiation

and up-regulation of Tregs has also been reported in mouse models of

arthritis (Son et al., 2014). Interestingly, the potential of metformin in

reducing mortality in patients hospitalised with COVID-19 infection

has been observed, possibly due to its anti-inflammatory effects

(Bramante et al., 2020).

Statins, inhibitors of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA)

reductase, are known inhibitors of cholesterol synthesis that exert a

cardioprotective effect (Ludman et al., 2009). However, they also result

in reduced GTPase signalling due to reduced generation of ger-

anylgeranyl moieties required for G-protein prenylation and function,

giving them much wider, pleiotropic, effects. Additional health benefits

of statins include extension of lifespan and healthspan in Drosophila

(Spindler et al., 2012), adipose tissue remodelling, and prevention of

insulin resistance and diabetes in obese mice (Holland et al., 2007).

Statins also possess anti-inflammatory properties in healthy older indi-

viduals (Mora et al., 2010). Our own data have reported a beneficial

effect of statins in restoring the age-associated decline in neutrophil

chemotaxis (Sapey et al., 2017). The clinical relevance of these findings

is supported by data showing that patients admitted to hospital with
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pneumonia who are already on statin medication have reduced mortal-

ity compared with those not taking statins (Grudzinska et al., 2017) and

that giving statins to older patients with pneumonia significantly

reduces mortality (Sapey et al., 2018). Additional immunomodulatory

properties of statins include elevated macrophage polarisation towards

anti-inflammatory M2 phenotype (Chaurasia et al., 2016), antimicrobial

effects (Hennessy et al., 2016) and slowing of telomerase shortening

(Boccardi et al., 2013). Considering the widespread use of statins glob-

ally, further studies to investigate their immune-enhancing potential,

optimal dosage and treatment duration are crucial for statins to be

considered as an anti-immune senescence drug.

6 | CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Ageing is a highly complex process, accompanied by remodelling of

the immune system (Figure 1), resulting in an age-associated increased

risk of infections, chronic diseases and autoimmunity. Our under-

standing of the effects of metabolites in the micro-environment on

immune responses has expanded in recent years, but numerous ques-

tions remain unanswered. There is an increasing need to develop a

better understanding of the signals in the micro-environment that

affect the phenotype and function of immune cells.

An age-associated elevation in the levels of saturated fatty acids,

cholesterol, ceramides and lactate, decline in SCFAs and loss of

glutamine and tryptophan are potential contributors towards age-

associated inflammageing and several features of immune senescence

(Figure 2). The prospect of restoring bioavailability of host metabolites

and reversing immune senescence is a possibility. Moreover, we have

discussed the immune-enhancing effects of dietary modifications and

pharmacological interventions (Figure 3) and proposed additional

areas of promising gerotherapeutic agents that target these metabo-

lites, such as glutamine supplementation and IDO inhibitors, to

improve immune function in older adults. Therefore, there is a need

for well-designed studies that mechanistically link metabolites to

immune senescence and inflammageing beyond association, and

reduce the age-associated increased risk of chronic diseases, thus

extending healthspan in older adults.

6.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in the IUPHAR/BPS Guide to PHARMACOL-

OGY (http://www.guidetopharmacology.org) and are permanently

archived in the Concise Guide to PHARMACOLOGY 2019/20

(Alexander, Cidlowski et al., 2019; Alexander, Fabbro et al., 2019a,

2019b; Alexander, Kelly et al., 2019a, 2019b)
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