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Abstract
Rationale  Brain catecholamines have long been implicated in reinforcement learning, exemplified by catecholamine drug 
and genetic effects on probabilistic reversal learning. However, the mechanisms underlying such effects are unclear.
Objectives and methods  Here we investigated effects of an acute catecholamine challenge with methylphenidate (20 mg, 
oral) on a novel probabilistic reversal learning paradigm in a within-subject, double-blind randomised design. The paradigm 
was designed to disentangle effects on punishment avoidance from effects on reward perseveration. Given the known large 
individual variability in methylphenidate’s effects, we stratified our effects by working memory capacity and trait impulsivity, 
putatively modulating the effects of methylphenidate, in a large sample (n = 102) of healthy volunteers.
Results  Contrary to our prediction, methylphenidate did not alter performance in the reversal phase of the task. Our key 
finding is that methylphenidate altered learning of choice-outcome contingencies in a manner that depended on individual 
variability in working memory span. Specifically, methylphenidate improved performance by adaptively reducing the effec-
tive learning rate in participants with higher working memory capacity.
Conclusions  This finding emphasises the important role of working memory in reinforcement learning, as reported in 
influential recent computational modelling and behavioural work, and highlights the dependence of this interplay on cat-
echolaminergic function.

Keywords  Reversal learning · Methylphenidate · Catecholamines · Dopamine · Working memory · Computational 
modelling of behaviour

Introduction

Brain catecholamines (dopamine and noradrenaline) are 
well known to play a fundamental role in reinforcement 
learning and decision-making. Most notably, in the last 2 
decades, a wealth of studies have shown that dopaminergic 
midbrain firing increases when experience exceeds expec-
tations (Montague et al. 1996; Fiorillo et al. 2003; Schultz 
2016). This dopaminergic signalling is widely accepted to 
function as a teaching signal driving reinforcement learning 
(Niv and Montague 2009). Dopamine has also been impli-
cated in the ability to flexibly adjust behaviour to changing 
environments (Swainson et al. 2000; Cools et al. 2001; Chu-
dasama and Robbins 2006; Dodds et al. 2008; Boulougouris 
et al. 2009; Clatworthy et al. 2009; Clarke et al. 2011; Cools 
and D’Esposito 2011; Groman et al. 2012; den Ouden et al. 
2013). For example, selective lesioning of striatal dopamine 
in marmoset monkeys impaired the ability to reverse learnt 
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stimulus-reward associations (Clarke et al. 2011), in line 
with classic findings from studies in rodents showing that 
reversal learning is altered by dopaminergic modulation of 
the (ventral) striatum (Taghzouti et al. 1985; Smith et al. 
1999; Goto and Grace 2005). In patients with Parkinson’s 
disease, dopaminergic medication has been shown to 
impair performance selectively on the reversal learning 
stage of a probabilistic reversal learning task while leav-
ing learning during an initial acquisition phase unaltered 
(Cools et al. 2001). In line with the proposal that this 
impairment reflects detrimental overdosing of relatively 
intact dopamine levels in the ventral striatum, dopamin-
ergic medication in Parkinson’s disease was shown to 
attenuate reversal-related BOLD signal in the ventral (but 
not dorsal) striatum (Cools et al. 2007a). Subsequent stud-
ies in young healthy volunteers have shown that admin-
istration of the dopamine (and noradrenaline) transporter 
blocker methylphenidate to healthy volunteers modulates 
reversal-related BOLD signal in the striatum (Dodds et al. 
2008) and impaired reversal learning in proportion to the 
degree that methylphenidate increased striatal dopamine 
release (Clatworthy et  al. 2009). While these studies 
establish a causal role for striatal dopamine specifically 
in reversal learning, the mechanism by which dopamine 
alters the ability to reverse responding remains unclear.

In the present study, we aimed to elucidate the nature 
of the catecholaminergic effects on perseverative behav-
iour during reversal learning. Specifically, perseveration 
may result from either a ‘stamping in’ of rewarded behav-
iour, leading to an inability to ‘let go’ of responding to a 
previously rewarded stimulus, or from a changed ability 
to approach a previously punished stimulus (i.e. punish-
ment avoidance). While striatal Go/NoGo pathway mod-
els, including the Opponent Actor Learning model, posit 
that perseveration might follow from both increasing the 
impact of reward and reducing the impact of punishment 
(Frank 2005; Collins and Frank 2014), we hypothesised 
that reversal deficits are more likely to follow from dispro-
portionate stamping in of rewarded behaviour, rather than 
from diminished punishment avoidance. This hypothesis 
is grounded in seminal work with experimental rodents, 
showing that injection of D-amphetamine in the nucleus 
accumbens of rats potentiates behavioural control by stim-
uli formerly associated with reward (i.e. conditioned rein-
forcement) in a DA-dependent way (Robbins et al. 1989; 
Parkinson et al. 1999). Moreover it follows directly from 
our prior genetic study of probabilistic reversal learning 
(den Ouden et al. 2013). Specifically, we have shown that 
perseveration elicited by genetic variability in the dopa-
mine transporter DAT1 can be accounted for by progres-
sively increased reliance on prior reinforcement, captured 
by an increase in an experience-weight parameter in an 
augmented reinforcement learning model (den Ouden et al. 

2013). Thus, natural genetic DAT1 variation was associ-
ated with a stronger correlation between reinforcement 
history and perseveration (den Ouden et al. 2013). Accord-
ingly, we hypothesised that increasing catecholamine sig-
nalling would alter perseverative behaviour, specifically 
by inducing an inability to ‘let go’ (i.e. stop choosing) a 
previously rewarded stimulus rather than by impairing the 
ability to approach a previously punished stimulus (Frank 
et al. 2004; Cools et al. 2006).

To dissociate these two alternative mechanisms of 
perseverative behaviour arising from punishment avoid-
ance or excessive adherence to previously rewarded 
stimuli, we introduce a novel reversal learning para-
digm that included a ‘neutral’ choice option. To assess 
whether and which of these mechanisms are affected by 
catecholamine signalling, we combined this novel para-
digm with administration of catecholamine transporter 
blocker methylphenidate, which acts by blocking dopa-
mine and noradrenaline transporters (DAT/NAT). This 
blockade increases extracellular catecholamine availabil-
ity in the synaptic cleft, without stimulating release or 
acting as a receptor (ant)agonist (Volkow et al. 2002). 
It is thought to prolong the effect of both dopamine and 
noradrenaline release, as reuptake is slowed (Madras 
et al. 2005; Berridge et al. 2006).

Finally, previous studies have shown that there is large 
inter-task and inter-individual variability in catecholamin-
ergic drug effects on cognitive task performance (Kimberg 
et al. 1997; Cools et al. 2007b; Van Der Schaaf et al. 2013; 
Linssen et al. 2014; Swart et al. 2017; Froböse et al. 2018; 
Cook et al. 2019), including probabilistic reversal learn-
ing (Clatworthy et al. 2009). Given that methylphenidate 
prolongs the effects of catecholamine release by blocking 
the reuptake of catecholamines, it is likely that the effect 
of methylphenidate on catecholamine-dependent function 
is a function of dopamine synthesis capacity and release. 
Simply put, if there is no release, there is no reuptake 
to block. To take into account the established large indi-
vidual variability in methylphenidate effects, we collected 
a large sample (n = 102) to expose individual differences 
and stratified methylphenidate effects by two measures that 
have been previously demonstrated to relate to baseline 
dopamine function: working memory (WM) span for its 
relation to striatal dopamine synthesis capacity (Cools 
et al. 2008; Landau et al. 2009) and trait impulsivity for 
its relation to dopamine (auto)receptor availability (Lee 
et al. 2009; Buckholtz et al. 2010; Reeves et al. 2012; Kim 
et al. 2014). Based on previous studies where we used 
methylphenidate in combination with various reinforce-
ment learning tasks (Van Der Schaaf et al. 2013; Swart 
et al. 2017; Cook et al. 2019), we hypothesised that WM 
span specifically would predict the inter-individual differ-
ences in reversal learning.
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Methods

General procedure and pharmacological 
intervention

Data was collected April 15–September 1, 2014, and 
took place at the Donders Institute for Brain, Cognition 
and Behaviour, Centre for Cognitive Neuroimaging. 
The study consisted of two test sessions with an interval 
of 1 week to 2 months. The first test day started with 
informed consent, followed by a medical screening. 
Participation was discontinued if participants met any 
of the exclusion criteria (supplemental methods 3). On 
both test days, participants first completed baseline 
measures, as well as the Instrumental and Pavlovian 
phases of the Pavlovian-Instrumental transfer (PIT) task 
(Geurts et  al. 2021). Participants received a capsule 
containing either 20 mg of catecholamine transporter 
blocker methylphenidate (Ritalin®, Novartis) or placebo, 
in a double-blind, placebo-controlled, cross-over design. 
This relatively low dose was selected because (i) this 
minimises any potential risks, (ii) it has been found 
sufficient to affect cognitive performance and to do so 
in a manner that is indistinguishable from administration 
of a higher (40 mg) dose (e.g. Elliott et al. 1997), and 
(iii) dopamine microdialysis in macaque monkeys 
has shown that low dose of MPH leads to relatively 
preferential effects on striatal (relative to prefrontal) DA 
release (Kodama et al. 2017). When administered orally, 
methylphenidate has a maximal plasma concentration 
after 2 h and a plasma half-life of 2–3 h (Kimko et al. 
1999). Below we denote capsule intake as t = 0.

The probabilistic reversal learning task was the last 
task participants completed following capsule intake, at 
t = 186.1 (7.9) min, mean (st.d.). This task was preceded 
by 5 other tasks published elsewhere (Swart et al. 2017; 
Froböse et al. 2018; Cook et al. 2019) (Fig. 1). Both test 
days lasted approximately 4.5 h, which participants started 
at the same time of day (maximum difference of 45 min). 
Blood pressure, mood, and potential medical symptoms 
were monitored three times daily: before capsule intake 
(t =  − 5.3 (1.7) min), directly prior to start of the task bat-
tery (t = 47.4 (7.6)), and after finishing the task battery 
(t = 190.9 (7.9)). Mood and medical symptom ratings are 
described in supplemental methods 4. Participants were 
instructed to abstain from alcohol and recreational drugs 
24 h prior to testing and from smoking and drinking coffee 
on testing days. Participants completed self-report ques-
tionnaires at home between test days. Upon completion of 
the study, participants received a monetary reimbursement 
or study credits for participation. The study was in line 
with the local ethical guidelines approved by the local eth-
ics committee (CMO/METC Arnhem Nijmegen: protocol 

NL47166.091.13), preregistered (trial register NTR4653, 
http://​www.​trial​regis​ter.​nl/​trial​reg/​admin/​rctvi​ew.​asp?​
TC=​4653), and in accordance with the Helsinki Declara-
tion of 1975.

Participants were allocated pseudo-randomly to the inter-
vention order (placebo vs methylphenidate first) in a double-
blind, cross-over design. For details on the randomisation 
procedure, see supplemental methods 5.

Participants

As specified in the preregistration, we planned to test 
a sample of 100 participants. To this end, 176 healthy, 
young adults were recruited via flyers around the campus 
and the digital participant pool of the Radboud University, 
Nijmegen. All participants were native Dutch speakers and 
provided written informed consent to participate. Exclusion 
criteria comprised a history of psychiatric, neurological, or 
endocrine disorders (see supplemental methods 3 for a com-
plete overview of the exclusion criteria). One hundred six 
participants who met the inclusion criteria were included in 
this study to reach the planned 100 participants: Data from 
four participants could not be collected on day 2 due to med-
ical reasons (mild arrhythmia: n = 1, elevated heart rate and 
nausea: n = 1) and drop-out (n = 2). These were replaced. A 
further 2 participants were replaced, who had difficulty swal-
lowing the capsules and for whom the capsule content was 
suspended in water on both testing days. These 2 participants 
were included in the final analyses, as we verified that their 
inclusion/exclusion did not affect the results. Thus, the final 
analyses include 102 adult participants (aged 18–28 years, 
mean = 21.5, st.d. = 2.3, 51 women, 81 right-handed), where 
50 participants received methylphenidate on the first testing 
session. Additional demographic information and results 
from baseline neuropsychological assessment and self-report 
questionnaires of included participants are reported in sup-
plemental methods 6.

Probabilistic reversal learning task

Participants performed a probabilistic reversal learning 
(PRL) task with three choice options in each trial. This task 
is an adjusted version of den Ouden et al. (2013), which 
consisted of 2 cues that were either predominantly rewarded 
during acquisition and predominantly punished during rever-
sal (stimulus ‘R-P’) or the reverse (stimulus ‘P-R’). We 
here added a neutral stimulus with 50–50% contingencies 
throughout the task (stimulus ‘N–N’). The rationale for the 
addition of this neutral stimulus was to allow us to disso-
ciate between two putative causes of perseverative behav-
iour. On the one hand, perseveration may result an inability 
to stop choosing a previously rewarded stimulus, so true 
‘perseveration’ of the previously rewarded response. On the 

http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4653
http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4653
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other hand, it may result from punishment avoidance, i.e. 
an in inability to approach a previously punished stimulus. 
Introducing a neutral stimulus makes differential predictions 
for these two scenarios. In case of the former, persevera-
tive behaviour would manifest as continued selection of the 
previously rewarded response. However, in case of punish-
ment avoidance, following reversal, the participant is able 
to unlearn the previously rewarded response but would fail 
to learn to select the previously punished response and will 
now preferentially select the neutral outcome.

On each of 80 trials, three visual stimuli {R-P, P-R, 
N–N} were represented in three out of four pseudo-
randomly selected locations (left, right, top, or bottom; 
Fig. 1B). Participants chose one of the stimuli with a 
mouse click and subsequently received feedback. There 

was no time limit for responses. Feedback was either a 
reward (green, happy emotion) or punishment (red, sad 
emotion). To maximise reward, participants had to learn 
by trial-and-error to choose the mostly rewarded stimu-
lus. During the acquisition phase, stimulus R-P (defined 
as the first stimulus that was chosen by the participant) 
gives reward/punishment with contingencies of 75:25%, 
while P-R results in reward/punishment with the opposite 
(25:75%) contingency ratio. After 40 trials, these rein-
forcement contingencies reversed. Thus, the task consisted 
of an acquisition and a reversal phase. The third stimu-
lus N–N is ‘neutral’, as its selection results in 50:50 ratio 
reward/punishment throughout the task. For information 
on the generation of the feedback sequence and full task 
instructions, see supplemental methods 1 and 2.



Psychopharmacology	

1 3

Behavioural data analysis

Data quality assessment

A priori we decided to exclude any participant who selected 
the same stimulus the entire experiment as they likely did 
not understand the task (cf. den Ouden et al. 2013). How-
ever, this did not happen in the current sample. Trials with 
RT faster than 200 ms likely reflect responses that were 
not based on a deliberate choice between the stimuli. We 
confirm that results do not change whether these trials are 
included (main article) or excluded (supplemental results & 
discussion 3).

Choice accuracy

The statistics software SPSS (version 25) was used to ana-
lyse the behavioural choices. The probability of choosing 
each stimulus was calculated separately for the acquisition 
and reversal phases. To assess the putative mechanisms 

that may drive reduced performance following reversal, we 
contrasted two measures of performance accuracy: (i) the 
probability of selecting the 75% rewarded stimulus (pRe-
ward) and (ii) the probability of avoiding the 75% punished 
stimulus (1-pPunish or pAvoidPunish). To ensure that the 
intercept of this analysis was interpretable, we corrected 
scores for chance performance (i.e. subtracted 1/3). The 
basic design of this analysis was a 2 × 2 factorial ANOVA 
with factors Phase (acquisition/reversal) and Valence 
(pReward/pAvoidPunish). Note that these two measures 
are rendered (relatively) independent by inclusion of the 
neutral stimulus, which is the implicit baseline. The inter-
cept of this ANOVA indexes the ability to learn to select 
the rewarded stimulus and avoid the punished stimulus. A 
main effect of Phase can capture the relative reduction of 
performance in the reversal phase. Most importantly, an 
interaction of Valence × Phase assesses whether there is 
a difference in the degree to which people fail to ‘let go’ 
of the previously rewarded stimulus (reduced pAvoidPun-
ish selection during reversal) or the degree to which they 
fail to approach the previously punished stimulus (reduced 
pReward during reversal).

To assess the effect of methylphenidate on performance, 
this basic design was extended with the factor Drug, result-
ing in a three-way repeated measure ANOVA with Valence 
(pReward, pAvoidPunish), Phase (acquisition, reversal), and 
Drug (methylphenidate, placebo) as within-subject factors. 
Furthermore, listening span total score and Barratt impul-
siveness score were added as covariates of interest. For 
reporting significant results, the Huyn-Feldt correction was 
used when significant non-sphericity was detected.

Any significant interactions were broken down into their 
component simple effects to aid interpretation of the effects.

Control analyses of effects of no interest

To verify that our findings are not confounded by covariates 
(age and Nederlandse Leestest voor Volwassenen (NLV); 
Dutch adult reading test; a measure of verbal intelligence) 
and factors (gender, testing order) of no interest, we repeated 
the analyses above including these covariates and factors and 
confirmed that significant results remained significant and 
non-significant results remained non-significant. Further-
more, mood and medical symptom ratings were monitored 
for safety reasons. Control analyses regarding the mood and 
medical symptom ratings are reported in the supplemen-
tal results (supplemental results & discussion 1). Finally, 
for consistency with previous work (Chamberlain et al. 
2006; den Ouden et al. 2013), we also assessed trial-by-trial 
behavioural adjustments following rewards and punishments 
(illustrated in Fig. 1E, details in supplemental results & dis-
cussion 2).

Fig. 1   Experimental design and basic results. A Study timeline. Par-
ticipants took part in 2 sessions, where on day 1, they started with a 
20-min medical screening and on day 2 completed a working mem-
ory test (listening span). Neuropsychological questionnaires (Quest) 
were completed at home between the two sessions. Mood and medi-
cal symptom ratings (MMSR) were acquired at 3 time points. A bat-
tery of 6 tasks (Swart et  al. 2017; Froböse et  al. 2018; Cook et  al. 
2019) was performed in a fixed order, where the probabilistic reversal 
learning (PRL) task was always performed last. Average timings are 
indicated, with timings most relevant for the current study in purple. 
B Reversal learning design. On each trial, three visual stimuli were 
represented in three out of four randomly selected locations. Partici-
pants had to choose one of the stimuli with a mouse click and sub-
sequently received feedback. The feedback would either be a reward 
(green, happy emotion) and punishment (red, sad emotion). During 
acquisition, the rewarded stimulus (here purple) resulted in a 75:25 
ratio of reward/punishment. Selecting the neutral stimulus (orange) 
and punished stimulus (blue) led to 50:50 and 25:75 ratio of reward/
punishment, respectively. After 40 trials, the reversal phase started, 
and rewarded and punished stimulus contingencies reversed. The par-
ticipant now had to learn to select the blue stimulus. C Trial-by-trial 
choice. Trial-by-trial averaged probability of selection of each stimu-
lus. A sliding window with 5-trial width is used for smoothing. Over-
all, participants learned to make the correct selection for each of the 
phases and showed relatively rapid reversal. D Average choice prob-
ability. Distribution of choice probability averaged within acquisition 
(dark blue) and reversal (light blue) phases. In both phases, partici-
pants learnt to select 75% rewarded option but do significantly less 
well during the reversal phase. E Feedback sensitivity. The degree to 
which people repeated a choice was modulated by the valence of the 
previous outcome for that choice: People were more likely to rese-
lect a stimulus (‘stay’) after it had been rewarded than after it was 
punished. This effect was weaker during the reversal phase (less stay 
after a win, more stay after a loss), in line with slower learning dur-
ing reversal. Note that the intercept in this plot was chance level stay 
(1/3), even after a loss people were more likely to stay than chance 
(simple effect of pStay following loss: F(1,99) = 77.1; p < 0.0001, fol-
lowing win F(1,99) = 1603.4; p < 0.0001), reflecting a relatively small 
impact of a single (negative) outcome and thus slow learning

◂
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Computational modelling

We employed a computational modelling approach to quan-
tify and compare latent mechanisms underlying the task 
behaviour and particularly the effects of methylphenidate 
as a function of working memory capacity. For this, we aug-
mented a previously established model of a simpler variant 
of this reversal learning task (den Ouden et al. 2013) and 
assessed effects of methylphenidate on the various parame-
ters in this model. We defined a family of four ‘base’ models 
that could capture behaviour on this task, in a 2 × 2 model 
space. Briefly, models could either contain a monotonically 
decreasing learning rate (Experience Weighted Attraction: 
EWA model (den Ouden et al. 2013)) or a learning rate that 
was allowed to increase or decrease as a function of surprise 
(RL-Pearce-Hall hybrid model (Li et al. 2011; Piray et al. 
2019b)). Additionally, both EWA and hybrid models were 
also tested with an extension where the value of unchosen 
options is ‘forgotten’ with a forgetting learning rate (Ito and 
Doya 2009). We first fitted and compared these 4 ‘base’ 
models across both drug and placebo sessions, to establish 
the best model independent of drug (cf. model fitting and 
comparison, below). We then tested variations of the win-
ning ‘base’ model to assess which parameter was affected by 
methylphenidate. The equations for all four base models are 
described in detail in the supplemental materials 8. Here we 
only present the winning base model and methylphenidate 
extensions.

The winning Experience Weighted Attraction model 
(EWA) (Camerer and Ho 1999) is an extended version of a 
standard reinforcement learning (RL) model. We have pre-
viously shown that this model can capture (variability in) 
perseverative behaviour in a simpler version of the current 
paradigm (den Ouden et al. 2013). The key feature of this 
model is the so-called experience-weight parameter, which 
models the increasing impact of past experience on subse-
quent decisions. With increasing exposure to each stimulus, 
its experience-weight increases, resulting in a reluctance 
to update beliefs about this stimulus. This feature makes 
the EWA model particularly suitable for modelling rever-
sal learning impairment, effectively embodying a learning 
rate that reduces over time, thus rendering behaviour less 
flexible. The EWA model is described by the following 
equations:

where nc,t is the experience-weight of choice c on trial t , 
which is updated on every trial, using the experience decay 
factor � . The expected value of choice c on trial t  , Vc,t , is 
updated by integrating the feedback, �t�{−1,1} ; the decay 

(1)

n
c,t+1 = n

c,t × � + 1

V
c,t+1 = (V

c,t × � × n
c,t + �

t
)∕n

c,t+1

V∼c,t+1 = V∼c,t

factor for previous payoffs (inverse learning rate), � ; and 
the experience-weight nc,t . Initially, the effective learning 
rate for each choice is high, and by experiencing a choice, 
the experience-weight increases, resulting in a reluctance to 
update the stimulus value based on new outcomes.

In the current three choice option task, it is more likely 
that an option remains unchosen on consecutive trials. Thus, 
the value of an unchosen option may be ‘forgotten’. This is 
reflected by the fact that the winning model EWA + F was 
augmented with a forgetting rate �f :

For �f = 0 , the model is equivalent to the base EWA 
model (Eq. 1), and for more positive values, the value of the 
unselected option will converge to the initial value faster.

For all models, to select an action based on the computed 
values, a soft-max function was employed to calculate the 
probability of each choice.

Here, � is the inverse temperature parameter. The 
j�{1,2, 3} contains the possible actions.

We took this winning EWA + F base model as the basis 
to assess what mechanism drove the behavioural difference 
between placebo and methylphenidate sessions. For this, we 
built a collection of models where we allowed each param-
eter in turn to be estimated separately for the methylpheni-
date and placebo sessions (cf. Swart et al. 2017) and then 
assessed which of these models (or the winning base model) 
was the best explanation of our data.

Model fitting and comparison

All models were fitted to the trial-by-trial choices of each 
participant using Hierarchical Bayesian Inference (HBI) for 
concurrent model comparison, parameter estimation, and 
inference at the population level (Piray et al. 2019a). This 
approach has important advantages for both parameter esti-
mation and model comparison, as parameters estimated by 
the HBI show smaller errors compared to other methods, 
while model comparison by HBI is robust against outliers 
and is not biased towards overly simplistic or complex mod-
els. The winning model was selected based on the protected 
exceedance probability (Rigoux et al. 2014), and we also 
report model frequency. As described above, we report two 
sets of model comparison. First, we established the win-
ning ‘base’ model where we fitted data across both sessions 
(methylphenidate and placebo) to establish the overall best 
model to describe the data. We then extended the winning 
base model such that we allowed each parameter in turn to 

(2)V∼c,t+1 = (1 − �f )V∼c,t

(3)p
�

ct = i
�

=
exp(�Vc=i,t)

∑

j exp(�Vc=j,t)
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be differentially estimated for methylphenidate and placebo. 
In the supplemental materials, we include two further con-
trol analyses to verify the assumption that methylphenidate 
affected only one parameter (c.f. supplemental results & 
discussion 5). For further details on model fitting and com-
parison, see supplemental methods 9.

Model validation

Model comparison evaluates whether a winning model is 
better than other models using an estimation of model evi-
dence, which evaluates goodness of fit relative to model 
complexity. However, a winning model is not necessarily 
a good model. A good model should be able to regener-
ate key features of the original data (Wilson and Collins 
2019), which we assessed through simulations. Using each 
participant’s estimated parameters, 100 artificial agents are 
simulated playing the task, and their choices averaged to rep-
resent each individual participant’s behaviour. Trial-by-trial 
simulated data were re-analysed in order to assess whether 
they captured the key effects of interest.

Parameter inference

Finally, we assessed the nature of the effect of methylphe-
nidate in the winning model. We used a t-test to establish 
whether there was a significant difference in parameter esti-
mates under methylphenidate vs placebo and correlated the 
drug-induced change in parameter estimates to the covari-
ates of interest, working memory span, and trait impulsivity 
(see below), using a Spearman correlation. Last, we assessed 
whether methylphenidate-induced changes in parameter esti-
mates predicted the methylphenidate-induced change in raw 
behaviour. For all parameter analyses, we extracted subject 
level parameters from the first, non-hierarchical, estimation 
step. This is to prevent bias (specifically one magnifying the 
difference between drug conditions) that could result from 
the hierarchical model fitting procedure (Piray et al. 2019a).

Covariate analyses: working memory capacity 
and trait impulsivity

Two covariates, the listening span test total score (Dane-
man and Carpenter 1980; Salthouse and Babcock 1991) and 
Barratt impulsiveness scale (BIS-11; (Patton et al. 1995)) 
were included in the main analyses, as (preregistered) puta-
tive proxies of inter-individual variability in baseline dopa-
mine function. These measures have been shown with PET 
to correlate positively to dopamine function (Cools et al. 
2008; Landau et al. 2009) and have been shown to predict 
dopaminergic drug effects (Kimberg et al. 1997; Kimberg 
and D’Esposito 2003; Frank and Claus 2006; Cools and 

D’Esposito 2011; van der Schaaf et al. 2014). For detailed 
descriptions of these measures, see supplemental methods 7.

Results

Data quality assessment

All 102 healthy participants completed the probabilistic 
reversal learning task in two sessions and were included 
in the analysis. No participants chose the same response 
option throughout. Participants made very few responses 
with RT < 200 ms (mean (st.d.) 0.2 (0.6)% of trials, range 
0–4%), and these trials were excluded for the basic analy-
ses. For computational modelling, analyses were repeated 
with and without these trials.

Behavioural analyses

Choice accuracy

Participants successfully learned the three-option PRL 
task. People overall learnt to select the rewarded and 
avoid the punished stimulus (Intercept: F(1,99) = 1515.1, 
p < 0.001, η2 = 0.94; Fig. 1C). However, choice accuracy 
was lower during the reversal phase than during the acqui-
sition phase (Phase: F(1,99) = 19.7, p < 0.001, η2 = 0.17, 
c.f. Figure 1D). There was no evidence of a differential 
preference to either fail to select the previously punished 
stimulus or fail to ‘let go’ of the previously rewarded stim-
ulus (Valence × Phase: F(1,99) = 0.3, p = 0.6, η2 = 0.003), 
indicating that there was no difference in the reversal 
phase in terms of the degree to which people stuck to 
the previously rewarded stimulus relative to the degree 
to which they avoided the previously punished stimulus.

Methylphenidate did not consistently affect either 
overall performance (Drug: F(1,99) = 3.3, p = 0.074, 
η2 = 0.032), differential learning during acquisition and 
reversal (Phase × Drug: F(1,99) = 0.6, p = 0.43, η2 = 0.006), 
nor, importantly, reward-based perseveration relative to 
punishment-based avoidance (Phase × Valence × Drug: 
F(1,99) < 0.01, p = 0.96, η2 < 0.001). However, meth-
ylphenidate affected performance differentially during 
acquisition versus reversal as a function of WM span 
(Phase × Drug × WM span: F(1,99) = 7.1, p = 0.009, 
η2 = 0.067, Fig.  2C), which even weakly interacted 
with Valence (Phase × Valence × Drug × WM span: 
F(1,99) = 5.4, p = 0.022, η2 = 0.052). We followed up this 
interaction in two ways: First, to understand which fac-
tor drove this four-way interaction, we broke it down into 
simple effects for each of the factors (reported in detail 
in Supplemental results & discussion 3). The first key 
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Fig. 2   Effects of methylphenidate on reversal learning task perfor-
mance. A No significant main effect of methylphenidate on average 
probability of stimulus selection. Distribution of difference of stimulus 
selection probability between two sessions (MPH-placebo) for acquisi-
tion and reversal phase is demonstrated in dark and light blue, respec-
tively. Methylphenidate did not consistently affect either overall learning 
or differential learning during acquisition and reversal. B Trial-by-trial 
averaged probability of selection of each stimulus (median split based 
on WM span). Left panel: high WM group (n = 48), probability of 
‘rewarded’ stimulus selection increased under methylphenidate (dash 
line) in comparison to placebo (solid line) during the acquisition phase. 

Right panel: low WM group (n = 54), probability of ‘rewarded’ stimu-
lus selection decreased under methylphenidate in comparison to placebo 
during the acquisition phase. A sliding window with 5-trial width is 
used for smoothing. C Methylphenidate effects predicted by WM span. 
Methylphenidate increased the accuracy of selecting ‘rewarded’ option 
vs ‘punished’ option in acquisition phase more than reversal phase for 
high WM span participants yet decreased it for low WM span partici-
pants (r = 0.26, p = 0.009). By splitting up the MPH effect by phase fac-
tor, during the acquisition, middle panel, participants with high WM 
improved under methylphenidate (r = 0.30, p = 0.002), but during the 
reversal, right panel, there is no significant interaction
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observation was that methylphenidate affected learn-
ing during the acquisition (F(1,99) = 9.8, p = 0.002), but 
surprisingly not during the reversal phase of the task 
(F(1,99) = 0.1, p = 0.75). During the acquisition phase, 
people with high working memory improved under meth-
ylphenidate, while people with low working memory per-
formed more poorly (Fig. 2B). In contrast, during reversal, 
there was no interaction of performance with drug and 
working memory span. The second key observation, from 
post-hoc simple effects as a function of valence, was that 
methylphenidate strongly affected the ability to learn to 
select the rewarded stimulus (F(1,99) = 7.6, p = 0.007), and 
while effects of methylphenidate were in the same direc-
tion for the ability to learn to avoid the punished stimu-
lus, these were significantly weaker and by themselves 
only a trend (F(1,99) = 3.7 p = 0.057). Interestingly, there 
was a significant effect for the probability to select the 
neutral stimulus (F(1,99) = 5.4 p = 0.022). Summarising, 
these results show that under methylphenidate, during the 
acquisition phase, people with high working memory were 
significantly likely to select the mostly rewarded stimulus 
while significantly less likely to select the neutral stimulus, 
leaving the punished stimulus not significantly affected. 
This suggests that in high working memory participants, 

methylphenidate aids to dissociate between the best and 
second best option.

Finally, there were some weak (trend) lower level 
interaction effects that were however qualified by the key 
higher-order interaction described above (Drug × WM span: 
F(1,99) = 3.6, p = 0.06, η2 = 0.036). There was no significant 
effect of BIS on performance, nor in interaction with meth-
ylphenidate (of interest: Phase × Drug × BIS: F(1,99) = 0.07, 
p = 0.8, η2 = 0.001; Phase × Valence × Drug × BIS: 
F(1,99) < 0.01, p = 0.9, η2 < 0.001; all other p > 0.1).

To control for potential confounding factors, we repeated 
this ANOVA by including the confound variables gender 
and test order (between subject factors) and age (covariate). 
Including these confound variables did not alter the signifi-
cance of the observed effects although there was an effect of 
age (but this did not interact with the effect of interest; for 
details, see the supplemental results & discussion 1).

Model comparison

We compared our previously established EWA model to an 
extended version that included a forgetting factor, follow-
ing from the extension of stimulus space (3-option design) 
along with the RL-Pearce-Hall hybrid models that allowed 

Fig. 3   Model fitting and simulation result for PRL task modelling. A 
Model comparison on base models. Model frequency and protected 
exceedance probability indicate that the EWA + F model (EWA with 
forgetting rate for unchosen options) provides the best description of 
the data (PXP = 0.91). B Trial-by-Trial simulated choice. Model sim-
ulations of the winning base model verify that the EWA + F model 
captures the behavioural data (grey lines indicate average raw data). 

C Simulated average choice probability. Distribution of stimulus 
selection probability for acquisition and reversal phase is demon-
strated in dark and light blue, respectively (compare with Fig.  1D). 
The simulated data for EWA + F model qualitatively and quantita-
tively replicate the participants’ behaviour and regenerate key features 
of the data
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for adaptive, prediction error–based changes in learning rate. 
Model comparison showed convincing evidence in favour of 
the EWA + F model (protected exceedance probability: 0.91, 
Fig. 3A). See Table 1 and supplemental results & discussion 
4 for parameter estimates for all four base models.

To capture the effects of methylphenidate, we allowed 
each of the 4 parameters of this winning model to be affected 
by methylphenidate in turn, by fitting that parameter sepa-
rately for methylphenidate and placebo sessions. We then 
compared all 4 ‘drug’ models plus the ‘baseline’ model 
without an effect of methylphenidate. Model comparison 
showed that the winning model allows methylphenidate 
to affect the inverse learning rate parameter � (protected 
exceedance probability: 0.98, see Fig. 4B). Parameter esti-
mates for the methylphenidate models and model com-
parison statistics are reported in Table 1 and supplemental 
results & discussion 4. As described above, we assumed 
that methylphenidate affected only a single parameter (i.e. 
computational mechanism). We validate this assumption in 
the supplemental materials (see supplemental results & dis-
cussion 5).

Model validation

Model simulation is essential to evaluate the model’s abil-
ity to regenerate key features of the data. In order to exam-
ine the reproducibility of the winning model, we generated 

data using the winning model. Our simulated data qualita-
tively and quantitatively replicate the participants’ behav-
iour (Figs. 3B–C and 4C–D). Again, in the simulated data, 
there is a significant interaction of Phase × Drug × WM span 
(F(1,99) = 5.1, p = 0.026, η2 = 0.049) (Fig. 4D). Furthermore, 
breaking down this interaction into simple effects by phase, 
our observations from raw data were replicated. Methyl-
phenidate improved initial learning in high-WM span par-
ticipants while reducing performance in low-WM span par-
ticipants (F(1,99) = 5.1, p = 0.027, η2 = 0.049). Again, there 
was no significant Drug × WM span interaction during the 
reversal phase (F(1,99) = 1.7, p = 0.3, η2 = 0.011).

Parameter inference

Model EWA + F, which allowed for a different value for the 
inverse learning rate � on vs off methylphenidate, was con-
vincingly the best model. However, there was no significant 
difference between �Placebo and �MPH when assessed across 
all individuals (t =  − 0.4, p = 0.7). This indicates strong evi-
dence for a change in � following drug intake, but the sign of 
this change was variable over participants. Indeed, mirroring 
the raw behavioural results, the difference between �Placebo 
and �MPH correlated with WM span (r = 0.20, p = 0.043, 
Fig. 4E). There was a strong correlation between methyl-
phenidate-induced changes in inverse learning rate ( Δ� ) and 
the methylphenidate-induced change in raw performance 

Table 1   Model evidence 
for base model and 
methylphenidate model families 
and parameter estimates for 
winning models in each family 
(see supplementary table 1 for 
full details for all models)

*A weakly informative Gaussian prior was used for all parameters (x∼N(μ,σ2) where the mean value� = 0

and the variance�2 = 10 ). According to theoretical constraints of parameters, sigmoid or exponential trans-
formations are applied.

Base model family
Model Param.* Constraint Median Range (25–75%) pxpi p (mi|data, m)
  EWA 0.01 0.22
  EWA + F 0.91 0.40

� 0 ≤ � ≤ 1 0.77 0.29–0.87
� 0 ≤ � ≤ 1 0.63 0.27–0.83
� 0 ≤ � ≤ +∞ 4.23 3.11–7.88
�
f

0 ≤ �
f
≤ 1 0.35 0.02–0.68

  Hybrid 0.0 0.10
  Hybrid + F 0.08 0.28

Methylphenidate model family
  EWA + F 0.02 0.25
  EWA + F + Δ

�
   0 0.13

  EWA + F + Δ�   0.98 0.42
�
Placebo

0 ≤ �
Placebo

≤ 1 0.70 0.26–0.86
�
MPH

0 ≤ �
MPH

≤ 1 0.70 0.33–0.84
� 0 ≤ � ≤ 1 0.56 0.21–0.79
� 0 ≤ � ≤ +∞ 4.46 3.13–7.94
�
f

0 ≤ �
f
≤ 1 0.22 0.01–0.62

  EWA + F + Δ�f 0 0.12
  EWA + F + △�   0 0.08
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Fig. 4   Modelling the effects of methylphenidate. A Simulated choice. 
Simulated data replicated observed behaviour for no main effect of 
methylphenidate (see Fig. 2A). B Model comparison on methylphe-
nidate models. Model frequency and protected exceedance probabil-
ity (PXP = 0.98) indicate that the EWA + F that allows for differen-
tial learning rates under methylphenidate and placebo best captures 
the data. Model validation: C-F. C Simulated trial-by-trial behaviour. 
Simulated data replicate observed behaviour for high WM and low 
WM participants (see Fig. 2B). D Choice simulation. The simulated 
data using winning model regenerate quantitative characteristics of 

data, particularly a positive effect of methylphenidate on performance 
for high WM participants (see Fig. 2C). E Methylphenidate changes 
inverse learning rate as a function of working memory span. The dif-
ference in inverse learning rates under methylphenidate vs placebo 
( Δ� ) covaries with WM span (r = 0.2; p = 0.043). Methylphenidate 
increases � in high WM participants, where decreases it in low WM 
participants. F Methylphenidate-induced effect on raw performance 
scores. The methylphenidate-induced change in inverse learning rate 
( Δ� ) is correlated with methylphenidate-induced change in raw per-
formance (r = 0.33; p < 0.001)
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metrics (r = 0.32, p < 0.001, Fig. 4F). Thus, methylpheni-
date administration increased performance in high working 
memory participants, which was captured by an increase 
in the inverse learning rate � , thus effectively a decrease in 
learning rate. In contrast, methylphenidate administration 
decreased performance in low working memory participants, 
which was captured by a decrease in inverse learning rate 
� . There was no correlation between the methylphenidate-
induced changes in inverse learning rate ( Δ� ) and trait 
impulsivity (r =  − 0.02, p = 0.8).

Optimal learning rate analysis

Compared with previous studies in which tasks were 
employed with two response options, we observed that per-
formance in the acquisition phase was substantially worse, 
while performance during the reversal phase was much 
better in our current 3-option version (cf. den Ouden et al. 
2013). Concomitant with this, values of � were much higher, 
i.e. learning rate was lower, in the current dataset than in our 
previous dataset. We therefore performed a supplemental 
analysis to compare the optimal learning rates across the two 
different versions of the task to assess whether this changed 
learning rate across paradigms was adaptive. In short, the 
3-option version of the task had a lower optimal learning 
rate. This observation can be understood when realising 
that optimal performance on this probabilistic task required 
participants to dissociate a 50% reward option from a 75% 
reward. Integrating information over too short a time win-
dow (i.e. a high learning rate) would have made it more diffi-
cult to correctly dissociate between these two options. In line 
with this, the observed decrease in learning rate in high WM 
span participants under methylphenidate was adaptive, as the 
effective learning rates moved closer to the optimal learning 
rate. For details, see supplemental results & discussion 6.

Discussion

This study aimed to uncover the causal role of dopamine in 
perseverative behaviour during probabilistic reversal learn-
ing. To this end, a large sample of participants (n = 102) 
performed a novel 3-choice PRL task both on and off cat-
echolamine transporter blocker methylphenidate. Contrary 
to predictions, methylphenidate did not consistently affect 
perseverative behaviour in this novel task, as indexed by 
an absence of change in reversal performance. In contrast, 
methylphenidate altered performance in the acquisition 
phase, in a manner that depended on individual variabil-
ity in working memory span. Specifically, methylphenidate 
increased the inverse learning rates in participants with a 
higher working memory span. In other words, in high WM 
individuals, methylphenidate reduced the degree to which 

values were updated following any single outcome, which 
made learning more robust in the probabilistic context of the 
task, thereby improving initial learning.

Methylphenidate effects on value learning 
versus perseveration

We set out in this study to assess the computational mecha-
nism by which catecholamine blockade affects reversal per-
formance. Specifically, we asked whether reversal deficits 
were due to a failure to learn to approach a previously pun-
ished stimulus or to ‘let go’ of a previously rewarded stimu-
lus. Perhaps a surprising finding in the current study is that 
acute catecholamine reuptake blockade did not affect rever-
sal performance and perseveration at all. This is particu-
larly surprising given the considerable literature concerning 
the role of dopamine in habitual actions (Daw et al. 2005; 
Everitt and Robbins 2005; Balleine and O’Doherty 2010) 
and perseverative behaviour (Cools et al. 2001; Rutledge 
et al. 2009), particularly direct findings of genetic variability 
in the DAT1 genotype (den Ouden et al. 2013) and methyl-
phenidate-induced reversal impairments (Clatworthy et al. 
2009). While it is possible that this observed discrepancy 
between the previous literature and current study reflects a 
true non-replication in this large sample (n = 102, vs most 
previous studies n = 20–40), a perhaps more likely possibil-
ity is that, by introducing a neutral choice option, we have 
significantly altered the nature of the paradigm.

Indeed, as presented in the supplemental analyses, across 
participants, we observed that compared to the previously 
used 2-choice PRL paradigms, the learning rate was sig-
nificantly lower. This reduction in effective learning rate 
provides an important clue as to why the observed effects 
in the current study are particularly obvious in the acquisi-
tion phase. By including the 50/50 choice option, the task 
was rendered much more difficult as optimal performance 
now required dissociation of two choice options (50/50 vs 
75/25) that were much closer in terms of feedback than the 
previous (70/30 vs 30/70) dissociation that had to be learnt. 
To be able to make this dissociation, one needs to integrate 
information over a longer window, which is exactly what a 
reduced learning reflects. Indeed, this adjustment is adap-
tive, as optimal learning rates in the current paradigm are 
much lower than for the previous version of the task. In 
contrast, performance during the reversal phase was much 
more robust in the current paradigm.

This increased task difficulty may have had the unan-
ticipated effect that this (difficult) initial learning was less 
robust across participants and became more sensitive to (e.g. 
drug) manipulations. We propose that dopamine affects both 
initial value learning, likely through ventral striatal predic-
tion error like RL mechanisms that affect learning rate, 
but also affects longer-term ‘stamping in’ of responses and 
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habit formation, through dorsal-striatal habit systems. Dis-
crepancies in findings across studies, then, might reflect 
the relative sensitivity of various tasks tapping into these 
mechanisms. Thus, the current paradigm increased diffi-
culty of initial learning but was also associated with less 
vulnerable reversal performance, while the reverse may be 
true for the 2-option task. It is unclear why performance 
during the reversal phase was so much better than in the 
2-option task—perhaps the task structure was more obvious 
to participants. Regardless, the absence of methylphenidate 
effects on reversal performance therefore unfortunately did 
not allow us to further disentangle putative dopaminergic 
mechanisms of reward-based perseveration versus a failure 
to overcome learned avoidance.

Mechanisms of baseline‑dependent effects 
of methylphenidate

The finding that effects of methylphenidate on behaviour 
vary as a function of working memory capacity was consist-
ent with our preregistered hypothesis. We posit two possible 
explanations for this effect. First, working memory span has 
been shown to correlate with striatal dopamine synthesis 
capacity (Cools et al. 2008; Landau et al. 2009). Given 
that methylphenidate acts by blocking the dopamine (and 
noradrenaline) transporter, it is likely that the effect of meth-
ylphenidate on catecholamine-dependent function is a func-
tion of dopamine synthesis capacity and subsequent release. 
While under placebo conditions, release and reuptake are in 
balance in both high and low synthesis capacity subjects, 
administration of methylphenidate could disturb this bal-
ance differentially. Specifically, if individuals with higher 
working memory capacity have higher release of dopamine 
(Cools et al. 2008; Landau et al. 2009), then methylpheni-
date might increase tonic levels of dopamine, paradoxically 
leading to reduced sensitivity to individual bursts and thus a 
reduced learning rate. In contrast, low working memory par-
ticipants with low synthesis capacity may have very sensi-
tive post-synaptic dopamine function, and blockade of trans-
porters may increase the duration of post-synaptic impact of 
dopamine bursts, thereby effectively increasing the learning 
rate. A recent dopamine PET study indeed demonstrated dis-
proportionate sensitivity of participants with low dopamine 
synthesis capacity to methylphenidate-related increases in 
reward impact on choice (Westbrook et al. 2020).

Alternatively, the interaction between methylphenidate 
effects on learning and baseline working memory capacity 
might reflect a modulation of interactions between work-
ing memory and reinforcement learning strategies (Collins 
et al. 2017). Specifically, Collins and Frank have recently 
established that within individuals, relative reliance on rein-
forcement learning versus working memory strategies varies 
with working memory load (Collins and Frank 2012). By 

analogy, we hypothesise that this balance in any given task 
may vary across individuals as a function of their working 
memory capacity. In short, if you have a lower span, you 
may shift sooner to RL strategies. Neurally, methylphenidate 
may act on striatal levels of dopamine, as suggested above, 
but may also affect frontal functioning, through blockade 
of noradrenaline transporters in the frontal cortex (Volkow 
et al. 2001, 2012; Arnsten and Dudley 2005; Berridge et al. 
2006; Berridge and Devilbiss 2011; Kodama et al. 2017). 
The relative balance of the effect of methylphenidate on 
either striatal (putatively RL) mechanisms versus putative 
direct frontal modulation on working memory functioning 
may differ between individuals with high versus low base-
line working memory capacity, explaining the differential 
effects observed.

A final speculation is that methylphenidate plays a role 
via its action on either dopamine or noradrenaline transmis-
sion by affecting our ability to optimise the learning rate 
given the volatility of the environment (Nassar et al. 2010; 
Muller et al. 2019). This hypothesis concurs with the results 
of our other experiment in the same individuals in which 
we employed a task explicitly designed to assess effects on 
learning as a function of the volatility of outcome contingen-
cies (cf. Figure 3; Cook et al. 2019). In this learning task, 
methylphenidate adaptively lowered the learning rate in sta-
ble versus changeable environments. In the current experi-
ment, the learning rate decrease in high capacity participants 
moved it closer to the optimal learning rate for current the 
task and was indeed associated with an increase in initial 
performance, due to a better ability to distinguish between 
the best (rewarded) and second-best (neutral) option. We do 
note that this ‘meta-learning’ interpretation should be taken 
with caution, because the current paradigm with its single 
reversal was not optimised to answer this question and the 
models in which we allowed the learning rate to fluctuate 
according to the size of the prediction errors did not perform 
better than the winning model in which the learning rate was 
only allowed to be reduced over time.

Conclusion

The present study was set up to test the specific hypoth-
esis, derived from our previous dopamine genetic study, that 
administration of methylphenidate would alter probabilistic 
reversal learning by changing the reliance on prior reward. 
To test this hypothesis, a novel reversal task was employed 
with three-choice options. Surprisingly, results revealed no 
effects on the reversal phase. However, an effect of methyl-
phenidate surfaced already in the initial acquisition phase. 
In line with prior studies, this effect was not unidirectional 
across participants, but varied with individual differences 
in baseline working memory capacity: Methylphenidate 



	 Psychopharmacology

1 3

improved performance and reduced the learning rate to a 
greater degree in participants with higher working memory 
capacity. We hypothesise that the increased demands for 
learning in this 3-option task brought to the surface an effect 
of methylphenidate on learning rather than on flexibility.
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