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The Effects of Air Pollution on Students’
Cognitive Performance: Evidence from Brazilian

University Entrance Tests

Juliana Carneiro, Matthew A. Cole, Eric Strobl
Abstract:We examine the contemporaneous causal relationship between outdoor air
pollution levels and student cognitive performance in Brazil’s nationwide university
entrance examinations. Our analysis relies upon a unique and previously unexplored
student-level data set allowing us to examine the effect of particulate matter (PM10)
on students’ scores. In our main specification we construct individual-level panel data
for the 2 days of exams across 3 years and apply student fixed effects to address po-
tential endogeneity concerns. In addition, we take advantage of plausibly exogenous
spatial and temporal variation in PM10 across municipalities in the states of Rio de
Janeiro and São Paulo and utilize an instrumental variable approach based on wind
direction. Our results suggest that air pollution negatively impacts the cognitive per-
formance of students. We find suggestive evidence that boys may be more affected
than girls, and less well-off exam takers at the bottom of the score distribution are more
affected than their more privileged counterparts.

JEL Codes: I10, I20, J24, Q53

Keywords: Brazil, air pollution, cognitive performance, wind direction, particulatematter
THE WORLD HEALTH ORGANIZATION (WHO) estimates that globally as many
as 4.2 million premature deaths each year are linked to exposure to ambient air pol-
lution.1 The WHO also points out that the health impacts associated with pollution
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exposure are not equitably distributed, with the poorest individuals in the poorest
countries being disproportionately affected. The manner in which many common local
air pollutants adversely affect health, particularly via the respiratory and cardiovascular
systems, is now well known (Dockery et al. 1993; Hansen and Selte 2000; Weinhold
2008; Currie et al. 2009; Ling and van Eeden 2009; Neidell 2009; US EPA 2016).
However, a more recent literature has examined the possibility that exposure to air pol-
lution may also affect cognitive performance and, in turn, potentially human capital for-
mation, productivity, and ultimately economic growth (Zweig et al. 2009; Currie et al.
2014; Ebenstein et al. 2016). If true, this raises the prospect of a “cycle of disadvantage”
in which exposure to pollution constrains the development prospects of those who need
it most.

The literature examining the impact of pollution exposure on human capital forma-
tion has found compelling evidence that air pollution, through its impact on health, in-
creases school absenteeism (Currie et al. 2009; Ransom and Pope 2013; Chen et al.
2018; Liu and Salvo 2018), negatively affects school pupils’ scores (Almond et al. 2009;
Nilsson 2009; Zweig et al. 2009; Reyes 2011; Sanders 2012; Bharadwaj et al. 2017),
and decreases low- and high-skilled workers’ productivity (Chang et al. 2016; Heyes
et al. 2016; Archsmith et al. 2018; Chang et al. 2019; Kahn and Li 2019). Other studies
examine the accumulated impact of air pollution within a period of time on pupils’ scores
at school (Zweig et al. 2009). Overall, these studies look at the long-run impact of fetal
(Almond et al. 2009; Sanders 2012; Bharadwaj et al. 2017) or around birth (Nilsson
2009; Reyes 2011) exposure to air pollution on students’ scores and do so typically
in developed country settings.

While many studies focus on the cumulative or long-run impacts of air pollution on
pupils’ academic performance, few pay heed to the contemporaneous effect of pollution
exposure on student performance. One exception is Ebenstein et al. (2016), who find
negative effects of air pollution exposure on the day of high-stakes examinations in Is-
rael, with negative long-run effects on individuals’ earnings. Another relevant study is
Graff Zivin et al. (2020), who examine the impact of agricultural fires on Chinese stu-
dents’ exam scores. They differentiate between upwind and downwind fires and find
the difference between the two to have a statistically significant effect on exam perfor-
mance. With regard to Brazil, Bedi et al. (2021) conduct an experiment at the Univer-
sity of São Paulo and suggest that exposure to high levels of PM2.5 reduces students’
performance in a reasoning test. Here we add to this literature by investigating the im-
pacts of particulate matter on students’ scores in high-stakes exams by using a unique
geographic and demographically representative data set. Despite the findings of Graff
Zivin et al. (2020) and Bedi et al. (2021), there remains very limited evidence on the
impacts of urban air pollution on students’ cognitive performance in the most highly
polluted cities and regions of the developing world.

This paper examines the causal relationship between outdoor air pollution levels
on the day of the nationwide university entry examinations and students’ cognitive
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performance in Brazil, and specifically in Rio de Janeiro and São Paulo, its most indus-
trialized states. More precisely, we use Brazilian data on concentrations of ozone (O3)
and particulate matter (PM10) and a rich administrative data set on students’ scores to
examine the impact of air pollution on academic performance in national examinations
(Exame Nacional do Ensino Médio; ENEM).2 This educational data set is combined
with air pollution and weather monitoring station data to build a unique panel of data
for the period 2015–17. We also test the effects of air pollution on the exam perfor-
mance of male and female students separately since the previous literature has indicated
that fetal exposure to pollution can have different long-term impacts on males and fe-
males ( Jayachandran 2009; Sanders 2012). Similarly Ebenstein et al. (2016) found
boys’ exam performance to be more affected by air pollution than that of girls. In ad-
dition, we utilize students’ socioeconomic characteristics to investigate the heteroge-
neous effects of air pollution on students’ scores per different economic strata.

Our analysis contrasts with Ebenstein et al. (2016), who consider the impact of an
overall air quality index on the Israeli national examination composite score, and with
Graff Zivin et al. (2020). The latter work could neither establish the direct link be-
tween fires and air pollution nor assess the direct effect of air pollutants on students’
scores due to lack of data on air pollution for the period of study. Unlike the previous
literature, besides using student fixed effects, we also implement an instrumental var-
iable (IV) approach to mitigate endogeneity concerns related to air pollution. Follow-
ing Deryugina et al. (2019) and Bondy et al. (2020), we use wind direction as an ex-
ogenous shock capable of producing variation in air pollution levels on a particular
day and locality. Our assumption relies on the fact that municipalities’ daily wind di-
rection is not directly related to students’ scores in the national examinations except
through its influence on air pollution. We take advantage of the geographic and tem-
poral variation in wind direction in our data set to explore the exogeneity of our instru-
mental variable, that is, the variation in daily wind direction in the municipality in
which the examination took place.

Our focus on Brazil is motivated by the fact that, by global standards, it experiences
relatively high levels of air pollution and relatively low levels of academic performance.
In terms of pollution, for instance, in 2015 the Environmental Company of São Paulo
(Companhia Ambiental do Estado de São Paulo; CETESB) reported 972 occurrences
of ozone levels being above WHO safe limits in the metropolitan area of that state.3

Regarding academic achievements, in the OECD’s Program for International Student
Assessment (PISA) Brazil was ranked 39th out of 40 countries in 2019, revealing the
relative underperformance of Brazilian students in comparison with their international
counterparts, includingmost of Brazil’s Latin American neighbors. Furthermore,OECD
2. PM10 represents particulate matter with a diameter of 10 micrometers or less.
3. The information can be found in the CETESB website: https://cetesb.sp.gov.br/.

https://cetesb.sp.gov.br/
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research by Zapata et al. (2015) shows that only approximately 15% of 25–34-year-olds
in Brazil completed tertiary education in 2014, compared to the OECD average of
41%.

Our findings suggest that an increase of 10 micrograms per cubic meter (mg/m3) of
PM10 on the day of the examination decreases students’ scores by 6.1 points (8% SD).
We find evidence that the students most affected by pollution are male, those with
weaker school performance, and those from poorer households, although the differ-
ences that we find across these subsamples are not statistically significant. Finally, we
run placebo tests using levels of pollution 1 day after the exams, with results reinforcing
our main findings that it is indeed the poor air quality on the day of the exams that
reduces exam scores. That is, pollution levels on the day after the tests have no signif-
icant impact on students’ cognitive performance. We therefore believe that our study
provides policy makers with important evidence of a contemporaneous link between
air pollution and exam performance.

The remainder of this paper is organized as follows. In section 1, we describe our
data. We present our empirical strategy in section 2. In section 3, we present our results
and conduct sensitivity analysis. In section 4, we present our conclusions.

1. DATA AND SUMMARY STATISTICS

Our data set on daily air quality, weather conditions, and students’ ENEM scores in
São Paulo and Rio de Janeiro between 2015 and 2017 are collected from three main
sources as detailed below. As our study comprises 3 years of examinations with stu-
dents taking exams in 2 days (Saturdays and Sundays), we build a panel data at the
student level and control for the day of examinations. We describe our data set and
present summary statistics below.

1.1. Air Pollution Data

Air pollution data from São Paulo and Rio de Janeiro are collected from their re-
spective environmental state agencies: the Environmental Company of São Paulo (Com-
panhia Ambiental do Estado de São Paulo; CETESB) and the State Institute for the
Environment (Intituto Estadual do Meio Ambiente; Inea). Both agencies are responsi-
ble for monitoring the air quality of the two states, using ground-level automatic and
nonautomatic monitoring stations.4 São Paulo has 63 automatic monitoring stations
and 26 nonautomatic stations, while Rio de Janeiro has 58 automatic and 116 non-
automatic stations (see fig. A3; figs. A1–A4 are available online). Inea’s and CETESB’s
websites provide the addresses, latitude, and longitude of their monitoring stations, which
4. The automatic stations are directly linked to a central computer that registers the pollu-
tion concentrations. In the nonautomatic stations, the samples are manually collected at the site
to be analyzed in the laboratories of CETESB and Inea.
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we used to merge this data set with the national examination scores, by municipality cen-
troid location.

Unfortunately, for confidentiality reasons, the Ministry of Education in Brazil does
not provide the exact address where each student took their examinations, only the mu-
nicipality. Hence, we are not able to identify the closest monitoring station to the exact
exam location. Nevertheless, following Graff Zivin et al. (2020), we proxy each exam
venue’s location using the centroid of the municipality in which the test took place.We
then identify up to three pollution monitoring stations within 10 kilometers (km) of
the municipality centroid and average hourly readings across those to form an average
daily measure of pollution (table 1 reports summary statistics of PM10 and O3).

5 We
then calculate the inverted weighted distance (IWD) for PM10 and O3 (in mg/m

3) fol-
lowing Currie and Neidell (2005), Sager (2019), and Bondy et al. (2020).6

1.2. Weather Data

To control for atmospheric climate we collected data on weather conditions from
CETESB and Inea monitoring stations. This provides us with measures of tempera-
ture (in degrees Celsius, °C), relative humidity (in percentage, %), wind speed (inmeters
per second, m/s), and wind direction (in degrees).7 The latter is used as an instrumental
variable for PM10. CETESB provides wind direction in cardinal mode; thus, to use it as
a numerical variable, we transform it into degree direction. Moreover, as wind direction
is an angle (360° circle) and covaries with wind speed (i.e., there are two components
that need to be averaged together) to calculate its daily average we need to split out the
east/west vector and the north/south vector, and then recombine them to find the speed
and direction (Itron 2019; Webmet 2019).8 The remaining climate measures are also
registered on an hourly basis, with the daily means calculated and assigned to the exam-
inations’municipalities using the IWD in a similar manner to which the pollution mea-
sure is built (Currie and Neidell 2005; Sager 2019; Bondy et al. 2020). Table 1 presents
the summary statistics for weather conditions.

1.3. University Entrance Examination Scores and Other ENEM Data

The subject-specific ENEM scores are collected from the National Institute for Ed-
ucational Research Instituto Nacional de Estudos e Pesquisas Educacionais Anísio
5. To be clear, if there are three monitors within 10 km we average across those, if there are
two we average across those, and if there is only one then we use the daily average of that one
monitor. If a municipality has no monitoring stations within 10 km of its centroid, then data for
that municipality are dropped from our analysis. In our sensitivity analysis we increase the 10 km
limit to 50 km.

6. Figures A1 and A2 show the daily average of both pollutants.
7. Unfortunately, we do not include rainfall as most stations do not present complete data

for this variable for the period analyzed in this research.
8. As inDeryugina et al. (2019), wind direction refers to the direction the wind is blowing from.
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Teixeira (INEP), an agency from the Brazilian Ministry of Education (INEP 2017).
This is a rich administrative data set with detailed information on the students’ scores
per exam subject at the student and school level, and demographic information, such
as household income, parental level of education, age, race, gender, and special needs
(tables 1 and 2 summarize this information).

The data for 2015 indicate that exams took place in 261 municipalities: 208 munic-
ipalities in the state of São Paulo and 53 in Rio de Janeiro state. In 2016, the data set
indicates 209 municipalities in the state of São Paulo and 51 in Rio de Janeiro state,
making a total of 260 municipalities where the ENEM took place. In 2017, the state
of São Paulo held examinations in 209 municipalities, and the state of Rio de Janeiro in
52. Note that since we use monitoring stations as far as 10 km from the municipality
centroid to construct our air pollution and meteorological measures, we end up with
Table 1. Summary Statistics: Air Pollution, Weather, and Exam Scores

Variable: Exam-Level Data All Girls Boys

Total score (0–1,000 points) 526 516 537
(76.2) (71.3) (78)

Sciences (0–1,000 points) 502 493 515
(78.9) (76.4) (80.2)

Humanities (0–1,000 points) 558 550 569
(77.3) (76.2) (77.5)

Languages (0–1,000 points) 532 532 534
(68.4) (67.1) (70)

Mathematics (0–1,000 points) 512 494 535
(116) (106) (125)

PM10 (mg/m
3) 17.5 17.5 17.5

(6.11) (6.13) (6.08)
O3 (mg/m

3) 41.5 41.5 41.6
(12.3) (12.3) (12.1)

Temperature (°C) 20.6 20.6 20.6
(3.2) (3.25) (3.24)

Humidity (%) 81.4 81.4 81.5
(13.6) (13.6) (13.6)

Wind speed (m/s) 2.25 2.25 2.25
(1.25) (1.24) (1.25)

Observations 2,931,368 1,671,910 1,259,458
N municipalities 47 47 47
Note. Table reports statistics for the estimation sample. Standard deviations between parentheses. N
municipalities attends for the total number of municipalities where the exams took place with weather
and air pollution measures available for the 3 years in our main sample.



Table 2. Summary Statistics: Demographic Information, Female and Male Samples

Variable: Demographic Information:
Student-Level Data Girls (%) Boys (%) All

Race:
White 56.5 43.5 676,034
Black 56.4 43.6 209,759
Mixed race 58.1 41.9 512,356
Asian 60.2 39.8 31,787
Indigenous 51.5 48.5 6,285
Nondeclared 52.4 47.6 29,463

Type of school:
Federal 51.3 48.7 9,096
State 58.9 41.1 390,906
Municipal 57.8 42.2 10,234
Private 54.4 45.5 175,079
Nondeclared 43.2 56.8 880,369

Mother’s education:
Never studied 63.8 36.3 40,175
Incomplete first elementary 61.9 38.1 192,868
Incomplete second elementary 59.3 40.7 192,269
Elementary 57.5 42.5 217,829
High school 56.2 43.8 519,969
Undergraduate 46.8 53.2 175,996
Postgraduate 47.4 52.6 87,369
Nondeclared 51.4 48.6 43,209

Father’s education:
Never studied 62.7 37.3 47,118
Incomplete first elementary 61.4 38.6 235,784
Incomplete second elementary 59 41 197,293
Elementary 56.7 43.3 197,121
High school 55.4 44.6 441,797
Undergraduate 52.7 47.4 146,295
Postgraduate 51.4 48.6 73,888
Nondeclared 58.3 41.7 126,388

Household income:
No salary 59.7 40.3 25,797
1–7 min. wages 58.9 41.1 1,113,334
>7 min. wages 50.4 49.6 326,553

Number of students 835,955 629,729 1,465,684
Note. The percentages refer to the proportion of boys and girls in relation to the last column named
“All,” in which we display the absolute amount of students per category (in the first column). For example,
in the type of school, we see that there are 9,096 students from federal schools, among them 51.3% are girls
and 48.7% boys. The household income was built in 17 ranges following the Ministry of Education’s cat-
egories. In this table, we condense the bins into three due to space.
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47 municipalities within our final sample.9 This reduction in the number of municipal-
ities and hence number of spatial observations of pollution measures in our final sample
consists of a trade-off decision that we must make. Had we opted for using stations lo-
cated, for instance, 50 km from the municipality centroid, we would have experienced
attenuation bias in our estimates.10 As, in a given year, every student takes the test on
the same day, the variation in air pollution comes from the fact that they take exams in dif-
ferent locations. Nonetheless, the reduction in the number of observations in our final panel
does not affect the power of our study since we still end up with a very large sample size.

As for demographic information, the INEP data provide the highest level of edu-
cation achieved by each student’s parents. As such, we build categorical variables in-
dicating each of the seven educational levels as follows: (i) never studied, (ii) incom-
plete first elementary if the parent attended school for a while but did not complete
the first elementary, (iii) incomplete second elementary if the parent attended school
for a while but did not complete the second elementary, (iv) elementary if the parent
only completed elementary school, (v) high school if the parent completed high school,
(vi) undergraduate if the parent completed undergraduate school, (vii) postgraduate if
the parent completeda postgraduate level, and (viii) nondeclared if the students de-
clared that they were unaware of their parents’ level of education (Zweig et al. 2009).

Students’ socioeconomic background is also likely to be an important predictor of
their academic performance, particularly in developing countries where the degree of
inequality is much higher than in developed nations. In Brazil it has been found that
students’ socioeconomic characteristics can determine up to 85% of the variation in exam
scores (Estadao 2019). In light of this, in our models that use municipality fixed effects,
we control for socioeconomic background using parental household income. The original
data do not display the income in figures, preventing us from using that data as a contin-
uous variable. As a result, we created dummies for each level of parental household in-
come. According to the INEP’s microdata information, there are 17 income ranges—
monthly earnings from zero minimumwage until more than 20 times the minimumwage.
As table 2 shows, 76% of students have a household income between one and seven times
theminimumwage, 1.8% belong to families who do not receive a salary, and around 22.2%
of students’ parents received more than seven times the minimum wage.

1.3.1. The ENEM

The ENEM is a nonmandatory and standardized national exam used to evaluate high
school students in Brazil and is the second largest in the world after the National
9. Figure A4 shows the maps of Rio and São Paulo with the total amount of municipalities
from the raw data that hosted examinations and the municipalities within our final sample

10. Table A3 presents the number of observations and municipalities for the five samples
using the different distances, as well as the ratio of municipalities used in the final sample and
the raw data set.



Air Pollution Effects on Students’ Cognitive Performance Carneiro, Cole, and Strobl 1059
Higher Education Entrance Examination in China. Since 2009, the exam has been
used by federal and state universities as their admission test. The exam is also used
to rank deprived students to receive points in the federal scholarship Universidade para
Todos Program (or ProUni), as well as for certification for a high school degree.

The ENEM comprises four groups of multiple choice exams that take place on two
days: humanities, sciences, languages, and mathematics, each of them with scores rang-
ing from 0 to 1,000. The humanities exam includes history, geography, philosophy, and
sociology; the science tests encompass chemistry, physics, and biology; and the language
tests include Portuguese language, literature, foreign language (English or Spanish),
arts, physical education, and information and communication technologies (INEP
2017). In 2015, the examinations occurred onOctober 24 and 25; in 2016, onNovem-
ber 5 and 6; and in 2017, on November 5 and 12. In each year the exams start at 13:30
and finish at 18:30 on the first day, and start at 13:30 and finish at 19:00 on the second
day. In 2015 and 2016 on the first day, students took exams in humanities and sciences
and on the second day languages and mathematics. In 2017 the order was slightly dif-
ferent, with students taking tests on languages and humanities on the first day and sci-
ences and mathematics on the second day.

Although we have hourly data for both air pollution and weather variables, which
would enable us to assign the measures of air pollution and weather condition at the
exact moment of the exams, we follow the literature on the impact of air pollution on
human capital and use the daily average of O3, PM10, humidity, temperature, wind speed,
and wind direction (Ebenstein et al. 2016; Sager 2019; Bondy et al. 2020).

2. EMPIRICAL STRATEGY

We examine the partial correlation between PM10 exposure and test scores at the in-
dividual level for the years 2015–17. Nonetheless, there are a few identification chal-
lenges to overcome in order to establish the causal relation between air pollution and
students’ performance due to the possible presence of omitted correlated elements. For
instance, one concern is that students’ exam scores may be correlated with air pollution
due to the fact that students from higher socioeconomic strata could live in municipal-
ities with lower levels of air pollution (the parents could choose to live in less polluted
areas, which are usually more expensive) (Banzhaf andWalsh 2008; Currie et al. 2014).
Hence, although the candidates do not choose the exam venue, it is determined according
to the student’s household postcode (INEP tries to assign the examination venue as close
as possible [up to 30 km] to each student’s address). Hence, students who live in less
polluted municipalities would end up taking exams in cities with cleaner air than other
candidates who live in more deprived areas, which may be more polluted (Currie et al.
2014). This possibility of address selection is also highlighted by Neidell (2004, 2009),
who characterizes it as an avoidance behavior by parents.

A final concern relates to the fact that the level of pollution and weather conditions
in the days and venues where the exams are marked may influence the final marks, as
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the examiners could also have their productivity affected by these circumstances. How-
ever, all the tests aremultiple choice, and the grades are given by amachine, which clearly
is not affected by air pollution or weather determinants. Thus, to tackle those economet-
ric concerns we apply two specification strategies as detailed below.

2.1. Panel Fixed Effects Model

As students take exams on 2 days, we employ student fixed effects and control for the
exact day of the examinations. The main model thus takes the following form:

Simt 5 βPMmt 1 tTEMPmt 1 rHUMIDmt 1 wWINDSPEEDmt

1 fi 1 vt 1 εimt, (1)

where Simt is the test score of student i at municipalitym at time t,11 PMmt is our measure
of air pollution (PM10) (in m/m3) at municipality m at time t, TEMPmt is the daily av-
erage temperature at municipality m at time t in degrees Celsius, HUMIDmt is the rel-
ative humidity measure at municipality m at time t in percentage,12 WINDSPEEDmt is
the mean of wind speed measured at municipality m at time t in m/s, and fi is student
fixed effects. By including fixed effects and weather controls, we are able to compare
students’ performance in the exams on the different days with different levels of air pol-
lution given each student’s characteristics. Hence, confounding factors stemming from
time-invariant differences between students can be eliminated from our list of identi-
fication concerns. For example, socioeconomic background and parents’ level of educa-
tion are subsumed by the student fixed effects. As we know the day of each examina-
tion, we are able to add vt as a control for exam fixed effects and rule out the concern
that the tiredness of students in the second day of exams would confound the real ef-
fects of air pollution on their performance due to extra exhaustion in the second day of
tests. In addition, we can eliminate another concern regarding differences in level of pol-
lution from Saturdays and Sundays (when the exams take place) by including these
time-varying controls. Finally, the standard errors are clustered by municipality centroid
to control for spatial and serial correlation within each municipality in which examina-
tions took place, and eimt is an idiosyncratic error term.

2.2. The Instrumental Variable Approach

After using student fixed effects and controlling for weather conditions, there may still
remain concerns about the existence of classical measurement error. For example, the
students’ actual exposure to outdoor air pollution may differ from the monitoring

(1)
11. We use standardized test scores to account for the different subjects of the examination.
Thus, standardized scores5 (scores –�scores)/SD; where�scores is the mean and SD is the stan-
dard deviation. That is, we normalize the official scale scores to a mean equal to zero and stan-
dard deviation equal to 1 (Rosa et al. 2019; Garg et al. 2020).

12. In our econometric models, we add linear and quadratic terms for both temperature and
relative humidity, and their linear and quadratic interaction.
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stations’ readings, which may bias our estimates downward due to attenuation bias
(Moretti and Neidell 2011; Schlenker and Walker 2015; Chen et al. 2018). Further-
more, as explained above, PM10 is not randomly assigned, leading to the potential pres-
ence of unobserved time-varying effects that we cannot account for. Therefore, we
also experiment with an instrumental variable approach to estimate our models. In
this regard we follow previous works, as, for example, Deryugina et al. (2019), Ander-
son (2020), and Bondy et al. (2020), and adopt wind direction as our instrument for
air pollution, which can be considered a natural experiment that results in exogenous
shocks to local air pollution in a specific area due to wind shocks (Currie et al. 2014).

Following Deryugina et al. (2019) and Bondy et al. (2020), we use k-means cluster
to create three groups for all the pollution monitors in our sample. Clustering is largely
used to assign pollution monitors into a predetermined number of groups according to
the groups’ latitude and longitude. Hence, each group represents a geographic area.13

To choose the optimal number of regional clusters, we use the k-means cluster algorithm
(Makles 2012). First, we follow the official Instituto Brasileiro de Geografia e Estatistica
(IBGE) regional division of the São Paulo and Rio de Janeiro states to define as 11 the
number of maximum possible clusters the municipalities in our final sample could belong
to. The IBGE adopts several forms to classify the territory into smaller regions, for ex-
ample, macro-regions, micro-regions, andmeso-regions.We adopted the latter classifica-
tion in line with CETESB’s and Inea’s monitoring stations’ organization to define themu-
nicipalities from our sample into those regional groups.We found 11 regional levels, which
we inputted in the k-means algorithm to find the optimal number of clusters per latitude
and longitude. Figure 1 shows the within sum of squares (WSS), log(WSS), h2, which is
similar to theR2, and the proportional reduction of error (PRE) coefficient (PRE) for all k-
cluster solutions. Accordingly, clustering with k 5 3 appears to be the optimal solution.
More specifically, at k 5 3 we see a kink in theWSS and log(WSS). The term h2 points
to a reduction of theWSS by 88% and PRE to a reduction of about 79% compared with
the k 5 2 solution. Yet, the reduction in WSS is negligible for k > 3.14

Note that the number of groups is somewhat (by latitude and longitude) arbitrarily
chosen (Deryugina et al. 2019; Bondy et al. 2020). As a result, βgb varies across geo-
graphic groups (Deryugina et al. 2019). It follows that, in using the interaction between
the geographic groups with the wind direction dummies, we aim to mitigate the con-
cern that a municipality’s pollution monitors may not properly measure the average
13. K-means clustering aims to split n observations into k clusters in which each observation
belongs to the cluster with the nearest mean. K-means algorithm minimizes within-cluster var-
iances (squared Euclidean distances) and tends to find clusters of comparable spatial extent, i.e.,
by latitude and longitude in our case.

14. Our results do not leave doubt concerning the k 5 3 choice. Nonetheless, the k-means
response depends on the initial cluster centers chosen by the researchers. Thus, we repeated the
process 50 times and found k 5 3 to be the optimal answer 83% of the time. Furthermore, for
more details on how to calculate the WSS, h2, and PRE, consult Makles (2012).
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pollution each student within each municipality is affected by since the pollution sta-
tion locations are sparse throughout the two states Rio de Janeiro and São Paulo. Fur-
thermore, we also do not know the precise location of the exam venues within each mu-
nicipality. As such, our identification strategy limits the effect of municipality wind
direction on pollution to be the same for all stations within each of the three geographic
groups, which comprise various municipalities. As explained byDeryugina et al. (2019)
and by Bondy et al. (2020), this confinement shortens the impact of pollution variation
from different sources, reducing measurement error in our models. The concern here is
that the 47 municipalities in our sample engulf a large area, and wind may carry par-
ticulate matter from different sources.15 That is, if the station is close to the point
source, its measures are likely to be higher than another station located far from the
point source, which may cause measurement error in our estimations. On the other
hand, nonpoint sources tend to present more similar influence on the monitors in the
same group and, hence, are more likely to be responsible for the variation on pollution
Figure 1. The within sum of squares (WSS) (a), log(WSS) (b), h2 (c), and PRE (d) for allK
cluster solutions (optimal number of clusters). The figure indicates clustering with k 5 3 to be
the optimal solution. At k 5 3, there is a kink in the WSS and log(WSS), respectively; h2

points to a reduction of the WSS by 88% and PRE to a reduction of about 79% compared with
the k 5 2 solution. However, the reduction in WSS is negligible for k > 3.
15. Note that we consider the direction the wind blows from, instead of the direction that
the wind blows to, as in Anderson (2020).
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that we expect to capture from the variables 1½Gc 5 g� × WindDir90bmt (Deryugina et al.
2019).

To identify the causal relationship between pollution and the students’ scores we
follow the strategy employed by Deryugina et al. (2019) and Bondy et al. (2020) to
build our instrumental variable. To this end we rely on the assumption that municipal-
ities’ daily wind direction is not directly related to the students’ scores in the national
examinations, except through its influence on air pollution. Therefore, as argued by
Deryugina et al. (2019), we do not need to know the exact source of pollution since
the use of wind direction—which can be considered random to the pollution-exam re-
lationship—to predict air quality eliminates the concern of potential correlation be-
tween what generates pollution and other factors affecting student performance. We
take advantage of the geographic and temporal variation in wind direction in our data
set as the source of exogeneity of our instrumental variable. That is, we use the variation
in daily wind direction in the municipality where the examination took place as an in-
strument for pollution. Our model can be formally described as:

Pollutantmt 5 o
g∈G

o
2

b50
β
g
b1 Gc 5 g½ � × WindDir90bmt 1 v1tempmt 1 v2humiditymt

  1 v3windspeedmt 1 ni 1 ft 1 εimt,

(2)

Scoreimt 5 adPollutantmt 1 w1tempmt 1 w2humiditymt 1 w3windspeedmt

1 mi 1 qt 1 uimt, (3)

where Scoreimt is the test score of student i at municipality m at time t. The variable
1½Gc 5 g� indicates the monitor group g each municipality was classified into out of
the total three G. The set of variables in 1½Gc 5 g� × WindDir90bmt account for our ex-
cluded instruments, where each of the g clusters is interacted with WindDir90bmt and
equals 1 if the daily average wind direction in the municipality m is in the 90-degree in-
terval [90b, 90b190] and 0 otherwise, with the interval [270, 360] omitted and used as
the reference wind direction (Deryugina et al. 2019). Equation (2) is the first stage in
which we expect β̂ to be significant as an indication that wind direction at municipality m
and time t affects the level of pollution at municipalitym and time t (relevance assumption).

Figure 2 shows the structure of our instruments by depicting the daily average PM10

across the 47 municipalities where the exams took place in our final sample by wind
direction measured by its daily mean. It illustrates the relationship from our first stage,
suggesting that days with wind blowing from the north, northeast, and east have on
average higher levels of PM10.

16

Our instrumental variable approach confirms our fixed effects results. Primarily,
our valid set of instruments helps us to address potential unobserved factors that could

(3)
16. Table A1 reports the first-stage estimations and the F-test statistics for the strength of
our instruments.
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remain in our baseline findings. Suffice it to say that our estimates are roughly the
same in both empirical strategies. In addition, by using interactions between wind di-
rection and geographical clusters, we are capable of demonstrating plausibly exogenous
variation in air pollution measures across different regions constituting our sample.

As for the validity of our instrument, wind direction fulfills the relevance require-
ment since it varies along with the concentration of PM10 as demonstrated by the F-
test statistics in tables A1 and 4 (tables A1–A3 are available online). Moreover, with
regard to the exogeneity requirement, the main assumption is that wind direction only
affects students’ scores via air pollution.

Although the previous literature has shown that O3 and PM10 are not highly cor-
related, we use the daily average of pollution measures of PM10 as our main pollutant
measure (Zweig et al. 2009; Ebenstein et al. 2016; Sager 2019). This separate equations
approach, that is, the focus on one particular pollutant, has been used by, for example,
Currie (2009) and Arceo et al. (2016). Other work prefers to use a composite measure
of air pollution.17 Nonetheless, we estimate equations with both pollutants jointly as a
Figure 2. The effect of wind direction on air pollution. Daily average of PM10 concentrations
for the 47 municipalities in the final sample per direction from where the wind blew during the
exams days. 95% confidence intervals. Details on the data described in the text.
17. For instance, Ebenstein et al. (2016), Chen et al. (2018), and Bondy et al. (2020) use the
air quality index (AQI).
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robustness check, and, as table 7 shows, the estimate signs and magnitudes of PM10 re-
main stable as when estimated separately.

For the temperature variables we build six bins of the size 3°C, with the first bin
comprising temperatures between 16°C and 19°C, and the last bin for temperatures
between 28°C and 31°C. This approach allows temperature to have a nonlinear impact.
In all specifications, we use linear and quadratic terms for temperature (or bins) and
humidity and their interactions (Ebenstein et al. 2016).
3. EMPIRICAL RESULTS

3.1. Main Results

Table 3 provides our estimations’ results. For completeness we start by using munici-
pality fixed effects. From column 1 we can observe that an additional 10 mg/m3 of
PM10 corresponds to a reduction in students’ scores by 1%, though not significant.
On the other hand, when it comes to utilizing student fixed effects and controlling
for day fixed effects, the results in column 3—our preferred specification—suggest that
an increase of 10 mg/m3 of PM10 on the day of examinations leads to a highly significant
reduction of 8% of a standard deviation in students’ scores.

To explore possible nonlinearity between air pollution and students’ cognitive per-
formance, we present results from a complementary specification using a dummy var-
iable for air pollution that equals 1 if the level of PM10 is above 20 mg/m3—WHO’s
acceptable threshold for this pollutant. After controlling for student and day fixed ef-
fects, our results reported in column 4 suggest that students face a significant reduction
of 11% SD in their scores.

While our main specification using student fixed effects illustrates the relationship
between bad air quality and students’ cognitive performance, there might remain poten-
tial unobserved time-varying circumstances which that strategy may not be capturing.
As such, we turn to our instrumental variable findings. First, our IV first-stage F-test
statistic informs us that wind direction is indeed a strong predictor of air pollution and
hence a strong instrument.18 Second, our findings in table 4 suggest that an additional
10 mg/m3 of PM10 on exam days caused the students’marks to drop by 8% SD (col. 3).
If we compare this with the baseline fixed effects results presented in column 1, we no-
tice that the results remain broadly the same even though there is a slight reduction in
the sample size.

When it comes to nonlinear PM10 for the instrumental variable specification, col-
umn 4 in table 4 displays the same pattern of results as the one using linear pollution
measure (col. 2). That is, students taking exams in venues and days above theWHO’s
threshold have their scores reduced by 13% SD compared to their counterparts exposed
18. Figure 2 and table A1 provide the first-stage estimations.
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to air pollution levels equal to or below to 20 mg/m3. Also, regarding the first stage for the
nonlinear approach, the F-test statistic still reveals that wind direction is a strong predic-
tor of air pollution.
3.2. Heterogeneity across Subpopulations

In this section we analyze the heterogeneous effect of the treatment (air pollution) for
our preferred specification reported in columns 3 and 4 from table 3: (i) by gender,
(ii) across the distribution of scores per municipality, and (iii) in terms of different levels
of income. Through this heterogeneity inspection, we aim to unveil how different sub-
populations have their cognitive performance affected by the exposure to air pollution
during high-stakes examinations.

With regard to gender differentials, our findings in table 5 suggest that boys are
more negatively affected by poor air quality during exams than girls. To put this into
perspective, an increase of 10 mg/m3 of PM10 causes males’ scores to drop by 11% SD,
while girls suffer a reduction of 6% SD. This heterogeneity is also observed when using
Table 3. The Effects of PM10 on Students’ Scores (Main Specification with Flexible
Weather Controls)

Municipality Fixed Effects Student Fixed Effects

Variables (1) (2) (3) (4)

PM10 (10 mg/m3) –.01 –.08***
(.05) (.03)

1 if PM10 > 20 –.04 –.11***
(.03) (.04)

Student FE N N Y Y
Student controls Y Y N N
Day FE Y Y Y Y
Weather controls Y Y Y Y
Observations 2,944,911 2,944,911 2,931,368 2,931,368
N municipalities 47 47 47 47
R-squared .17 .17 .07 .07
Note. The dependent variable in all regressions is the students’ test scores (in SD). Robust standard
errors in parentheses clustered by municipality centroid. Estimates for controls not shown: student controls
include gender, race, and mother’s level of education (cols. 1 and 2), municipalities FE (cols. 1 and 2) stu-
dent FE, day FE, temperature in bins, relative humidity and its square, interactions of these weather var-
iables, and wind speed. PM10 accounts for its linear form measured in mg/m3; PM10 > 20 corresponds to a
dummy that equals 1 if PM10 > 20 and zero otherwise. FE 5 fixed effects.

* p < .1.
** p < .05.
*** p < .01.



Table 4. Particulate Matter’s Impact on Scores: Models with Instrumental Variable
Wind Direction

Baseline With Instruments

Variables (1) (2) (3) (4)

PM10 (10 mg/m3) –.08*** –.08***
(.03) (.01)

1 if PM10 > 20 –.11*** –.13***
(.04) (.01)

F first stage 55.4 71
Observations 2,931,368 2,931,368 2,405,938 2,405,938
N municipalities 47 47 47 47
Note. The dependent variable in all regressions is the standardized students’ tests scores (in SD). See
table 3 for full specification. Columns 1 and 2 identical to cols. 3 and 4 from table 3. Flexible weather con-
trols; student and day fixed effects (FE). Standard errors clustered by municipality and bootstrapped with
500 repetitions.

* p < .1.
** p < .05.
*** p < .01.
Table 5. Heterogeneity in Particulate Matter’s Impact on Students’ Scores per Gender

Variables
All
(1)

Girls
(2)

Boys
(3)

All
(4)

Girls
(5)

Boys
(6)

PM10 (10 mg/m3) –.08*** –.06*** –.11***
(.03) (.03) (.03)

1 if PM10 > 20 –.11*** –.08** –.15***
(.04) (.03) (.05)

P-value Z-test
(girls – boys) p 5 .88 p 5 .88

Observations 2,931,368 1,671,910 1,259,458 2,931,368 1,671,910 1,259,458
N municipalities 47 47 47 47 47 47
R-squared .07 .09 .08 .07 .09 .08
Note. The dependent variable in all regressions is the standardized students’ test scores (in SD). Robust
standard errors in parentheses clustered by municipality centroid. Z-tests of the difference in the gender-
specific coefficients (i.e., cols. 2–3 and 5–6) present p-values > .1. Estimates for controls not shown: student
fixed effects (FE), day FE, temperature in bins, relative humidity and its square, interactions of these weather
variables, and wind speed. PM10 accounts for its linear formmeasured in mg/m3; PM10 > 20 corresponds to a
dummy that equals 1 if PM10 > 20 and zero otherwise.

* p < .1.
** p < .05.
*** p < .01.
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a nonlinear pollution variable; the results persist, with boys’ scores being reduced by
15% SD and girls’ by 8% SD, meaning that boys who sat the examinations in days with
air pollution levels above the WHO’s acceptable threshold faced a reduction in scores
7 percentage points greater than girls (cols. 5 and 6). However, as table 5 indicates,
Z-tests of the difference in the estimated coefficients for boys and girls present
p-values > .1.

Nevertheless, these suggestive findings are consistent with previous studies, includ-
ing Jayachandran (2009), Sanders (2012), and Ebenstein et al. (2016). Even though
the role of gender in the effects of air pollution on respiratory health remains unclear,
some epidemiology studies point out that males are more affected than females. For
example, Abbey et al. (1998) link PM10 exposure to reduced lung functioning among
males but not females, Galizia and Kinney (1999) find similar results regarding the ex-
posure to O3, and Chen et al. (2017) identify that contemporaneous and cumulative
exposure to air pollution has a stronger negative effect for men than for women. Sim-
ilarly, Ebenstein et al. (2016) find the effect of pollution on exam performance to differ
by gender and cite the increased incidence of asthma among boys as a possible cause.

Next we assess whether students at different points of the performance distribution
are differently affected by poor air quality. To this end we split our final sample into
subsets of low and high scores within each municipality. One can note from panel A
of table 6 that students below the average have their scores 1 percentage point more
impacted than pupils that rank above the average. Stated differently, stronger students
exposed to an additional 10 mg/m3 of PM10 during the exams have their performance
reduced by 6% SD (col. 3), while weaker students are more negatively affected, present-
ing a drop of 7% SD (col. 2). When we compare this to the baseline estimation (col. 1)
using the whole sample, the average reduction is 8% SD. Another comparison is made
between the top 5% scores and bottom 5%. Column 4 shows that students who rank
very low in the exam suffer a reduction of 5% on their marks, while students on the top
of the distribution seem not to be significantly affected by an increase of pollution levels
during examinations (col. 5). Finally, columns 6–10 depict results from the same ex-
ercises utilizing the nonlinear pollution variable. These findings suggest that students
above the median and who took the exams in days with PM10 above the WHO’S
threshold are more negatively impacted, with scores dropping by 12% SD, while stu-
dents in the top 5% of the ranking are again not significantly affected by taking exams in
days with pollution levels higher than 20 mg/m3. Again, we note that the differences in
our results across the performance distribution are not statistically significant.

In panel B of table 6 we slice our sample to look into how students from different
socioeconomic strata may be disproportionately affected by air pollution during the
tests (Hsiang et al. 2019). For example, Neidell (2004) finds that less well-off house-
holds are more impacted by air pollution given their reduced capability of compensating
behavior. Students from poorer backgrounds seem to bemore affected by poor air qual-
ity. It may also be due to the fact that weaker students and low income are correlated
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(Ebenstein et al. 2016). We therefore subsampled the individuals according to their
household incomes and compared them using the mean of the municipality average in-
come.While the differences are again not statistically significant, from panel B of table 6
one can notice that students below the median or below the bottom 5% face a reduc-
tion of 9% SD in their scores for every extra 10 mg/m3 in the day of the tests (cols. 2 and
4), whereas wealthier students are not significantly impacted by a deterioration in air
quality.

3.3. Sensitivity Analysis

To assess the robustness of our results, we experiment with a number of alternative
specifications. So far we have reported results in which we include only one pollutant
at a time in our estimations. Given the generally high correlation between many com-
mon local air pollutants, there continues to be debate around whether or not different
pollutants have independent health effects (see, e.g., Lipfert et al. 2009; Cao et al. 2011;
Gan et al. 2011; Katanoda et al. 2011; Chen et al. 2012). In our sample, O3 and PM10

have a pairwise correlation of 0.10, significant at 5%. Nevertheless, table 7 provides the
results from estimations in which both pollutants are included together. For ease of
comparison, we report the baseline models with student fixed effects in columns 1 and
2 and with instrumental variables approach in columns 3 and 4. Columns 5–8 show
the results of equations with both pollutants.

First, the estimation using student fixed effects presents the same coefficient for the
linear form of PM10 with O3, negative but not significant. That is, the effect of an in-
crease of 10% of particulate matter on the day of the exams reduces students’ scores by
8% SD as seen in the baseline model (col. 1). For our instrumental variable specification
with copollutant, similarly to our finding using only particulate matter to capture air
quality (col. 4), column 8 demonstrates that students passing exams in venues and days
with levels of PM10 higher than theWHO’s threshold suffer a reduction of 14% SD in
their scores compared to others who are subjected to lower levels of that pollutant. Fur-
thermore, the O3 coefficient seems to continue to suggest no effect on students’ grades.
Therefore, in line with Bedi et al.’s (2021) work on cognitive performance and air pol-
lution in São Paulo, we see that PM10 continues to have overall the same impact on test
takers, while O3 does not present a significant effect on the latter. These are expected
results since PM10 penetrates indoors more easily than O3; hence one would indeed
expect a smaller impact, or no impact at all, of the latter pollutant in a copollutant
estimation.

In a second exercise we include a 1-day lead in our main specification with the linear
form of PM10 to capture common situations, for example, political events and weather
shocks. To do sowe use data on air pollution from1 day ahead of the actual date. Table 8
shows that air pollution levels in the day after the exams do not significantly affect stu-
dents’ performance. Accordingly, an additional 10 mg/m3 on the day of the examinations
is still responsible to a decrease of 5% SD in students’ scores, while PM10 measures from
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the following day have no impact on pupils’ marks. These results suggest that our main
findings on students’ cognitive performance are driven not by other factors that started
before the test day and correlatedwith pollution but solely by exposure to poor air quality
on the day of the test, hence, a contemporaneous effect.19

We next conduct a third exercise to check the robustness of our results. As we do
not know the precise location where the students took their exams, we have so far used
the municipality centroid as a proxy for the exam venues and measured pollution using
the average of up to three pollution monitoring stations within 10 km of that centroid.
However, if a school is located toward the periphery of a municipality, then the mon-
itoring stations within 10 km of the centroid may not be the best measure of pollution
levels at that school’s location and, if there are fewer than three monitors within 10 km,
we are omitting monitoring stations from our analysis that may be closer to the school’s
location. To see whether this is affecting our results we here extend the 10 km limit to
50 km and plot the results in figure 3. We can see that PM10 continues to negatively
affect scores, but the impacts fade and the standard errors inflate as the distance rises,
with the coefficients corresponding to the 50 km estimation not being statistically sig-
nificant. This would seem to suggest that the 10 km cut-off more accurately captures
pollution concentrations at exam venues and that the pollutants’ levels decay insofar as
they travel.20

Finally, to demonstrate the sensitiveness of our main specifications with binned
weather controls, table A2 shows that the pollutant’s coefficient becomes positive
Table 8. The Effects of PM10 on Students’ Scores (Baseline Model 1 1 Day Lead)

Variables
Baseline
(1)

Baseline 1 Lead
(2)

Lead
(3)

PM10 –.08*** –.05**
(.03) (.02)

PM10 (lead) –.00 .02
(.02) (.02)

Observations 2,931,368 2,172,680 2,172,680
N municipalities 47 47 47
R-squared .07 .08 .08
19. Similar results can be fo
20. Similar results can be fo
und, e.g., in Bedi et al
und, e.g., in Lai et al.
. (2021).
(2018).
Note. The dependent variable in all regressions is the standardized students’ test scores (in SD). Robust
standard errors in parentheses clustered by municipality centroid. Included student fixed effects (FE), day
FE, flexible weather controls. PM10 is linear in 10 mg/m3.

* p < .1.
** p < .05.
*** p < .01.
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and significant when we do not include those variables (cols. 1 and 2), corroborating the
largely known fact that controlling for meteorological conditions is important. Further-
more, columns 3 and 4 present our specifications using linear weather controls and col-
umns 5 and 6 with their squares and interactions. These results suggest that our main
estimates are being driven not by unobserved meteorological conditions correlated with
wind and students’ performance but solely by the effects of air pollution.

4. CONCLUSION

In this paper we take advantage of the individual-level panel data structure of a Bra-
zilian student exam data set to estimate the causal effect of contemporaneous exposure
to air pollution on students’ performance in university entrance exams from 2015 to
2017. To identify this relationship we use student fixed effects as our main specification
strategy but, as robustness checks, we also experiment with a wide range of control var-
iables such as individual characteristics, parents’ level of education, household income,
weather controls (temperature, humidity, and wind speed), and day and municipality
fixed effects. To address possible biases in our estimations stemming from classical
Figure 3. Cognitive impact of PM10 per distance from the station to the municipality cen-
troid. This figure reports the cognitive impact of air pollution within different distances; 10 km
is the baseline model. All the specifications follow the main model with student fixed effects, day
controls, and flexible weather condition as in column 3 of table 3. We note an increase of stan-
dard errors, suggesting that the further away the stations, the less precise and significant the
estimates.
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measurement error and omitted variables, we also perform an instrumental variable ap-
proach where we rely on the temporal and geographical variation in wind direction to
build our instrument. Our main assumption is that this variation is exogenous since it
does not directly affect the students’ scores except through its effect on air pollution.

Our results consistently suggest a harmful effect of air pollution on exam perfor-
mance. Indeed, we find that an increase of 10 mg/m3 of PM10 on the day of the exam-
ination decreases students’ scores by around 6 points (8% SD). Even when including a
more flexible measure of our treatment that is utilizing a dummy variable to account for
the days in which PM10 exceeded the WHO’s acceptable threshold, our findings still
point to negative effects of air pollution on cognitive performance during examinations.
We run several sensitivity checks and falsification tests which suggest that our results
are not driven by spurious correlations.

We also find suggestive evidence that the effect of air pollution on exam perfor-
mance appears to differ for males and females, with the performance of the former more
adversely affected. This finding is consistent with previous studies, including Jaya-
chandran (2009), Sanders (2012), and Ebenstein et al. (2016). Although the role of
gender in the effects of air pollution on respiratory health remains unclear, some epi-
demiology studies point out that males are more affected than females. For example,
Abbey et al. (1998) link PM10 exposure to reduced lung function among males but
not females, and Galizia and Kinney (1999) find similar results regarding the exposure
to O3. Similarly, Ebenstein et al. (2016) find the effect of pollution on exam performance
to differ by gender and cite the increased incidence of asthma among boys as a possible
cause. Finally, our results also suggest that poorer students may bemore susceptible to air
pollution than wealthier exam takers. These findings are also in accordance with previous
studies (see, e.g., Neidell 2004; Ebenstein et al. 2016). All in all, our findings provide
plausible evidence to suggest that cognitive performancemay be hindered by poor air qual-
ity, but unequally so.
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