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Abstract—This paper proposes a new form of algorithm 
environment for multi-objective optimization of energy 
management system in plug-in hybrid vehicles (PHEVs). 
The surrogate-assisted strength Pareto evolutionary 
algorithm (SSPEA) is developed to optimize the power-split 
control parameters guided by the data from the physical 
PHEV and its digital twins. By introducing a ‘confidence 
factor’, the SSPEA uses the fused data of physically 
measured and virtually simulated vehicle performances 
(energy consumption and remaining battery state-of-
charge) to converge the optimization process. Gaussian 
noisy models are adopted to emulate the real vehicle 
system on the hardware-in-the-loop platform for 
experimental evaluation. The testing results suggest that 
the proposed SSPEA requires less R&D costs than the 
model-free method that only uses the physical information, 
and more than 44.6% energy can be saved during the R&D 
process. Driven by the SSPEA, the optimized energy 
management system surpasses other non-DT-assisted 
systems by saving more than 4.8% energy. 
 
Index Terms—cyber-physical optimization; digital twin; 
surrogate-assisted strength Pareto evolutionary algorithm; 
noisy system; plug-in hybrid electric vehicle. 

 

I. INTRODUCTION 

LECTRIC vehicles, including battery electric vehicles 

(BEVs), plug-in hybrid electric vehicles (PHEVs), and fuel 

cell electric vehicles (FCEVs) are main contributors towards 

net zero emission in the transport sector [1]. To ensure the 

smooth entry of battery electric and other renewable vehicles 

into the market, hybrid and plug-in hybrid play an irreplaceable 

role in prior technical reserve and market expansion [2]. Energy 

management optimization plays an important role for them to 

improve the efficiency of energy utilization and improve the 

dynamic performance of the system, and it is a challenging task 

that needs to deal with many objectives, e.g., minimizing the 

fuel consumption and maximizing the batter life [3]. 

Dynamic programming [4] is a benchmark offline method to 

attain the global optimal control strategy of the hybrid vehicle 

under a given driving cycle. However, dynamic programming 

is not practical feasible because it cannot be directly 
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implemented in real time control [5]. Heuristic control, 

including thermostat strategies [6] and state machine 

approaches [7], has been favored by industry for real-time 

energy management. As an advanced heuristic method, the state 

machine approach works on decentralized control of three 

modes, i.e., electric traction (EV) mode, charge-depleting (CD) 

mode, and charge-sustaining (CS) mode [8], to maximize the 

usage of electricity and maintain the battery’s state of charge in 

a safe domain. But the performance is seriously affected by 

expert experience [9]. The equivalent consumption minimizing 

strategy (ECMS) [10] is an online method to transform a global 

minimization problem into an instantaneous minimization 

problem that has been solved at each time step. The equivalent 

factor can be evaluated on the basis of past and predicted data 

of the driving conditions [11]. However, the obtained driving 

conditions have many uncertainties caused by prediction 

accuracy and signal noise that will make actual performance of 

the vehicle system unstable. Global optimization algorithms, 

e.g., generic algorithm [12] and particle swarm optimization 

[13], have been widely applied to optimize the thresholds for 

mode switching with hybrid vehicle models. Since the 

empirical models cannot be adaptive to the real-world driving 

conditions, the optimization performance of using these model-

based optimization schemes have been severely restricted [14]. 

Alternatively, non-model-based (also known as ‘model-free’) 

methods [15]–[17] are developed that allow the artificial-

intelligence (AI) algorithms interact with the physical plants 

directly. However, such methods are costly and may include 

potential risks due to unnecessary trials generated by AI. 

Digital twin (DT) is an emerging technology in the industry 

4.0 era, which is a virtual model designed to accurately reflect 

a physical object. Cyber-physical data fusion is the process that 

integrates multiple data sources obtained by physical systems 

and virtual models to produce more consistent, accurate, and 

useful information than that provided by any individual data 

source [18]. It provides a cost-efficient platform for solving of 

high-dimensional expensive problems using artificial 

intelligence [19], [20]. Sensors and data transmission 

technologies are increasingly used to collect data throughout 

different stages of a PHEV’s lifecycle [21]. Development of 

EMS for PHEV is a typical expensive problem in automotive 
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industry [22]. It traditionally needs large amount the testing and 

verifications to guarantee the control parameters can meet the 

design targets [23]. DT can integrate the physical and virtual 

data throughout the development of EMS, which leads to a huge 

volume of data that can be processed by advanced analytics [24]. 

Then, the analysis results can be used to improve the 

performance of product/process in the physical space [25]. 

However, how to fuse the physical and virtual data for better 

and more robust AI-based optimization results is a big 

challenge for smart manufacturing. 

Based on the 2nd generation strength Pareto evolutionary 

algorithm (SPEA-II) which incorporates a fine-grained fitness 

assignment strategy, a density estimation technique, and an 

enhanced archive truncation method, this paper proposes a 

surrogate-assisted SPEA (SSPEA) for DT-assisted EMS 

optimization. Different from the mainstream model-free and 

model-based schemes, the proposed SSPEA-driven 

optimization scheme is an interactive form of algorithm 

environment combining these two to reduce R&D costs and 

improve system robustness of PHEVs. Followed by building a 

digital twin of the studied PHEV, the work is conducted with 

four original contributions: 

1) A new EMS optimization scheme is designed based on the 

SSPEA, where one of the computing agents interacts with 

the physical PHEV while the others interact with digital 

twins of the PHEV. 

2) By introducing a ‘confidence factor’, which is used to 

calculate the weighted-sum of the measurements from the 

physical PHEV and its digital twins, a cyber-physical data 

fusion method is developed to guide the convergence of the 

SSPEA-based optimization process. 

3) Five Gaussian noisy model are adopted to emulate the 

measurement noise in the real PHEV system on the 

Hardware-in-the-Loop (HiL) platform, which was used to 

comprehensively evaluate the real-time performance of the 

SSPEA-based control optimization system. 

4) For better evaluation on DT-assisted optimization 

performance, two new types of evaluation criterion are 

introduced to quantify DT contribution in the optimization 

process and on-road performance. 

The rest of this paper is organized as follows: the control 

optimization problem is formulated in Section II based on 

mathematical modelling of a PHEV system. Followed by digital 

twin modelling of the surrogate platoon, Section III introduces 

the SSPEA-based optimization process. Section IV sets up the 

noise models and the HiL platform, which are used for 

experimental evaluations. Section V discusses the results, and 

Section VI summarizes the conclusions. 

II. PROBLEM STATEMENT 

A. Vehicle Configuration 

As illustrated in Fig. 1, the PHEV has a series-parallel 

topology, which comprises a 63kW internal combustion engine 

(ICE), a 32kW integrated starter-generator (ISG), and a 75kW 

trans-motor (i.e., an electric motor that has a float stator [26]). 

The main parameters for vehicle modelling are illustrated in 

Table I. They were sourced from the authors' recent work [27], 

[28] and proved by industry. 

 
Fig. 1. The architecture of the plug-in series-parallel hybrid powertrain 
 

By controlling the disengagement/engagement of the clutch 

and lock, the PHEV can work on three operational modes, i.e., 

EV mode, parallel mode, and series mode. If the clutch is 

disengaged, and Lock is engaged, the PHEV will work at the 

EV mode like an electric vehicle. If the clutch is engaged, and 

Lock is disengaged, the PHEV will work at the parallel mode 

where the engine is used for propulsion. If the clutch is 

disengaged, and lock is engaged, the PHEV will work at the 

series mode where the engine is used for charging the battery. 
TABLE I 

MAIN PARAMETERS OF THE VEHICLE MODEL 

Symbol Parameters Values 

𝑚 Gross mass 1,500𝑘𝑔 

𝐴𝑓 Windward area 2𝑚2 

𝑅𝑤ℎ Tire rolling radius 0.3𝑚 

𝐶𝑑 Air drag coefficient 0.3 

𝑖0 Differential ratio 3.75 

𝑖𝑔 Transmission ratio  3.55/1.96/1.30/0.89/0.71 

𝜂𝑖0 Differential efficiency 0.95 

 

A backward facing vehicle model considering longitudinal 

dynamics is used in this study. The torque demand 𝑇𝑑  and 

rotation speed demand 𝑛𝑑  after a bi-level-gear speed reducer 

are: 

𝑇𝑑 = (𝛿𝑚𝑎 +
𝐶𝑑𝐴𝑓𝑢

2

21.15
+ 𝑚𝑔𝑠𝑖𝑛𝜃 + 𝑚𝑔𝑓𝑐𝑜𝑠𝜃) ∙

𝑅𝑤ℎ
𝑖0 ∙ 𝜂𝑖0

𝑛𝑑 = 9.55 ∙
𝑢

3.6 ∙ 𝑅𝑤ℎ }
 
 

 
 

 (1) 

where, 𝑔 =  9.81𝑚/𝑠2  is gravitational constant; 𝛿 = 1 is the 

coefficient of rolling friction; 𝑢 is the vehicle speed in km/h 

which is defined by driving cycles; 𝜃 = 0 is slope grade; 9.55 

is a conversion coefficient from radian per second to revolution 

per minute.  

Since the powers from two powerplants are coupled together 

by coupling their speeds, the characteristics of a speed coupling 

can be described by 
𝑛𝑑 = 𝑛𝑚𝑜𝑡 + 𝑛′𝑖𝑐𝑒
𝑇𝑑 = 𝑇𝑚𝑜𝑡 = 𝑇𝑖𝑐𝑒

′ }                                (2) 

where 𝑛𝑚𝑜𝑡 and 𝑇𝑚𝑜𝑡  are speed demand and torque demand of 

the traction motor, respectively; 𝑛𝑖𝑐𝑒
′  and 𝑇𝑖𝑐𝑒

′  are speed 

demand and torque demand of the ICE after transmission, 

respectively. Finally, the speed demand and toque demand of 

the ICE can be calculated via transmission ratio: 
𝑛𝑖𝑐𝑒 = 𝑛𝑖𝑐𝑒

′ ∙ 𝑖𝑔
𝑇𝑖𝑐𝑒 = 𝑇𝑖𝑐𝑒

′ ∙ 𝑖𝑔
}                                  (3) 
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where 𝑛𝑖𝑐𝑒  and 𝑇𝑖𝑐𝑒 are the speed demand and toque demand of 

the ICE, respectively. For this model to be valid, we assume the 

PHEV has an available energy budget for a particular journey. 

 
Fig. 2. State machine for energy management of the PHEV 

B. Energy Management Strategy 

A typical state machine [29], as shown in Fig.2, is adopted in 

this paper to control the transition between three operation 

modes. This control strategy is highly appropriated for energy 

management of PHEVs.  

The inequalities in Fig.2 illustrates the conditions that are 

used to switch the operation modes, and in each mode, the 

PHEV implements different power split strategies to satisfy the 

power demand for vehicle operation. The state machine 

controller has three inputs: vehicle torque demand, 𝑇𝑑 , speed 

demand, 𝑛𝑑, and battery state of charge, 𝑆𝑜𝐶. The output of the 

state machine is a power-split vector: 

𝝃 = [𝑇𝑚𝑜𝑡 𝑛𝑚𝑜𝑡 𝑇𝑖𝑐𝑒
′ 𝑛𝑖𝑐𝑒

′ 𝑃𝑔𝑒𝑛]               (4) 
where 𝑇𝑚𝑜𝑡 and 𝑛𝑚𝑜𝑡 are the torque demand and speed demand 

of the trans-motor, respectively; and 𝑃𝑔𝑒𝑛 is the power demand 

of the ISG. 

In the EV mode (when 𝑆𝑜𝐶 > 0.5 or 𝑃𝑑 < 0), the PHEV 

will work like a battery electric vehicle, therefore, the power-

split vector under the EV mode is: 

𝝃 = [𝑇𝑑 𝑛𝑑 0 0 0]                         (5) 
In the series and parallel modes (when 𝑆𝑜𝐶 ≤ 0.5 and 𝑃𝑑 ≥

0), switching between series and parallel modes are governed 

by the power demand, 𝑃𝑑, and a control parameter, 𝜙𝑚𝑜𝑑𝑒. If 

𝑃𝑑 > 𝜙
𝑚𝑜𝑑𝑒

, the vehicle will work on parallel mode otherwise 

the vehicle will work on series mode. The power-split vector 

for series mode and parallel mode are: 

𝝃 = {
[𝑇𝑑 𝑛𝑑 ∙ (1 − 𝜒1) 𝑇𝑑 𝑛𝑑 ∙ 𝜒1 0]

[𝑇𝑑 𝑛𝑑 𝑇𝑖𝑐𝑒
′ (𝑃𝑔𝑒𝑛) 𝑛𝑖𝑐𝑒

′ (𝑃𝑔𝑒𝑛) 𝑃𝑔𝑒𝑛+ ∙ 𝜒2]
𝑆𝑒𝑟𝑖𝑒𝑠
𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙

 (6) 

where, 𝑇𝑖𝑐𝑒
′  and 𝑛𝑖𝑐𝑒

′  are optimal torque and speed of the ICE 

converted based on demand power of the ISG, 𝑃𝑔𝑒𝑛; 𝑃𝑔𝑒𝑛+ is 

the peak power of the ISG; and  𝜒𝑖  ( 𝑖 =1 or 2) is a 

proportionality factor determined by 

𝜒𝑖(𝑆𝑜𝐶) 

=

{
 

 
1, 𝑆𝑜𝐶 ∈ [0,0.2]

{1 + exp [(
𝑆𝑜𝐶

𝑆𝑜𝐶∗
+ 𝜙𝑖,𝛽)𝜙𝑖,𝛼]}

−1

, 𝑆𝑜𝐶 ∈ (0.2,0.5]

0, 𝑆𝑜𝐶 ∈ (0.5,1]

(7) 

where, 𝑆𝑜𝐶∗ is a scaling coefficient of the battery’s SoC; 𝜙𝑖,𝛼 

(𝑖=1 or 2) ∈ [0.01,50] and 𝜙𝑖,𝛽  (𝑖=1 or 2) ∈ [−6,6] are four 

control parameters for ICE and ISG; and 𝜒1 and 𝜒2 are for ICE 

control and ISG control, respectively [30]. 

C. Optimization Problem Formulation 

This paper studied a bi-objective optimization problem in 

PHEV energy management. The first optimization objective is 

to minimize the total energy consumption in fuel and electricity, 

𝐽1.  

The equivalent power of fuel consumption, 𝑃𝑓𝑢𝑒𝑙 , can be 

determined by 

𝑃𝑓𝑢𝑒𝑙 = 3.6 × 10
6𝑄𝐿𝐻𝑉 ∙ 𝐵𝑆𝐹𝐶(𝑇𝑖𝑐𝑒 , 𝑛𝑖𝑐𝑒)          (8) 

where 𝑄𝐿𝐻𝑉  is the lower heating value in kJ/kg and BSFC is the 

brake specific fuel consumption in g/kWh.  

The power consumption in the battery, 𝑃𝑏𝑝, can be calculated 

by: 

𝑃𝑏𝑝 = 𝑇𝑚𝑜𝑡 ∙ 𝑛𝑚𝑜𝑡 − 𝑃𝑔𝑒𝑛                        (9) 

The second optimization objective is to maximize value of 

the remaining battery’s SoC at end of a given driving cycle, 𝐽2, 

as considered in [28]. The battery SoC can be calculated by:  

𝑆𝑜𝐶 = 𝑆𝑜𝐶0 −∫
𝐼

𝑄𝑏𝑐
𝑑𝑡

𝑡

0

                      (10) 

where 𝑆𝑜𝐶0  is the initial BP’s SoC; 𝑄𝑏𝑐  is the battery cell 

charge capacity; and 𝐼 is the battery cell current, which can be 

calculated by  

𝐼 =
𝑃𝑏𝑝

𝑛𝑏𝑐 ∙ 𝑉𝑏𝑐(𝑆𝑜𝐶)
                            (11) 

where, 𝑛𝑏𝑐  is the number of the battery’s cells; 𝑉𝑏𝑐(𝑆𝑜𝐶)  is 

battery terminal voltage expressed as a function of the SoC. The 

battery cell data and calibrated model parameters are supplied 

by Panasonic Automotive & Industrial System Ltd. 

Consequently, the two objectives can be formulated as: 

𝐽1 = ∫ (𝑃𝑓𝑢𝑒𝑙 + 𝑃𝑏𝑝)𝑑𝑡
𝑡

0

𝐽2 =
1

𝑆𝑜𝐶𝑒𝑛𝑑 }
 
 

 
 

                     (12) 

where, 𝑆𝑜𝐶𝑒𝑛𝑑 is the value of remaining battery’s SoC at the 

end of a given driving cycle.  

The optimization objectives will be achieved by retrieving 

the optimal combination of the control parameters i.e., 𝜙1,𝛼
∗ , 

𝜙1,𝛽
∗ , 𝜙2,𝛼

∗ , 𝜙2,𝛽
∗ , and 𝜙𝑚𝑜𝑑𝑒

∗  (as in Fig. 2). Finally, the 

optimization problem of control parameters is described by 

[𝜙1,𝛼
∗ 𝜙1,𝛽

∗ 𝜙2,𝛼
∗ 𝜙2,𝛽

∗ 𝜙𝑚𝑜𝑑𝑒
∗ ] = argmin(𝐽1 𝐽2) 

𝑠. 𝑡.

{
 
 

 
 

𝑆𝑜𝐶 ∈ [0.2,0.8]

𝑛𝑚𝑜𝑡 ∈ [0, 𝑛𝑚𝑜𝑡+]

𝑇𝑚𝑜𝑡 ∈ [𝑇𝑚𝑜𝑡− , 𝑇𝑚𝑜𝑡+]

𝑃𝑖𝑐𝑒 ∈ [0, 𝑃𝑖𝑐𝑒+]

𝑃𝑔𝑒𝑛 ∈ [0, 𝑃𝑔𝑒𝑛+  ]

                      (13) 

where the state of charge must be maintained between 0.2 and 

0.8 for safe and efficient use; 𝑛𝑚𝑜𝑡+ is the maximum speed of 

the traction motor; 𝑇𝑚𝑜𝑡−  and 𝑇𝑚𝑜𝑡+  are minimum and 

maximum torque of the traction motor, respectively. 𝑃𝑖𝑐𝑒+  is 

the maximum power of the ICE; and 𝑃𝑔𝑒𝑛+  is the maximum 

power of the ISG. All power machines should operate in their 

own working ranges.  

III. PROPOSED SOLUTION 

The mainstream control optimization schemes include 

model-free scheme (algorithm interacts directly with the real 
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vehicle system (RVS)) and model-based scheme (algorithm 

interacts purely with an empirical model). The former uses 

heavy experimental effort in exchange for better system 

performance. The latter requires expert experience on empirical 

model development. The proposed SSPEA-driven optimization 

scheme, as illustrated in Fig.3, is an interactive form of 

algorithm environment combining model-free scheme and 

model-based scheme. 

It includes two main procedures: 1) firstly a neuro-fuzzy 

digital surrogate platoon is built to encapsulate the real vehicle 

system (RVS) that involves a theorical vehicle model and a 

Gaussian noise model; and 2) a surrogate-assisted strength 

Pareto evolutionary algorithm (SSPEA) is developed for a 

mixed cyber-physical environment that includes the digital 

surrogates and physical measurement. Detailed development 

procedures of these two developments are introduced in the 

following sections. 

 
Fig. 3. Schematic diagram of the SSPEA-driven optimization scheme 

A. Neuro-Fuzzy Modelling of Surrogate Platoon 

The surrogate platoon is built based on an adaptive neuro-

fuzzy inference system (ANFIS) model because ANFIS can 

construct any nonlinear mapping with prior knowledge in fuzzy 

rules and have the model parameters auto-calibrated in a way 

like artificial neural networks [31]. Fig. 4 displays the flowchart 

of neuro-fuzzy modelling process consisting of two main stages 

of data preprocessing and model establishment as considered in 

[32]. 

 
Fig. 4. Flowchart of neuro-fuzzy modelling process 

 

In data preprocessing, firstly, features of inputs and outputs 

are defined as shown in Fig. 4. To ensure the diversity of 

samples, an alternative sampling method is then adopted to 

capture features of inputs and outputs. Before the ANFIS model 

establishment, data quality assessment should be carried out to 

remove inconsistent values caused by system noise. In model 

establishment, the ANFIS is based on a first order Sugeno 

model that compromises several rule sets, where one of the rule 

sets can be expressed as 

Rules i:  

If (𝑥 is 𝐴𝑖) and (𝑦 is 𝐵𝑖) then (𝑓𝑖 = 𝛼𝑖𝑥 + 𝛽𝑖𝑦 + 𝛾𝑖)  (14) 
where 𝑥  and 𝑦  are the inputs; 𝐴𝑖  and 𝐵𝑖  are the fuzzy sets 

determined during the network training procedure; 𝑓𝑖 is output, 

𝛼𝑖, 𝛽𝑖, and 𝛾𝑖 are linear parameters, which will be determined 

in model learning. In this paper, the input-output relation of one 

ANFIS model can be expressed as follows: 

[𝐸𝑒𝑛𝑑 , 𝑆𝑜𝐶𝑒𝑛𝑑] = Γ𝑁𝐹(𝜙1,𝛼 , 𝜙1,𝛽 , 𝜙2,𝛼 , 𝜙1,𝛽 , 𝜙𝑚𝑜𝑑𝑒)   (15) 

where, Γ𝑁𝐹  is a ANFIS model of five inputs and two outputs; 

𝜙1,𝛼 , 𝜙1,𝛽 , 𝜙1,𝛼 , 𝜙1,𝛽 , 𝜙𝑚𝑜𝑑𝑒  denote the five control parameters 

jointly define the position and slope of the curve in the logistic 

function and the threshold of mode transition; and 𝐸𝑒𝑛𝑑  and 

𝑆𝑜𝐶𝑒𝑛𝑑 denote two outputs of the total energy consumption and 

the remaining SoC’s value, respectively. After model evolution, 

the trained ANFIS model will be used as digital surrogate 

platoon for energy management optimization. 

B. Surrogate-assisted Strength Pareto Evolutionary 
Algorithm  

The surrogate-assisted strength Pareto evolutionary 

algorithm (SSPEA), Fig. 5, is proposed by adding hybrid data 

interfaces and a ‘confidence factor’ to a standard SPEA-II, 

where the data interfaces allow the SSPEA to interact with the 

RVS and the neuro-fuzzy surrogate platoon. So that the PHEV 

control parameters can be effectively optimized via two type 

feedbacks from the data interfaces. The specific steps of the 

SSPEA are described as follows: 

1) Initialization: With the generation counter, 𝑡  ( 𝑡 =
0,1, … , 𝑇), initialized as zero, a group of the control parameter 

sets 𝜙1,𝛼, 𝜙1,𝛽, 𝜙2,𝛼, 𝜙2,𝛽, 𝜙𝑚𝑜𝑑𝑒 . 

2) Trial fitness acquisition: As marked in blue, the trial 

fitness values of the two objectives, 𝐽1 and 𝐽2, are obtained from 

parallel simulation of the surrogate platoon with different 

control parameters provided by the individuals in population 𝑃𝑡 
and external archive 𝐴𝑡. A strength value, 𝑆(𝑖), is assigned for 

individual 𝑖  ( 𝑖 = 1,2, … , 𝑁 ), which indicates the number of 

solutions that can be dominated by the individual in 𝑃𝑡 and 𝐴𝑡. 
The raw fitness value, 𝑅(𝑖), is calculated as the sum of the 

strength values, 𝑆(𝑖). To distinguish the individuals sharing the 

same raw fitness value, the density information, 𝜎𝑖
𝑘 , is 

introduced which indicates the space distance between the 

individual 𝑖  and the 𝑘 th nearby individual. The 𝑘 th nearest 

neighbor method is adopted to calculate the density value 𝐷(𝑖) 

of individual 𝑖 [33], i.e., 𝐷(𝑖) =
1

𝜎𝑖
𝑘+2

. Finally, the fitness value 

of individual 𝑖, 𝐹(𝑖), is the sum of the raw fitness value, 𝑅(𝑖), 
and the density value, 𝐷(𝑖). 

3) Fitness assignment: All trial nondominated individuals, 

i.e., the current best control parameter sets in 𝑃𝑡  and 𝐴𝑡  are 

copied to 𝐴𝑡+1 . If the size of 𝐴𝑡+1  is larger than 𝑁  (archive 

size), then reduce 𝐴𝑡+1  by means of the truncation operator; 
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else, fill 𝐴𝑡+1by the dominated individuals in 𝑃𝑡  and 𝐴𝑡  until 

the size equals to 𝑁 (the population size). 

4) Fitness correction: As marked in red, the real fitness 

values 𝐹∗(𝑖)  of individual 𝑖  in archive 𝐴𝑡+1  are validated by 

calling the RVS in series. A ‘confidence factor’ 𝜖 ∈ [0,1] is 

introduced to regulate the fitness values of all individuals in 

𝐴𝑡+1 by 

𝐹(𝑖) = (1 − 𝜖) ∙ 𝑆(𝑖) + 𝜖 ∙ 𝐹∗(𝑖)                  (16) 
where, 𝐹∗  is the validation results; and 𝑆  is the simulation 

results obtained with the surrogate platoon. 

5) Environmental Selection, Evolutionary Operations, 

and Termination: The rest of procedures follow the setting of 

the standard SPEA-II. Environmental selection is conducted 

based on the size of 𝐴𝑡+1, if the size of 𝐴𝑡+1 is larger than the 

archive size, 𝑁, then 𝐴𝑡+1 is reduced by a truncation operator; 

otherwise, 𝐴𝑡+1 is filled by the dominated individuals in 𝑃𝑡 and 

𝐴𝑡 until the size equals to 𝑁. Termination condition is set based 

on the generation counter value, 𝑡. If 𝑡 ≥ 𝑇, the nondominated 

set 𝐴𝑡  is copied to 𝐴𝑡+1  and terminate the optimization; 

otherwise, evolutionary operations including crossover and 

mutation are implemented to the mating pool, and the 

generation counter is set to 𝑡 + 1. To fill the mating pool, a 

binary tournament selection is applied to update 𝐴𝑡+1; then, the 

procedures from Step 2-5 are repeated until the termination 

condition is met. 

 
Fig. 5. Flowchart of surrogate-assisted strength Pareto evolutionary 
algorithm 

IV. TESTING AND VALIDATION SET-UP 

A. Noise Models 

To emulate the measurement noises in the RVS, the objective 

functions are contaminated with noise samples taken from the 

representative Gaussian distributions. Mathematically, the 

noisy level of the kth objective function with a trial solution 𝑥 

is defined by [34] 

𝑦𝑘(𝑥) = 𝑓𝑘(𝑥) +
𝛿𝑘
𝛿∗
, 𝛿~𝑁(𝜇, 𝜎2)               (17) 

where 𝛿𝑘 represents the stochastic noise amplitude that follows 

a certain probability distribution function; 𝛿∗ is a scaling factor 

that normalize the effect of 𝛿𝑘 on 𝑓𝑘(𝑥).  
Gaussian functions with the five typical probability 

distributions are applied to represent the mean values and 

variances of the measurement errors, i.e., Gau-I (𝜇 = 0, 𝜎2 =
0.2), Gau-II (𝜇 = 0, 𝜎2 = 0.5), Gau-III (𝜇 = 0, 𝜎2 = 1), Gau-

IV (𝜇 = 0, 𝜎2 = 5), and Gau-V (𝜇 = −2, 𝜎2 = 0.5). 

B. Hardware-in-the-Loop Facilities 

Hardware-in-the-loop (HiL) testing is conducted to evaluate 

the real-time performance of the cyber-physical system, which 

uses industrial level real-time testing facilities provided by the 

ETAS Group. The HiL system is set-up as in Fig. 6. 

 
Fig. 6. Hardware-in-the-loop testing bench 
 

The energy management optimization is jointly performed 

by an ETAS ES910 and an ETAS LABCAR. The ES910 

includes a 1.5GHz microprocessor with 4GB RAM and 1Gbps 

Ethernet communication. The surrogate platoon and SSPEA-

driven optimizer are established and compiled in host PC-1 and 

flashed to the ES910 via ETAS INTECRIO. The vehicle noisy 

plant regarded as an RVS is programmed into host PC-2 and 

downloaded to LABCAR by the ETAS experimental 

environment via Ethernet protocol. In this study, the sampling 

frequency of the system is 10 Hz and of the band-limited white 

Gaussian noise is 4 Hz (due to Nyquist Sampling Theorem). 

The vehicle performance is supervised by the ETAS 

experimental environment in host PC-2. 

V. RESULTS AND DISCUSSION 

A. Surrogate Learning Performance 

To guarantee the digital surrogate can accurately predict the 

powertrain performance with different control settings, the 

surrogate models obtained by different learning methods and 

data topologies are evaluated and compared. The learning space 

is generated through data sampling in linear spaces. In terms of 

learning methods, a hybrid algorithm, which incorporates the 

least square estimation to the backpropagation (BP) method to 

accelerate the convergence, is adopted and compared to the 

conventional BP method. Three different training data 

topologies are investigated, where each input of the digital 

surrogate has three sampling sizes of 3, 5, and 7, respectively. 

The training results are obtained from the noisy vehicle systems 
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by running the model learning algorithm for 30 runs 

individually. 

Fig. 7 illustrates statistical results in surrogate training, where 

training time (TT) and root mean square error (RMSE) of using 

conventional BP and the hybrid algorithm are compared. The 

hybrid algorithm is better than the conventional BP algorithm 

because the results obtained by the hybrid algorithm achieves 

lower variance and mean of RMSE than that obtained by the 

conventional BP algorithm. In conjunction with the impact of 

dataset split ratio on testing performance as shown in Fig. 8, as 

an increase of the dataset split ratio for training, RMSEs 

obtained by both algorithms decrease rapidly first and then go 

stable gradually. Considering this, 80% random samples of 

dataset are for training while the rest is used for testing. 

 
Fig. 7. Statistical results of training performance of surrogate platoon at 
different data topologies 

 
Fig. 8. Impact of dataset split ratio on testing performance 
 

Detailed comparations of the model learning methods with 

different noisy systems are presented in Table II. The 55 data 

topology shows that is applicable in surrogate learning, which 

can significantly reduce the testing RMSE by at least 80% 

compared to 35  data topology. It also helps save more than 

413% (115s) training time compared to 75 data topology while 

achieving similar training performance. Since 55 data topology 

already provides enough training samples to describe a high-

fidelity surrogate platoon, a surrogate platoon trained by hybrid 

algorithm with 55 data topology will be applied in the SPPEA.  

B. Impact of Using Different Confidence Factors 

This section discusses the effectiveness of the proposed 

SSPEA with different ‘confidence factor’ values, i.e., 𝜖 =
0,0.25, 0.5, 0.75, and 1. Both Pareto performance and number 

of RVS calls will be monitored to evaluate the optimization 

performance and computational efforts. Control optimization 

with other two mainstream optimization schemes, i.e. model-

free scheme (SPEA-II algorithm interacts directly with the 

RVS) and model-based scheme (SPEA-II algorithm interacts 

purely with an empirical model [35]), are investigated as the 

baseline. For a fair comparison, all optimization schemes have 

same population size, i.e., 𝑁 = 50, same archive size, i.e., 𝑁 =
 50 , same probability of crossover and mutation rates, i.e., 

𝑝𝑐𝑟𝑜 = 0.7  and 𝑝𝑚𝑢𝑡 = 0.3 , and same termination criterion, 

i.e., no more than 100 iterations. Here, generational distance 

(GD) is used to evaluate estimated Pareto frontiers (ePF) 

obtained by the studied optimization schemes: if an 

optimization scheme can achieve the smaller GD value than the 

others the scheme is better than the others. GD is calculated by 

[36]: 

GD =
√∑ 𝑦𝑚 ∙ dis

2(𝑦𝑚 , 𝑺aPF)
𝑀
𝑚=1

𝑁
                 (18) 

where 𝑀  is the member of elements in the ePF ; 𝑦𝑚  is the 

individual value in the ePF sets; 𝑺aPF  is a set that forms the 

approximated Pareto frontier ( aPF ); dis(𝑦𝑚 , 𝑺aPF)  is the 

shortest distance between the element 𝑦𝑚 and the aPF.  

As illustrated in Fig. 9, there are estimated Pareto frontiers 

(ePF) obtained with the studied methods and an approximated 

Pareto frontier (aPF), which is obtained by calculating the 

nondominated set from all the ePF. As the results, the solutions 

TABLE II 
SURROGATE TRAINING PERFORMANCE COMPARISON 

Conditions Training time (s) Training error (RMSE) Testing error (RMSE) Training efficiency (∆RMSE/S) 

Noise type Sample size BP Hybrid BP Hybrid BP Hybrid BP Hybrid 

Gau-I 

35 4.87 9.13 0.1188 0.0000 0.4686 0.5686 - - 

55 6.55 40.20 0.0882 0.0072 0.1098 0.0523 -0.2136 -0.0166 

75 11.93 140.93 0.1000 0.0182 0.1005 0.0211 -0.0521 -0.0042 

Gau-II 

35 4.88 9.60 0.1256 0.0000 0.5922 0.5922 - - 

55 6.95 39.44 0.9812 0.0070 0.0828 0.0386 -0.2461 -0.0186 

75 12.17 164.38 0.0941 0.0198 0.0840 0.0235 -0.0697 -0.0037 

Gau-III 

35 4.67 9.27 0.1053 0.0000 0.5308 0.5308 - - 

55 6.78 41.30 0.0959 0.0094 0.1367 0.0211 -0.1868 -0.0159 

75 11.57 158.38 0.0810 0.1392 0.0866 0.0175 -0.0644 -0.0034 

Gau-IV 

35 5.36 9.56 0.1059 0.0000 0.5883 0.5883 - - 

55 7.18 43.80 0.0958 0.0091 0.1291 0.0270 -0.2523 -0.0164 

75 11.65 155.74 0.1228 0.0378 0.1373 0.0418 -0.0717 -0.0037 

Gau-V 

35 4.82 9.11 0.0624 0.0000 0.4664 0.5664 - - 

55 6.65 40.69 0.1037 0.0095 0.1106 0.0341 -0.1944 -0.0169 

75 12.04 164.64 0.0910 0.0172 0.0956 0.0210 -0.0514 -0.0035 
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of using model-based or SSPEA-driven optimization with 𝜖 =
0 schemes are hard to form ePFs. Fig. 10 presents the number 

of RVS calls and the GD of both the proposed and baseline 

methods. Generally, the GD can be reduced by increasing the 

number of RVS calls. The SSPEA-driven scheme with 𝜖 =
 0.25 has excellent optimality, in which the GD is reduced by 

69.8% compared to the model-based one. By increasing the 

‘confidence factor’ value, number of calling the RVS increases, 

ending at 4144. Although the result of using the model-free 

optimization topology performs the shortest GD in the studied 

event, 1.0% improvement on the GD with sacrifice of up to 59.4% 

increase in the number of RVS calls is not cost efficient. 

Therefore, the proposed optimization scheme with  𝜖 = 0.25 is 

the most thoughtful way to balance the tradeoff between the 

number of the calls and GD. 

 
Fig. 9. Pareto frontier comparison of using three optimization schemes 

 
Fig. 10. Relationship between the number of real vehicle system calls 
and the GD 

C. Optimization Performance and Computational Costs 

To testify the robustness and convergence of the studied 

optimization scheme, 15 groups of testing are conducted under 

five different noisy conditions with the optimization scheme 

and two baseline schemes, i.e., the model-free scheme and the 

model-based scheme. With 30 individual tests repeated for each 

group, the mean and standard derivation (SD) of the GD values 

are computed. 

In Table III, the values of mean and SD obtained by the 

SSPEA-driven scheme are very close to the results obtained by 

model-free one that can be recognized as the grand truth. 

Because the SSPEA-driven scheme can be adapted to the real 

system by involving the real measurements with digital twin, it 

achieved much better optimization results (lower mean and SD 

of the GD values) than the model-based scheme. Besides, the 

number of RVS calls and energy used in optimization of the 

three methods under the five conditions are also investigated. 

Compared to the model-free scheme, the SSPEA-driven 

scheme saves up to 44.6% energy in the optimization processes 

because of a significant reduction on the RVS calls. Therefore, 

the SSPEA-driven scheme is shown more cost-benefit than 

other two baseline methods. 
TABLE III  

OPTIMIZATION PERFORMANCES AND COMPUTATIONAL COSTS  

Noise Optimization  GD Num.  Energy used  

type scheme Mean 

(10−3) 

SD 

(10−4) 

of RVS 

calls 

in R&D  

(1011J) 
 Model-free 7.266 6.224 5000 5.272 

Gau-I Model-based 87.21 48.44 0 0 
 SSPEA-driven 9.518 6.212 2830 3.011 

 Model-free 13.14 15.00 5000 5.288 

Gau-II Model-based 87.89 56.36 0 0 
 SSPEA-driven 16.67 9.392 2766 2.932 

 Model-free 8.013 10.89 5000 5.404 

Gau-III Model-based 68.47 44.75 0 0 

 SSPEA-driven 20.13 9.189 3137 3.337 

 Model-free 24.59 29.17 5000 5.765 

Gau-IV Model-based 143.3 74.51 0 0 

 SSPEA-driven 27.09 14.53 3921 4.235 

 Model-free 18.86 20.32 5000 5.572 
Gau-V Model-based 372.6 229.7 0 0 

 SSPEA-driven 29.41 15.75 3025 3.277 

D. Control System Adaptability 

This section further evaluates the adaptability of the PHEV 

control system using the SSPEA-driven scheme with the 

SSPEA. A set of the optimal control parameters for the studied 

PHEV are obtained by the proposed scheme under the Gau-II 

condition. To determine a specific solution used in this case, a 

desirability function approach as applied in [37] is adopted to 

search one desirable solution from the ePF based on decision 

makers. The result of optimal control parameters from the 

desirable solution is listed in Table IV. 
TABLE IV  

OPTIMIZED RESULT OF THE CONTROL PARAMETERS  

Parameter 𝜙𝑖𝑐𝑒,𝛼 𝜙𝑖𝑐𝑒,𝛽 𝜙𝑔𝑒𝑛,𝛼 𝜙𝑔𝑒𝑛,𝛼 𝜙𝑚𝑜𝑑𝑒 

Value 0.010 0.282 0.384 0.024 66400 

 

With the parameters in Table IV, the improved PHEV state-

machine-based strategy (i.e., SSPEA-SM) is compared to two 

commonly used control strategies, i.e., the equivalent 

consumption minimizing strategy (ECMS) [10] and the state-

machine-based strategy that is optimized by the model-based 

scheme using the standard SPEA-II [38] (i.e., SPEA-II-SM). 

The comparison study is conducted in the real-time HiL 

platform by running the Worldwide Harmonized Light Vehicle 

Test Cycle (WLTC) repeatedly for two rounds with an initial 

battery SoC of 50%. This is to keep the vehicle operating in 

series and parallel modes for exposing the advantages of using 

the proposed algorithm. To evaluate the vehicle system 

robustness, noise scenario is introduced that is the emulated 

signal noise in the real measurement during real-world driving. 

Five noise scenarios with the student’s t distribution, Rayleigh 

distribution, Exponential distribution, and Random distribution 

are studied, in which these distributions are used to generate 

random variables and then respectively overlay on input signals. 

The results are obtained in Table V, wherein the reduction 

shows energy saves from the vehicle system by using ECMS. 
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Under the ideal non-noise scenario, ECMS performs a better 

energy economy compared to SPEA-II-SM and SSPEA-SM 

control strategies Between SPEA-II-SM and SSPEA-SM 

strategies, a discrepancy between the theoretical model and its 

DT results in further amplified energy consumption. In other 

five studied noise scenarios, the control system optimized by 

the SSPEA-driven scheme has strong adaptability because it 

allows genotypes converge to the ground truth by regulating the 

fitness value with both real measurement and DT-based 

simulation. It surpasses the benchmark methods by up to 

13.81% than ECMS and up to 5.59% than the SPEA-II-SM 

strategy. The ECMS is able to interact with the RVS to reduce 

equivalent fuel consumption in real time, however two 

objectives of the final value of SoC and energy consumption are 

not satisfactory. Due to system noises, the observed state with 

errors will affect the instantaneous evaluation. SPEA-II-SM 

strategy uses global evaluation during optimization process and 

saves up to 8.66% energy consumption compared to the ECMS. 

Nevertheless, the solutions obtained by the model-based 

scheme (with the SPEA-II) cannot entirely fit to the RVS due 

to no consideration on the noise factors. In addition, the control 

system using SSPEA-SM strategy has similar energy-saving 

performance in Gaussian and Student’s t noise scenarios, 

because Student's t-distribution [39] is like the Gaussian 

distribution with its bell shape but has heavier tails. It has a 

greater chance for extreme values than normal distributions, 

hence the fatter tails. 
TABLE V  

CONTROL PERFORMANCE UNDER DIFFERENT NOISE SCENARIOS 

Noise 

scenario 

Control 

strategy 

Final 

SoC 

Energy 

consumption 

(108J) 

Reduction 

(%) 

 ECMS 0.266 1.002 - 

None SPEA-II-SM 0.332 1.039 -3.74% 
 SSPEA- SM 0.335 1.047 -4.50% 

 ECMS 0.243 1.128 - 

Gaussian SPEA-II-SM 0.344 1.113 1.33% 
 SSPEA-SM 0.468 1.074 4.79% 

 ECMS 0.236 1.144 - 

Student’s t SPEA-II-SM 0.421 1.097 4.20% 

 SSPEA-SM 0.467 1.080 5.59% 

 ECMS 0.261 1.228 - 

Rayleigh SPEA-II-SM 0.397 1.141 7.32% 

 SSPEA-SM 0.464 1.081 11.97% 

 ECMS 0.260 1.174 - 
Exponential SPEA-II-SM 0.427 1.130 3.42% 

 SSPEA-SM 0.462 1.087 7.52% 

 ECMS 0.252 1.274 - 
Random SPEA-II-SM 0.402 1.163 8.66% 

 SSPEA-SM 0.458 1.098 13.81% 

Note: The equivalent factor used in ECMS is set to 𝑠𝑜𝑝𝑡 = 2.94 as considered 

in [40]. 

E. Evaluation Criteria for DT-assisted Optimization 

DT-assisted optimization is a new concept for PHEV EMSs 

where one of the computing agents interacts with the physical 

PHEV while the others interact with digital twins of the PHEV. 

For better evaluation on DT-assisted optimization performance, 

two new types of evaluation criterion are introduced to quantify 

DT contribution in the optimization process and on-road 

performance. The first criterion is a factor of interactive 

conversion, which is defined as follows. 

𝐶1.1 = 𝐸𝑟𝑒𝑎𝑙 ∙ 𝑛𝑐𝑎𝑙𝑙                            (19a) 
𝐶1.2 = 𝐸𝑟𝑒𝑎𝑙 ∙ 𝐸𝑅&𝐷                           (19b) 

where, 𝐸𝑟𝑒𝑎𝑙  is energy consumption of the PHEV system under 

real (noise) driving scenarios when using the same optimization 

scheme; 𝑛𝑐𝑎𝑙𝑙  is the corresponding number of RVS calls; and 

𝐸𝑅&𝐷  is energy used in R&D process. These two versions of the 

first criterion are used to reflect the benefit of interactive 

conversion during experiment and on-road testing, which is the 

lower the better. The main difference of these two is that 𝑛𝑐𝑎𝑙𝑙 
is more suitable for higher communication cost cases (e.g., 

Cloud-based optimization) and 𝐸𝑅&𝐷  is more suitable for higher 

operation cost in each interaction (e.g., EMS optimization). 

The second criterion is a noise cost coefficient, which is 

defined as follows. 

𝐶2 =
𝐸𝑟𝑒𝑎𝑙
𝐸𝑖𝑑𝑒𝑎𝑙

                                     (20) 

where, 𝐸𝑟𝑒𝑎𝑙  and 𝐸𝑖𝑑𝑒𝑎𝑙  are energy consumption of the PHEV 

system under real (noise) and non-noise scenarios when using 

the same optimization scheme. The second criterion is used to 

reflect how much gain of energy consumption to various noise 

scenarios. The high value of the noise cost coefficient means 

the more distorted the model used in DT-assisted optimization. 
TABLE VI 

RESULTS OF NEW CRITERIA FOR THREE OPTIMIZATION SCHEMES 

New criteria Model-based SSPEA-driven Model-free 

Interactive 
conversion factor 

NA 3.641 × 1019J2 6.495 × 1019J2 

Noise cost 

coefficient 

1.086 1.036 1.047 

 

Table VI shows these two criterion results for the studied 

case. Since the experiment cost is mainly from high-frequency 

operation, Eq. (19a) is adopted here to evaluate their overall 

benefit of experiment cost and optimization results. Due to no 

interaction in model-based optimization, the equivalent 

interaction cost is not applicable for this scheme. Compared to 

Model-free one, SSPEA-driven scheme helps to reduce the 

equivalent interaction cost by 43.9%. Regarding noise cost 

coefficient, the SSPEA-driven scheme can obtain the lowest 

value of noise cost coefficient in the studied three. It means the 

EMS optimized by the SSPEA-driven optimization scheme has 

stronger robustness for various noise scenarios. Through 

comprehensive study, finally, the overall performance of three 

optimization schemes is qualitatively summarized in Table VII. 

The proposed SSPEA-driven optimization scheme 

demonstrates its overall performance superior to other two. 
TABLE VII 

OVERALL EVALUATION SUMMARY OF THREE OPTIMIZATION SCHEMES 

Overall criteria Model-based SSPEA-driven Model-free 

Expertise 

requirement 

High Low Low 

Experimental 

effort 

Low Moderate High 

On-road 
performance 

Low High High 

Interactive 

conversion factor 

NA High Low 

Noise cost 
coefficient 

High Low Moderate 

 

In summary, the proposed scheme has a capability to 

improve on-road performance of PHEV systems with low 
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expertise requirement. It also has a great potential to be applied 

for other industrial cases such as production and manufacturing 

optimization. To ensure successfully implement the proposed 

algorithm for optimizing these complex nonlinear systems, 

sampling and feature selection methods should be carefully 

considered to guarantee the accuracy of the DT model used for 

an interactive form of algorithm environment. 

VI. CONCLUSIONS 

This paper proposed a new form of algorithm environment 

for multi-objective optimization of energy management system 

in plug-in hybrid vehicle (PHEVs). The strength Pareto 

evolutionary algorithm (SSPEA) using fused cyber-physical 

information is developed to optimize the power-split control 

parameters of PHEVs. Through the HiL testing, this cyber-

physical data fusion technology is comprehensively evaluated 

in terms of surrogate learning performance, impact of using 

different confidence factors, optimization performance, 

computational efforts, and the control system adaptability when 

working in different noise scenarios. The conclusions drawn 

from the investigation are as follows: 

1) The hybrid algorithm consisting of backpropagation and 

least squares estimation for the DT-based surrogate platoon 

modelling outperforms the conventional backpropagation 

algorithm in model learning by achieving 75.2% less 

RMSE. 

2) Compared to the model-based scheme, the SSPEA-driven 

scheme has better multi-objective optimization capability 

because it can significantly lessen the generational distance 

by up to 69.8%. 

3) The SSPEA-driven scheme has achieved comparable 

performance as the model-free one but with 44.6% less 

energy used by the real vehicle system in optimization 

process. 

4) In the robustness test, the optimized system has strong 

adaptability that its overall energy-saving performance 

surpasses other non-DT-assisted systems optimized by 

using ECMS (by up to 13.8%) and SPEA-II (by up to 5.6%). 
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