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Abstract 

The counting of discrete photobleaching steps in fluorescence microscopy is ideally suited to 

study protein complex stoichiometry in situ. The counting range of photobleaching step analysis 

has significantly improved with more sophisticated algorithms for step detection, albeit at an 

increasing computational cost and with the necessity for high data quality. Here, we address 

concerns regarding robustness, automation, and experimental validation, optimizing both data 

acquisition and analysis. To make full use of the potential of photobleaching step analysis, we 

evaluate various labelling strategies with respect to their molecular brightness, photostability, 

and photoblinking. The developed analysis algorithm focuses on automation and computational 

efficiency. Moreover, we validate the developed methods with experimental data acquired on 

DNA origami labeled with defined fluorophore numbers, demonstrating counting of up to 35 

fluorophores. Finally, we show the power of the combination of optimized trace acquisition and 

automated data analysis by counting labeled nucleoporin 107 in nuclear pore complexes of 

intact U2OS cells. The successful in situ application promotes this framework as a new resource 

enabling cell biologists to robustly determine the stoichiometries of molecular assemblies at the 

single-molecule level in an automated fashion. 

 

 



Introduction 

The fundamental functions of living cells are carried out by protein assemblies at the molecular 

level. Precise quantitative knowledge on the composition of these protein complexes in the 

cellular environment is crucial to deepen our understanding of their cellular functions 

(Matthews, 2012). In many cases these protein assemblies contain not only a variety of different 

components, but also several copies of each component (Ahnert et al., 2015). 

 

To investigate the stoichiometry of a particular protein of interest in a molecular assembly, 

fluorescence microscopy offers several advantages. It is highly specific, live-cell compatible, 

single-molecule sensitive, and therefore capable to resolve heterogeneities within ensembles 

in situ. In the last two decades, different fluorescence based molecular counting methods have 

been developed (Gruβmayer et al., 2019). Among them are methods relying on brightness 

calibration (Wu and Pollard, 2005), counting of photobleaching steps (Ulbrich and Isacoff, 

2007), single-molecule localization microscopy (Jungmann et al., 2016; Lee et al., 2012; 

Puchner et al., 2013; Rollins et al., 2015), or photon antibunching (Grußmayer and Herten, 

2017; Ta et al., 2010). To date, photobleaching step analysis (PBSA) and brightness estimation 

are most widely used in biological applications of molecular counting, due to their simplicity in 

data acquisition, and the relatively straight-forward interpretation (Arant and Ulbrich, 2014). 

PBSA has the advantage that counting of fluorophores requires no calibration and that it is 

relatively robust to variations in molecular brightness. Importantly, any molecular counting 

approach based on fluorescence microscopy requires additional calibration of the degree of 

labeling, i.e., the number of fluorophores attached per target to relate measured fluorophore 

numbers to the underlying number of target proteins (Gruβmayer et al., 2019; Hummert et al., 

2021). 

 

While the idea of counting photobleaching steps is straight-forward, numerous approaches exist 

for data analysis. Often the number of steps is classified by visual inspection (Dixon et al., 2015; 

Engel et al., 2009; Ulbrich and Isacoff, 2007), which is not only time-consuming but also highly 

subjective. The exclusion of traces which cannot reliably be classified upon visual inspection 

will inevitably lead to a biased estimate, since traces with a higher number of fluorophores tend 

to exhibit a higher complexity. More reliable is the determination of the unitary step height by 

pairwise frequency analysis (Leake et al., 2006). Thereby, however, differences in step height 



over the field of view will broaden the measured emitter number distribution. Chung-Kennedy 

(Das et al., 2007) or median rank (Dixon et al., 2015) filters are often applied to photobleaching 

traces to improve step detection. Measuring ensemble photobleaching against density allows 

fast determination of mean fluorophore numbers but lacks single complex resolution (Liesche 

et al., 2015). Recently, molecular counting via photobleaching has attracted renewed attention 

due to the development of novel analysis modalities based on Bayesian statistics (Garry et al., 

2020; Tsekouras et al., 2016) and machine learning (Xu et al., 2019). 

 

However, these novel methods are demanding in terms of data quality, which in turn leads to 

new requirements regarding fluorophore properties. In the trade-off between signal-to-noise 

ratio (SNR) of the individual bleaching steps and the rate of photobleaching, bright and stable 

fluorophores are advantageous. Thus, buffer systems (Aitken et al., 2008; Vogelsang et al., 

2008) to increase photostability and reduce complex photophysical behavior could help to 

improve data quality. This motivates an investigation into which labelling approaches and buffer 

systems are most suited to generate data compatible with automated and robust 

photobleaching step analysis at an increased counting range. Additionally, Bayesian methods 

are computationally costly and therefore limit the number of photobleaching traces that can be 

processed in a given experiment. Therefore, we see the necessity for an approach to bridge 

the gap between simple methods such as visual inspection and the novel Bayesian methods. 

Lastly, the experimental validation with standard samples is often not the focus of theoretical 

methods development although calibration samples are readily available (Schmied et al., 2014; 

Thevathasan et al., 2019). 

 

Here, we address these hurdles to make photobleaching step analysis a more robust and 

thoroughly validated tool in the biophysics toolbox. We describe a comprehensive framework 

for PBSA that provides guidelines for the choice of fluorescent label and acquisition conditions 

as well as a new photobleaching trace analysis algorithm. The quickPBSA package was 

developed with a focus on automation and speed, providing the high throughput necessary to 

meet the demands for in situ protein counting. We then validate the method with molecular 

counting experiments on DNA origami carrying defined label numbers. Finally, we show that 

quickPBSA, in conjunction with optimized trace data acquisition, is well suited to characterize 

protein structures in cells by determining the copy number of Nucleoporin 107 (NUP107) in the 

nuclear pore complex (NPC). 



Results 

The reliability of automated photobleaching trace evaluation strongly depends on the quality of 

the input data, i.e., individual photobleaching traces. Historically, PBSA has mostly been 

performed using fluorescent proteins as labels (Arant and Ulbrich, 2014). However, fluorescent 

proteins tend to be less photostable than small organic fluorophores and are known to exhibit 

complex photophysics, complicating trace interpretation (Ha and Tinnefeld, 2012). To identify 

fluorophores suited for generating photobleaching traces with high SNR, we therefore 

compared the fluorescent proteins EGFP, mCherry and mNeonGreen, as well as the organic 

fluorophores tetramethylrhodamine (TMR) and silicon rhodamine (SiR) conjugated to the self-

labeling protein tags SNAP-tag and HaloTag with respect to their photostability, brightness and 

propensity for photo-induced blinking. In addition, we tested to which degree photostabilizing 

buffers composed of reducing and oxidizing systems (ROXS) and an oxygen scavenger could 

be used to increase photostability, suppress photoblinking and thereby improve trace quality. 

 

Both, the molecular brightness of a fluorescent label and its photostability contribute to the 

overall photon budget and thereby directly influence the SNR. Since the molecular brightness 

is a well-studied property of fluorophores it can be readily compared across different 

fluorophores based on reported values in the literature (Table S1). For organic fluorophores 

conjugated to protein tags, a strong influence of the tag on the fluorophore was observed and 

has to be taken into account when comparing the brightness of different fluorophores after 

conjugation to protein tags (Erdmann et al., 2019). In contrast, the photostability of a 

fluorophore can strongly depend on its environment and on the applied measurement 

conditions. For this reason, we performed systematic photobleaching measurements under 

comparable conditions with the selected fluorophores. For this, we expressed each label as 

fusion protein in U2OS or COS-7 cell lines (Figure S1) and imaged them after chemical fixation. 

We determined the photostability of each fluorophore in phosphate buffered saline (PBS, 

pH 7.4) and three photostabilizing buffers each containing methyl viologen and ascorbic acid 

as ROXS and an oxygen scavenger system consisting of either glucose oxidase and catalase 

(GodCat) (Harada et al., 1990), protocatechuate-3,4-dioxygenase (PCD) (Aitken et al., 2008) 

or sodium sulfite (NaSO3) (Hartwich et al., 2018). 

 



Upon high intensity illumination, we observed biexponential intensity decay patterns for all 

tested fluorophores (Figure S2). Such behavior has been reported before for both, organic 

fluorophore and fluorescent proteins (Bakker and Swain, 2019; Song et al., 1995). We therefore 

decided to use the time to reach half maximum (t1/2) as a model-independent metric to compare 

conditions and fluorophores. Across all tested conditions, t1/2 varied considerably covering three 

orders of magnitude (0.5-200 s). Overall, fluorescent proteins were less photostable than 

organic fluorophores and far-red organic fluorophores exhibited the highest photostability. 

Differences between fluorophores were less pronounced in conventional buffers without 

photostabilizing additives. Addition of ROXS and oxygen scavengers resulted in strongly 

increased photostability for organic fluorophores, particularly for the red-absorbing fluorophores 

ATTO 647N and SiR (Figure 1a). For ATTO 647N, photostability was improved 2-fold with 

ROXS buffer supplemented with NaSO3 as oxygen scavenger. Replacing NaSO3 with the 

enzymatic oxygen scavengers GodCat or PCD resulted in further improvements of ~10 and 

20-fold respectively. Similar trends were observed for both TMR and SiR conjugated to 

SNAP-tag or HaloTag. Here, SiR conjugated to SNAP-tag in ROXS PCD showed the highest 

stability with a t1/2 of 120 s (20-fold improvement over PBS), a 60-fold improvement over EGFP, 

but still 50% lower stability compared to ATTO 647N in the same buffer. In contrast, a decrease 

in photostability for EGFP and mCherry in the methyl viologen and ascorbic-acid-based ROXS 

buffer was observed for all three oxygen scavenging systems, possibly due to pH changes of 

the buffers during imaging (Swoboda et al., 2012). Interestingly, no such decrease in 

photostability was observed for mNeonGreen, which could be due to improved stability of the 

protein structure of mNeonGreen (Shaner et al., 2013). 

 

In addition to the increased photostability of organic fluorophores, ROXS buffers were also 

reported to reduce emission intensity fluctuations on the millisecond to second timescale, also 

known as photoblinking, which complicates trace interpretation in PBSA (Vogelsang et al., 

2008). For a quantitative characterization of photoblinking, we performed on- and off-rate 

measurements for a selection of fluorophores and buffer conditions using an image correlation 

approach which robustly determines photoblinking rates across a range of blinking regimes 

without requiring traces of individual fluorophores (Sehayek et al., 2019). For these 

measurements, we recorded image series on chemically fixed cells with the labels EGFP, 

SNAP-tag or HaloTag localized at the plasma membrane. These image series were then used 

to compute the temporal autocorrelation function (ACF) which we fitted with a three-state 



fluorophore model (Figure S3). Of note, such a three-state fluorophore model does not 

necessarily reflect the underlying photophysical processes for the evaluated fluorophores, but 

rather serves to facilitate a quantitative comparison of fluorophores and conditions. The degree 

of photoblinking observed in this assay varied strongly between the tested fluorophores and 

was apparent both, by visual inspection of intensity traces from individual fluorophores (Figure 

1c-f) and in the corresponding ACFs (Figure S4). Fitting the ACFs obtained from image 

correlation then allowed us to determine on- and off-rates for photoblinking across the different 

conditions (Figure S5).  

 

In PBS, the on-time (ton, 1/koff), as well as the equilibrium constant K (kon/koff) of EGFP and TMR 

or SiR conjugated to SNAP-tag were comparable (Figure 1b). In contrast, fluorophores 

conjugated to HaloTag exhibited a much lower degree of photoblinking evidenced by higher K 

and ton even without addition of ROXS or oxygen removal. For EGFP, the strong decrease in 

photostability described above prevented a photoblinking analysis in ROXS PCD. For TMR and 

SiR conjugated to both tags, we observed an increased on-fraction K upon switching to ROXS 

PCD buffer. Interestingly, the effect on the on-time was less consistent. While fluorophores 

conjugated to SNAP-tag showed increased ton in ROXS PCD as compared to PBS, 

fluorophores conjugated to HaloTag exhibited lower ton after ROXS addition and oxygen 

removal. In the case of TMR, this resulted in very similar photoblinking behavior in ROXS PCD 

for both tags. For SiR, conjugation to HaloTag resulted in ~3x larger K and ton in ROXS PCD 

compared to SNAP-tag in the same buffer. It was recently reported that fluorophores conjugated 

to HaloTag are tightly associated to the protein surface, while fluorophores conjugated to SNAP-

tag protrude away from the protein surface (Wilhelm et al., 2021). We speculate that this could 

result in differences in accessibility for soluble factor which could explain the different propensity 

for photoblinking and the different effect of ROXS components. Based on these observations, 

the trace quality and counting range of PBSA-based quantification can be improved by using 

self-labeling protein tags in combination with longer-wavelength organic fluorophores and 

ROXS buffers supplemented with enzymatic oxygen scavenger systems. 

 

Turning from the data acquisition to the data analysis, we set out to develop a routine capable 

of estimating fluorophore number distributions directly from the experimental data (i.e. image 

stacks) with minimal user input. To that end, apart from the novel quickPBSA algorithm for trace 

interpretation, the framework includes modules for automated trace extraction from raw time-



lapse image stacks and filtering. The underlying principle of the framework is to perform a 

preliminary step detection for each trace and then refine the results iteratively. The final 

refinement step makes use of a Bayesian posterior from Pressé and coworkers (Tsekouras et 

al., 2016), thus incorporating prior knowledge about the photobleaching process. In contrast to 

the previously published approach, the Bayesian posterior is not used to detect step positions, 

but only to determine step significance and find simultaneous bleaching events. The full data 

analysis workflow is comprised of four major parts (Figure 2a) which are described in the 

following: 

 

Trace Extraction 

The first step is the identification of regions of interest (ROIs) and the automated extraction of 

photobleaching traces from image stacks. Here, the ROIs can be provided as pixel coordinates 

(for instance generated by a localization algorithm) or via a segmentation mask image (for 

instance generated by thresholding). As the photobleaching trace is extracted from the ROI, a 

ring-shaped region with variable offset from the ROI is used to extract a background bleaching 

trace (Figure S6). Other ROIs are automatically excluded from the background region. 

Especially for measurements in cells we found that background bleaching due to 

autofluorescence and out-of-focus fluorescence occurred on similar timescales as the 

fluorophore bleaching. Therefore, background subtraction proved to be essential to recover 

traces with discernible photobleaching steps. Additionally, background subtraction also 

facilitates identifying and excluding ROIs that are not fully bleached at the end of the 

measurement. 

 

Preliminary Step Detection 

After trace extraction, a preliminary step detection is performed on all extracted traces. This is 

accomplished by successively placing steps and evaluating each added step using the Schwarz 

Information Criterion (SIC) as first demonstrated by Kalafut and Visscher (Kalafut and Visscher, 

2008). In our implementation of this algorithm, a user-defined threshold to ignore minor changes 

in the mean intensity reduces the detection of spurious steps rendering the preliminary step 

detection more robust. 

 
  



Filtering 

Traces are excluded based on the result of the preliminary step detection. The model selection 

in the quickPBSA algorithm critically depends on the correct detection of the last and the 

penultimate bleaching steps in each trace since the period where only one fluorophore is active 

is used to retrieve the properties of an individual fluorophore. Therefore, traces which are not 

fully bleached at the end of an acquisition or where the last step potentially corresponds to a 

double bleaching event need to be excluded. Assuming that the last two steps are correctly 

identified in most traces from the image stack, the distribution of single fluorophore signal 

means across all traces can be used to filter out traces. Using this information from the entire 

image stack we exclude traces where the single fluorophore or background signal are out of 

bounds. 

 

quickPBSA algorithm 

Ultimately, the result is refined by evaluating the entire trace according to the full marginal 

posterior from Pressé and coworkers (Tsekouras et al., 2016). This posterior incorporates the 

possibility of simultaneous bleaching events as well as a penalty for too many bleaching events 

and thus is a far more content-aware evaluation of step placement than the information criterion 

used in the preliminary step detection. The quickPBSA algorithm iteratively minimizes the 

negative logarithm of the posterior (-log(P), starting from the result of the preliminary step 

placement with all steps considered to be single events. Figure 2b shows a flowchart of the 

iterative optimization procedure, together with a simulated trace showing how the algorithm 

removes steps and optimizes step heights from the preliminary result. The iterative procedure 

is: 

 

I. Find candidate positions for simultaneous steps. In the first iteration (double steps) these 

are all positions. For more fluorophores bleaching simultaneously, only the locations 

from the last iteration are considered. For example, triple steps are considered only 

where double steps yielded an improvement. If there are candidate positions, proceed 

with II, otherwise go to III. 

II. Try all possible combinations with step heights up to the current occupancy. The result 

of this process is accepted and considered the new optimum if a lower value of -log(P) 

is found at any point. Step heights from 1 to the maximum step height are considered, 



so that, for instance, [2,2,2] can be replaced by [1,3,2]. Return to step 1 to find new 

candidate positions. 

III. Remove the least significant step found during preliminary step detection. The final two 

steps in a trace are always kept in place since they are required for posterior calculation. 

If there are only 3 steps left, proceed with step IV, else reset all steps to single occupancy 

and return to step 1. 

IV. If no steps could be removed to yield an improved posterior, i.e. the current optimum 

contains the same number of steps as the preliminary result, the algorithm proceeds to 

add single fluorophore steps. This is accomplished by calculating -log(P) for additional 

positive or negative steps at all positions before the penultimate step. Repeat step IV 

until the last two added steps yielded no improved posterior or a specified maximum 

number of added steps is reached. 

V. Return the step/event combination with the minimal value for -log(P) found at any point 

in I-IV. 

 

In the quickPBSA algorithm, the evaluation of simultaneous step arrangements is 

computationally most expensive. Especially for traces with many steps in the preliminary result, 

the number of possible combinations is excessive. We therefore implemented several 

strategies to reduce the computational cost at this point, as detailed in the documentation of 

the software package. 

 

We benchmarked the quickPBSA trace analysis algorithm using semi-synthetic data generated 

from experimental data. For this, we acquired experimental data from an in vitro sample with 

few fluorophores per diffraction-limited spot, namely immobilized DNA oligonucleotides labeled 

with four ATTO 647N fluorophores. We selected traces where the quickPBSA result could be 

confirmed by visual inspection, obtaining a set of traces with known ground truth. We then 

generated increasingly complex semi-synthetic traces with known ground truth by combining 

several of these traces (Figure 3a). Using this approach, benchmarking traces with fluorophore 

numbers up to 40 were generated and used to evaluate the accuracy of the quickPBSA trace 

analysis. 

 

For each fluorophore number, approximately 100 semi-synthetic traces with 3,000 time-points 

per trace were included in the analysis (Figure S7). To compare the performance of the 



algorithm with a state-of-the-art Bayesian algorithm, we analyzed the benchmarking dataset 

with the algorithm previously published by Pressé and coworkers (Tsekouras et al., 2016), 

hereafter called Pressé2016. Figure 3b shows the results of the benchmark dataset after the 

filtering step (Preliminary Only), including the quickPBSA refinement algorithm, and from the 

Pressé2016 algorithm. For the benchmarking dataset the result of the preliminary step 

detection starts to deviate systematically from the ground truth for fluorophore numbers beyond 

20, most likely due to missed bleaching events which occurred in close temporal succession. 

The results after quickPBSA step refinement and from the Pressé2016 algorithm, on the other 

hand, show a slight overestimation. But in both algorithms the mean estimated fluorophore 

numbers never deviates by more than one fluorophore from the expected value. Additionally, 

the overestimation is likely caused by the selection of ground truth traces, since a simple ruler 

method shows an even larger overestimation for the benchmarking dataset (Figure S7). 

Overall, the results from the quickPBSA algorithm and Pressé2016 are very similar. A 2-sample 

t-test shows that the means obtained from the 2 algorithms never differ significantly (p>0.01, 

Figure S7).  

 

We also used the semi-synthetic traces to benchmark the runtime of the analyses in 

dependence on the number of fluorophores (Figure 3c). We observed that for up to 

20 fluorophores, the quickPBSA total runtime was dominated by the preliminary step detection. 

For higher fluorophore numbers the runtime increases due to the quickPBSA refinement and 

increases further for higher fluorophore numbers. Nonetheless, the mean runtime remained 

below 10 s per trace (3,000 data points) for the entire benchmarking dataset containing traces 

with up to 40 fluorophores. In contrast, the runtime of the Pressé 2016 algorithm is over 30 

minutes per trace for the entire benchmarking dataset. Thus, using the quickPBSA algorithm, 

we were able to analyze the dataset with comparable results and an over 100-fold lower 

computation time. The mean analysis times for all datasets included in this publication are 

below 3 minutes per trace even for complex experimental traces with up to 15,000 data points 

(Table 1). 

 

To fully validate the developed framework with experimental data, we used DNA origami 

carrying a well-defined number of fluorophores. DNA origami with 9, 20, and 35 binding sites 

for labelling strands carrying a single ATTO 647N fluorophore (R09, R20, and R35) were 

sparsely immobilized on coverslips to ensure that stochastically overlapping origami structures 



did not significantly influence the measurement (Figure 4a). The labelling efficiency specified 

by Gattaquant for the DNA origami is 70%, which we independently validated for the R20 

origami using counting by photon statistics (Grußmayer and Herten, 2017) (Figure S8). 

Photobleaching traces from individual DNA origami structures were then extracted using the 

trace extraction module described above, using thunderSTORM (Ovesný et al., 2014) for ROI 

localization and removing origami with close nearest neighbors (Figure S6). Since the extracted 

traces exhibited only weak background bleaching, the background subtraction step for this 

sample mainly removed a constant offset caused by excitation bleed-through and read-out 

noise (Figure 4a, center). 

 

Processing the background-corrected traces using the full quickPBSA algorithm resulted in 

good agreement between intensity and predicted fluorophore numbers over time (Figure 4a). 

The obtained fluorophore number distributions were symmetrical indicating no systematic 

deviation and an unbiased measurement error (Figure 4b). The means obtained from fitting a 

normal distribution to the quickPBSA fluorophore number estimates agreed with the expected 

values for a labelling efficiency of 70%. In contrast, the means of distributions obtained without 

quickPBSA refinement (Preliminary only), while similar for origami with 9 binding sites, exhibited 

a significant underestimation for origami with 20 and 35 binding sites (Figure 4c). This 

underestimation for larger fluorophore numbers is in line with the benchmarking results with 

semi-synthetic traces. 

 

A full comparison of all parameters from the fits and a comparison to the mean and standard 

deviation of a binomial distribution with the known number of binding sites and the expected 

labelling efficiency is shown in Table 1. We observed that the measured distributions broadened 

with increasing fluorophore number, stronger than would be expected from the binomial 

distribution of label numbers alone. For instance, while broadening of the measured data was 

negligible for R09 origami, the standard deviation increased by a factor of 3 for R20 origami 

(Table 1). This suggests that experimental data contains additional sources of uncertainty which 

are not fully reproduced using semi-synthetic data and therefore highlights the importance of 

additional benchmarking with standardized samples. 

 

To validate that the quickPBSA algorithm performed robustly upon variation of experimental 

parameters, we performed additional measurements with the R09 origami samples on a 



different widefield microscope setup with homogeneous illumination power and a sCMOS 

instead of an emCCD camera for detection.  As in the first experiment with the R09 origami, the 

expected mean and width of the fluorophore number distribution were well reproduced 

(Figure 4d, Table 1). A large field of view is advantageous for the acquisition of photobleaching 

data since overall measurement time is decreased and the potential impact of degrading buffer 

performance can be minimized. 

 

We further explored the sensitivity of the quickPBSA algorithm to fluorophore properties by 

measuring a fluorophore number distribution for origami with 9 binding sites labelled with 

ATTO 565 (Y09). Here, the measured distribution showed a peak at 7.9 fluorophores, 

significantly above the expected mean fluorophore number of 6.3 (Figure 4e, Table 1). A likely 

explanation for this deviation is that ATTO 565 exhibited two distinct brightness states as 

frequently observed in individual photobleaching traces (Figure S9). If the last photobleaching 

step occurs from a lower brightness state in a significant number of traces, the mean signal of 

a single fluorophore is underestimated for these traces, leading to an overestimation of the total 

number of fluorophores. This again highlights how important label selection is in photobleaching 

experiments, even for organic fluorophores. Additionally, taking the complex photochemical 

behavior into account can extend the counting range of photobleaching analysis even further 

(Bryan et al., 2020). 

 

While DNA origami samples are ideally suited for determining the accessible counting range of 

a novel method, the application to biological targets within the complex cellular environment is 

subject to additional challenges that are not captured in simplified in vitro experiments. 

Background (auto)fluorescence, density of structures and biological variation cannot readily be 

controlled in a biological sample and will impact data quality. To assess how the quickPBSA 

framework coped with a more complex in situ sample, we decided to determine the number of 

NUP107 protein copies contained in individual nuclear pore complexes. To minimize the 

influence of protein expression and labelling efficiency, we used a genome-edited U2OS cell 

line expressing NUP107-SNAP from its native genomic context (Li et al., 2018). Labelling of 

SNAP-tag conjugated NUP107 was performed with the corresponding silicon rhodamine 

substrate BG-SiR. From epifluorescence images of chemically fixed and labeled cells, it is 

immediately evident that fluorescent background is much more pronounced in situ than in the 

origami experiments described above (Figure 5a). Additionally, the high density of NPCs 



resulted in regions where it was no longer possible to identify individual NPCs. As for the in vitro 

samples, individual NPCs were localized with thunderSTORM (Ovesný et al., 2014). The trace 

extraction routine in the quickPBSA framework automatically excludes NPCs based on 

localization parameters such as width of the fitted Gaussian or nearest neighbor distance. Thus, 

only sufficiently isolated and diffraction-limited structures are considered for further analysis.  

(Figure S6, Figure S10). Despite this pre-filtering, raw traces from individual ROIs did not exhibit 

clear bleaching steps and the decay in the background region occurred on a similar timescale 

as the fluorescence signal of the ROI (Figure 5b). Background fluorescence can therefore be 

mainly attributed to out-of-focus fluorescence rather than autofluorescence. After subtraction of 

the background signal, photobleaching steps could be observed towards the end of 

photobleaching traces (Figure 5b). Despite the substantially lower SNR compared to the 

previously successfully evaluated traces recorded using ATTO 647N as fluorophore, we 

subjected the extracted traces to analysis with the quickPBSA algorithm (Figure 5b and 5c). 

The resulting fluorophore number distribution cumulated across 32 cells from two independent 

experiments (Figure S10) was well described by a normal distribution with a mean of 20.7±0.2 

fluorophores per NPC and a standard deviation of 8.5±0.2 (Figure 5d). The mean fluorophore 

number per NPC per cell was 21.6±1.7 indicating that quickPBSA yielded robust estimates 

across the entire population of cells (Figure 5e). The width of the cumulated distribution is 

comparable to that of the distribution obtained from R35 DNA origami, indicating that 

background subtraction and spot pre-filtering successfully reduced the complexity of obtained 

traces and did not result in reduced precision. NUP107 has been reported previously to be 

present in NPCs at 32 copies per pore (Bui et al., 2013; Ori et al., 2013). Based on the mean 

fluorophore number of 20.7±0.2 per NPC, this translates into a labelling efficiency of ~65% for 

SNAP-tag labelling with BG-SiR which is in excellent agreement with recent reports 

(Thevathasan et al., 2019). This indicates that quickPBSA is able to correctly measure 

fluorophore numbers even for less bright fluorophore labels, in the complex environment of a 

eukaryotic cell and with comparable precision as localization microscopy-based methods 

(Thevathasan et al., 2019). 

 
 

Discussion 

The presented framework for photobleaching step analysis offers a robust, fast, and well-

validated approach for molecular counting in situ. The evaluation of various fluorophores along 



with different buffer conditions in respect to the precision of photobleaching step analysis may 

serve as practical guide for robust counting of proteins and other biomolecules. Additionally, it 

may serve as blueprint for extended screening of other fluorescent labels and experimental 

conditions. The high photostability and low degree of photoblinking of organic fluorophores 

imaged in ROXS buffer with enzymatic oxygen removal enabled generating high-quality input 

data for automated trace interpretation. Despite the lower brightness compared to HaloTag, the 

high photostability of SiR conjugated to SNAP-tag in ROXS PCD buffer was found to be suitable 

for PBSA protein counting. Clearly, fluorophore characteristics strongly depend on the specific 

environment, as is especially evident by the influence of protein tags on photoblinking of TMR 

and SiR and the effect of SNAP-tag conjugation on SiR brightness. Therefore, evaluating 

fluorophore properties should always be considered when using alternative labelling 

approaches. Fluorophores with improved molecular brightness and photostability (Grimm et al., 

2015; Scott et al., 2018), as well as recently reported self-healing fluorophores (Henrikus et al., 

2020; Velde et al., 2018) might allow to extend the accessible counting range of photobleaching 

step analysis. Approaches to improve the SNR during image acquisition such as confocalized 

detection or single-plane illumination could help to improve trace quality and thereby further 

extend the accessible counting range of quickPBSA (Mi et al., 2015). 

 

On the analysis side we found it beneficial to make use of information from the entire field of 

view during trace selection, combining features from pairwise frequency methods with features 

from Bayesian approaches. In this spirit, the methodology for trace analysis is a combination 

and extension of two previous approaches to photobleaching step analysis. The combined 

method has only few user-defined parameters simplifying automation and improving 

robustness. The high degree of automation together with the more than 100-fold improved 

computational efficiency of the combined method provide a significantly increased throughput 

required for biological applications. We believe that the developed method of testing algorithms 

with semi-synthetic data will be highly useful, not only for benchmarking other PBSA algorithms, 

but also to generate training data for machine learning based approaches (Xu et al., 2019). 

 

Using ATTO 647N-labelled structures with a known stoichiometry in vitro, we showed that 

quickPBSA yields highly accurate (<10% deviation across all samples) estimates of mean 

fluorophore numbers for structures containing up to 35 fluorophores. We furthermore 

demonstrated the robustness of the quickPBSA workflow by successfully analyzing data 



acquired on different experimental setups. We also demonstrated that the complex 

photochemical behavior of fluorophores can skew fluorophore number estimates highlighting 

the importance of careful fluorophore characterization prior to experiments. 

 

To show that quickPBSA performs well in biological applications, we determine the number of 

NUP107 protein copies in nuclear pore complexes of U2OS cells. At this point, the background 

subtraction and trace filtering modules of quickPBSA proved crucial to obtain traces from 

complex samples. Factoring in the expected labelling efficiency for SNAP-tag labelling, the 

previously reported number of 32 protein copies was well reproduced. This constitutes, to our 

knowledge, the highest stoichiometry successfully measured with photobleaching step analysis 

in a biological sample so far and demonstrates the robustness of the outlined approach in 

biological samples. 

 

Future developments of alternative algorithms for PBSA to further improve the precision of 

fluorophore counting, such as novel Bayesian approaches (Bryan et al., 2020), will be of high 

interest to move beyond measuring mean complex stoichiometries and towards characterizing 

stoichiometry distributions across ensembles of individual complexes. At this point, however, 

advances in data analysis will need to go hand in hand with the development of novel labelling 

schemes with improved labelling efficiency to reduce the variation in fluorophore numbers 

caused merely by incomplete labelling of target proteins. 

 

Overall, the combination of improved data acquisition and the novel analysis routines contained 

in the quickPBSA framework provide a reliable way to determine protein stoichiometries in 

cellulo and will enable the use of automated PBSA as routine tool for cell biology in future 

applications. 

 

 

  



Figure 1: Fluorophore and image acquisition buffer selection for PBSA. a, Comparison of photostability 

and molecular brightness for different fluorescent proteins and organic fluorophores conjugated to 

protein tags. Symbols indicate mean t1/2 and molecular brightness under indicated condition. Color 

coding according to excitation wavelength used in this study: (blue: 488 nm, green: 561 nm, red: 

640 nm). t1/2 was normalized to 1 kW/cm2 excitation power density. The molecular brightness of 

fluorophores was corrected for mismatches between excitation wavelength and absorption maximum 

(Table S1). Full dataset shown in Figure S2. b, Comparison of mean equilibrium constant K (kon/koff) 

between fluorescent and non-fluorescent state and mean on-time ton obtained from image correlation 

experiments for indicated conditions. Color coding as in a. See Figure S5 for full set of rate values. c-f, 

Representative single-fluorophore intensity traces for indicated fluorophores and buffer recorded via 

TIRF microscopy of surface immobilized ATTO 647N (c) or plasma membrane-localized EGFP and 

labelled HaloTag constructs in chemically fixed HeLa cells (d-f). 

 

Figure 2: Framework concept and quickPBSA algorithm. a, The four parts of the framework as detailed 

in the text. b, Flowchart of the quickPBSA step refinement algorithm. c, Example to illustrate how a 

simulated trace propagates through the algorithm, starting from the result of the preliminary step 

detection. Note that step IV is skipped for the example trace, since steps were removed in step III. 

 

Figure 3 Benchmark with semi-synthetic traces. a, Semi-synthetic traces for benchmarking are 

generated by combining manually classified traces. b, Deviation from ground truth for semi-synthetic 

traces analyzed without quickPBSA step refinement, including step refinement, and with the algorithm 

from Pressé and coworkers (Tsekouras et al., 2016). c, Runtime per trace for the three algorithms. Mean 

(line) and standard deviation (shaded region) are shown. 

 

Figure 4 Validation with DNA origami samples a, Representative image and traces from the origami 

experiment with 20 binding sites for ATTO 647N. Scale bar: 10 µm. b, Fluorophore number distributions 

for origami with 9, 20, and 35 binding sites. The histograms are modeled with a Gaussian to extract 

means and standard deviations (results and sample sizes in Table 1). Vertical dashed lines and areas 

shaded in grey indicate the expected mean and standard deviation obtained from binomial distributions. 

c, Fit results from b compared to the expected mean of the label number distribution, which is a binomial 

distribution with a labelling efficiency of 70%. Error bars and shaded region show the standard deviation. 

The quickPBSA result differs significantly from the result without quickPBSA refinement for 20 and 35 

binding sites (two sample t-test, ***: p<0.001, n.s.: not significant) d, Measured label number distribution 

of origami with 9 binding sites for ATTO 647N on a different microscope setup with a larger field of view 



and sCMOS detector. e, Measured label number distribution for origami with 9 binding sites for 

ATTO 565. 

 

Figure 5 Protein counting of NUP107 in U2OS cells. a, Representative image of U2OS cell stably 

expressing NUP107-SNAP-tag labeled with BG-SiR. Scale bar: 5 µm. b, Traces extracted from the 

segmented ROI and background regions and evaluated difference trace from example trace b. c, 

Evaluated background-corrected trace extracted from ROI c (scaled to overlap). d, Measured 

fluorophore number distribution and Gaussian model fit (black line, mean 20.7±0.2, SD 8.5±0.2). 4000 

traces from 32 cells, 2 independent experiments. e, Mean Fluorophore number per NPC per cell. Bars 

show mean±SD across cells (21.6±1.7). 

 

Table 1 Mean and standard deviations extracted from Gaussian modelling of measured emitter 

number distributions from DNA origami experiments. Standard errors in brackets as extracted 

from least squares fitting. The expected values are calculated assuming a 70% labelling 

efficiency. *Measurement on alternative microscope setup with sCMOS detector. SD: Standard 

deviation. Sample size: number of traces; measurements; independent experiments. 

Sample Mean Mean 

expected 

SD SD 

expected 

Sample size Runtime/ 

Trace [s] 

R09 6.7 (0.1) 6.3 1.9 (0.1) 1.4 197;13;1 25 

R20 14.2 (0.2) 14 6.1 (0.2) 2.1 636;43;2 53 

R35 22.6 (0.5) 24.5 8.6 (0.5) 2.7 499;25;2 168 

R09* 6.0 (0.1) 6.3 2.2 (0.1) 1.4 1,667;5;1 19 

Y09 7.9 (0.1) 6.3 1.6 (0.1) 1.4 853;12;1 88 

 

 

 

 

 

 

 

 

 

 

 

 

 



METHODS 

 

Preparation of DNA in vitro samples 

Custom brightness DNA origami with 9,20 or 35 nominal binding sites labeled with ATTO 647N 

or ATTO 565 at approximate labelling efficiencies of 70% (Gattaquant DNA Nanotechnologies, 

Germany) were dissolved in 0.5xTBE buffer supplemented with 11 mM MgCl2 and stored at -

20°C until use. DNA oligonucleotides labeled with 4 ATTO 647N (tetraATTO 647N) as 

previously described (Liesche et al., 2015) (biomers.net, Germany) were dissolved in 

phosphate buffered saline (PBS, 10 mM phosphate buffer, 2.7 mM KCl, 137 mM NaCl, pH 7.4, 

Sigma Aldrich, Germany) and stored at -20°C until use. Both, DNA origami and DNA 

oligonucleotides were immobilized in 8-well LabTek (Nunc/Thermo Fisher, US) chambered 

coverslips via biotin-streptavidin linkage as previously described (Grußmayer and Herten, 

2017). Prepared samples were kept in PBS (DNA oligonucleotides) or PBS supplemented with 

20 mM MgCl2 (DNA origami) unless stated otherwise. 

 

Cell Culture 

COS-7, U2OS and HeLa cells (all ATCC) were cultured in Dulbecco’s modified eagle medium 

(DMEM) supplemented with GlutaMax and 1 mM sodium pyruvate (all Gibco Technologies, 

US). Cells were grown at 37°C, 5% CO2 in humidified atmosphere and routinely subcultured 

every 3 days or upon reaching 80% confluency. Cultures were kept in culture for up to 30 

passages and were not routinely tested for Mycoplasma contaminations. For widefield imaging, 

cells were seeded into 8-well LabTek chambered coverslips. Prior to seeding cells, LabTeks 

coverslips were cleaned with 0.1 M hydrofluoric acid for 2x30 s and extensively washed with 

PBS. Transfection of COS-7 cells was performed with TransIT-X2 transfection reagent (Mirus 

Bio, US) according to manufacturer’s instructions 24 hours after cell seeding and at least 

22 hours before fixation. Fixation of cells was performed with 3.7% (w/v) pre-warmed 

paraformaldehyde (PFA, EM Grade, Electron Microscopy Sciences, US) freshly diluted in PBS 

for 20 minutes at room temperature. All samples were washed repeatedly with PBS after 

fixation and imaged directly after or kept in PBS at 4°C until being imaged. 

 

Preparation of cells expressing SNAP-tag or HaloTag 

HeLa cells stably expressing Escherichia coli (E. coli) glutamine synthetase GlnA-HaloTag 

(Finan et al., 2015) were a gift of Florian Salopiata (DKFZ Heidelberg). U2OS cells stably 



expressing NUP107-SNAP-tag were a gift of Jan Ellenberg (EMBL Heidelberg) (Otsuka and 

Ellenberg, 2017). Both cell lines were labeled with corresponding tag substrates directly prior 

to fixation. GlnA-HaloTag expressing cells were labeled with tetramethyl rhodamine (TMR) 

HaloTag ligand (HTL-TMR, Promega, US) or silicon rhodamine HaloTag ligand (SiR-HTL, 

Spirochrome, Switzerland) at 100 nM in growth medium for 120 min at 37°C. NUP107-SNAP-

tag expressing cells were labeled with benzylguanine-functionalized TMR (BG-TMR, NEB, US) 

or SiR (BG-SiR, Spirochrome) at 200 nM in growth medium for 120 min at 37°C. After labelling, 

cells were washed repeatedly with growth medium and fixed as described above. 

 

Imaging buffers 

Samples were imaged either in PBS or in buffers containing different reducing and oxidizing 

systems (ROXS). ROXS buffers were prepared from a base solution (50 mM phosphate buffer, 

13.5 mM KCl, 0.685 M NaCl and 10 mM MgCl2, 12.5% (v/v) glycerol, pH 7.4, all Sigma-Aldrich) 

which was degassed by flowing Argon through buffers for at least 20 minutes before mixing or 

addition of buffers to samples. 1 mM paraquat dichloride and 1 mM ascorbic acid were added 

as reducing/oxidizing agents. Oxygen was depleted from the buffer by addition of 10 mM 

NaSO3, 50 nM protocatechuate-3,4-deoxygenase (>3 U/mg) and 2.5 mM of protocatechuic 

acid (ROXS PCD) or 0.66 M D-Glucose, 5000 U catalase, and 40-80 U glucose oxidase (ROXS 

GodCat). The ROXS GodCat buffer was additionally supplemented with 1 mM Tris(2-

carboxyethyl)phosphine. All buffer components were obtained from Sigma Aldrich (Germany). 

 

Widefield fluorescence microscopy 

If not stated otherwise, single-molecule fluorescence microscopy was performed on a custom-

built inverted microscope (Nikon Eclipse Ti, Nikon, Japan) with epi-fluorescence and total 

internal reflection fluorescence (TIRF) illumination. The microscope setup included an 

autofocus system (PFS2) and a 100x 1.49 NA oil immersion objective (Apo TIRF, both Nikon). 

Images were recorded using a back-illuminated emCCD camera (iXon Ultra 897, Andor, UK) at 

96 nm pixel size in the sample plane. A fiber-coupled multi laser engine (MLE-LFA, TOPTICA 

Photonics, Germany) equipped with 488, 561 and 640 nm laser lines was used for illumination. 

The excitation light was filtered by a quadband notch filter. A quadband dichroic mirror 

separated the emission and excitation beam paths. Emitted signal was further filtered using 

525/50 nm, 605/70 nm and 690/70 nm bandpass filters (all AHF Analysetechnik, Germany) 

mounted in a motorized filter wheel (FW102C, Thorlabs, US) placed before the camera. All 



microscope components were controlled using µManager (Edelstein et al., 2014). Exposure 

times, electron multiplying gain and illumination intensities were optimized for each sample 

individually to ensure maximum signals at the start of measurements while avoiding saturation 

of individual pixels. 

 

Widefield fluorescence microscopy with extended field of view and homogeneous 

illumination 

Single-molecule trace acquisition with improved throughput was performed on a custom-built 

widefield fluorescence microscope built around an inverted Axiovert 200 stand (Zeiss, 

Germany). A 647 nm fiber laser with Gaussian-shaped emission profile (MPB Communications, 

Canada) was expanded to 6.0 mm and converted into a flat-top beam using a beamshaper 

(πShaper, AdlOptica Optical Systems GmbH, Germany) and further expanded to a diameter of 

47 mm. The expanded beam was then guided into the microscope stand and focused on the 

backfocal plane of a 100x 1.49 NA oil immersion objective (Apo TIRF, Nikon, Japan) objective. 

The variation in irradiance was below 15% across the entire illuminated area. Emitted signal 

was collected through the same objective, separated from excitation light using a quad-band 

dichroic filter (R405/488/561/635 Semrock, US) and further filtered using a 

405/488/532/635 nm notch filter (Semrock) and a 700/50 nm bandpass filter (Chroma, US). 

Images were projected onto a back-illuminated sCMOS camera with a 130x130µm field of view 

(Prime95B, Photometrics, UK). Samples were placed on a motorized stage (MS2000) and kept 

in focus using an autofocus system (CRISP, both Applied Scientific Instrumentation, US). 

Camera and laser were synchronized using an Arduino Mega microcontroller board. All 

microscope components were controlled using µManager. 

 

Fluorophore stability measurements 

The photostability of different fluorophores and the influence of ROXS buffers on the blinking 

and photostability of fluorophores was evaluated by recording time-lapse data from samples 

labeled with the corresponding fluorophore upon high intensity excitation. The stability of 

ATTO 647N was evaluated using DNA oligonucleotides labeled with ATTO 647N immobilized 

as described above. TMR and SiR substrates for SNAP-tag and HaloTag were evaluated in 

fixed cells using cell lines expressing NUP107-SNAP-tag or GlnA-HaloTag as described above. 

The stability of EGFP, mCherry and mNeonGreen was evaluated in COS-7 cells transiently 

expressing H2A-EGFP-HaloTag (kind gift of Richard Wombacher), TOMM20-mCherry-HaloTag 



(Werther et al., 2020) or TOMM20-mNeonGreen (Allele Biotechnology, US) fixed 24 hours after 

transfection. For each fluorophore, the stability in PBS pH 7.4 and the NaSO3, ROXS PCD and 

ROXS GodCat buffer systems was tested with buffer compositions as described above. Prior 

to imaging, samples were washed once with PBS pH 7.4 and sample chambers were filled with 

the respective buffer and sealed with Parafilm to minimize gas exchange during experiments. 

 

Bleaching curves were acquired on an epifluorescence setup for all buffer-fluorophore 

combinations described above. EGFP and mNeonGreen labeled structure were bleached at 

0.58 kW/cm2 average irradiance, mCherry and TMR labeled samples were bleached at 

0.84 kW/cm2 average irradiance and ATTO 647N and SiR labeled samples were bleached at 

2.42 kW/cm2 average irradiance. Image series were acquired with constant illumination until 

samples were fully bleached and the signal reached a plateau. 

 

All data was background corrected by subtracting a constant offset from acquired image series 

to account for camera offset and excitation light bleedthrough. Offsets were manually 

determined for each sample and were found to be well reproducible within one condition, but 

variable across conditions. Bleach curves were then extracted from image series by extracting 

the frame-wise average intensity within a masked region. Masks were obtained from a 

Gaussian-filtered average projection of the first 10 images in the series and local thresholding 

following the Bernsen method. Mask segmentation and intensity extraction was performed 

using custom-written code in Fiji/ImageJ. Bleach curves were normalized to the maximum 

intensity in the respective trace and the raw half bleach time (t1/2,raw) defined as the time at 

which the intensity traces had decayed to <50% of the maximum intensity was extracted using 

custom-written Matlab code. To facilitate comparison between fluorophores excited at different 

wavelengths, t1/2,raw were normalized against the applied illumination power density (IPD) to 

obtain the excitation power-corrected t1/2 = t1/2,raw/IPD at an illumination power density of 

1 kW/cm2. 

 

Fluorophore photoblinking characterization 

For characterization of fluorophore blinking, an EGFP-HaloTag-SNAP-tag fusion protein 

targeted to the plasma membrane via fusion to the N-myristoylation sequence 

MGCIKSKRKDNLNDDE was stably expressed in HeLa cells. Cells expressing this construct 

were grown in LabTek chambered coverslips and labeled with TMR or SiR for HaloTag or 



SNAP-tag as described above. After labeling, cells were fixed in pre-warmed PBS 

supplemented with 4% PFA and 0.05% glutaraldehyde for 30 min at room temperature. Cells 

were then repeatedly washed in PBS and imaged directly after or kept in PBS at 4°C until being 

imaged. For recording of image time series, samples were prepared in either PBS or ROXS 

PCD buffer and individual cells were randomly selected for imaging. 2.000 frame image stacks 

were acquired with TIRF at an illumination power density of 50 W/cm2 and with an exposure 

time of 25 ms on the alternative setup with homogenized illumination. Images were correlated 

following the approach developed in (Sehayek et al. 2019) using Matlab code provided by the 

authors available under https://github.com/ssehayek/blink-project.git. ACFs were computed 

using the first 1.000 frames of each image stack and a maximum lag time of 600 frames. The 

initial decay (lag times 2-125 frames) of obtained ACFs containing information about 

photoblinking were fitted to a 3-state model (equalBleach) developed by Sehayek et al.  

 

Counting by Photon Statistics (CoPS) measurements 

CoPS measurements were performed on a custom-built confocal microscope constructed 

around an inverted microscope stand (Axiovert 100, Zeiss, Germany). Linearly polarized light 

emitted by a ps-pulsed laser diode emitting at 640 nm (LDH P-C-640B, PicoQuant, Germany) 

operated at a repetition rate of 20 MHz diode was circularized using a quarter wave plate and 

coupled into a single-mode polarization maintaining fiber (Schäfter Kirchhof, Germany). The 

excitation light was directed towards a 100x NA 1.45 objective (Alpha Plan-Fluar, Zeiss) using 

a dichroic mirror (z532/640, CHROMA). Light emitted by the sample was collected by the same 

objective and passed through the dichroic filter. Scattered excitation light was removed using a 

quad-band notch filter (488/532/631-640 nm, AHF Analysetechnik). Remaining emitted light 

was then spatially filtered with a pinhole (100 µm diameter) placed in the focal plane between 

two achromatic doublet lenses (f=75 mm, Thorlabs). All remaining light was split into four equal 

paths using three 50:50 beamsplitters (Thorlabs) and focused on four APD detectors (SPCM 

AQR-13, Perkin-Elmer, US) using achromatic doublet lenses (f=200 mm, Thorlabs). 685/70 nm 

bandpass filters were place in front of each APD. Signals detected by the APDs were processed 

using a HydraHarp400 multichannel time-correlated single photon counting system and the 

SymPhoTime 64 software platform (both PicoQuant). The position of objective and sample were 

controlled by a one-axis piezo scanner (P-721 PIFOC) and a two-axis piezo stage (7332CD, 

both Physik Instrumente, Germany). The two-axis piezo stage was also used for stage scanning 

during image acquisition. 



DNA origami samples were prepared for CoPS measurements as described above and imaged 

ca. 30 minutes after sealing of LabTek sample chambers. Measurements were initiated by 

acquisition of an overview scan to identify immobilized, diffraction-limited signals from individual 

DNA origami. TCSPC data was then recorded by focusing on individual origami with 10 µW 

excitation as measured before the objective. 

CoPS coincidence data was analyzed by computing coincident photon histograms from the first 

1×107 laser cycles (=0.5 s) of acquired TCSPC data for each origami. The histogram is then 

modelled with the analytical equation for coincidence probabilities (Ta et al., 2010) using the 

python scipy optimization model (Levenberg–Marquardt algorithm). Traces with a modelled 

molecular brightness of <5×10−3 were excluded.  

 

Photobleaching step analysis 

Data acquisition: Data for photobleaching step analysis was acquired in ROXS PCD buffer for 

all samples. DNA Origami data was acquired with 2.4 kW/cm2 average laser power at 640 nm 

for R09, R20, R35 and with 0.84 kW/cm2 average laser power at 561 nm for Y09 origami. 

NUP107 data was acquired with 1.2 kW/cm2 average laser power at 640 nm. Exposure times 

were 50 or 200 ms for all measurements. 

Data analysis: The first 5 images from the measured image sequence were averaged and used 

to locate fluorophore clusters. The localization was performed with Fiji 1.52p (Schindelin et al., 

2012; Schneider et al., 2012) using the plugin thunderSTORM (Ovesný et al., 2014). Trace 

extraction was done with the trace extraction submodule of the quickPBSA package, as detailed 

in the package documentation. In short, the average signal from circular regions around the 

localizations was extracted with typical diameters of 950 nm for the in vitro samples and 150 nm 

for the NUP107 experiment. For background correction, the average signal from ring-shaped 

regions was subtracted (inner diameter 1.7 µm for origami, 0.6 µm for NUP107, outer diameter 

2.0 µm for origami, 0.9 µm for NUP107). Regions around neighboring localizations were 

excluded from the background region. Additionally, ROIs with nearest neighbors at a distance 

below 950 nm for DNA origami and 475 nm for NUP107 were excluded. 

Photobleaching step analysis was performed using the quickPBSA package, as detailed in the 

main text and in the documentation of the quickPBSA package. Typically, the threshold 

parameter for preliminary step detection was set at 0.03 and maxiter at 200. Other analysis 

parameters were kept at their default values, except for the mult_threshold parameter in step 

refinement, which was typically set to 1.5 to decrease runtime. 



Semi-synthetic datasets were generated by manual annotation of traces obtained from 

tetraATTO 647N DNA oligonucleotides measured in NaSO3 ROXS buffer. The analysis 

according to (Tsekouras et al., 2016) was performed with the python code from 

https://github.com/lavrys/Photobleach. The analysis of the benchmarking dataset was 

performed on the University of Birmingham’s High Performance Computing Service BlueBEAR 

(Intel CascadeLake, 40 cores). All other analyses were carried out on a workstation with an 8-

core CPU @3.4 GHz (Intel(R) Core(TM) i7-3770) and 12 GB DDR3 memory. 

 

Code availability 

The quickPBSA package, example data and documentation are available under: 

https://github.com/JohnDieSchere/quickpbsa 

 

ACKNOWLEDGMENTS 
We thank J. Shepard Bryan IV and Steve Pressé for fruitful discussions and Arina Rybina for 

critical reading of the manuscript. We thank Siegfried Hänselmann, Florian Salopiata and the 

laboratory of Richard Wombacher for providing reagents. We also acknowledge funding from 

Deutsche Forschungsgemeinschaft (DFG) through project PhotoQuant HE4559/6-1, by the 

Centre of Membrane Proteins and Receptors (COMPARE, Universities of Birmingham and 

Nottingham) and by the Academy of Medical Sciences (Grant APR2\1013). Some computations 

described in this paper were performed using the University of Birmingham's BEAR Cloud 

service, which provides flexible resource for intensive computational work to the University's 

research community. See http://www.birmingham.ac.uk/bear for more details. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

REFERENCES 
 

Ahnert, S.E., Marsh, J.A., Hernández, H., Robinson, C.V., Teichmann, S.A., 2015. Principles of 

assembly reveal a periodic table of protein complexes. Science 359, 6378, (930-935). 

https://doi.org/10.1126/science.aaa2245 

Aitken, C.E., Marshall, R.A., Puglisi, J.D., 2008. An Oxygen Scavenging System for Improvement of 

Dye Stability in Single-Molecule Fluorescence Experiments. Biophys. J. 94, 1826–1835. 

https://doi.org/10.1529/biophysj.107.117689 

Arant, R.J., Ulbrich, M.H., 2014. Deciphering the Subunit Composition of Multimeric Proteins by 

Counting Photobleaching Steps. ChemPhysChem 15, 600–605. 

https://doi.org/10.1002/cphc.201301092 

Bakker, E., Swain, P.S., 2019. Estimating numbers of intracellular molecules through analysing 

fluctuations in photobleaching. Sci. Rep. 9, 15238. https://doi.org/10.1038/s41598-019-50921-7 

Bryan, J.S., Sgouralis, I., Pressé, S., 2020. Enumerating High Numbers of Fluorophores from 

Photobleaching Experiments: a Bayesian Nonparametrics Approach. bioRxiv 

2020.09.28.317057. https://doi.org/10.1101/2020.09.28.317057 

Bui, K.H., von Appen, A., DiGuilio, A.L., Ori, A., Sparks, L., Mackmull, M.-T., Bock, T., Hagen, W., 

Andrés-Pons, A., Glavy, J.S., Beck, M., 2013. Integrated structural analysis of the human 

nuclear pore complex scaffold. Cell 155, 1233–1243. https://doi.org/10.1016/j.cell.2013.10.055 

Das, S.K., Darshi, M., Cheley, S., Wallace, M.I., Bayley, H., 2007. Membrane Protein Stoichiometry 

Determined from the Step-Wise Photobleaching of Dye-Labelled Subunits. ChemBioChem 8, 

994–999. https://doi.org/10.1002/cbic.200600474 

Dixon, R.E., Moreno, C.M., Yuan, C., Opitz-Araya, X., Binder, M.D., Navedo, M.F., Santana, L.F., 

2015. Graded Ca2+/calmodulin-dependent coupling of voltage-gated CaV1. 2 channels. Elife 4, 

e05608. https://doi.org/ 10.7554/eLife.05608 

Edelstein, A.D., Tsuchida, M.A., Amodaj, N., Pinkard, H., Vale, R.D., Stuurman, N., 2014. Advanced 

methods of microscope control using μManager software. J. Biol. Methods 1, e10. 

https://doi.org/10.14440/jbm.2014.36 

Engel, B.D., Ludington, W.B., Marshall, W.F., 2009. Intraflagellar transport particle size scales 

inversely with flagellar length: revisiting the balance-point length control model. J. Cell Biol. 

187, 81–89. https://doi.org/10.1083/jcb.200812084 

Erdmann, R.S., Baguley, S.W., Richens, J.H., Wissner, R.F., Xi, Z., Allgeyer, E.S., Zhong, S., 

Thompson, A.D., Lowe, N., Butler, R., Bewersdorf, J., Rothman, J.E., Johnston, D.S., 

Schepartz, A., Toomre, D., 2019. Labeling Strategies Matter for Super-Resolution Microscopy: 

A Comparison between HaloTags and SNAP-tags. Cell Chem. Biol. 26, 584-592.e6. 

https://doi.org/10.1016/j.chembiol.2019.01.003 

Finan, K., Raulf, A., Heilemann, M., 2015. A Set of Homo-Oligomeric Standards Allows Accurate 

Protein Counting. Angew. Chem. Int. Ed. 54, 12049–12052. 

https://doi.org/10.1002/anie.201505664 

Garry, J., Li, Y., Shew, B., Gradinaru, C.C., Rutenberg, A.D., 2020. Bayesian counting of 

photobleaching steps with physical priors. J. Chem. Phys. 152, 024110. 

https://doi.org/10.1063/1.5132957 



Grimm, J.B., English, B.P., Chen, J., Slaughter, J.P., Zhang, Z., Revyakin, A., Patel, R., Macklin, J.J., 

Normanno, D., Singer, R.H., Lionnet, T., Lavis, L.D., 2015. A general method to improve 

fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250. 

https://doi.org/10.1038/nmeth.3256 

Grußmayer, K.S., Herten, D.-P., 2017. Time-resolved molecule counting by photon statistics across the 

visible spectrum. Phys. Chem. Chem. Phys. 19, 8962–8969. 

https://doi.org/10.1039/C7CP00363C 

Gruβmayer, K.S., Yserentant, K., Herten, D.-P., 2019. Photons in - numbers out: perspectives in 

quantitative fluorescence microscopy for in situ protein counting. Methods Appl. Fluoresc. 7, 

012003. https://doi.org/10.1088/2050-6120/aaf2eb 

Ha, T., Tinnefeld, P., 2012. Photophysics of Fluorescent Probes for Single-Molecule Biophysics and 

Super-Resolution Imaging. Annu. Rev. Phys. Chem. 63, 595–617. 

https://doi.org/10.1146/annurev-physchem-032210-103340 

Harada, Y., Sakurada, K., Aoki, T., Thomas, D.D., Yanagida, T., 1990. Mechanochemical coupling in 

actomyosin energy transduction studied by in vitro movement assay. J. Mol. Biol. 216, 49–68. 

https://doi.org/10.1016/S0022-2836(05)80060-9 

Hartwich, T.M.P., Chung, K.K.H., Schroeder, L., Bewersdorf, J., Soeller, C., Baddeley, D., 2018. A 

stable, high refractive index, switching buffer for super-resolution imaging. bioRxiv 465492. 

https://doi.org/10.1101/465492 

Henrikus, S.S., Tassis, K., Zhang, L., Velde, J.H.M. van der, Gebhardt, C., Herrmann, A., Jung, G., 

Cordes, T., 2020. Characterization of fluorescent proteins with intramolecular 

photostabilization. bioRxiv 2020.03.07.980722. https://doi.org/10.1101/2020.03.07.980722 

Hummert, J., Tashev, S.A., Herten, D.-P., 2021. An update on molecular counting in fluorescence 

microscopy. Int. J. Biochem. Cell Biol. 135, 105978. 

https://doi.org/10.1016/j.biocel.2021.105978 

Jungmann, R., Avendaño, M.S., Dai, M., Woehrstein, J.B., Agasti, S.S., Feiger, Z., Rodal, A., Yin, P., 

2016. Quantitative super-resolution imaging with qPAINT. Nat. Methods 13, 439–442. 

https://doi.org/10.1038/nmeth.3804 

Kalafut, B., Visscher, K., 2008. An objective, model-independent method for detection of non-uniform 

steps in noisy signals. Comput. Phys. Commun. 179, 716–723. 

https://doi.org/10.1016/j.cpc.2008.06.008 

Leake, M.C., Chandler, J.H., Wadhams, G.H., Bai, F., Berry, R.M., Armitage, J.P., 2006. Stoichiometry 

and turnover in single, functioning membrane protein complexes. Nature 443, 355–358. 

https://doi.org/10.1038/nature05135 

Lee, S.-H., Shin, J.Y., Lee, A., Bustamante, C., 2012. Counting single photoactivatable fluorescent 

molecules by photoactivated localization microscopy (PALM). Proc. Natl. Acad. Sci. 109, 

17436–17441. https://doi.org/10.1073/pnas.1215175109 

Li, Y., Mund, M., Hoess, P., Deschamps, J., Matti, U., Nijmeijer, B., Sabinina, V.J., Ellenberg, J., 

Schoen, I., Ries, J., 2018. Real-time 3D single-molecule localization using experimental point 

spread functions. Nat. Methods 15, 367–369. https://doi.org/10.1038/nmeth.4661 

Liesche, C., Grußmayer, K.S., Ludwig, M., Wörz, S., Rohr, K., Herten, D.-P., Beaudouin, J., Eils, R., 

2015. Automated Analysis of Single-Molecule Photobleaching Data by Statistical Modeling of 

Spot Populations. Biophys. J. 109, 2352–2362. https://doi.org/10.1016/j.bpj.2015.10.035 

Matthews, J.M., 2012. Protein Dimerization and Oligomerization in Biology, 2012 edition. ed. 

Springer, New York. https://doi.org/ 10.1007/978-1-4614-3229-6 

Mi, L., Goryaynov, A., Lindquist, A., Rexach, M., Yang, W., 2015. Quantifying Nucleoporin 

Stoichiometry Inside Single Nuclear Pore Complexes In vivo. Sci. Rep. 5, 9372. 

https://doi.org/10.1038/srep09372 



Ori, A., Banterle, N., Iskar, M., Andrés-Pons, A., Escher, C., Khanh Bui, H., Sparks, L., Solis-

Mezarino, V., Rinner, O., Bork, P., Lemke, E.A., Beck, M., 2013. Cell type-specific nuclear 

pores: a case in point for context-dependent stoichiometry of molecular machines. Mol. Syst. 

Biol. 9, 648. https://doi.org/10.1038/msb.2013.4 

Otsuka, S., Ellenberg, J., 2017. Mechanisms of nuclear pore complex assembly – two different ways of 

building one molecular machine. FEBS Lett. 592, 475–488. https://doi.org/10.1002/1873-

3468.12905 

Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z., Hagen, G.M., 2014. ThunderSTORM: a 

comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution 

imaging. Bioinformatics 30, 2389–2390. https://doi.org/10.1093/bioinformatics/btu202 

Puchner, E.M., Walter, J.M., Kasper, R., Huang, B., Lim, W.A., 2013. Counting molecules in single 

organelles with superresolution microscopy allows tracking of the endosome maturation 

trajectory. Proc. Natl. Acad. Sci. 110, 16015–16020. https://doi.org/10.1073/pnas.1309676110 

Rollins, G.C., Shin, J.Y., Bustamante, C., Pressé, S., 2015. Stochastic approach to the molecular 

counting problem in superresolution microscopy. Proc. Natl. Acad. Sci. 112, E110–E118. 

https://doi.org/10.1073/pnas.1408071112 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., 

Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., 

Tomancak, P., Cardona, A., 2012. Fiji: an open-source platform for biological-image analysis. 

Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 

Schmied, J.J., Raab, M., Forthmann, C., Pibiri, E., Wünsch, B., Dammeyer, T., Tinnefeld, P., 2014. 

DNA origami–based standards for quantitative fluorescence microscopy. Nat. Protoc. 9, 1367–

1391. https://doi.org/10.1038/nprot.2014.079 

Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image 

analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 

Scott, D.J., Gunn, N.J., Yong, K.J., Wimmer, V.C., Veldhuis, N.A., Challis, L.M., Haidar, M., Petrou, 

S., Bathgate, R.A.D., Griffin, M.D.W., 2018. A Novel Ultra-Stable, Monomeric Green 

Fluorescent Protein For Direct Volumetric Imaging of Whole Organs Using CLARITY. Sci. 

Rep. 8, 667. https://doi.org/10.1038/s41598-017-18045-y 

Sehayek, S., Gidi, Y., Glembockyte, V., Brandão, H.B., François, P., Cosa, G., Wiseman, P.W., 2019. A 

High-Throughput Image Correlation Method for Rapid Analysis of Fluorophore Photoblinking 

and Photobleaching Rates. ACS Nano 13, 11955–11966. 

https://doi.org/10.1021/acsnano.9b06033 

Shaner, N.C., Lambert, G.G., Chammas, A., Ni, Y., Cranfill, P.J., Baird, M.A., Sell, B.R., Allen, J.R., 

Day, R.N., Israelsson, M., Davidson, M.W., Wang, J., 2013. A bright monomeric green 

fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409. 

https://doi.org/10.1038/nmeth.2413 

Song, L., Hennink, E.J., Young, I.T., Tanke, H.J., 1995. Photobleaching kinetics of fluorescein in 

quantitative fluorescence microscopy. Biophys. J. 68, 2588–2600. 

https://doi.org/10.1016/S0006-3495(95)80442-X 

Swoboda, M., Henig, J., Cheng, H.-M., Brugger, D., Haltrich, D., Plumeré, N., Schlierf, M., 2012. 

Enzymatic Oxygen Scavenging for Photostability without pH Drop in Single-Molecule 

Experiments. ACS Nano 6, 6364–6369. https://doi.org/10.1021/nn301895c 

Ta, H., Wolfrum, J., Herten, D.-P., 2010. An extended scheme for counting fluorescent molecules by 

photon-antibunching. Laser Phys. 20, 119–124. https://doi.org/10.1134/S1054660X09170204 

Thevathasan, J.V., Kahnwald, M., Cieśliński, K., Hoess, P., Peneti, S.K., Reitberger, M., Heid, D., 

Kasuba, K.C., Hoerner, S.J., Li, Y., Wu, Y.-L., Mund, M., Matti, U., Pereira, P.M., Henriques, 

R., Nijmeijer, B., Kueblbeck, M., Sabinina, V.J., Ellenberg, J., Ries, J., 2019. Nuclear pores as 



versatile reference standards for quantitative superresolution microscopy. Nat. Methods 16, 

1045–1053. https://doi.org/10.1038/s41592-019-0574-9 

Tsekouras, K., Custer, T.C., Jashnsaz, H., Walter, N.G., Pressé, S., 2016. A novel method to accurately 

locate and count large numbers of steps by photobleaching. Mol. Biol. Cell 27, 3601–3615. 

https://doi.org/10.1091/mbc.e16-06-0404 

Ulbrich, M.H., Isacoff, E.Y., 2007. Subunit counting in membrane-bound proteins. Nat. Methods 4, 

319–321. https://doi.org/10.1038/nmeth1024 

Velde, J.H.M. van der, Smit, J.H., Hebisch, E., Punter, M., Cordes, T., 2018. Self-healing dyes for 

super-resolution fluorescence microscopy. J. Phys. Appl. Phys. 52, 034001. 

https://doi.org/10.1088/1361-6463/aae752 

Vogelsang, J., Kasper, R., Steinhauer, C., Person, B., Heilemann, M., Sauer, M., Tinnefeld, P., 2008. A 

Reducing and Oxidizing System Minimizes Photobleaching and Blinking of Fluorescent Dyes. 

Angew. Chem. Int. Ed. 47, 5465–5469. https://doi.org/10.1002/anie.200801518 

Werther, P., Yserentant, K., Braun, F., Kaltwasser, N., Popp, C., Baalmann, M., Herten, D.-P., 

Wombacher, R., 2020. Live-Cell Localization Microscopy with a Fluorogenic and Self-Blinking 

Tetrazine Probe. Angew. Chem. Int. Ed. 59, 804–810. https://doi.org/10.1002/anie.201906806 

Wilhelm, J., Kühn, S., Tarnawski, M., Gotthard, G., Tünnermann, J., Tänzer, T., Karpenko, J., Mertes, 

N., Xue, L., Uhrig, U., Reinstein, J., Hiblot, J., Johnsson, K., 2021. Kinetic and structural 

characterization of the self-labeling protein tags HaloTag7, SNAP-tag and CLIP-tag. bioRxiv 

2021.04.13.439540. https://doi.org/10.1101/2021.04.13.439540 

Wu, J.-Q., Pollard, T.D., 2005. Counting Cytokinesis Proteins Globally and Locally in Fission Yeast. 

Science 310, 310–314. https://doi.org/10.1126/science.1113230 

Xu, J., Qin, G., Luo, F., Wang, L., Zhao, R., Li, N., Yuan, J., Fang, X., 2019. Automated Stoichiometry 

Analysis of Single-Molecule Fluorescence Imaging Traces via Deep Learning. J. Am. Chem. 

Soc. 141, 6976–6985. https://doi.org/10.1021/jacs.9b00688 

 


