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2-MINIMAL SUBGROUPS OF ORTHOGONAL GROUPS

CHRIS PARKER AND PETER ROWLEY

In memory of Jan Saxl

ABSTRACT. For a finite group G, a subgroup P of G is 2-minimal
if B < P, where B = Ng(S) for some Sylow 2-subgroup S of G,
and B is contained in a unique maximal subgroup of P. For fields
of odd characteristic, this paper contains a detailed and explicit
description of all the 2-minimal subgroups of the finite general
orthogonal groups, and certain of their subgroups.

1. INTRODUCTION

This is one of a series of papers whose aim is to classify the 2-minimal
subgroups of the finite non-abelian simple groups and certain of their
automorphism groups. The motivation for such a programme comes
from a number of directions. The two most prominent being that 2-
subgroups of non-abelian simple groups often play an important role
and the other being that 2-minimal subgroups are generalizations, and
counterparts, of the minimal parabolic subgroups in groups of Lie type
defined over fields of characteristic 2. This latter point is why we only
consider orthogonal groups of odd characteristic as the structure of
minimal parabolic subgroups is well understood. For the sporadic sim-
ple groups the 2-minimal subgroups were essentially analyzed by Ronan
and Stroth [16]. The alternating and symmetric groups were covered
in [8] by Lempken, Parker and Rowley, see also Magaard [10]. More
recently the case of the projective special linear and projective special
unitary groups were dealt with in [13] by Parker and Rowley. The 2-
minimal subgroups of the projective symplectic groups are presented
in [14]. In this paper we square up to the orthogonal groups.

To complete the study of the 2-minimal subgroups of the finite sim-
ple groups it remains to determine such subgroups in the exceptional
groups. This is the subject of the paper in preparation [15].

Suppose G is a finite group. Let p be a prime, S a Sylow p-subgroup
of G and B = Ng(95). A subgroup P of G which properly contains B
is called a p-minimal subgroup of G (with respect to B) if and only if
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B is contained in a unique maximal subgroup of P. Put
M(G,B) ={P| B < P <G and P is p-minimal}.

It is the set M(G, B) that we shall study when p = 2 and G is
a subgroup of the general orthogonal group GOS (¢) which contains
Q¢ (q). We shall use GO, (q), where either € = + or e = —, to denote
the n-dimensional general orthogonal group of e-type over GF(g). The
subgroup of GO, (q) consisting of all elements of determinant 1 whose
spinor norm is a square in GF(q) is denoted by Q¢ (¢). Section 3 gives an
expanded account of properties of these groups which are particularly
relevant to this paper. We shall further assume that ¢ is odd since, as
noted earlier when ¢ is even M (G, B) consists of precisely the minimal
parabolic subgroups of G. A wider discussion on p-minimal subgroups
is to be found in [13].

Just as for the other classical groups in [13, 14|, low dimensional phe-
nomena and various congruences of ¢ leave their imprint on the general
case. Before stating the classification of 2-minimal subgroups for the
orthogonal groups, we briefly discuss the various sets of 2-minimal sub-
groups that we shall encounter. First we have the sets O, 7(G, B) and
O55(G, B), described in Definition 6.3, where the subscripts indicate
congruence conditions on ¢ — so O 7(G, B) means we have ¢ = 1,7
(mod 8) while for O3 5(G, B) we have ¢ = 3,5 (mod 8). These partic-
ular sets of 2-minimal subgroups emerge in Lemmas 6.1 and 6.2 with
O17(G, B) arising because certain orthogonal groups are themselves
2-minimal while the groups in Os5(G, B) have structure which is of
monomial type. In Definition 5.6 we find the set Dy(G, B) where D
stands for dihedral. Here n = 2m + 2 (see Lemma 3.8 for the relevant
subcase) and these 2-minimal subgroups are the legacy of 2-dimensional
orthogonal groups (recall that GO5(q) = Dih(2(q — €)), the dihedral
group of order 2(q — ¢€)). Definition 6.6 introduces the sets G; (G, B)
and G3(G, B). The former set contains the 2-minimal subgroups which
are the spawn of GOj (q), while the latter is the spawn of GOj(q),
but only when ¢ = 5% with a odd. We also note that the parity of
n also comes into play for O, 7(G, B), Os5(G, B) and G3(G, B). The
menagerie of 2-minimal subgroups for the orthogonal groups is com-
pleted by N (G, B) given in Definition 5.5. The 2-minimal subgroups
in N (G, B) are generic and are the 2-minimal subgroups of a certain
so-called #-subgroup of the orthogonal group. These subgroups are in-
troduced immediately after Lemma 3.8. So here we see gathered toral,
linker and fuser 2-minimal subgroups - this coven of 2-minimal sub-
groups will be described in Section 2. Most of the definitions related
to the subgroups of the orthogonal groups can be found in Section 3.
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In particular, here we mention that the notation *GO; (¢) is explained
just before Lemma 3.1 and the subgroups Si,Sy and S_; of S are in-
troduced immediately before Lemma 3.9.

We may now state our main theorem which can be paraphrased as
saying that the 2-minimal subgroups of the orthogonal groups are in
the families of subgroups discussed above whenever n > 10.

Theorem A. Suppose that n = 5 and G = GO, (q) where ¢ = p® is
odd. Let S € Syly(G) and B = Ng(S). Assume that H is a subgroup of
G which contains Q(q). If P e M(H,Ny(S n H)), then there exists

P e 0,7(G, B)uOs35(G, BYUN (G, B)uD,(G, B)uG; (G, B)UGs(G, B)

such that P=P~H orne {7,8,9}, ¢ = 3,5 (mod 8) and either
(i) H = Q4(q) or ‘GOy(q) = 2 x Q4(q) and (P, B) = GOy ()1
Sym(4)12 x S 1€ G/ (G,B) and
MEP, By H,Ng(S n H)) ={P, P}

where x € B is a reflection of type —e.
(ii) n =8, P acts irreducibly on V' and either
(a) H = Q5 (q) and (P, B) = GOi (¢) 1 Sym(4)12 € G (G, B)

and
MEP,Byn H,Ng(S n H)) ={P, P}
where x € B is a reflection.

(b) H="GOg(q), 7 ==+ and (P, By = GO7(q)Sym(4)12 €

G, (G,B) and

MEP,Byn H,Ng(S n H)) ={P, P}
where x € B is a reflection of type —7. L
(iil) H = Q%(q)?’or ‘GO7(q) = 2 x Q3(q), (P, B) = (P, P») where

P, = GO%<(q) 1 Sym(4) x Sy x S_1 € G (G,B) and P, =
Sy x GOP“(q) 1 Sym(3) € Os35(G, B) with 6 = + and q = 0
(mod 4). Furthermore,

M((P, By~ H,Ny(S n H)) = {P, n H, P, n H, P, P*}
where x is a reflection in B of type —e.

We emphasise that in all cases the precise structure of P in Theo-
rem A is known, and moreover explicit matrices can be written down
to describe these groups. The use of equal signs in our results is in-
tended to highlight this point via the explicit decomposition of the
group action on the standard orthogonal space. For n < 4, a detailed
account of all the 2-minimal subgroups is provided in Section 4 and,
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in fact, for G = GOJ (g), the statement in Theorem A is still valid. As
is usual, small cases tend not to follow the crowd and the results in
Section 4 are too diverse to summarize here. Aside from the obvious
corollary that holds when n > 9, we point out a further case which is
of an especially pleasing form.

Corollary 1.1. Suppose thatn > 6, n = 2k and ¢* = ¢ (mod 4). Then
M(G,B) = N(G, B) v G/ (G, B).

We now describe the contents of this paper. Section 2 begins by in-
troducing various pieces of notation, some of this being needed for the
description of Sylow 2-subgroups of symmetric groups. Since symmet-
ric groups permeate many of our arguments and the structure of the
2-minimal subgroups of the orthogonal groups, in Theorem 2.2 we state
the classification of their 2-minimal subgroups. Continuing in this vein
we lay bare, in Theorem 2.4, the 2-minimal subgroups of groups of the
form D Sym(n/2) where D is a dihedral group. We note that such
wreath products correspond to the natural action of the symmetric
group Sym(n/2) on n/2 points. More specifically, when we construct
wreath products X 1Y with Y an explicit subgroup of Sym(k), then
we use this k-point action in the definition of the wreath product. Sub-
groups of the orthogonal groups of this shape lead to the 2-minimal
subgroups in the set N (G, B). After looking at abelian subgroups of
certain 2-groups in Lemma 2.5, we itemize results which hold for any
p-minimal subgroup (p any prime). These results all play an impor-
tant role in the inductive arguments used to prove Theorems A. As
preparation for analysing the orthogonal groups, Section 3 sets up ap-
propriate notation and defines certain subgroups which will lead us to
the 2-minimal subgroups. Particularly important results here are Lem-
mas 3.8, 3.11 and 3.12. We remark that Lemma 3.8 is responsible for
the overall direction of the proof of Theorem A.

Section 4 is devoted to finding the 2-minimal subgroups in the or-
thogonal groups of dimensions 3, 4 and 5 — the main conclusions be-
ing given in Theorems 4.1, 4.2, Corollary 4.3, Lemmas 4.5, 4.7 and
4.8. Then Section 5 analyses the 2-minimal subgroups of #-subgroups,
namely those isomorphic to D Sym(n/2) where D is a dihedral group.

Definitions 5.5 and 5.6 describe the resulting 2-minimal subgroups.
In Section 6 the bulk of the 2-minimal subgroups are catalogued in
Definitions 6.3 and 6.6. Finally, in Section 7, the proof of Theorem A is
given where we see Lemma 3.8 acting in concert with Proposition 3.14.
This proposition distills the results of Kantor [6], Liebeck and Saxl [9]
and Maslova [11] to describe the maximal subgroups of H of odd index
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where Q(q) < H < GO{,(q). These subgroups, of course, will host
the proper 2-minimal subgroups. Here we encounter the orthogonal
embeddings of the Coxeter groups of type E; and Eg (the groups Hs,
H, and F, having made guest appearances in Section 4). These em-
beddings, interestingly, do not yield any exotic 2-minimal subgroups
— their 2-minimal subgroups being subsumed in those arising from
smaller dimensions (see Lemma 4.9). We remark that some authors
write W(E;), for example, to emphasise the fact that these group are
also Weyl groups. Our last section, by way of illustrating Theorem A,
displays in detail the 2-minimal subgroups for GO7,(q), GO{,(¢) and
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2. PRELIMINARY RESULTS

We begin with some notation. For ¢ a positive integer we use /5 to
denote the largest power of 2 which divides ¢, ¢y = ¢/ly and II(¢) is
defined to be the set of all odd prime powers, excluding 1, which divide
¢. We meet 5 mostly in the proof of Lemma 3.8 and the description of
certain subfield subgroups in, for example, Theorem 4.1. Importantly,
[1(¢) appears in the definition of toral 2-minimal subgroups.

There will be frequent brushes with symmetric groups, often as quo-
tients of various subgroups of the general orthogonal groups. Letting
X = Sym(Q2) = Sym(n) where Q = {1,...,n}, we describe the two
types of 2-minimal subgroups of X—linkers and fusers. First, let T be
a Sylow 2-subgroup of X, and

n=2"4+2"4+...4+2" wheren; >ng >--->n, =0

be the 2-adic decomposition of n. Set I = {1,...,r}. Then T has r
orbits 1, ..., on Q with |Q;| = 2" i e I. We may choose notation
soas O ={1,...,2"}, o0y =1 and Q; = {0y,...,0; + 2" — 1} where,
fori>2 0,=1+ Z;;ll 2" is the minimal integer in €2;. Then

T =T, xT,, x - x1T,,

where T, € Syl,(Sym(£2;)), ¢ € I. Moreover, T,,. is the iterated wreath
product of n; copies of T} the cyclic group of order 2 and T' = Nx(T)
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— see [4, Satz 15.3, p. 378] for further details. We additionally denote
the alternating group on € by Alt(€2) = Alt(n).

We next introduce two collections of block systems of €. Let i € I.
For j e {1,...,n;—1}, the first collection is X,,,,; which consists of all T-
invariant block systems of §2; of sets of size 2F where k € {0, ..., n;}\{j}.
For the second we choose ¢, € I, with ¢ < j (so n; < n;) and set
Apign; = Q5 U Q. Let Ty be the collection of all T-invariant block
systems on 2; and I'; the collection of all T-invariant block systems on
;. Then we define X, 4, to be the collection of T-invariant systems
of subsets of A, ,, which are the union of one block system from I’
and one from I'; with the proviso that the blocks of the two chosen
block systems have equal numbers of elements.

Definition 2.1. Forie I and j € {1,. ; — 1},
X(nu ) StabSym Q; ) n; j H Tn;
el\{i}

and fori,j5 € I withi < j,

X(n; +nj) = StabSym(Ani_'_n ) n1+nj 1_[ T5,.)-
kel\{i,j}

The subgroups X (n;,j) and X (n; + n;) are, respectively, the linker
and fuser 2-minimal subgroups of X, and [8, Theorems 1.1 and 1.2]
establishes the following result.

Theorem 2.2. Suppose that X = Sym(Q2), Y = Alt(Q) and T €
Syly(X). Then

MX,T) = {X(n;;5), X(np+ne) | i,k,lel k<l andje{l,.. .n—1}}
and, if |2 > 9, then MY, T nY)={PnY | Pe M(X,T)}.

As we will discover, many 2-minimal subgroups of orthogonal groups
reside in subgroups isomorphic to N = D Sym(n/2) where D is a
dihedral group. As O,(N) is contained in all the 2-minimal subgroups
of N, it suffices to consider the case when D has order twice an odd
number. The 2-minimal subgroups of such groups have been described
in [14] and we give a summary of the salient points of this description.
To begin with we look at £ ¢ Sym(n) = E! X, where FE is cyclic of
odd order and Ej is the base group. Then Ej is isomorphic to a direct
product of n copies of E and so we write

E0:<€1,...,€n>

with X acting on the generators of Fy naturally by permuting the
subscripts. Take s € II(|E|) a prime, let s® be the largest power of s in



II(|E|) and put 5 = |E|/s’. Then, for a € Q and s° € II(|E|), set

b—c

Uy = €, and w, = u,

and note that (u, | « € Q) € Syl (Ey) and w, has order s°.
For j e I, s¢ € II(| E|), following [14, Defintion 2.7] we define

Ulng;sing) = {(wo, —wo,1)" [t € Ty) = {(Wa, = wo,1)" [ € T).

Taking D = Dih(2|E|) and assuming that n is even, the group D
Sym(n/2) can be identified with an odd index subgroup of E 1 (22
Sym(n/2)) < E 1 Sym(n) (see [14, Lemma 2.6]). Thus the 2-minimal
subgroups of D Sym(n/2) are among the 2-minimal subgroups of E
Sym(n) and we select these in the next definition.

Definition 2.3.
F(L,T) = {X(ni+ny)|i,j€eli<j};
LILT) = (X(nif) i€ Lje (2 ..om—1}} and
T(L,T) = {U(n;s%n)T |iel, and s® e II(|E|)}.
The notation U(n;; s n;) is consistent with that in [14] where it is
used in a slightly more general setting. Notice that
U(ns; s°ni)T = Dih(25) 0Ty x [ [ Ty
Jenfi}
We can now state [14, Theorem 2.8].

Theorem 2.4. Suppose that D is a dihedral group of order 2e with e
odd. Let L = DSym(n/2), T € Syly(L). Then T'= N (T') and

M(L,T)=F(L,T)u L(L,T) v T(L,T).
Our preoccupation with dihedral groups continues in the next lemma.

Lemma 2.5. Suppose that D is a dihedral group of order 27+ at least
8 and Ry, is a Sylow 2-subgroup of Sym(k). Let H = DU Ry. If C is an
abelian subgroup of H of order at least 2%, then C is contained in the
base group of H, |C| = 27% and is a maximal order abelian subgroup of

H.

Proof. We argue by induction on k. If £ = 1, there is not a lot to do. So
suppose that & > 1 and let C' be an abelian subgroup of H of order 27
Let Sym(k) = Sym(Q2) and let F' be the base group of H. Supposing
C € F, we seek a contradiction. Let ¢ € C\F and let { = |Fixq(7)|
where 7 is the permutation of © induced by c¢. Then, as C' < Cy(c)
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preserves the fixed points of ¢ on €, there are Sylow 2-subgroups Ry
and Rj_, such that

CECﬁWZDZ(Rk_gXRg)%(DZRk_g)X(DZRE).

Suppose ¢ # 0. Then, since C' < W and by induction every abelian
subgroup of order 2/+=9 in M R;,_, and of order 27¢ in DR, is contained
in the base group of the respective wreath products, we obtain C' <
F and |C] = 2% in this case. Thus ¢ = 0 and so 7 is fixed-point-
free with at most k/2 orbits on Q. Therefore Cr(c) is contained in
a direct product of at most k/2 dihedral groups and so the largest
abelian subgroup of Cr(c) has order at most 2/%/2, Since the largest
abelian subgroup of Ry, has order 2¥/2, |CF/F| < 2¥/2. Hence

IC| < 2"2|C A F| = 2¥2|Cp(c) n O] < 2202 <\,
as j > 1. With this contradiction the lemma is proved. U

For the remainder of this section G is a finite group, p is a prime,
S € Syl,(G) and B = Ng(95).

Lemma 2.6. Suppose that K is a normal subgroup of G and P €
M(G, B). Then either

(i) Pe M(BK, B); or
(i) PK/K € M(G/K, BK/K) and P e M(Ng(S n K), B).

Proof. See Lemma 3.8 of [13].
U

Lemma 2.7. Suppose that K is a normal subgroup of G and G =
BKCq(K). Assume that Ng(S n K) = Bn K and P € M(G, B).
Then P e M(BK,B) u M(BCg(K), B).

Proof. See Lemma 3.9 of [13]. O
Our next lemma is a variation upon Lemma 2.7.

Lemma 2.8. Suppose that G = KLB with K and L normal subgroups
of G, and let P € M(G, B). Then

Pe M(BK,B) o M(BL,B) U M(Ns(S ~ KL), B).
Proof. Since (P n K)(P n L) is normalized by P,
P =Np(SAKL)(PAK)PnL)

by the Frattini Argument. Since B < Np(S n KL) and B(P n K)
and B(P n L) are groups, the p-minimality of P implies that P €
M(BK,B) U M(BL, B) U M(Ng(S n KL), B). O
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Lemma 2.9. Suppose that K is a normal subgroup of G and R =
SnK. Assume that P € M(K, Nk(R)) and PB is a group. If BAK =
Nk(R), then PB e M(G,B).

Proof. This is Lemma 3.7 in [13]. O

Lemma 2.10. Suppose that K is a normal subgroup of G, Bn K =
Nk (SnK) and Pe M(K,BnK). IfQ < P is such that P = (BN K)Q
and B = (B n K)Cg(Q), then PBe M(G,B) and P = PBn K.

Proof. Observe that Cg(Q)) normalizes B n K and hence normalizes
(BN K)Q = P. Thus, as B = (B n K)Cg(Q), B normalizes P and so
PB is a group. The result now follows from Lemma 2.9. U

The final result in this section is used in the closing stages of the
proof of Theorem A where the orthogonal groups have dimension at
least 6 and the 2-minimal subgroup acts irreducibly but not primitively
on the natural module.

Lemma 2.11. Suppose that B = S € Syl,(G), G = KLB where KL is
normal in G and Ng(K) = Ng(L) has index 2 in G. Set By = Np(K),
and further assume that K and L are G-conjugate with K n L < B. If
P e M(G, B), then either P < Ng(B n KL) or By is contained in a
unique mazximal subgroup of (P n K)By and of (P n L)By.

Proof. Let Py = P n Ng(K) and b € B\By. Observe that B € Ng(K)
and, as |G : Ng(K)| =2, P = BPy = {b)Py. Since Ng(K) = Ng(L),
Py normalizes both Py n K and Py n L. Because (Pyn K)* = Pyn L
and b? € By < Py, (Pyn K)(Py n L) is normalized by Py(b) = P. Also,
as KL is normal in G and K and L are normal in KL,

BAKL=(BnK)BnL)eSyl,(KL)
and B n KL is normalized by B. Furthermore, B n K'L € Syl,((FPy n
K)(Py n L)). Therefore, the Frattini Argument yields
P=(Pyn K)(Pyn L)Np(B~ KL).

Since (Pyn K)(PhynL)B < P and B < Np(B n K L), the 2-minimality
of P forces either P = (Pyn K)(Pyn L)B or P = Np(B n KL). The
second possibility is one of our conclusions so we may assume that

P=(PnK)(PynL)B=(PnK)(PnL)B.
Put W = L n KBy. We claim that W < B,. Since By is a 2-group
and BoK/K > WK/K = W/(W n K), W/(W n K) is a 2-group.
Hence, as W n K < L n K < B by hypothesis, we have that W is a

2-group. Because W is normalized by By and By € Syl,(K By), we then
deduce that W < By, as claimed. Now assume B is not contained in a
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unique maximal subgroup of (P n K) B, and argue for a contradiction.
In this case there exist maximal subgroups U; and U, of (P n K)B
both containing By with U; # U,. Since U; < P, the Dedekind Law
gives

Ui = UZ M Bo(P M K) = BO(Uz M K)
for i = 1,2. Assume that Py = (U; n K)(U; n K)®By. Again by the
Dedekind Law

Pyn KBy = (UynK)({U nK)"Byn KBy
= (U n K)By((U; n K)" n KBy)
= U,((Uy n K)" n KBy).
Now
(ULnK)YN"NKBy< K"nKBy=LnKBy=W < By

and therefore

P[) ﬁKBO = UlBO = Ul.
Since (PN K)By = (Pyn K)By = Phn KBy and (P n K)By > Uy, we
have a contradiction.

Therefore (U; n K)(Uy; n K)*By = (U n K)°U; and similarly (U N
K)(Uy n K)*By = (Uy n K)bU, are proper subgroups of Py which are
normalized by B. But then the 2-minimality of P implies (U, Us) #
(P n K)By, the desired contradiction. Thus we conclude that By is
contained in a unique maximal subgroup of (P n K)By. Conjugating by
b yields By is contained is a unique maximal subgroup of (PnL)By. O

3. ON CERTAIN SUBGROUPS OF ORTHOGONAL GROUPS

In this section we describe and develop notation for various sub-
groups of the orthogonal groups which will be of service in the next
sections. We begin by quickly establishing various pieces of notation
for the orthogonal groups. The reader is referred to [1] and [17] for the
standard background material and definitions.

Let (V,Q) be a non-degenerate orthogonal space of dimension n
which is defined over GF(q) where ¢ is a power of an odd prime. A
vector v € V' is singular if and only if Q(v) = 0 and a subspace W <V
is totally singular if and only if every vector of W is singular. The
maximum dimension of a totally singular subspace of V' is either w or
w—11if V has even dimension n = 2w and of dimension w if V' has odd
dimension n = 2w + 1 (see [1, 21.2]). The dimension of such a space
is called the Witt index of (V, Q). In the case when n = 2w is even,
we say that (V,Q) is of +-type if the Witt index is w and otherwise
it is of —-type. Suppose that n is odd and let W be a non-degenerate
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hyperplane of +-type in V. Then the type of V is determined by the
values of ) on the non-zero vectors in W+. Specifically V is of +-type,
respectively, —-type precisely when Q(u) is a square, respectively, a
non-square for all non-zero u e W+.

From here on we suppress explicit mention of the form () and so the
isometry group of (V, Q) is simply denoted

GO(V) ={ge GL(V) | Q(ug) = Q(u) for all ue V}.

Since the forms are uniquely determined by their type and dimension
we also use the notation GOS,(¢q) to denote these isometry groups where
here € is either + or — and represents the type of the form. Notice when
n is odd, as the corresponding forms differ only by conjugation and
scalar multiplication, we have GO, (¢) = GO,, (¢) whereas when n is
even these groups are not isomorphic. However, for our investigations it
is important that we distinguish between GO (¢) and GO,, (¢) even in
the case n is odd especially when these groups are embedded in larger
orthogonal groups.

Recall that a reflection of V' preserves the form and has one eigen-
value —1 and the remaining eigenvalues are equal to 1. There are two
conjugacy classes of reflections in GO, (¢) and if = is a reflection the
conjugacy class to which x belongs is determined by the type of the —1
eigenspace [V, x]. For such a reflection z, we have V = [V, z] L Cy(z)
and so z is totally determine by indicating a non-zero vector which
is negated by x. We mostly stick to the convention that reflections of
+-type are denoted by z and reflections of —type are denoted by y.
When the type of a reflection is arbitrary, we use x.

The group GO (q) is generated by its reflections [1, (22.7)]. The
subgroup SO(V) = SO, (¢q) consists of the elements of GO, (¢) which
have determinant 1 and this subgroup has index 2 in GO;(q). The
spinor norm is a homomorphism S from GO, (g) to the multiplicative
group of GF(g) mod its squares GF(g)? which is defined as follows. Let
g € GO;(q) and write g = z1...z; as a product of reflections with
[V,z;] = {(v;). Then S(g) = Q(v1)...Q(vr)GF(q)?. For g € GO (q),
we often write that S(g) = + if S(g) € GF(¢?) and S(g) = — is S(g)
is not a square. Restricting S to SO(V') = SO, (q), by considering the
product of two non-conjugate reflections, we see that SO, (¢) itself has a
subgroup of index 2. We denote this group by (V') = €2, (¢). Except for
very small fields this group is perfect and when n > 5 it is quasisimple.
With the previously established notation, we may now define three
subgroups of index 2 in GO, (¢) containing the subgroup Q¢ (q). If x is
a reflection and [V, x] has v-type, then VGO, (¢) is generated by x and
Q¢ (¢) and the third subgroup containing Q¢ (q) is just SO, (q). Notice
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that if z is a reflection with [V, x| of +-type, then S(x) = 1 and so
TGO (q) is the kernel of the spinor norm.

We now suppose that n = 2 and let G = GO (q). Also throughout
this section H is a subgroup of G containing ¢, (¢). So H is one of the
five groups GO;,(q), "GO;,(q), ~GO;(g), SO;(q) and €7, (q).

In the instances where W is a non-degenerate subspace of V', we have
V =W L W and we denote the subgroup of GO(V') which fixes every

vector of W+ (and, as a consequence, leaves W invariant) by GO(W).

Lemma 3.1. Suppose that W is a non-degenerate subspace of V' of
dimension at least 2 and that, if the dimension of W is 2, assume that
W has vectors of both +- and —-type. Then G = GO(W)H.

Proof. The hypothesis on W guarantees GO(W') contains representa-
tives from both conjugacy classes of reflections. Hence the result follows
from our earlier discussion about subgroups of index 2 in G. U

The Sylow 2-subgroups of GO, (g) are described explicitly by Carter
and Fong [2]. However this description does not exhibit the action on
the quadratic space V' which reveal the 2-minimal subgroups of GO, (¢)
in a geometric way. Hence we start by giving an elementary descrip-
tion of a subgroup, more suited to our needs, which contains Sylow
2-subgroups of GO, (¢). These descriptions depend upon the congru-
ence of ¢ modulo 4. So, once and for all, we define § = +1 so that

0=¢q (mod4).

We will often use 6 in our orthogonal group notation, and in these
cases we write § = + rather than # = +1. By the same token, when
considering GO, (¢), we may use € = +1 whenever appropriate. We
recall that GO5(q) = Dih(2(q — ¢€)) and that SO5(q) is cyclic of order
q — €. Therefore GOY(q) has non-abelian Sylow 2-subgroups and they
have larger order than the Sylow 2-subgroups of GO,?(q) which are
elementary abelian of order 4. Let Vj be a 2-dimensional space of f-type.
We also recall that GOY (¢) = GO; (¢) has order 2 and is generated by
a single reflection.

Lemma 3.2. Suppose that G = GO4(q). If x is a reflection in G and
x* € 29\{x} with |x,2*] = 1, then 0 = ¢ (so ¢ = € (mod 4)). In
particular, V' can be written as an orthogonal sum of two isometric
spaces if and only if 0 = € and, in this case, V can be written as a
perpendicular sum of two +-spaces and of two —-spaces.

Proof. Suppose that z is a reflection in G, z* € x%\{z} and [z, z*] = 1.
Assume that ¢ = —e (mod 4). Then G = Dih(2(q — €)) which has
three conjugacy classes of involutions and Sylow 2-subgroups of order
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4. Hence x and x* are not conjugate, a contradiction. Hence ¢ = ¢
(mod 4) which means that € = 6.

Assume that V = W, L W, is a decomposition of V' as an orthogonal
sum of two non-degenerate spaces. Then there exist reflections x,y € G
such that Wy = Cy(y) = [V, z] and Wy = Cy(x) = [V, y]. Thus z and
y commute. If W is isometric to W5, then x and y are conjugate which
means that ¢ = € (mod 4). Conversely, assuming that ¢ = ¢ (mod 4),
then a Sylow 2-subgroup S of G contains two conjugacy classes of
fours group with representatives F';, and F_ where notation is chosen
so that F has two reflections of type 7. The reflections in F. provide a
decomposition of V' into an orthogonal sum of two one-spaces of type
T, as required. O

Definition 3.3. Let U be a subspace of V' which is of mazximal dimen-
sion subject to being a perpendicular sum of spaces isometric to Vjy.
Writing U = Uy L --- 1L U, where each U; is isometric to Vy, we call
U L---1U, LU a 6-decomposition of V. We define V.1 = U™ .

A #-decomposition, uniquely specifies U in Definition 3.3, however
a given subspace U as in the definition usually hosts a multitude of
f-decompositions. Notice that by the definition of U, V = U 1L V_;
and dimV_; < 2.

Lemma 3.4. The subspace U has an orthogonal basis consisting of
+-type vectors and an orthogonal basis consisting of —-type vectors.

Proof. From the definition of U, we have that U is a perpendicular sum
of 2-spaces all of type 6. Since ¢ = 6 (mod 4), Lemma 3.2 implies that
the 2-spaces in the decomposition of U each have an orthogonal basis
consisting of vectors of any fixed non-singular type. The result now
follows. 0

By [1, 21.2], V L Vj has +-type independently of the type of 6.
Hence U has type +-type when m is even and, if m is odd, U has type
. Notice that when dim V_; = 2, V_; has type —0 and the type of V is
—@™*+1 This multiplicative property of signs does not hold for 1-spaces.
Indeed, Vj is a perpendicular sum of two 1-dimensional +-spaces and
two —-spaces independently of the type of Vj.

We write U as a perpendicular sum of m copies of Vj and select
an ordered basis {e;, e;1} for the ith term of the sum where Q(e;) =
Q(e;+1) = 1. This yields an orthogonal basis ey, . .., g, of U consisting
of +-type vectors with Q(e;) = Q(e2) = -+ = Q(ean) = 1. For 1 <i <
2m, let z; be the reflection which negates e; and fixes e; for 1 < j < 2m
with j # i. Let y; € GO({e;, €541)) be a reflection of —-type which has
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product of order (q—0), with z;. Set f; = e;y; —e; and fiy1 € {e;y; +€;)
with Q(fi11) = Q(fi). Then f; and f;;1 are —type vectors. Let y;,1
be the reflection that negates f;,1. We make these selections so that
Q(f:) is independent of i. Notice that {(z1, ...,z and {yi, ..., yn, are
elementary abelian 2-groups of order 22™.

If dimV_; = 1, then we select d_; to be a vector of type § = 0™¢
so that Q(d_1) = Qey) if 6 = + and Q(d_1) = Q(f1) if § = —
Similarly, using Lemma 3.2, when dim V_; = 2, we select e_; and f_;
such that e_; is perpendicular to f_; and such that Q(e_;) = Q(e;) and
Q(f-1) = Q(f1). We fix this notation for the remainder of the paper.
We denote the reflection which negates d_; by x_; when ™e¢ = + and
otherwise we represent it by ;. In the event that dimV_; = 2, we let
x_1 be the reflection which negate e ; and y_; be the reflection which
negates f_i.

We can use these bases to write down the centre of G.

Lemma 3.5. The following hold.

(i) Z(G) ={—1,) where I, is the identity of G = GO(V).

(i) Z(G) < QV) if and only if V =U (son =2m and e = 0™).
(iil) °GOY,,.1(q) = 2 x Q5,,,.1(q) where § = 0™e.

(iv) SO%m12(q) =2 x €25, 15(q).

Proof. Obviously (i) holds. Let 2z € Z(G)#. Then

T1...%om n =2m

T1...TomT_1 n=2m+ 1 and 0™ = +
Z:

T1. .. Toml_1 n=2m+ 1 and M = —

T1..-TomT_1Y_1 N =2m+ 2.

In the first case S(z) is a square and det z = 1 and so Z(G) < Q(V). In
the second an third possibilities for z, det z = —1 and S(z) = S(x_1) or
S(y_1). This, respectively, gives z € TGO (¢) and z € ~GO;,(q). This
gives (iii). Finally, if 2 = 1 ... 29,2 1y _1, then §(z) is a non-square
and z has determinant 1. This is (iv) and (ii) also now follows. O

Lemma 3.6. Suppose that V= Wy L Wy, Wi has type €1 and dim Wy >
2. Deﬁne H12 = (GO(Wl) X GO(WQ)) M Q(V)
(i) If dim Wy = 2k + 1, then His contains a subgroup isomorphic
to Q(W1) x " GO(Ws).
(ii) If dim W, = 2k and 0% = —e1, then Hio contains a subgroup
isomorphic to Q(W7) x SO(Ws).
(iii) Ifdim W, = 2k and 0% = ¢, and dim Wy > 4, then Cp,, (Q(W1)) <
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(iv) If dim Wy = 2 and 0 = €, then Cy,,(Q2(W1)) contains a sub-
group isomorphic to SO(W5).

Proof. Suppose that dim W, is odd. Then d = diag(—Izks1, In—(2k+1))
has determinant —1 and S(d) = 6¢;. Thus letting dy be a reflection in
GO(Ws) with spinor norm 6%¢;, we see that diag(—Ioy1,ds) € Q(V)
and
Q(Wa){diag(—Iops1, d)) = GO(Ws).

Hence (i) holds.

Suppose that dim W = 2k and €, = —6*. Then by Lemma 3.5 (iii)
the spinor norm of

diag(—1ok, In—2k)

is not a square. Pick reflections d; and dy in GO(W3) such that their
product has spinor norm a non-square (this is possible as, by hypoth-
esis, dim Wy = 2). Then diag(— I, dids) € (V) and this time we see
that Q(W2)<d1ag(—lgk, d1d2)> = SO(WQ) This proves (11)

Now suppose that dimW; = 2k > 4 and ¢; = 6. Then the spinor
norm of diag(—TIa, I,,_2k) is a square. Suppose that d € Hyy centralizes
Q(Wh) and that d ¢ Z(Q(W1))Q(Ws). As dim Wy > 4, we have

Caomy) (QU(Wh)) = (diag(—1ak, In-21))-
Hence multiplying by diag(—/Iax, [,,—2x) if necessary we may assume
that d is the block diagonal matrix diag(la,ds) with dy € GO(Wj).
Since GO(W3) n Q(V') = Q(W3), we have (iii).

Finally suppose that dim W; = 2 and 6 = ¢;. Assume that d € Hy»
centralizes Q(W7). Then, as Q(W;) is cyclic of order (¢ — #)/2 and
Q(W7) is centralized by SO(W;), we see that d is the block diagonal
matrix diag(g, dy) for some g € SO(W;) and dy € GO(Ws). Since g has
determinant 1, so does dy. Thus selecting g € SO(W)\Q(WW7), we see
that Q(Ws)(diag(g, ds)) = SO(W>) and centralizes Q(W;). O

Let
Y= {{61, 62}, {63, 64}, <y {egm_l, 62m}}
and X, = Sym(X) be the subgroup of G which faithfully permutes the
ordered parts of the partition of the basis for .

Lemma 3.7. We have X,,, < Q5 (q).

Proof. 1t suffices to show that the transpositions in X, lie in Q¢ (q)
and it further suffices to consider the transposition which exchanges
{e1,e2} and {eg, e4}. On the 4-dimensional space (e, es, €3, €4, such an
element, [ say, is a product of two reflections one swapping e; and
ez and one swapping ey and e4. Then  has determinant 1 and, as
Q(e; —e3) = Q(es — ey), [ is contained in Q¢ (q). O
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The next lemma illustrates how the bases for the 6-decomposition we
have chosen reveal the Sylow 2-structure of G. The subgroups defined
in this lemma are stabilizers of #-decompositions if V.

Lemma 3.8. One of the following holds.
(i) n=2m,V =U, e=0" and
GO (g) 1 Sym(%) = GO4(q) ¢ Sym(m)

contains a Sylow 2-subgroup of G.
(ii) n =2m + 1, codim U = 1 and, setting 6 = 6™¢, we have

(GO3(q) 1Sym(X)) x GOJ(q) = (GO%(q) 2 Sym(m)) x GO}(q)

contains a Sylow 2-subgroup of G.
(iii) n = 2m + 2, codim U = 2, e = —0™*" and

(GO3(q) 1Sym(2)) x GO3"(q) = (GOL(q) ¢ Sym(m)) x GO3"(q)
contains a Sylow 2-subgroup of G.

Proof. If n = 2 or n = 3, the result is true (where for (iii) we interpret
GOY(q) 2 Sym(0) as the trivial group). So we proceed by induction to
prove the result. We take the orders of the orthogonal groups from [17,
pg. 72].

First we suppose that U = V. Then € = ™ and we have the following
possibilities

(qm—l 4 1)(qm _ 1) gm — +,(9m_1 - 4

n - m ) (@n—1) 0" = 4,0 = —
GO (g) : GO _ | |

|GO%,,(q) om—2(q)] @+ D" +1) 0™ =— 0" =+

(qm 1_1)(qm+1) em:_’em—l —_—

Evidently the fourth possibility cannot arise. In the first case, we have
e=0=+ and ¢ =1 (mod 4). Therefore

(" "+ 1)(¢™ = 1))2 = 2(¢™ — 1)2 = 2ma(q — 1)2 = 2my(q — 0)s.

In the second case, € = 4+, § = —, ¢ = —1 (mod 4) and m is even.
Hence

(@™ = 1)(g™ = 1))2 = 2ma(q — 0)2.
In the third possibility, e = § = —, ¢ = —1 (mod 4) and m is odd.
Hence

(@™ + 1)(@™ + 1))z = 2(¢" " +1)2 = 2ma(q — ).

Since the 2-part of the index of GOS(q)2Sym(m—1) in GO4(q)2Sym(m)
is exactly 2mso(q — 0)2, we have proved (i).
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Suppose that dimV_; = 1. Then |GOgpy1(q) : GOY (q)] = ¢™ + ™.
Since ¢ = 0 (mod 4), ¢™ = 6™ (mod 4) and so ¢™ + 0™ = 2 (mod 4).
Hence, using (i) and the definition of type of an orthogonal group of
odd degree, we get that (ii) holds.

Assume that dim V_; = 2, and set n = 2m + 2. Observe that V_; has
type —60. Hence € = —0™*! and we are interested in the index

(" +1)(gm =1) =0 =4 0™ =+

. . _ 1)( m+1 1) _0m+1 = em - _
G037 (q) + GOY _Ju ’

| 2m+4-2 (q) Zm(q)| (q + 1)( m—+1 + 1) _9m+1 _ _’em -+

(qm o )( m+1 + 1) _9m+1 — _’em - _

Notice that the second case cannot occur as then § = — and m is

odd which means that m + 1 is even and so ™! = 4. Suppose that

the first possibility arises. Then § = — and m is even. As§ = —, ¢ =3

(mod 4), and m + 1 is odd, ¢™™' —1=¢™ + 1 =2 (mod 4). Hence
(¢"+1)(¢™" —1)=4 (mod 8).

In the third case, we have § = + and ¢ = 1 (mod 4) which gives
(¢™+1)(¢™™ +1) =4 (mod 8). In the final case, § = —, m+ 1 is even
and ¢ = 3 (mod 4) and so again (¢™—1)(¢™™' +1) =4 (mod 8). Since
the Sylow 2-subgroups of GO;(q) have order 4, part (iii) holds. [

We call the subgroups introduced in Lemma 3.8, 6-decomposition
subgroups of G' or more succinctly 0-subgroups. Exploiting the descrip-
tions of the #-subgroups given in Lemma 3.8, we intend to decompose
the Sylow 2-subgroup according to the 2-adic decomposition of m. Thus
we set

m=2" 4. 2

with my > -+ >my > 0. Set J = {1,...,s}. Recalling the definition of
Y from before Lemma 3.7, we write ¥ = 37 U -+ - U X with |X;| = 2™
just as we did for €.

Following our standard notation for symmetric groups, 7}, denotes
a Sylow 2-subgroup of Sym(3;) = Sym(2™*) which here we regard as
a subgroup of Sym(3;) < Sym(X). Let 8; = {eai_1,€2} € ¥; and set
Dg, = (x2i—1,y2i—1) = Dih(2(¢ — 6)2). Then we define

= (1_[ Dﬁ)Tm]‘
BEEJ-

and note that S,,; is a Sylow 2-subgroup of GO4m; (q) where p1 = 62" by
Lemma 3.8. Of course, for a fixed 8 € ¥;, we could also have described
Sm; = D Uy,
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Define V,,, = [V, Sm,] = ((B) | B € X;) and observe that Lemma 3.8

implies that
V=V, L---LV, LV,

where V_; is either the zero space, one-dimensional of type § = §™¢ or
a 2-dimensional non-degenerate space of type —# with orthogonal basis
{e_1, f-1}. In the cases when V_; is zero we take S_; to be the trivial
group (acting on a zero-dimensional space). When dim V_; = 1, we set
Sy ={x_1)if0"e =+ and {y_1) if 0"e = —. I[f dim V_; = 2, we write
S_1={x 1,y 1). Finally, we put

S = ﬁSm] X S_l
j=1

and note that S € Syl,(G) by Lemma 3.8. This gives us a “hands-on”
description of S.
We record the following consequence of our notational choices.

Lemma 3.9. We have V,,, is a perpendicular sum of 2™ subspaces of
0-type and dim V,,,, = 2mitL . In particular, if j € J and m; =1, then
Vin, 1s of +-type and if m; = m, =0, then Vy is of 0-type.

Notice that
U=V, L LV,

and, as we mentioned before, U has type 6™.

Lemma 3.10. Suppose thatn =4, H = Q¢ (q) and Sy = S~ H. Then
(i) for 1 <i <s, Sy acts irreducibly on Vi, .
(ii) S and Sy act in the same way on V_;.
Furthermore, o«f W <V is Sy-invariant and non-zero, then W 1is S-
wmwvariant and non-degenerate.

Proof. Suppose first that dim V,,,, > 4. To simplify notation we may as
well suppose that V' = V/,,. and so has basis ey, ..., e2,,,. Recall x; is the
reflection that negates e; and x1,...,29, € S. For 1 < j < k < 2m,
xjz, has spinor norm a square and determinant 1 and so z;x, € Sy.
Assume that W is a non-zero Sy-invariant subspace of V. We know
T, < X,, < H by Lemma 3.7, and so T, leaves W invariant. Choose
a non-zero w = >.." A\ie; € W such that the number d(w) of terms
with A; # 0 is minimal. If d(w) = n, then d(w + wz, 12,) = d(w) — 2,
a contradiction as dimV,,, > 4. Hence we can suppose \; = 0 and
A # 0 for some j,k € {1,...,2m}. Then d(w + wz,z;) = d(w) — 1
which is contradiction unless w 4+ wx;z; = 0. Because of this we may
suppose that e, € W for some k € {1,...,2m}. Applying elements
from T,,, we have e, € W for all £ = k (mod 2). We know y1y3 € Sh.
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Since e1y1y3 = e1y1 € e, ea)\(e1) and eay1ys = eays € (€1, €2)\{€2), we
deduce that {ej,eq) < W and, as W is T),-invariant, we have V = W.
This proves (i) when dimV,,, > 4. Suppose that dimV},, < 4. Then
m; = ms = 0 and V,,,, = Vj is isometric to Vp. Since n > 4, either
n=4my=0and V =Vy+V 4, with V1 ={e 4,f 1)orm =1

Taking 3y = {A} with A = {e4,eq11}, we have Sy = D, is non-
abelian. Hence Sy acts irreducibly on Vj as dim Vy = 2. Now set x =
1T, and Yy = YY1 if my = lorx = z,z_1 and y = y,1y—1 if my = 0.
Then (x,y) < Sy and acts on Vj as Sy and thus Vj is irreducible as an
Sp-module as claimed. This confirms that (i) holds.

Part (ii) is demonstrated by considering the one of or both of ele-
ments zix_1 and y1y 1.

By parts (i) and (ii), as an Sy-module, V' is a direct sum of the pair-
wise non-isomorphic irreducible submodules. Hence every irreducible
Sg-submodule of V is S-invariant and so it follows from Maschke’s
Theorem that every Sy-submodule is an S-submodule. U

Lemma 3.11. The following hold.
(1) If V.=U (son =2m and e = ™), then G contains GO7 (¢)

Sym(n). In particular, G contains two conjugacy classes of sub-
groups isomorphic to 2 Sym(n).

(ii) Ifcodim U =1 (son =2m+1 and 6 = ™€), then G contains
GO}(g) t Sym(n).

(iti) If codim U = 2 (son = 2m + 2 and ¢ = —0™"), then G
contains the two subgroups GOT (¢)1Sym(n—1) x GO (¢). O

Proof. This follows from Witt’s Lemma. U

We consider the subgroups appearing in Lemma 3.11 when ¢ = 3,5
(mod 8) and investigate how they intersect with our various candidates
for H. Recall that we have fixed ey, ..., e, to be an orthogonal bases
for U with e; of +-type just after Lemma 3.11. In this case a Sylow
2-subgroup of GO$(g) is generated by two reflections (') and (9})
(with respect to {e1,e2}) and so in this case, as 2 is not a quadratic
residue mod p because ¢ = 3,5 (mod 8), we can manufacture the basis
fi,-- -, fam as follows: f2j+1 = €2j+1 T €2542 and f2j+2 = €2541 — €2542
for 0 < 7 < m — 1. Then the type of f; is — and fi,..., fo, is an
orthogonal basis for U. In particular, in this instance we see that S
preserves both these decompositions and that the groups described in
Lemma 3.11 all contain S.

Lemma 3.12. Suppose that ¢ = 3,5 (mod 8).



20 CHRIS PARKER AND PETER ROWLEY

(i) IfV=U (n=2m and € = ™), then
271 .Sym(n) H

GO{(q) 1 Alt(n) H

2"~ Sym(n) H = S0:(q)
271 Alt(n) H

(ii) IfcodimU =1 (n=2m+1 and § = 6™¢), then

2"~ Sym(n) H = 7GO¢ (q)
GOY(q) 1 Alt(n)  H =°GO;(q)
2"~ Sym(n) H = S0;,(q)
2m=1 Alt(n) H = Q¢ (q)
(iii) If codim U =2 (n =2m+ 2 and e = —0™"1), then

(GOT (9) ¢ Sym(n)) N H ~

(GOJ(q) 1 Sym(n)) N H ~

272 Sym(n — 1) x 2 H = +GO(q)
- 21 Sym(n — 1) H = *GO:(q)
+ 1 T H ~ N
272 Sym(n — 1) H = Q¢ (q)

(Notice that the subgroups of the same shape in lines one and three in
the above statements (i), (ii) and (iii) are not equal.) In all cases SN H
15 a Sylow 2-subgroup of these groups.

Proof. This follows from the discussion prior to the lemma. O

Extending our notation to cover all possibilities for H < G we set
Sy =SnHeSyly(H), By = Ny(Sn H) and B = Bg. As we now
see,if n >6, By = Bn H = Sy.

Lemma 3.13. We have that BN H = Sy is a Sylow 2-subgroup of H.
Furthermore B H = Sy = By unless H < G, ¢ = 3,5 (mod 8) and
one of the following holds:
(i) G = GO5(q) and H < “GO5(q)
5 (mod 8) and H < ~°GO5(q) =
(mod 8).
(i) G = GOy (q) and H < *GOjJ (¢).
(ili) G = GO5(q) and H < “GO5(q) = 2 x PSp,(q).

~ 2 x PSLy(q) when q
2 x PSLy(q) when q =

Proof. That Sy is a Sylow 2-subgroup of H follows from Lemma 3.8
and our construction of S. The fact that B = S = Ng(5) is stated as
Theorem 5 of [2]. For H < G, we refer to [7, Theorem 1] to see that
typically B n H = Sy = By and to locate the exceptions which occur
when n = 3,4 and 5 and ¢ = 3,5 (mod 8).
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For n = 3, we have K = Z(G)G" = 2 x Q5(q) = 2 x PSLy(q) is
9GO5(¢q) by Lemma 3.5 (ii) and this leads to the case distinction in

(i).

When n = 4, we additionally know that V' has +-type. Since ¢ = 3,5
(mod 8), B/Oy(B) = Sym(3) x Sym(3) and we find By/Os(B) = 3 x
Sym(3) when H = *GOj (q) and By/O2(B) = 3 x 3 when H = Qf (q).
When H = SOj (q), the Sylow 3-subgroup is inverted. Hence we have
the three possibilities as listed in (ii).

When n = 5, Lemma 3.5 (ii) gives K = Z(G)G" = 2 x Q%(q) is
‘GOg(q) as m = 2. This is (iii).

U

Our general strategy for locating the 2-minimal subgroups of H is
guided by the Proposition 3.14. As mentioned in the introduction the
existence of the exceptional Coxeter groups E; and Eg play a role in
the subgroup structure of the orthogonal groups in dimensions 7 and
8. The Coxeter group Eg doesn’t get invited to the party as its Sylow
2-subgroup is a factor of 2 too small to contain a Sylow 2-subgroup of
Q7 (g). This can lead to some confusion as H = J (3) contains sub-
groups GOZ (3) n H =~ PSU,(2).2 = Eg but the latter group contains
reflections whereas Q¢ (3) does not. In dimension 8, the +-type reflec-
tions and —-type reflections become conjugate in the conformal group.
Hence in GOy (¢) there are two conjugacy classes of subgroups isomor-
phic to Eg one generated by +-type reflections and the other by —-type
reflections. These classes decompose into two classes in *GO4 (¢) and
eventually, when ¢ = 3,5 (mod 8), we obtain four conjugacy classes
of subgroups containing the Sylow 2-subgroup of QF (¢) each being iso-
morphic to E} = 2:QJ(2). The situation is similar in dimension 7 except
that there is only one conjugacy class of subgroups isomorphic to E-
and this subgroup is generated by reflections of type 03¢ and gives rise
to just two conjugacy classes of subgroups isomorphic to EL = Spy(2)
in €% (q).

Proposition 3.14. Suppose that G = GOS,(q), n = 6 and P < H has
odd index in H. Then either

(i) P normalizes a subfield subgroup of G;
(ii) P leaves a proper subspace of V' invariant;
(iii) P leaves invariant a decomposition of V into an orthogonal
sum of non-degenerate subspaces of dimension 2% for some k >
0;
(iv) n =7, ¢ =3,5 (mod 8) and H = ***GO%(q) with P contained
i a subgroup isomorphic to E;;
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(V) n =7, ¢ = 3,5 (mod 8) and H = Q%(q) with P contained
in a subgroup isomorphic to EL = Sps(2). There are two H -
conjugacy classes of such subgroups and they are conjugate in

G;

(vi) n =38, ¢=3,5 (mod 8) and H = *GO{ (q) with P contained
i a subgroup isomorphic to Eg. There are two H-conjugacy
classes of such subgroups and they are conjugate in G; or

(vii) n = 8, ¢ = 3,5 (mod 8) and H = QJ (q) with P contained
in a subgroup isomorphic to Ey = 2:QF(2). There are four H-
conjugacy classes of such subgroups and two conjugacy classes
in G.

Proof. By Lemma 3.13, as n > 6, By is both a Sylow 2-subgroup of
H and its own normalizer in H. Suppose that (i), (ii) and (iii) do not
hold. Then by [9, Theorem] or [11, 12], n =7 or (n,€) = (8,+) and P
is contained in a subgroup of G isomorphic to E; = 2 x Sp(2) or Eg
(which has shape 2:QZ(2).2) respectively. Since both are generated by
a single conjugacy class of reflections, they do not contain a Sylow 2-
subgroup of GG. However, they do contain Sylow 2-subgroups of some of
the subgroups of GG of index 2 . The exact description of these groups
is given in the statement. For this we note that in odd dimensional
orthogonal groups GOS,, .;(q) the subgroup isomorphic to 2 x5, . 1(q)
is "GO, 1(¢q) by Lemma 3.5 (ii). O

With all our notation established, we now gather it together in one
place.

Notation 3.15. We take n = 2 a natural number, g = p® with p an
odd prime, G = GO, (q), 0 = q (mod 4) and fix a 6-decomposition of
V.

(i) H is one of the five groups GOS,(q), TGOS, (q), ~GO:,(q), SO (q)

and X (q).

(i) V. = U L V_; where dimU = 2m, dimV_; < 2 and n =
2m + dim V_;.

(iii) m = 2™ + -+« + 27 with my > -+ > mg =2 0 and J =
{1,...,s}.

(iv) U has an orthogonal bases ey,...,esm and fi,..., fom with
Qe1) = Qez) = -+ = Qlean) a square and Q(f1) = Q(f2) =

-+ = Q(fam) a non-square. Either V.4 = 0, V.1 = {d 1)
with d_y of type 8¢ and Q(d_1) € {Q(e1),Q(f1)} or Vo1 =
(e—1, f=1), Qle—1) = Q(er) and Q(f-1) = Q(f1).

(v) for 1 <1 < 2m, z; is the reflection negating e; and y; is the
reflection negating f;. We have {x;,y;) = Dih(2(q — 0)s).
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(Vi) S = [ljcs Sm; x S-1 is a Sylow 2-subgroup of G with V,,, =
[V, Sim,;] and [V, S_1] = V_1 as described before Lemma 3.9.
(vii) Sy =S n HeSyly(H), By = Ny(Sn H) and B = Ng(95).

4. 2-MINIMAL SUBGROUPS OF ORTHOGONAL GROUPS IN DIMENSION
AT MOST 5

In this section we continue to use the notation as in 3.15 and capture
the 2-minimal subgroups when n < 5. We begin this section by item-
izing the 2-minimal subgroups of Q3 (¢) = PSLy(g). In Theorem 4.1,
the superscript [2] indicates that there are two conjugacy classes of the
given group.

Theorem 4.1. Suppose that H = Q5(q) = PSLy(q) with ¢ = p* odd.
(i) If ¢ = 3,5 (mod 8) and p # 3,5, then one of the following
holds:
(a) ¢ = 11,419 (mod 40) and

M(H, By) = {Als(5)PL, 25(p") | s € (a)}; or
(b) ¢ # £11,+19 (mod 40) and
M(H, Bi) = {Q5(p*) | s € Tl(a) L {1}}.
(i) If g = 3,5 (mod 8) and p = 3, then
M(H, By) = {25(3") | s' € TI(a)}.
(iii) If ¢ =3,5 (mod 8) and p =5, then
M(H, By) = {Q5(5%) | s' € T(a) L {1}}.

(iv) If g=1 (mod 8), then one of the following holds:
(a) ag > 2 oray =2 and g =1 (mod 16),

M(H, By) = M(Dih(q — 1), By) v {SO3 (p*/*)};

(b) p=15, as =2 and
M(H, By) = M(Dih(q — 1), By) U {SO3 (5)} L {Sym(4)P1};
(c) p=3, ay =2 and
M(H, By) = M(Dih(q — 1), Bi) v {SO3 (3)};

(d) a; =2 and ¢g=9 (mod 16) with p > 5,

M(H, By) = M(Dih(q — 1), By) U {Sym(4)21};
(e) ¢=1 (mod 16), as =1,

M(H, By) = M(Dih(q — 1), By) v {Q5(p)}; or
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(f) ¢ =9 (mod 16), as =1,
M(H, By) = M(Dih(g — 1), B) L {Sym(4)"}.
(v) If g =7 (mod 8), then one of the following holds:
(a) ¢ =7 (mod 16),
M(H, By) = M(Dih(q + 1), By) u {Sym(4)?}; or
(b) ¢ =15 (mod 16),
M(H, By) = M(Dih(q + 1), By) v {SO5(p)}.
Proof. See Theorem 13.2 of [13]. O
We make some remarks about the subgroups appearing in Theo-
rem 4.1. The subgroups Dih(g — ) are GOY(q) x GOi(q). Just as
in Proposition 3.14 we see the shadow of Coxeter groups in the pic-
ture. In this case the projection of Hy = 2 x Alt(5) appears in (i) and

B3 = 2 Sym(3) appears in various other parts.
In the next theorem notice that SO3(q) = ~“GO5(q) = PGLy(q).

Theorem 4.2. Assume that H = SO3(q) or H = ~°GO%(q) with
q = p® odd. Then under the given conditions M(H, By) is as follows.
(i) g=6 (mod 8) and
M(Dih(2(q — 0)), Br) v {~GO5(p™)}.
(i) g=4+6 (mod 8), p#5, and
M(DIh(2(q — 6)), Byr) U {Sym(4)}.
(iii) ¢ = 5* with a odd and
M(Dih(2(q — 1)), By) v { “GO5(5)} U {Sym(4)}.

Proof. This can be written down using [13, Proposition 9.3]. O

Since GO5(q) = 2 x PGLy(q), and “GO5(q) = 2 x Q5(q), we may
now use Theorems 4.1 and 4.2 to write down the 2-minimal subgroups
for all H in dimension 3.

For application in the proof of our main theorem, Theorem A, we
present the following corollary.

Corollary 4.3. Suppose that G = GO5(q) and P € M(G, B)\M(GO4(q) x
GO%(q)). Then one of the following holds:
(i) ¢=1,7 mod 8 and P = GO5(p*?);
(ii) ¢= 3,5 (mod 8) and P = GO (¢) 1 Sym(3);0r
(iii) p =5, a is odd and P = GO5(5).
In particular, G € M(G, B), if and only if G = GO5(p*) with p*?
1,7 (mod 8), G = GO5(5) or G = GO5(3) = GO;“(3) 1 Sym(3).

o
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If G = GOJ (3), then G/O(G) = Sym(3) x Sym(3) and so this group
has two 2-minimal subgroups each of index 3 in G. Since GOJ (3) is
isomorphic to the Coxeter group of type F,, these novelty 2-minimal
subgroups perpetuate in GO (¢) whenever ¢ = 3,5 (mod 8). When-
ever ¢ = 3,5 (mod 8) and H = Q] (¢), then F, is realized as Ng(Sy)
where Sy is the central product of two quaternion groups of order 8. No-
tice that Fy contains GO{ (¢) :Sym(4) = B, and GO (¢)1Sym(4) = By
as maximal subgroups.

Lemma 4.4. Suppose that G = GOy (q) and P € M(H, By). Let K;
and Ky be subnormal subgroups of G isomorphic to SLy(q), K = K1 K,
and By = Np, (K1) = Np,(K3). Then either

(i) there exists
X e M(KlBo, NKlBO(S N BD)) U M(KQBQ, NKQBO(S M Bo))

such that P = (X, By); or
(ii) ¢ =3,5 (mod 8) and P € M(Ng(S n K), By).

Proof. Suppose first that H € {SOJ (¢), 25 (¢)}. Then By = Ng(SnH)
normalizes K; and K5 and so Lemma 2.8 applies to give possibility (i)
or (ii) holds.

So we may suppose that H = GOJ (q) or H = *GOj (q).

Assume that (ii) does not hold. Then G # GOj (3) and so K; and
Ky are components of G and there exists a reflection b € By such that
Ki) = KQ. Set, SO =S5n Bo.

We have P = By(P n K), (Pn K;)” = P~ K, and both P n K,
and P n Ky are normalized by P n K. If P normalizes S n K, then
Ng(S n K) is not a 2-group by Lemma 3.13 and so ¢ = 3,5 (mod 8)
and (ii) holds, a contradiction. Hence P n K does not normalize S n K
and so S N K is not normalized by P n K. Set R = {(S n K;)I'"K).
Then R is normalized by By.

Set X = RB,. We claim that Nk, p,(Sy) < X. This plainly holds if
By = Nk, B,(S0). Assume that By < Nk, p,(S50). In this case Lemma 3.13
implies ¢ = 3,5 (mod 8), Sy = S N K and we know H = *GOj (q).
In addition, we have By < K, |By : Sn H| =3 = |Ng(S n K) : By|
and |By : By| = 2. Since By normalizes R and K, centralizes R, R is
normalized by

B()NKQ(S(\KQ) = NK(S(\K) = NKI(SGK)

Using Theorem 4.1 or more directly [4, I1.8.27] we observe that any
subgroup of K which is normalized by N, (S n K;) contains Ny, (SN
Ky). Hence Ng, (S n K1) < R and Nk, (S n K1)By = Nk, 5,(S0) < X
as claimed.
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Since P n K normalizes R, we have P N K1 = RNpk, (S n K;) =
R. Hence P = (X, By). Assume that X is not 2-minimal. Then X
contains maximal subgroups U; and U, both containing Nx(Sp) with
U, # U,y. We have BU; U{’ is a proper over-group of B in P containing
B. Similarly BU,U? is a proper over-group of B contained in P. Since
(P n K)By = (Uy,Us), we have a contradiction to the 2-minimality of
P. Hence X is a 2-minimal subgroup of K;By and P = (X, By) as
claimed in (i). O
Lemma 4.5. Suppose that G = GO} (q). Let K; and Ky be subnor-
mal subgroups of G isomorphic to SLy(q), K = K1Ks and select re-
flections x1 and y3 such that [V,x1] = {e1) and [V,ys] = {f3). Put
By = Np, (K1) = Np,, (Ks). Assume that P € M(H, By). Then

(1) ]fX S M(KlBo, NK1BO(S M Bo)) U M(KQBU, NKlBo(S M Bo))
is such that P = (X, By), then either
(a) H =G = GOj (q), Ki{z1y3)/Z(K;) = PGLa(q) and

M(H,B) = {RR" B | Re M(K{x1ys), B n Ki{z1y3))}

(see Theorem 2.6 for the candidates for R).
(b) H =*GOy(q).

M(H, BH) = {RR$1BH | Re M(Kl,NKl(S M K1>)}

(see Theorem 4.1 for the candidates for R).
(¢) H=3S0;(q) and

M(H, By) = {RBy, R By | R e M(K{x1ys), By n Ki{x1y3))}

(see Theorem 2.6 for the candidates for R).
(d) H = (q) and

M(H, BH) = {RBH,RxlBH | Re M(Kl,BH N Kl)}

(see Theorem 4.1 for the candidates for R).
(i) If g= 3,5 (mod 8) and P € M(Ny(S n K), Bg), then one of

the following holds:

(a) H=G, and P = [Nk(S n K),x1]B = GO{ (q) ! Sym(4)
or P =[Ng(Sn K),ys3]B = GO7 (¢) 1 Sym(4).

(b) H = JrGOI(C]), and P = [NK(S M K),I’l]BH.

(c) H="GOj(q), and P = [Ng(S n K), y3] By.

(d) H= SOI(Q), and P € {NKl(SﬁK)BH,NKQ(SﬂK)BH, [NK(Sﬁ
K),.Z'l]BH, [NK(S M K),yg]BH}

Proof. Suppose that X € M(K;By, Nk, 5,(S N By)) and P = (X, By)
be as in Lemma 4.4 (i). Set D = (x1y3) n H. Then By = (By n K)D
and |D| < 2. Since X > Ng,p,(S n By) = By, we have

X = (X M Kl)BO = (X M Kl)D(BO M KQ)
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Set R = (X n K;)D. Now

NKlD(S M KlD) = NKlD((S M Kl)D)
= NKIBO((S(\K)D)(WKlD
< XnK,D=R.

Let U* be the unique maximal subgroup of X containing Ng, g, (SN By)
and assume that N, p(SNK;D) <T < R. Then T = (T n K;)D and
SO TO = TNKlBO(S M BQ) = (U* M Kl)D(BO M KQ) and TO M KlD =1T.
Hence Nk, p,(S N By) < Ty < X which means that Ty < U*. It follows
that T < U* n R and so R € M (KD, Nk,p(S n K1D)). Now P =
(X,By)y = RBy if By = By and otherwise P = RR* By. This proves

part (i).
If Lemma 4.4 (ii) holds, then part (ii) follows as Ng(S n K) = Fy4

Corollary 4.6. Suppose that G = GO} (q) and P € M(G, B\M(GO4(g)
Ty, B). Then one of the following holds

(i) ¢=1,7 (mod 8) and P = GOj (p™2);

(i) ¢= 3,5 (mod 8), P € M(Fy, B) € {GO; (¢)1Sym(4), GOy (¢)?
Sym(4)};

(iii) p =5, and P = GOJ (5).
In particular, G € M(G, B) if and only if G = GO} (p*2) withp® = 1,7
(mod 8), or ¢ =5 and G = GOjJ (5).

Proof. Parts (i), (ii) and (iii) follow from Lemma 4.5.

Suppose that G € M(G,B). If ¢ = 1,7 (mod 8), then p® = 1,7
(mod 8). If p* < ¢, then GOY(q) 1 T} is not contained in any proper
subfield subgroup and this leads to a contradiction. Hence if G is 2-
minimal, then ¢ = p®2.

Suppose that ¢ = 3,5 (mod 8) with ¢ > 3. Then the subgroup Fy is
contained in GOJ (p) and this subgroup with GO%(q) ¢ T} generates G
unless GOY(¢) 1 Ty < Fy. This latter possibility holds only if ¢ — 6 is
a power of 2. Since ¢ = 3,5 (mod 8), this is only if g € 5 as g # 3. If
q = 3, then GO} (3) = F4, and this group is not 2-minimal. O

Before we study the 2-minimal subgroups of GOy (¢), we draw at-
tention to a perplexing consequence of the definition of the type of a
quadratic space of odd dimension. The situation of interest arises when
m is odd, n = 2m + 2 and ¢ = —1 (mod 4) so that § = —. Now in
this case U has type ™ = — and V_; has type —0 = +. In particular,
V has —type. We take our standard basis ey, ..., e, for U and let
e_1, f—1 be our usual basis for V_;. Then W = f+, = {ey,...,e_;) and
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et, "W = U which has —type. Since e_; is a +-vector, it follows from
the definition of type of an odd dimensional orthogonal space that W
has —type. Thus the stabilizer of the decomposition W L W' has type
GO,,,.1(q) x GOy (¢) whereas we may have expected the superscripts
to product to a —. This leads to the matching of signs being rather
bizarre in part (iii) of the next lemma.

Lemma 4.7. Suppose that G = GOy (q) and P € M(H, By). Then
P = P n H where P € M(G,B). Furthermore, if H = G and P €
M(G, B), then one of the following occurs:

(i) P is contained in GOF (q) x GO (q);
(ii) P is isomorphic to one of the two subgroups GO3 (p®2) x GOT (q)
if g=1 (mod 8);
(iii) P is isomorphic to one of the two subgroups GO3 (p) x GOT (q)
if g=7 (mod 8);
(iv) P is isomorphic to one of the two subgroups GO;(g)1Sym(3) x
GO1(q)* if ¢=3,5 (mod 8); or
(v) ¢ = 5% a odd, P = GOj3(5) x GO (5).
Proof. The subgroups presented in parts (ii) to (iv) are 2-minimal. To
prove the lemma, we show that there are no more by determining all
the 2-minimal subgroups of of € (¢) =~ PSLy(¢®) using Theorem 4.1
and noting that these are the intersection of the groups listed in (i) to
(iv) with Q; (¢) and are consequently normalized by B. To use Theo-
rem 4.1 in a transparent way, we temporarily take 7 = ¢> = p*® and let
ay = 2ay. Thus we see that ap > 1 and 7 = 1 (mod 8). Thus we are
immediately in case (iv) of Theorem 4.1. Hence we have the following
possibilities for the 2-minimal subgroups of €2, (¢):

(i) g > 2 0r ag =2 and 7 =1 (mod 16),
M(G, B) = M(Dih(r — 1), B) u {PGLy(p**/*)21}:

(ii) p="5, ag =2 and
M(G, B) = M(Dih(r — 1), B) U {PGLy(5)P} U {Sym(4)2}:
(iii) p = 3, az = 2 and

M(G, B) = M(Dih(r — 1), B) U {PGL,(3)P!};
(iv) p> 5, @y =2 and 7 =9 (mod 16),

M(G, B) = M(Dih(r — 1), B) u {Sym(4)?}.

Now we note that GO (¢) x GO; (¢) intersects H in a dihedral group
Dih(7 — 1), the groups PGLy(p®2/?) are just the groups SOsz(p®2/?)
and the two classes of subgroups isomorphic to Sym(4), which arise
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when 7 = 9 (mod 16) or p € {3,5} with ap = 2, are just GO (q) x
GO7 (q)1Sym(3) intersected with €, (¢). These considerations validate
the lemma. U

Lemma 4.8. Suppose that G = GOg(q)and P € M(H,By). Then P =
P~ H where P e M(G, B). In addition, if H = G and P € M(G, B),
then one of the following holds:
(i) Pe M(GOj(q) x GOi(q), B);
(i) ¢= 3,5 (mod 8), P = GO{(q) 1 Sym(5); or
(iii) ¢=1,7 (mod 8), P = GOz (p*).
In particular, H € M(H, By) if and only if q

a = aoy.

Proof. Since GO5(q) = 2 x PGSp,(¢) and Qf(q) = PSp,(¢), we may
read the 2-minimal subgroups for Qf(q) from Lemma 3.1 of [14]. Given
this list we then argue as in Lemma 4.7 that the statement of Lemma 4.8
is correct. U

1,7 (mod 8) and

We close this section with a lemma which applies when n = 7 and
when n = 8.

Lemma 4.9. Suppose that ¢ = 3,5 (mod 8) and that n € {7,8}. As-
sume that K < H is one of the exceptional configurations given in
Proposition 3.14 (iv) —(vii) (so K is isomorphic to one of E;, Ef, Eg
orEy). If P e M(K, Bn K), then either P leaves a proper subspace of
V invariant or P leaves a decomposition of V' into an orthogonal sum
of equal dimensional subspaces invariant.

Proof. Suppose first that n = 7. Then K = E; = 2 x Spy(2) or
K = Spg(2). Let W be the natural Spg(2) symplectic module. The
2-minimal subgroups of K’ are the minimal parabolic subgroups of K’
and are contained in the stabilizer of an isotropic 1-space of W or in the
stabilizer of an isotropic 2-space of W. In particular, every 2-minimal
subgroup of K containing B centralizes a non-central involution of K
in the centre of B n K’. As the centralizer in V' (the orthogonal module
for GG) of such an involution is a proper subspace of V', we have our
conclusion in this case.

Suppose that n = 8 and, so, this time K is either Eg, which has
shape 2:Q7(2).2, or K has index 2 in Eg. The centralizer X of a 2-
central involution in Qg (2) has shape 21"®:(Sym(3) x Sym(3) x Sym(3))
and this class of involutions lift to elements of order 2 in K [3]. Let
F' be the fours group such that F' maps to the central subgroup of X,
then, letting z be the central involution of G and f € F\{(z), we have
V =[V,f] L[V, fz] is a non-trivial decomposition of V' preserved by
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X and hence by all the 2-minimal subgroups contained in X. The only
member of P € M(K', B n K') which does not normalize F' is the one
which corresponds to the middle node of the Dynkin diagram for Dy.
This subgroup P* is normalized by By and the product P = By P* is
a 2-minimal subgroup of H. Viewing P as contained in Eg, we see P is
contained in the subgroup which corresponds to the Weyl group of type
Dg which itself has shape 27 : Sym(8). Now, in K the normal subgroup
R of order 27 in Dg ~ 27 : Sym(8) remains normal in Dg n K. We may
write V = Cy(R) L @r.r,|—2Cv (R1) and as Alt(8) has no subgroups of
index less than 8, we get that V' = @®g.r,—2Cv(R1) and each non-zero
summand has dimension 1; furthermore, the sum is orthogonal. Hence
P < GO7(q)Sym(8) for some 7 where 7 is the type of reflections used
to generate Eg. This completes the proof of the lemma. 0

5. THE 2-MINIMAL SUBGROUPS OF §-DECOMPOSITION SUBGROUPS

In this section we maintain the notation and assumptions presented
in 3.15 and in addition we assume that n > 6. Our intention is to
start the study of 2-minimal subgroups of the #-subgroup in each of
the different candidates for H. Of course, Lemma 3.13 tells us that
By = Sy and that B = Ng(S) = S. Since B is so ingrained as the
normalizer of S in G, when we wish to emphasize this role we still use
B in place of S.

Our modus operandi for pinning down the 2-minimal subgroups of
orthogonal groups is to find a smaller collection of subgroups which
corral the 2-minimal subgroups. To this end we let N be one of the
f-subgroups which appear in Lemma 3.8. Recall that

Y= {{61, 62}, {63, 64}, ey {62m_1, 62m}}.

For 51 = {62i_17 621'} S E, set Fz = GO(<€27;_1, €2i>) = GOQ(<61>) =
GOY(q) (understanding as usual that it acts trivially on (eg;_1,e9;)").
Considering the three possibilities for N portrayed in Lemma 3.8, we let

F* = F| x--- x F,, be the base group of the wreath product subgroup
of N. Define F' 1 = GO(V_1) and F' = F* x F_;. This means

F* V=U
F=<{F*xGO0%"(¢) codimU =1
F* x GOy%q) codim U = 2
and
F1 1 Sym(m) V=U
N =< F11Sym(m) x GO (¢q) codim U =1
Fy 1 Sym(m) x GO,%(q)  codim U = 2.
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We further define C* to be the direct product of the cyclic 2-subgroups
of maximal order in F} to F,, and put C = C* x S_;. Obviously C' is
abelian and N normalizes C' if n = 2m, or n = 2m + 1.

Lemma 5.1. We have N = Ng(C*) = Ng(21(C*)) = Ng(C) and C
is weakly closed in S with respect to G.

Proof. We write C' = C} x --- x C,, x S_1 where, for 1 <1 < m, C;
is the maximal cyclic subgroup of F;. Let ¢; be the involution in C;.
We first show that Ng(C*) = Ng(2:(C*)) = N. Since N < Ng(C*) <
Ne(£2:(C*)), it suffices to show that N = Ng(€2;(C*)). Because [V, ¢]
is a 2-dimensional space of type 6, for d € S 1, we have [V,d] has
dimension at most 1 or is of type —6 and all the other elements of
2;(C) have commutator subspace of dimension at least 3, we infer
that Ng(Q1(C)) permutes the set {ci,...,¢,}. Since N permutes this
set as Sym(m), we get

Ne(Q1(C*)) = N (ﬁ CG(CZ-)> — NF=N.

Because 2;(C*) = Q,(C), we have Ng(C) < Ng(C*) = N.

Now suppose that C9 < S. If N = GOj(q) ! Sym(m), then S is a
wreath product of a dihedral group of order at least 8 with a Sylow
2-subgroup of Sym(m), and the lemma follows from Lemma 2.5. If N =
GOY(q) 1Sym(m) x GO, (¢q) or N = GOY(q) 1 Sym(m) x GO;(gq), then
S is isomorphic to the direct product of a wreath product of a dihedral
group of order at least 8 with a Sylow 2-subgroup of Sym(m) and an
elementary abelian group S_; of order 2 or 4. Applying Lemma 2.5 to
S/S 1, we see that C9S_1/S 4 is contained in the base group of S/S
and then that CY > S_; by comparing the order of C' and C9. But then
C9 = (C, as claimed. O

Lemma 5.2. We have (Sy n F) =(Sn F) and
QU (C*) =N (S n F))=0%U((SnF))
1s a characteristic subgroup of Sy N F.

Proof. Sincen > 6, m = 2. For 1 <i < m, recall that D, = Sn F} is a
dihedral group of order 2(¢—0), at least 8. We know D; = (x9; 1, Y2 1)-
Now S~ F =D;...D,,S_; and so

(S M F)/ = Dll .. D:n = <[.§C2,L',1,y2¢,1] | 11 < m>
and Q1(C*) = (S n FY').

To prove the lemma, it remains to show that (Sy n F)) = (S n F)'
and to do this it is sufficient to assume that H = Q(V'). We only need
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to show that [xe; 1,y2i 1] € (SgnF) for 1 < i < m. Since m > 2, there
exists 1 < j < m with ¢ # 7 and, in addition, as n > 5, there exists a
reflection t € F' such that ¢ commutes with D;D;. We assume notation
is chosen so that ¢ is conjugate to wo;—1. Then ya;_1y2;—1 and x9; ¢ have

determinant 1 and spinor norm a square. Therefore yo; 1y2;-1, 21t €
H and so

[Z2i—1, Y2i—1] = [Taiz1t, Yoi—1y2j—1] € (Su N F)'.
It follows that (Sg N F) = (S n F)’, as claimed. O

Recall that X,, = Sym(X) = Sym(m) is the subgroup of N which
faithfully permutes > and N = FX,,.

Lemma 5.3. We have Ng(S " F) = Ng(Sg n F) = (S n F)X,,.

Proof. Obviously, Ng(S n F) < Ng(Sg n F). Since €, (C*) is a char-
acteristic subgroup of S n Fy by Lemma 5.2, Lemma 5.1 implies that
Ne(Sg n F) = Ny(Sy n F). Furthermore, X,,, < Ng(Sy n F). Since
N = FX,,, we only need to show Ng(SynF) = Sn F. This follows as
F'is a direct product of dihedral groups and Sy n F' does not centralize
any elements of odd order in F'. This proves the lemma. U

Finally we can establish a result on 2-minimal subgroups of N.
Lemma 5.4. Suppose that P € M(N nH, By). Then PB € M(N, B).

Proof. We must show that the reflections in B normalize P. Let Fy =
FnH. As P < N, P normalizes Fg. Hence by Lemma 2.6, either
P < ByFg or P < Ng(S n Fy). Suppose that the latter possibility
holds. Then noting that S n Fy = Sy n F, Lemma 5.3 yields Ng(S n
Fy) = Ng(S n F). Consequently

[SNF,P|<SNnFnH=5nFy<P.

As B = (S n F)By, we are done in this case. So we now suppose
that P < ByFy. Then P = By (P n Fy) and, as Fy has a normal 2-
complement, P = By Oy (P). Since By is normalized by B and Oy (P)
is normalized by By C, we just need to show that Oy (P) is normalized
by reflections in B.

Note that, as n = 6, xjz3 and zzxf € Qf(q) where, if n = 6 and
2m =4, 2} = r_; and otherwise z¥ = x5. Hence these elements are in
P. Now let g € Oy(P). Then |g,z123] € Ox(P) and

[9, z125] = [g, 21]%[g, 23] = [9, 2119, 23]
as [g,x1] € F1, x3 € Fy and [Fy, F3] = 1. Therefore

(Tg: @:][g, @))% = [g,0:][g, 23] " € O (P).
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Because Oy (F) is abelian, it follows that

[g,$1]2 = [gvxl][gaxiﬂ[g?xl][gaxg]il € 02'(P)

which as Oy (F) has odd order means that [g,x1] € Oy (P). Thus
[O2(P), 1] < Oy (P) and a similar argument demonstrates that y; nor-
malizes Oy (P). We conclude that B normalizes P and PB € M(G, B).

U

We now enumerate the 2-minimal subgroups in M(N, B). We first
consider the case when n = 2m. In this case N = F; ! Sym(X) =
F11Sym(m). As normal 2-subgroups are contained in every 2-minimal
subgroup, the 2-minimal subgroups of N are described in Theorem 2.4.
Hence the 2-minimal subgroups of GOY(¢) ! Sym(m) are

X = {Oo(F)X(n;+ny) |i,jel,i<j}
V{O2(F) X (ni;j) |iel,je{2,...,n; — 1}}
U{U(ng; fm:)S | i e I,and f©eTl(q—0)},

where these subgroups are as described in Definition 2.3 modulo Oy (F).
Recall that

U(ni; fn:)S = Dih(2(q — 0)2f) 2 Tn—1 % [ | S
j=1,j#i

Because of Lemma 3.8, we obtain a collection of 2-minimal subgroups
of G contained in N as follows.

Definition 5.5.
N(G,B) = {Y X Sfl | YGX}
Lemma 3.8 also provides the following set of 2-minimal subgroups.

Definition 5.6. When n = 2m + 2 with ¢ = —0™"! define
Dy(G, B) ={] [ Smy x Dih(4f*)) | f* € TI(g +6)}.

keJ
Obviously the subgroups in Dy(G, B) and N(G, B) are 2-minimal.
We record the following observation:
Lemma 5.7. M(N, B) = N(G, B) u Dy3(G, B).

Proof. This comes from Lemma 2.7 and Theorem 2.4. U

Proposition 5.8. Suppose that n =6 and P € M(N n H, By). Then
P =P n H where Pe M(N,B) = N(G, B) uDy(G, B).
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Proof. For P € M(N n H,By), we have shown in Lemma 5.4 that
PB € M(G,B). Thus there is a 2-minimal subgroup P of G such
that PB = P and P n H = PBy = P. Conversely, suppose that
Pe M(G, B). Then PnHis generated by 2-minimal subgroups in
M(f’ N H, By). Since each of these is normalized by B, we obtain

~

P = BR for some R € M(H,By). Using Lemma 5.7 finishes the
explanation. O

6. THE 2-MINIMAL SUBGROUPS OF THE ORTHOGONAL GROUPS

We continue with our standard assumptions as listed in 3.15.

Lemma 6.1. Suppose that n = 6. Then H € M(H, By) if and only if
n=2"M%"41 ¢=1,7 (mod 8) and a = as.

Proof. Lemma 3.13 indicates that By = Sy. Assume that H € M(H, By).
We consider the various possibilities for the over-groups of By. Recall
that m = 2™ + ...+ 2™s with m; > -+ > m, = 0. Assume that s > 1.
Then Yy = (Q(Vn,) x Q(V,i)) By is an over-group of By contained in
H. Since Yy is a maximal subgroup of H by [9] and, as s > 1, N n H
is not contained in Yy, H is not 2-minimal, a contradiction. Hence we
have s = 1 and so 2m = 2™*1 > 4,

Ifn=2m =2™% thenn > 8and ¢ = ™ = 6> = +. Thus
H contains a maximal subgroup isomorphic to (2 (¢) ¢ Sym(m/2))Bg
and this subgroup together with N n H, where N = GOY(¢)? Sym(m),
generate H. Hence H is not 2-minimal in this case.

If n = 2m+2, then e = —™™! and G contains subgroups GOs,,_;(q) x
GO7 (¢) and GO3,,.1(q) x GOT(g) both containing S and which to-
gether generate . Intersecting these subgroups with H, we have H is
not 2-minimal in this case either.

So we are left with the case n = 2m + 1 = 2™%! 4+ 1. Note that as
m is a power of 2, ™ = + and correspondingly €™ = e.

Let

M = Q(V,,,)Bn.

If ¢ = 3,5 (mod 8), then, in addition to M, G also contains GO{(g)?
Sym(n) n H as an over-group of By by Lemma 3.11 and so H is not
2-minimal in this situation. Therefore we must have ¢ = 1,7 (mod 8).
If ay < a, then QF (p**) By also contains By and this subgroup together
with M generates H which again means that H is not 2-minimal. Hence
we have a = ay and this is our example. Conversely, by Proposition 3.14
these groups are 2-minimal.

O
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Lemma 6.2. Suppose thatn =5, ¢= 3,5 (mod 8) and P € M(H, By).
Assume that P is contained in one of the subgroups listed in Lemma 3.11
(i) or (ii). Then one of the following holds.

(i) P leaves a proper subspace of V' invariant; or

(ii) P leaves invariant a decomposition of V into an orthogonal

sum of subspaces of dimension 28 > 1; or
(ili) n = 2% + 1, and P = GO{(¢q) ! Sym(n) n H.

Proof. This follows from Lemma 3.12 by using the description of 2-
minimal subgroups of Sym(n) and Alt(n) given in Theorem 2.2. [

Inspired by Corollary 4.3 and Lemmas 4.8, 6.1 and 6.2, we produce
the following sets of 2-minimal subgroups of G which depend on n and
the congruence of ¢ mod 8. We recall the 2-adic decomposition of m is
2m 4 ... 42" and J = {1,...,s}.

Definition 6.3. Assume that n > 6.

(i) Suppose that n is odd.
(a) If g=1,7 (mod 8), then define

)
€ mj:

011(G. B) = {GOizﬁlH(p@)B 6= {Eem e J} .
(b) If g=3,5 (mod 8), then
O35(G, B) = {(GOi(g) 1 Sym(2™ " + 1)B | j € J}.
(ii) Suppose that n =2m + 2 and ¢ = —6™"1.
(a) If g=1,7 (mod 8), then
017(G, B) = {((GOZm; 41, (p*) x GO " (q))B [ j € J,7 = +}.
(b) If ¢ = 3,5 (mod 8), then
O35(G. B) = {(GO7(¢) 1 Sym(2™* +1) x GO "(q))B | j € J.7 = £}
Remark 6.4. (i) Note that when n is odd, the sets Os;(G, B)

and Oy17(G, B) have sizes |J| = s whereas when n = 2m + 2
they have size 2|J| = 2s.

(ii) When n =2m + 2, we could suppress mention of the subgroup
GO;7(q) as it is contained in B, however we think that its
incluston adds meaning to the description.

(iii) In Definition 6.3 (i)(a), 0; does not depend on j when m; > 1.

(iv) This definition is only for n > 2m.

Suppose that n = 2m = 2¥/ with & > 1 and let N, be the subgroup
of G which preserves the decomposition

V:<€17...,62k>J_"'J_<€2m_2k+1,...,62m>
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of V into a perpendicular sum of ¢ subspaces of V of dimension 2*
each preserved by B. We have N = Nj is the f#-subgroup studied in
Section 5. For k = 2, N}, = GOJ,(¢) 1Sym(¢). Let Ly, be the base group
of N; and note that L; = F as in Section 5.

Lemma 6.5. Suppose that n = 20 with k = 1 and Fy, is the base group
of Ny. If P acts irreducibly on V and P € M(Nyn H, By), then either
(i) ¢ =2% and P e M((Ly n H)By, By); or
(i) P e M(N n H, By).
Proof. By Lemma 2.6, either P € M((LynH)By, By) or P < Ng(Syn
Ly). If P e M(LyB, B), then as P acts irreducibly on V', we must have
¢ = 2% and so (i) holds. On the other hand, if P < Ng(Sg n Ly,), then,
as C' < SN F < 5n L and C is weakly closed in S with respect to
G by Lemma 5.1, we obtain P < Ng(C) = N which yields possibility
(ii). O
Set
{GO; (p™2)} ¢=1,7 (mod 8)
Xy = { {GO (q) 1 Sym(4)} ¢=3,5 (mod 8),q # 5% aodd.
{GO7 (¢)1Sym(4),GO} (5)} ¢ =5 a odd
By Corollary 4.6, the members of X; are 2-minimal and are the candi-

dates for 2-minimal subgroups of GO} (¢) which are not contained in
GOY(q) 1 Ty. We define two further collections of 2-minimal subgroups.

Definition 6.6. (i)
G (G,B) ={X T, 1 x [] Sm, |1<i<s,mi=1and X € Xy},
je\{i}
(ii) When m is odd, ¢ = 5* with a odd and n # 2m
{GO3(5) x [T52] Sm,} n=2m+1

g3(G7B) = {{GO§(5) % Gol—’r(5) x H;;} Smj | TE i} n=2m+?2 '

7. A PROOF OF THEOREM A

At last we prove the main theorem of this paper. For convenience we
repeat its statement here.

Theorem A. Suppose that n = 5 and G = GO, (q) where ¢ = p® is
odd. Let S € Syly(G) and B = Ng(S). Assume that H is a subgroup of
G which contains Q2 (q). If P € M(H,Ny(S n H)), then there exists

P e 01:(G, B)u0s5(G, BYUN (G, B)uD,(G, B)UGH (G, B)uGs(G, B)
such that P=P~H orne {7,8,9}, ¢ = 3,5 (mod 8) and either
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(i) H = Q5(q) or ‘<GO5(q) = 2 x Q§(q) and (P, B) = GO (q)
Sym(4)12 x S 1€ G, (G,B) and

M((P, By~ H,Ny(S ~ H)) = {P, P"}

where x € B is a reflection of type —e.
(ii) n =8, P acts irreducibly on V' and either
(a) H =9 (q) and (P, B) = GOY(q) 1 Sym(4)12 € G{ (G, B)
and

M((P, By~ H,Nu(S ~ H)) = {P, P*}

where x € B is a reflection.
(b) H="GOg3(q), 7 == and (P, By = GO7(q)1Sym(4)12 €
G, (G,B) and

M((P,BY ~ H,Nu(S ~ H)) = {P, P*}

where x € B is a reflection of type —T.
(iii) H Q<(q) or “GOL(q) = 2 x Qs(q), (P, B) = (P\, P,) where
= GO%(¢) 1 Sym(4) x Sy x S_1 € Gi (G, B) and P, =
5'1 X GOO “(¢)1Sym(3) € O3 5(G, B). Furthermore,

M(P, By~ H,Ny(S n H)) = {P, n H, P, n H, P, P*}

where x is a reflection in B of type —e.
Proof. Let W(G, B) be the set of 2-minimal subgroups
017(G,B)uO;5(G, B) UN(G, B) uDy(G, B)uGy (G, B) uGs(G, B).

For inductive reasons, we observe that, if n < 6, then W(G, B) in fact
contains all the 2-minimal subgroups of GO (¢) by Corollaries 4.3 and
4.6 and Lemmas 4.7 and 4.8 (we don’t consider the proper subgroups
H in these cases).

Assume that n > 6 and that the theorem is false. Accordingly, let
P € M(H,By) be a counter example chosen with n is as small as
possible. In particular, P is not equal to P~ H for any Pe W(G B).
By Lemma 6.1, we may assume that P < H as otherwise P = PrnH
with P e 0177(G,B) c W(G, B)

We analyze the action of P on V. Suppose P is in a maximal sub-
group which preserves a proper subspace of V. Then P acts reducibly
on V and there exists a P-invariant proper subspace W of V' which we
select to have maximal dimension. Since W is Bpg-invariant, it is B-
invariant and non-degenerate by Lemma 3.10. Hence V =W 1L W isa
(P, B)-invariant decomposition. The maximal choice of W implies that

dim W > dim W+. Set M; = GO(W), My = GO(W1L), M; = Q(W)
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and My = Q(WL) Suppose that PB is a group. Then PB € M(G, B)
and PB < M1 X M2 Thus Lemma 2.7 implies that

PBe M(M; x (B M),B) o M((Bn M) x M, B).
Hence PB = RB where, by induction,
R € M(]\Z,Bm]\/il) u./\/l(]\/i\g,Bm]\/fz)
= W(My, B n M) 0 W(My, B My).
By construction, this means that PB = RB € W(G, B), a contradic-
tion. In particular, we have shown that P is not normalized by B and

so we must have P < H < (.
Suppose that

Pe M(MlBH, BH) () M(MQBH7 BH)

and dim W > dim W+ > 2. Assume that P € M(M;By, By) for some
i € {1,2}. Lemma 3.1 implies (B n M\g,i)H = @G. Since P n M, is
centralized by ]/\Zg_i, we have PB is a group, a contradiction.

We have proved

(7.0.1) If dim W+ > 2, then
P ¢ M(MlBH, BH) U M(MQBH, BH)

Assume that either Ny, (S n My) = B n My or Ny(B n Msy) =
B ~ M,. Then Lemma 2.7 combined with (7.0.1) yields dim W+ = 1.
Since dim W+ = 1, B leaves a l-space invariant and so V_; # 0 and

n =2m+ 1 or 2m + 2. Since P leaves W+ invariant, ]\/4\2 is centralized
by P. Plainly we also have Z(G) < Ng(P). If n = 2m + 2, then
Lemma 3.5 (iv) implies that <BH,]\/4\2,Z(G)> = B and so PB is a
group, a contradlctlon Hence n = 2m+1 is odd and, as ]\//72 centralizes
P, PM2 € M(HMZ, BHMQ) and so we may assume that M2 <P<L \ H.
Therefore M1 X MQ NnH = (M1 N H) x ]\/4\2 In particular, P n M1

M(]\/I\l NnH, BHm]\/fl). If n > 9, then, by the minimality of n, P = PnH
for some P € W(]\//fl, B n ]\/4\1) and so PB is a group, a contradiction.
Hence n € {7,9}. Suppose that n = 9. Since P is not B-invariant and

M = GOg7 (¢9), Pn M is described in part (ii) of the theorem. Thus P
is descrlbed in (i), which is a contradiction. Assume that n = 7. Then
M has all its 2-minimal subgroups normalized by B by induction, and

so this is not the case. We have now completed the analysis when either
NMl(B M Ml) =Bn M1 or NM2(B M MQ) =Bn MQ.
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Assume that Ny, (B n M) > B M; and Ny, (B n M) > B M.
Then 5 > dim W > dim W+ > 3 and ¢ = 3,5 (mod 8) by Lemma 3.13.
If n € {9,10}, then 2m > 8 and so m; = 2 and B leaves V,,, invariant.
As dim V,,, = 2™+ = 8, these cases are impossible.

If n = 8, then as P is not irreducible neither is By. Hence we get
that n = 2m + 2, m = 3 with e = —0™*! = — Thus

V=Vi+ W+ Va=Vi+V+le)+{fo
is a B-invariant decomposition of V. Thus, as 4 < dim W < 5,
We{Vi+ (e—1), Vi + (f=1), V1, Vo + Vi)
and correspondingly
W e (Vo + (for), Vo + Ce—i), Vo + Vor, Vi)

Since, by Lemma 3.13 we cannot have a factor which is 4-dimensional
of —type, we must have one of the first two possibilities. In partic/lllar,
dim W = 5 and dim W+ = 3 and P is normalized by (Z(G), Z(M)).
Using Lemma 3.5, we have B = (By, Z(G), Z(]\/4\1)> and so P is nor-
malized by B, a contradiction.

Suppose that n = 7 and to simplify notation assume that V =
Vi4+Vo+<{e_1)and G = GO%(q) with e = 6. Then W = Vj or Vi +{e_y)
and so P is contained in a subgroup isomorphic to GOJ (¢) x GO4(q)
or GO; (¢q) x GOY(q). In the latter case, Lemma 3.6 (i) implies that
M,y x My H contains a subgroup isomorphic to QF (q)x ?GOY(q) where
~9G0Y%(q) = Dih(¢ — ) and the second factor has a self-normalizing
Sylow 2-subgroup. Hence we can apply Lemma 2.7 to see that

P e M(M,By, By) U M(M,By, By),

contrary to (7.0.1).

Assume then that P is contained in GOJ (q) x GO3 (¢). Then, as
P ¢ M(MBy,Br) v M(MyBg, By) by (7.0.1), Lemma 2.8 implies
that P < NH(SH M MlMQ).

We may suppose that Z(G) < H and so, as H < G, we have H =
*GO4,,41(¢) and in addition we know ¢ = 3,5 (mod 8). We also have

Ng(SH M MlMQ) = F4 X GO?((]) l Sym(3) = F4 X B3.
Hence
Ne(Sg n My Ms)/(Sg n MiMs) = Sym(3) x Sym(3) x Sym(3).

By Lemma 4.5 (ii) (a), M(F4, B n F4) has two 2-minimal subgroups
while GOY(¢) ¢ Sym(3) is itself 2-minimal. Hence Ny (S n M M,) has
three 2-minimal subgroups which arise as PnH. Let D € Syl;(Ng(Sgn
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MlMQ)) and set NG(SH M MlMg) = Ng(SH M MlMQ)/(SH M MlMg).

Then D is elementary abelian of order 27, Ny (S n My M) = DSy and

Sy acts on D as an elementary abelian group of order 4. Since Sy =

By, Sy does not centralize any non-trivial element of D and Sy acts on

D (after some choice of generators for D) as either (diag(—1, —1, 1), diag(1, -1, —1))
or {(diag(—1,—1,—1),diag(—1,—1,1)). Correspondingly there are ei-

ther three or five subgroups which are 2-minimal subgroups of Ny (Sgn

M, Ms,). By Lemma 3.12 (ii),

GO7 (q) 1 Sym(7) n H = GO7 (q) 1 Alt(7)

and this group contains Y = 27.(Alt(4) x Alt(3)) : 2 containing Sy.
Visibly Y preserves the decomposition of V' into a 4-space and a 3-space
and so Y < My Myn H. Since Y n M; M, has shape 27.(Alt(4) x Alt(3)),
Y normalizes (Sy n M;)(Sy n Ms). It is easy to calculate that Y has
four 2-minimal subgroups only one of which is contained in M;. Hence
Ny (S n My Ms) contains exactly five 2-minimal subgroups only three
of which are normalized by B. Thus two are not normalized by B and
so there exists a reflection x € B such that the 2-minimal subgroups in

M(Ny (S n My M), By) are
{P,P*,P~H|PeM(Ng(Sn MM)B)<W(G,B)}.

In particular, (iii) holds, contrary to P being a counter example.

Suppose that n = 6. First assume that ¢ = 0% and 6 = 2m. The only
possibility is that P is contained in GOJ (q) x GO%(¢). By Lemma 3.6
(iv) applied with W of type 6, this group contains a normal subgroup
contained in Q§(g) which is isomorphic to SO} (¢) x Q25(¢). Lemma 3.13
allows us to apply Lemma 2.7 to this subgroup and we obtain P is
normalized by B, a contradiction.

Ifn=06ande=—60 then V =V, +V_; and Lemma 3.6 (ii) applied
with W, = V_; of type —0 yields ]\/4\1 X J/\Jé N Q(V) contains a subgroup
isomorphic to Q(V_;) x SO(V}), and again Lemma 2.7 applies. This
yields a contradiction and completes the discussion of the case when P
acts reducibly on V.

Suppose that P acts irreducibly on V' and that P preserves a decom-
position of V into subspaces of dimension 2* > 2 with k chosen maxi-
mally (See Proposition 3.14 (iii)). Then P < N = GOS; (¢)1Sym(n/2").
We shall show that P = P~ H where P € N(G, B) UG} (G, B), which
is a contradiction.

By Proposition 5.8 we may also suppose that P £ N;. Hence £k > 2.
Lemma 6.5 implies that P € M((Ly n H)Bg, Bg) and n = 2k,
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The maximal choice of k now gives 2% = n/2. Furthermore, as n > 4,
V =W, L W, with dim W; = 2 and W, have +-type (see Lemma 3.9).

Let K1 = GO(Wy), K1 = QW) Ky = GO(Wa), Ky = Q(Wa)
and By = Np(K;). If n = 16 or n = 8 and ¢ = 1,7 (mod 8), we
have Nk, (S n K;) = S n K;. By Lemma 2.11, By is contained in a
unique maximal subgroup of (P n K;)By and of (P n K3)By. Since
K,KyBy/By = GO;k(q), we now have that P n K is a 2-minimal
subgroup of K; which is normalized by B n GO(Wl) It follows that
PﬁKl PlﬂKl where P1 S N(K17KlﬁB)Ug4 (Kl, KlﬁB) and then
by definition P = P2 Ty € W(G, B) and P = P ~ H, a contradiction.

Thus we have n = 8, K; = Qf(¢) and ¢ = 3,5 (mod 8). Applying
Lemma 2.11 we obtain (P N K1)Np(K7) € M(KlNB(Kl), Np(K7)) or
P < Ng((K1 n S)(K2 " S)). In the first case, we argue as above that
P=HnPwith Pe W(G, B), which is a contradiction. Suppose that
P < Ng((Ky n S)(Ky n S)) = Fy U Ty. This group has order 2'*.3*
and contains exactly two 2-minimal subgroups (GO+( ) 1 Sym(4)) 2
T1) € Gf (G, B). Denote these 2-minimal subgroups by P, and P_. In
particular, if H = G , we have a contradiction.

Suppose that H = QF (¢). Let L, = GO; (q) ! Sym(8) and L_ =
GO (q)!Sym(8). Then P, < L, and P_ € L_. By Lemma 3.12, L+ n
H =~ 27 Alt(8). Since Alt(8) = SL,(2) has three parabolic subgroups,
we can see that each group P, n H and P_ n H splits into two 2-
minimal subgroups (and these are listed in (ii)). Thus Ny (K1 K2 N S)
has at least four 2-minimal subgroups. We need to show that there are
no more. Set Ny(K1KynS) = Ny(K1Ky n S)/(K1K3y nS). We may
write

with D elementary abelian of order 3* and Sy elementary abelian of
order 23. We write Sy = {h, g1, g2) with notation chosen so that g; and
g, normalizes D n K; and D n K,. Then we further define 6y, s, 65
and &, such that D = {(§,8y,03,0,) and so that, for i = 1,2, g; cen-
tralizes ¢; and d9; and inverts d3_; and d5_;. We may also assume that
h conjugates 0; to 03 and d to d4. Then we check that the follow-
ing subgroups are the only 2-minimal subgroups (S, d193, {Si, 0204),
(S, 01051y and (Sy, 826, ). Tt follows that each of these groups is al-
ready accounted for in the subgroups P, n H and P_n H. We conclude
that H # QJ(¢). The contradiction for H = *GOg (¢) can be calcu-
lated from the information presented using Lemma 3.12 to see when
P+ n H remains 2-minimal.
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Suppose now that P < GO7(¢) ! Sym(n) and that P is both ir-
reducible on V' and does not preserve any blocks of imprimitivity of
dimension greater than 1. Then Lemma 6.2 implies that n = 2™ 41
and P = P~ H where P € O;5(G, B), which is impossible as P is a
counter example.

Thus P is both primitive and irreducible. By Proposition 3.14 and
Lemma 4.9, P is the normalizer of a subfield subgroup of GG. Lemma 6.1
implies that n = 2™ + 1, ¢ = 1,7 (mod 8) and PB = GO, (p®) €
0.17(G,B) < W(G, B), which is a contradiction. This completes the
proof of the theorem. O

Proof of Corollary 1.1. We have n = 2k and ¢* = ¢ (mod 4). Hence
0F = ¢ and so k = m and n = 2m. It follows that Os5(G,B) =
017(G,B) = Dy(G,B) = G3(G,B) = . Now Theorem A implies
M(G, B) = N(G, B) u G{ (G, B). This proves the corollary. O

8. EXAMPLES

Example 8.1. Suppose that G = GOp,(q).

q¢=1 (mod 4) We have § = + and so 0% = +. Therefore n = 2m + 2. The
2-manimal subgroups are as follows:

N (G, B): (Dih(2(q — 1)2) 2 Sym(4) x S_1;
N(G, B): Dih(2(q — 1)of¢) 1Ty x S_1 where f¢e€l(q—1);
Dy (G, B): Dih(2(q — 1)2) 1 Ty x Dih(22f¢) where f¢ € I(q + 1);
0.:(G, B): GOy (p®) x GOY(q), when ¢ =1 (mod 8); and
O35(G, B): GOT(g) 1 Sym(9) x GOT(q) ~ 2°.Sym(9) x 2 when ¢ =5
(mod 8).
Z(G, B) XZTl X Sfl, X e X4;
q¢=3 (mod 4) We have § = — and so "> = —. Therefore n = 2m and Corol-
lary 1.1 1s in play. The 2-minimal subgroups are as follows:
N(G, B): Dih(2(q + 1)3) 1 Sym(5);
N(G, B): Dih(2(q + 1)2) ¢ Sym(4) x Dih(2(q + 1)2));
N(G, B): Dih(2(q + 1)2f¢) 1 T x Dih(2(q + 1)2) with €€ (g + 1);
N (G, B): Dih(2(q + 1)9) 2 Ty x Dih(2(q + 1)2f€) with f€€ (g + 1);

QZ(G, B) X1y x Dlh(2(q + ].)2), X e X,
In all cases, M(H,By) = {P ~nH | P € M(G, B)}.
To depict the similarity between the 2-minimal subgroups in the

groups of +-type and the groups of —-type we also have the following
example (which illustrates the expected “Ennola”-type duality).

Example 8.2. Suppose that G = GO{;(q) and ¢ =1 (mod 4). Then
0 = + andn = 2m. In this case Corollary 1.1 yields that the 2-minimal
subgroups are as follows:
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N(G, B): Dih(2(q — 1)2) 2 Sym(5);

N(G, B): Dih(2(q — 1)) Sym(4) x Dih(2(g — 1)s);

N(G, B): Dih(2(q — 1)9t) 2 Ty x Dih(2(q — 1)2) with t¢ € II(q — 1),
N(G. B): Dih(2(q — 1)) 1 Ty x Dih(2(q — 1)ot°) with ¢ € TI{q — 1);
QZ(G, B) X1 x Dlh(2(q — 1)2), X e Xy

A similar phenomenon emerges when ¢ = 3 (mod 4).

We close with an odd dimensional example which illustrates the un-
usual behaviour at the prime 5 as well as exhibiting an example with
exceptional 2-minimal subgroups.

Example 8.3. Suppose that H = QF(5). Then =+, m=3=2+1,
5251XSOXS 1 and

0375(H7 BH) (GO+( ) ZSym(E)) X S()) M H
03 5(H BH) (GO+( ) ZSym(S) X Sl) M H
N(H, BH) = (Dih(8) 1 Sym(3) x S_1) n H;
g4 (H BH) P4 = (GO+( ) ZSym(4) X SO x S_ ) ,'
Gi (H, By): Ps:( 1 (5)1Sym(4) x Sg x S_1) N H;
g4(HBH) ( ()XSOXS_l)('\H'
gg(H BH) (GO+( ) X Sl X 571) N H
Exceptions: P P contained in (GOT (5)1Sym(4) x GO (5)1Sym(3))nH <

GOf(q) ! Sym(7) n H which has shape 2°.A1t(7).

We have ( Py, Ps) has shape 2'7*.Sym(6) and { Py, P,y has shape 271 Alt(6).
Together these two groups generate GOg (5) x GO (5) n H. We have

(Py, Ps, P) = Spy(2) = (Py, P5s, P*) and the corresponding coset geom-

etry is a simplicial complex A(Ps, Ps, P, P*) that Kantor calls a GAB

and is described in [5, Section 5].

An unintuitive aspect of the last example is that (GO7 (5)2Sym(4) x
GO7 (5)1Sym(3)) n H contains four 2-minimal subgroups as is transpar-
ent from the proof of Theorem A whereas the group which looks very
much the same (GO7 (5)1Sym(4) x GOT (5)1Sym(3)) n H has a quotient
Sym(3) x Sym(3) and so contains just two 2-minimal subgroups one of
which is in the first group.
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