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2-MINIMAL SUBGROUPS OF ORTHOGONAL GROUPS

CHRIS PARKER AND PETER ROWLEY

In memory of Jan Saxl

Abstract. For a finite group G, a subgroup P of G is 2-minimal
if B   P , where B � NGpSq for some Sylow 2-subgroup S of G,
and B is contained in a unique maximal subgroup of P . For fields
of odd characteristic, this paper contains a detailed and explicit
description of all the 2-minimal subgroups of the finite general
orthogonal groups, and certain of their subgroups.

1. Introduction

This is one of a series of papers whose aim is to classify the 2-minimal
subgroups of the finite non-abelian simple groups and certain of their
automorphism groups. The motivation for such a programme comes
from a number of directions. The two most prominent being that 2-
subgroups of non-abelian simple groups often play an important role
and the other being that 2-minimal subgroups are generalizations, and
counterparts, of the minimal parabolic subgroups in groups of Lie type
defined over fields of characteristic 2. This latter point is why we only
consider orthogonal groups of odd characteristic as the structure of
minimal parabolic subgroups is well understood. For the sporadic sim-
ple groups the 2-minimal subgroups were essentially analyzed by Ronan
and Stroth [16]. The alternating and symmetric groups were covered
in [8] by Lempken, Parker and Rowley, see also Magaard [10]. More
recently the case of the projective special linear and projective special
unitary groups were dealt with in [13] by Parker and Rowley. The 2-
minimal subgroups of the projective symplectic groups are presented
in [14]. In this paper we square up to the orthogonal groups.

To complete the study of the 2-minimal subgroups of the finite sim-
ple groups it remains to determine such subgroups in the exceptional
groups. This is the subject of the paper in preparation [15].

Suppose G is a finite group. Let p be a prime, S a Sylow p-subgroup
of G and B � NGpSq. A subgroup P of G which properly contains B
is called a p-minimal subgroup of G (with respect to B) if and only if
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B is contained in a unique maximal subgroup of P . Put

MpG,Bq � tP | B   P ¤ G and P is p-minimalu.

It is the set MpG,Bq that we shall study when p � 2 and G is
a subgroup of the general orthogonal group GOε

npqq which contains
Ωε
npqq. We shall use GOε

npqq, where either ε � � or ε � �, to denote
the n-dimensional general orthogonal group of ε-type over GFpqq. The
subgroup of GOε

npqq consisting of all elements of determinant 1 whose
spinor norm is a square in GFpqq is denoted by Ωε

npqq. Section 3 gives an
expanded account of properties of these groups which are particularly
relevant to this paper. We shall further assume that q is odd since, as
noted earlier when q is even MpG,Bq consists of precisely the minimal
parabolic subgroups of G. A wider discussion on p-minimal subgroups
is to be found in [13].

Just as for the other classical groups in [13, 14], low dimensional phe-
nomena and various congruences of q leave their imprint on the general
case. Before stating the classification of 2-minimal subgroups for the
orthogonal groups, we briefly discuss the various sets of 2-minimal sub-
groups that we shall encounter. First we have the sets O1,7pG,Bq and
O3,5pG,Bq, described in Definition 6.3, where the subscripts indicate
congruence conditions on q – so O1,7pG,Bq means we have q � 1, 7
pmod 8q while for O3,5pG,Bq we have q � 3, 5 pmod 8q. These partic-
ular sets of 2-minimal subgroups emerge in Lemmas 6.1 and 6.2 with
O1,7pG,Bq arising because certain orthogonal groups are themselves
2-minimal while the groups in O3,5pG,Bq have structure which is of
monomial type. In Definition 5.6 we find the set D2pG,Bq where D
stands for dihedral. Here n � 2m � 2 (see Lemma 3.8 for the relevant
subcase) and these 2-minimal subgroups are the legacy of 2-dimensional
orthogonal groups (recall that GOε

2pqq � Dihp2pq � εqq, the dihedral
group of order 2pq � εq). Definition 6.6 introduces the sets G�

4 pG,Bq
and G3pG,Bq. The former set contains the 2-minimal subgroups which
are the spawn of GO�

4 pqq, while the latter is the spawn of GOε
3pqq,

but only when q � 5a with a odd. We also note that the parity of
n also comes into play for O1,7pG,Bq, O3,5pG,Bq and G3pG,Bq. The
menagerie of 2-minimal subgroups for the orthogonal groups is com-
pleted by N pG,Bq given in Definition 5.5. The 2-minimal subgroups
in N pG,Bq are generic and are the 2-minimal subgroups of a certain
so-called θ-subgroup of the orthogonal group. These subgroups are in-
troduced immediately after Lemma 3.8. So here we see gathered toral,
linker and fuser 2-minimal subgroups - this coven of 2-minimal sub-
groups will be described in Section 2. Most of the definitions related
to the subgroups of the orthogonal groups can be found in Section 3.
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In particular, here we mention that the notation �GO�
n pqq is explained

just before Lemma 3.1 and the subgroups S1, S0 and S�1 of S are in-
troduced immediately before Lemma 3.9.

We may now state our main theorem which can be paraphrased as
saying that the 2-minimal subgroups of the orthogonal groups are in
the families of subgroups discussed above whenever n ¥ 10.

Theorem A. Suppose that n ¥ 5 and G � GOε
npqq where q � pa is

odd. Let S P Syl2pGq and B � NGpSq. Assume that H is a subgroup of
G which contains Ωε

npqq. If P PMpH,NHpS XHqq, then there existspP P O1,7pG,BqYO3,5pG,BqYN pG,BqYD2pG,BqYG�
4 pG,BqYG3pG,Bq

such that P � pP XH or n P t7, 8, 9u, q � 3, 5 pmod 8q and either

(i) H � Ωε
9pqq or εGOε

9pqq � 2 � Ωε
9pqq and xP,By � GO�

1 pqq o
Symp4q o 2� S�1 P G�

4 pG,Bq and

MpxP,By XH,NHpS XHqq � tP, P xu

where x P B is a reflection of type �ε.
(ii) n � 8, P acts irreducibly on V and either

(a) H � Ω�
8 pqq and xP,By � GO�

1 pqq o Symp4q o 2 P G�
4 pG,Bq

and

MpxP,By XH,NHpS XHqq � tP, P xu

where x P B is a reflection.
(b) H � τGO�

8 pqq, τ � � and xP,By � GOτ
1pqq o Symp4q o 2 P

G�
4 pG,Bq and

MpxP,By XH,NHpS XHqq � tP, P xu

where x P B is a reflection of type �τ .

(iii) H � Ωε
7pqq or εGOε

7pqq � 2 � Ωε
7pqq, xP,By � x pP1, pP2y wherepP1 � GOθ3ε

1 pqq o Symp4q � S0 � S�1 P G�
4 pG,Bq and pP2 �

S1 � GOθ3ε
1 pqq o Symp3q P O3,5pG,Bq with θ � � and q � θ

pmod 4q. Furthermore,

MpxP,By XH,NHpS XHqq � t pP1 XH, pP2 XH,P, P xu

where x is a reflection in B of type �ε.

We emphasise that in all cases the precise structure of P in Theo-
rem A is known, and moreover explicit matrices can be written down
to describe these groups. The use of equal signs in our results is in-
tended to highlight this point via the explicit decomposition of the
group action on the standard orthogonal space. For n ¤ 4, a detailed
account of all the 2-minimal subgroups is provided in Section 4 and,
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in fact, for G � GO�
4 pqq, the statement in Theorem A is still valid. As

is usual, small cases tend not to follow the crowd and the results in
Section 4 are too diverse to summarize here. Aside from the obvious
corollary that holds when n ¡ 9, we point out a further case which is
of an especially pleasing form.

Corollary 1.1. Suppose that n ¥ 6, n � 2k and qk � ε pmod 4q. Then

MpG,Bq � N pG,Bq Y G�
4 pG,Bq.

We now describe the contents of this paper. Section 2 begins by in-
troducing various pieces of notation, some of this being needed for the
description of Sylow 2-subgroups of symmetric groups. Since symmet-
ric groups permeate many of our arguments and the structure of the
2-minimal subgroups of the orthogonal groups, in Theorem 2.2 we state
the classification of their 2-minimal subgroups. Continuing in this vein
we lay bare, in Theorem 2.4, the 2-minimal subgroups of groups of the
form D o Sympn{2q where D is a dihedral group. We note that such
wreath products correspond to the natural action of the symmetric
group Sympn{2q on n{2 points. More specifically, when we construct
wreath products X o Y with Y an explicit subgroup of Sympkq, then
we use this k-point action in the definition of the wreath product. Sub-
groups of the orthogonal groups of this shape lead to the 2-minimal
subgroups in the set N pG,Bq. After looking at abelian subgroups of
certain 2-groups in Lemma 2.5, we itemize results which hold for any
p-minimal subgroup (p any prime). These results all play an impor-
tant role in the inductive arguments used to prove Theorems A. As
preparation for analysing the orthogonal groups, Section 3 sets up ap-
propriate notation and defines certain subgroups which will lead us to
the 2-minimal subgroups. Particularly important results here are Lem-
mas 3.8, 3.11 and 3.12. We remark that Lemma 3.8 is responsible for
the overall direction of the proof of Theorem A.

Section 4 is devoted to finding the 2-minimal subgroups in the or-
thogonal groups of dimensions 3, 4 and 5 – the main conclusions be-
ing given in Theorems 4.1, 4.2, Corollary 4.3, Lemmas 4.5, 4.7 and
4.8. Then Section 5 analyses the 2-minimal subgroups of θ-subgroups,
namely those isomorphic to D oSympn{2q where D is a dihedral group.

Definitions 5.5 and 5.6 describe the resulting 2-minimal subgroups.
In Section 6 the bulk of the 2-minimal subgroups are catalogued in
Definitions 6.3 and 6.6. Finally, in Section 7, the proof of Theorem A is
given where we see Lemma 3.8 acting in concert with Proposition 3.14.
This proposition distills the results of Kantor [6], Liebeck and Saxl [9]
and Maslova [11] to describe the maximal subgroups of H of odd index
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where Ωε
npqq ¤ H ¤ GOε

npqq. These subgroups, of course, will host
the proper 2-minimal subgroups. Here we encounter the orthogonal
embeddings of the Coxeter groups of type E7 and E8 (the groups H3,
H4 and F4 having made guest appearances in Section 4). These em-
beddings, interestingly, do not yield any exotic 2-minimal subgroups
– their 2-minimal subgroups being subsumed in those arising from
smaller dimensions (see Lemma 4.9). We remark that some authors
write WpE7q, for example, to emphasise the fact that these group are
also Weyl groups. Our last section, by way of illustrating Theorem A,
displays in detail the 2-minimal subgroups for GO�

10pqq, GO�
10pqq and

Ω�
7 p5q.
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2. Preliminary Results

We begin with some notation. For ` a positive integer we use `2 to
denote the largest power of 2 which divides `, `21 � `{`2 and Πp`q is
defined to be the set of all odd prime powers, excluding 1, which divide
`. We meet `2 mostly in the proof of Lemma 3.8 and the description of
certain subfield subgroups in, for example, Theorem 4.1. Importantly,
Πp`q appears in the definition of toral 2-minimal subgroups.

There will be frequent brushes with symmetric groups, often as quo-
tients of various subgroups of the general orthogonal groups. Letting
X � SympΩq � Sympnq where Ω � t1, . . . , nu, we describe the two
types of 2-minimal subgroups of X–linkers and fusers. First, let T be
a Sylow 2-subgroup of X, and

n � 2n1 � 2n2 � � � � � 2nr where n1 ¡ n2 ¡ � � � ¡ nr ¥ 0

be the 2-adic decomposition of n. Set I � t1, . . . , ru. Then T has r
orbits Ω1, . . . ,Ωr on Ω with |Ωi| � 2ni , i P I. We may choose notation
so as Ω1 � t1, . . . , 2n1u, σ1 � 1 and Ωi � tσi, . . . , σi � 2ni � 1u where,

for i ¥ 2, σi � 1�
°i�1
j�1 2nj is the minimal integer in Ωi. Then

T � Tn1 � Tn2 � � � � � Tnr

where Tni
P Syl2pSympΩiqq, i P I. Moreover, Tni

is the iterated wreath
product of ni copies of T1 the cyclic group of order 2 and T � NXpT q



6 Chris Parker and Peter Rowley

– see [4, Satz 15.3, p. 378] for further details. We additionally denote
the alternating group on Ω by AltpΩq � Altpnq.

We next introduce two collections of block systems of Ω. Let i P I.
For j P t1, . . . , ni�1u, the first collection is Σni;j which consists of all T -
invariant block systems of Ωi of sets of size 2k where k P t0, . . . , niuztju.
For the second we choose i, j P I, with i   j (so nj   ni) and set
Λni�nj

� Ωi Y Ωj. Let Γi be the collection of all T -invariant block
systems on Ωi and Γj the collection of all T -invariant block systems on
Ωj. Then we define Σni�nj

to be the collection of T -invariant systems
of subsets of Λni�nj

which are the union of one block system from Γi
and one from Γj with the proviso that the blocks of the two chosen
block systems have equal numbers of elements.

Definition 2.1. For i P I and j P t1, . . . , ni � 1u,

Xpni; jq � StabSympΩiqpΣni;jq � p
¹
`PIztiu

Tn`
q,

and for i, j P I with i   j,

Xpni � njq � StabSympΛni�nj
qpΣni�nj

q � p
¹

kPIzti,ju

Tnk
q.

The subgroups Xpni, jq and Xpni � njq are, respectively, the linker
and fuser 2-minimal subgroups of X, and [8, Theorems 1.1 and 1.2]
establishes the following result.

Theorem 2.2. Suppose that X � SympΩq, Y � AltpΩq and T P
Syl2pXq. Then

MpX,T q � tXpni; jq, Xpnk�n`q | i, k, ` P I, k   ` and j P t1, . . . ni�1uu

and, if |Ω| ¡ 9, then MpY, T X Y q � tP X Y | P PMpX,T qu.

As we will discover, many 2-minimal subgroups of orthogonal groups
reside in subgroups isomorphic to N � D o Sympn{2q where D is a
dihedral group. As O2pNq is contained in all the 2-minimal subgroups
of N , it suffices to consider the case when D has order twice an odd
number. The 2-minimal subgroups of such groups have been described
in [14] and we give a summary of the salient points of this description.
To begin with we look at E o Sympnq � E o X, where E is cyclic of
odd order and E0 is the base group. Then E0 is isomorphic to a direct
product of n copies of E and so we write

E0 � xe1, . . . , eny

with X acting on the generators of E0 naturally by permuting the
subscripts. Take s P Πp|E|q a prime, let sb be the largest power of s in
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Πp|E|q and put s̄ � |E|{sb. Then, for α P Ω and sc P Πp|E|q, set

uα � es̄α, and wα � us
b�c

α

and note that xuα | α P Ωy P SylspE0q and wα has order sc.
For j P I, sc P Πp|E|q, following [14, Defintion 2.7] we define

Upnj; s
c;njq � xpwσj � wσj�1q

t | t P Tnj
y � xpwσj � wσj�1q

t | t P T y.

Taking D � Dihp2|E|q and assuming that n is even, the group D o
Sympn{2q can be identified with an odd index subgroup of E o p2 o
Sympn{2qq ¤ E o Sympnq (see [14, Lemma 2.6]). Thus the 2-minimal
subgroups of D o Sympn{2q are among the 2-minimal subgroups of E o
Sympnq and we select these in the next definition.

Definition 2.3.

FpL, T q � tXpni � njq | i, j P I, i   ju;

LpL, T q � tXpni; jq | i P I, j P t2, . . . , ni � 1uu and

T pL, T q � tUpni; s
c;niqT | i P I, and sc P Πp|E|qu.

The notation Upni; s
c;niq is consistent with that in [14] where it is

used in a slightly more general setting. Notice that

Upni; s
c;niqT � Dihp2scq o Tni�1 �

¹
jPIztiu

Tnj
.

We can now state [14, Theorem 2.8].

Theorem 2.4. Suppose that D is a dihedral group of order 2e with e
odd. Let L � D o Sympn{2q, T P Syl2pLq. Then T � NLpT q and

MpL, T q � FpL, T q Y LpL, T q Y T pL, T q.

Our preoccupation with dihedral groups continues in the next lemma.

Lemma 2.5. Suppose that D is a dihedral group of order 2j�1 at least
8 and Rk is a Sylow 2-subgroup of Sympkq. Let H � D oRk. If C is an
abelian subgroup of H of order at least 2jk, then C is contained in the
base group of H, |C| � 2jk and is a maximal order abelian subgroup of
H.

Proof. We argue by induction on k. If k � 1, there is not a lot to do. So
suppose that k ¡ 1 and let C be an abelian subgroup of H of order 2jk.
Let Sympkq � SympΩq and let F be the base group of H. Supposing
C ¦ F , we seek a contradiction. Let c P CzF and let ` � |FixΩpπq|
where π is the permutation of Ω induced by c. Then, as C ¤ CHpcq
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preserves the fixed points of c on Ω, there are Sylow 2-subgroups R`

and Rk�` such that

c P C ¤ W � D o pRk�` �R`q � pD oRk�`q � pD oR`q.

Suppose ` � 0. Then, since C ¤ W and by induction every abelian
subgroup of order 2jpk�`q inDoRk�` and of order 2j` inDoR` is contained
in the base group of the respective wreath products, we obtain C ¤
F and |C| � 2jk in this case. Thus ` � 0 and so π is fixed-point-
free with at most k{2 orbits on Ω. Therefore CF pcq is contained in
a direct product of at most k{2 dihedral groups and so the largest
abelian subgroup of CF pcq has order at most 2jk{2. Since the largest
abelian subgroup of Rk has order 2k{2, |CF {F | ¤ 2k{2. Hence

|C| ¤ 2k{2|C X F | � 2k{2|CF pcq X C| ¤ 2jk{2�k{2   |C|,

as j ¡ 1. With this contradiction the lemma is proved. �

For the remainder of this section G is a finite group, p is a prime,
S P SylppGq and B � NGpSq.

Lemma 2.6. Suppose that K is a normal subgroup of G and P P
MpG,Bq. Then either

(i) P PMpBK,Bq; or
(ii) PK{K PMpG{K,BK{Kq and P PMpNGpS XKq, Bq.

Proof. See Lemma 3.8 of [13].
�

Lemma 2.7. Suppose that K is a normal subgroup of G and G �
BKCGpKq. Assume that NKpS X Kq � B X K and P P MpG,Bq.
Then P PMpBK,Bq YMpBCGpKq, Bq.

Proof. See Lemma 3.9 of [13]. �

Our next lemma is a variation upon Lemma 2.7.

Lemma 2.8. Suppose that G � KLB with K and L normal subgroups
of G, and let P PMpG,Bq. Then

P PMpBK,Bq YMpBL,Bq YMpNGpS XKLq, Bq.

Proof. Since pP XKqpP X Lq is normalized by P ,

P � NP pS XKLqpP XKqpP X Lq

by the Frattini Argument. Since B ¤ NP pS X KLq and BpP X Kq
and BpP X Lq are groups, the p-minimality of P implies that P P
MpBK,Bq YMpBL,Bq YMpNGpS XKLq, Bq. �
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Lemma 2.9. Suppose that K is a normal subgroup of G and R �
SXK. Assume that P PMpK,NKpRqq and PB is a group. If BXK �
NKpRq, then PB PMpG,Bq.

Proof. This is Lemma 3.7 in [13]. �

Lemma 2.10. Suppose that K is a normal subgroup of G, B XK �
NKpSXKq and P PMpK,BXKq. If Q ¤ P is such that P � pBXKqQ
and B � pB XKqCBpQq, then PB PMpG,Bq and P � PB XK.

Proof. Observe that CBpQq normalizes B X K and hence normalizes
pB XKqQ � P . Thus, as B � pB XKqCBpQq, B normalizes P and so
PB is a group. The result now follows from Lemma 2.9. �

The final result in this section is used in the closing stages of the
proof of Theorem A where the orthogonal groups have dimension at
least 6 and the 2-minimal subgroup acts irreducibly but not primitively
on the natural module.

Lemma 2.11. Suppose that B � S P Syl2pGq, G � KLB where KL is
normal in G and NGpKq � NGpLq has index 2 in G. Set B0 � NBpKq,
and further assume that K and L are G-conjugate with K XL ¤ B. If
P P MpG,Bq, then either P ¤ NGpB XKLq or B0 is contained in a
unique maximal subgroup of pP XKqB0 and of pP X LqB0.

Proof. Let P0 � P XNGpKq and b P BzB0. Observe that B �¤ NGpKq
and, as |G : NGpKq| � 2, P � BP0 � xbyP0. Since NGpKq � NGpLq,
P0 normalizes both P0 XK and P0 X L. Because pP0 XKqb � P0 X L
and b2 P B0 ¤ P0, pP0 XKqpP0 XLq is normalized by P0xby � P . Also,
as KL is normal in G and K and L are normal in KL,

B XKL � pB XKqpB X Lq P Syl2pKLq

and B XKL is normalized by B. Furthermore, B XKL P Syl2ppP0 X
KqpP0 X Lqq. Therefore, the Frattini Argument yields

P � pP0 XKqpP0 X LqNP pB XKLq.

Since pP0XKqpP0XLqB ¤ P and B ¤ NP pBXKLq, the 2-minimality
of P forces either P � pP0 XKqpP0 X LqB or P � NP pB XKLq. The
second possibility is one of our conclusions so we may assume that

P � pP0 XKqpP0 X LqB � pP XKqpP X LqB.

Put W � L XKB0. We claim that W ¤ B0. Since B0 is a 2-group
and B0K{K ¥ WK{K � W {pW X Kq, W {pW X Kq is a 2-group.
Hence, as W XK ¤ L XK ¤ B by hypothesis, we have that W is a
2-group. Because W is normalized by B0 and B0 P Syl2pKB0q, we then
deduce that W ¤ B0, as claimed. Now assume B0 is not contained in a
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unique maximal subgroup of pP XKqB0 and argue for a contradiction.
In this case there exist maximal subgroups U1 and U2 of pP X KqB0

both containing B0 with U1 � U2. Since Ui ¤ P , the Dedekind Law
gives

Ui � Ui XB0pP XKq � B0pUi XKq

for i � 1, 2. Assume that P0 � pU1 X KqpU1 X KqbB0. Again by the
Dedekind Law

P0 XKB0 � pU1 XKqpU1 XKqbB0 XKB0

� pU1 XKqB0ppU1 XKqb XKB0q

� U1ppU1 XKqb XKB0q.

Now

pU1 XKqb XKB0 ¤ Kb XKB0 � LXKB0 � W ¤ B0

and therefore
P0 XKB0 � U1B0 � U1.

Since pP XKqB0 � pP0 XKqB0 � P0 XKB0 and pP XKqB0 ¡ U1, we
have a contradiction.

Therefore pU1 XKqpU1 XKqbB0 � pU1 XKqbU1 and similarly pU2 X
KqpU2 XKqbB0 � pU2 XKqbU2 are proper subgroups of P0 which are
normalized by B. But then the 2-minimality of P implies xU1, U2y �
pP X KqB0, the desired contradiction. Thus we conclude that B0 is
contained in a unique maximal subgroup of pPXKqB0. Conjugating by
b yields B0 is contained is a unique maximal subgroup of pPXLqB0. �

3. On certain subgroups of Orthogonal Groups

In this section we describe and develop notation for various sub-
groups of the orthogonal groups which will be of service in the next
sections. We begin by quickly establishing various pieces of notation
for the orthogonal groups. The reader is referred to [1] and [17] for the
standard background material and definitions.

Let pV,Qq be a non-degenerate orthogonal space of dimension n
which is defined over GFpqq where q is a power of an odd prime. A
vector v P V is singular if and only if Qpvq � 0 and a subspace W ¤ V
is totally singular if and only if every vector of W is singular. The
maximum dimension of a totally singular subspace of V is either w or
w�1 if V has even dimension n � 2w and of dimension w if V has odd
dimension n � 2w � 1 (see [1, 21.2]). The dimension of such a space
is called the Witt index of pV,Qq. In the case when n � 2w is even,
we say that pV,Qq is of �-type if the Witt index is w and otherwise
it is of �-type. Suppose that n is odd and let W be a non-degenerate
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hyperplane of �-type in V . Then the type of V is determined by the
values of Q on the non-zero vectors in WK. Specifically V is of �-type,
respectively, �-type precisely when Qpuq is a square, respectively, a
non-square for all non-zero u P WK.

From here on we suppress explicit mention of the form Q and so the
isometry group of pV,Qq is simply denoted

GOpV q � tg P GLpV q | Qpugq � Qpuq for all u P V u.

Since the forms are uniquely determined by their type and dimension
we also use the notation GOε

npqq to denote these isometry groups where
here ε is either � or � and represents the type of the form. Notice when
n is odd, as the corresponding forms differ only by conjugation and
scalar multiplication, we have GO�

n pqq � GO�
n pqq whereas when n is

even these groups are not isomorphic. However, for our investigations it
is important that we distinguish between GO�

n pqq and GO�
n pqq even in

the case n is odd especially when these groups are embedded in larger
orthogonal groups.

Recall that a reflection of V preserves the form and has one eigen-
value �1 and the remaining eigenvalues are equal to 1. There are two
conjugacy classes of reflections in GOε

npqq and if x is a reflection the
conjugacy class to which x belongs is determined by the type of the �1
eigenspace rV, xs. For such a reflection x, we have V � rV, xs K CV pxq
and so x is totally determine by indicating a non-zero vector which
is negated by x. We mostly stick to the convention that reflections of
�-type are denoted by x and reflections of �-type are denoted by y.
When the type of a reflection is arbitrary, we use x.

The group GOε
npqq is generated by its reflections [1, (22.7)]. The

subgroup SOpV q � SOε
npqq consists of the elements of GOε

npqq which
have determinant 1 and this subgroup has index 2 in GOε

npqq. The
spinor norm is a homomorphism S from GOε

npqq to the multiplicative
group of GFpqq mod its squares GFpqq2 which is defined as follows. Let
g P GOε

npqq and write g � x1 . . . xk as a product of reflections with
rV, xis � xviy. Then Spgq � Qpv1q . . . QpvkqGFpqq2. For g P GOε

npqq,
we often write that Spgq � � if Spgq P GFpq2q and Spgq � � is Spgq
is not a square. Restricting S to SOpV q � SOε

npqq, by considering the
product of two non-conjugate reflections, we see that SOε

npqq itself has a
subgroup of index 2. We denote this group by ΩpV q � Ωε

npqq. Except for
very small fields this group is perfect and when n ¥ 5 it is quasisimple.
With the previously established notation, we may now define three
subgroups of index 2 in GOε

npqq containing the subgroup Ωε
npqq. If x is

a reflection and rV, xs has ν-type, then νGOε
npqq is generated by x and

Ωε
npqq and the third subgroup containing Ωε

npqq is just SOε
npqq. Notice
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that if x is a reflection with rV, xs of �-type, then Spxq � 1 and so
�GOε

npqq is the kernel of the spinor norm.
We now suppose that n ¥ 2 and let G � GOε

npqq. Also throughout
this section H is a subgroup of G containing Ωε

npqq. So H is one of the
five groups GOε

npqq,
�GOε

npqq,
�GOε

npqq, SOε
npqq and Ωε

npqq.
In the instances where W is a non-degenerate subspace of V , we have

V � W K WK and we denote the subgroup of GOpV q which fixes every
vector of WK (and, as a consequence, leaves W invariant) by GOpW q.

Lemma 3.1. Suppose that W is a non-degenerate subspace of V of
dimension at least 2 and that, if the dimension of W is 2, assume that
W has vectors of both �- and �-type. Then G � GOpW qH.

Proof. The hypothesis on W guarantees GOpW q contains representa-
tives from both conjugacy classes of reflections. Hence the result follows
from our earlier discussion about subgroups of index 2 in G. �

The Sylow 2-subgroups of GOε
npqq are described explicitly by Carter

and Fong [2]. However this description does not exhibit the action on
the quadratic space V which reveal the 2-minimal subgroups of GOε

npqq
in a geometric way. Hence we start by giving an elementary descrip-
tion of a subgroup, more suited to our needs, which contains Sylow
2-subgroups of GOε

npqq. These descriptions depend upon the congru-
ence of q modulo 4. So, once and for all, we define θ � �1 so that

θ � q pmod 4q.

We will often use θ in our orthogonal group notation, and in these
cases we write θ � � rather than θ � �1. By the same token, when
considering GOε

npqq, we may use ε � �1 whenever appropriate. We
recall that GOε

2pqq � Dihp2pq � εqq and that SOε
2pqq is cyclic of order

q � ε. Therefore GOθ
2pqq has non-abelian Sylow 2-subgroups and they

have larger order than the Sylow 2-subgroups of GO�θ
2 pqq which are

elementary abelian of order 4. Let Vθ be a 2-dimensional space of θ-type.
We also recall that GO�

1 pqq � GO�
1 pqq has order 2 and is generated by

a single reflection.

Lemma 3.2. Suppose that G � GOε
2pqq. If x is a reflection in G and

x� P xGztxu with rx, x�s � 1, then θ � ε (so q � ε pmod 4q). In
particular, V can be written as an orthogonal sum of two isometric
spaces if and only if θ � ε and, in this case, V can be written as a
perpendicular sum of two �-spaces and of two �-spaces.

Proof. Suppose that x is a reflection in G, x� P xGztxu and rx, x�s � 1.
Assume that q � �ε pmod 4q. Then G � Dihp2pq � εqq which has
three conjugacy classes of involutions and Sylow 2-subgroups of order
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4. Hence x and x� are not conjugate, a contradiction. Hence q � ε
pmod 4q which means that ε � θ.

Assume that V � W1 K W2 is a decomposition of V as an orthogonal
sum of two non-degenerate spaces. Then there exist reflections x, y P G
such that W1 � CV pyq � rV, xs and W2 � CV pxq � rV, ys. Thus x and
y commute. If W1 is isometric to W2, then x and y are conjugate which
means that q � ε pmod 4q. Conversely, assuming that q � ε pmod 4q,
then a Sylow 2-subgroup S of G contains two conjugacy classes of
fours group with representatives F� and F� where notation is chosen
so that Fτ has two reflections of type τ . The reflections in Fτ provide a
decomposition of V into an orthogonal sum of two one-spaces of type
τ , as required. �

Definition 3.3. Let U be a subspace of V which is of maximal dimen-
sion subject to being a perpendicular sum of spaces isometric to Vθ.
Writing U � U1 K � � � K Um where each Ui is isometric to Vθ, we call
U1 K � � � K Um K UK a θ-decomposition of V . We define V�1 � UK.

A θ-decomposition, uniquely specifies U in Definition 3.3, however
a given subspace U as in the definition usually hosts a multitude of
θ-decompositions. Notice that by the definition of U , V � U K V�1

and dimV�1 ¤ 2.

Lemma 3.4. The subspace U has an orthogonal basis consisting of
�-type vectors and an orthogonal basis consisting of �-type vectors.

Proof. From the definition of U , we have that U is a perpendicular sum
of 2-spaces all of type θ. Since q � θ pmod 4q, Lemma 3.2 implies that
the 2-spaces in the decomposition of U each have an orthogonal basis
consisting of vectors of any fixed non-singular type. The result now
follows. �

By [1, 21.2], Vθ K Vθ has �-type independently of the type of θ.
Hence U has type �-type when m is even and, if m is odd, U has type
θ. Notice that when dimV�1 � 2, V�1 has type �θ and the type of V is
�θm�1. This multiplicative property of signs does not hold for 1-spaces.
Indeed, Vθ is a perpendicular sum of two 1-dimensional �-spaces and
two �-spaces independently of the type of Vθ.

We write U as a perpendicular sum of m copies of Vθ and select
an ordered basis tei, ei�1u for the ith term of the sum where Qpeiq �
Qpei�1q � 1. This yields an orthogonal basis e1, . . . , e2m of U consisting
of �-type vectors with Qpe1q � Qpe2q � � � � � Qpe2mq � 1. For 1 ¤ i ¤
2m, let xi be the reflection which negates ei and fixes ej for 1 ¤ j ¤ 2m
with j � i. Let yi P GOpxei, ei�1yq be a reflection of �-type which has
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product of order pq�θq2 with xi. Set fi � eiyi�ei and fi�1 P xeiyi�eiy
with Qpfi�1q � Qpfiq. Then fi and fi�1 are �-type vectors. Let yi�1

be the reflection that negates fi�1. We make these selections so that
Qpfiq is independent of i. Notice that xx1, . . . , xmy and xy1, . . . , ymy are
elementary abelian 2-groups of order 22m.

If dimV�1 � 1, then we select d�1 to be a vector of type δ � θmε
so that Qpd�1q � Qpe1q if δ � � and Qpd�1q � Qpf1q if δ � �.
Similarly, using Lemma 3.2, when dimV�1 � 2, we select e�1 and f�1

such that e�1 is perpendicular to f�1 and such that Qpe�1q � Qpe1q and
Qpf�1q � Qpf1q. We fix this notation for the remainder of the paper.
We denote the reflection which negates d�1 by x�1 when θmε � � and
otherwise we represent it by y�1. In the event that dimV�1 � 2, we let
x�1 be the reflection which negate e�1 and y�1 be the reflection which
negates f�1.

We can use these bases to write down the centre of G.

Lemma 3.5. The following hold.

(i) ZpGq � x�Iny where In is the identity of G � GOpV q.
(ii) ZpGq ¤ ΩpV q if and only if V � U (so n � 2m and ε � θm).

(iii) δGOε
2m�1pqq � 2� Ωε

2m�1pqq where δ � θmε.
(iv) SOε

2m�2pqq � 2� Ωε
2m�2pqq.

Proof. Obviously (i) holds. Let z P ZpGq#. Then

z �

$'''&'''%
x1 . . . x2m n � 2m

x1 . . . x2mx�1 n � 2m� 1 and θmε � �

x1 . . . x2my�1 n � 2m� 1 and θmε � �

x1 . . . x2mx�1y�1 n � 2m� 2.

In the first case Spzq is a square and det z � 1 and so ZpGq ¤ ΩpV q. In
the second an third possibilities for z, det z � �1 and Spzq � Spx�1q or
Spy�1q. This, respectively, gives z P �GOε

npqq and z P �GOε
npqq. This

gives (iii). Finally, if z � x1 . . . x2mx�1y�1, then Spzq is a non-square
and z has determinant 1. This is (iv) and (ii) also now follows. �

Lemma 3.6. Suppose that V � W1 K W2, W1 has type ε1 and dimW2 ¥
2. Define H12 � pGOpW1q �GOpW2qq X ΩpV q.

(i) If dimW1 � 2k � 1, then H12 contains a subgroup isomorphic

to ΩpW1q �
θkε1GOpW2q.

(ii) If dimW1 � 2k and θk � �ε1, then H12 contains a subgroup
isomorphic to ΩpW1q � SOpW2q.

(iii) If dimW1 � 2k and θk � ε1 and dimW1 ¥ 4, then CH12pΩpW1qq ¤
ZpΩpW1qq � ΩpW2q.
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(iv) If dimW1 � 2 and θ � ε1, then CH12pΩpW1qq contains a sub-
group isomorphic to SOpW2q.

Proof. Suppose that dimW1 is odd. Then d � diagp�I2k�1, In�p2k�1qq
has determinant �1 and Spdq � θkε1. Thus letting d2 be a reflection in
GOpW2q with spinor norm θkε1, we see that diagp�I2k�1, d2q P ΩpV q
and

ΩpW2qxdiagp�I2k�1, d2qy �
θkε1GOpW2q.

Hence (i) holds.
Suppose that dimW1 � 2k and ε1 � �θk. Then by Lemma 3.5 (iii)

the spinor norm of
diagp�I2k, In�2kq

is not a square. Pick reflections d1 and d2 in GOpW2q such that their
product has spinor norm a non-square (this is possible as, by hypoth-
esis, dimW2 ¥ 2). Then diagp�I2k, d1d2q P ΩpV q and this time we see
that ΩpW2qxdiagp�I2k, d1d2qy � SOpW2q. This proves (ii).

Now suppose that dimW1 � 2k ¥ 4 and ε1 � θk. Then the spinor
norm of diagp�I2k, In�2kq is a square. Suppose that d P H12 centralizes
ΩpW1q and that d R ZpΩpW1qqΩpW2q. As dimW1 ¥ 4, we have

CGOpW1qpΩpW1qq � xdiagp�I2k, In�2kqy.

Hence multiplying by diagp�I2k, In�2kq if necessary we may assume
that d is the block diagonal matrix diagpI2k, d2q with d2 P GOpW2q.
Since GOpW2q X ΩpV q � ΩpW2q, we have (iii).

Finally suppose that dimW1 � 2 and θ � ε1. Assume that d P H12

centralizes ΩpW1q. Then, as ΩpW1q is cyclic of order pq � θq{2 and
ΩpW1q is centralized by SOpW1q, we see that d is the block diagonal
matrix diagpg, d2q for some g P SOpW1q and d2 P GOpW2q. Since g has
determinant 1, so does d2. Thus selecting g P SOpW1qzΩpW1q, we see
that ΩpW2qxdiagpg, d2qy � SOpW2q and centralizes ΩpW1q. �

Let
Σ � tte1, e2u, te3, e4u, . . . , te2m�1, e2muu

and Xm � SympΣq be the subgroup of G which faithfully permutes the
ordered parts of the partition of the basis for Σ.

Lemma 3.7. We have Xm ¤ Ωε
npqq.

Proof. It suffices to show that the transpositions in Xm lie in Ωε
npqq

and it further suffices to consider the transposition which exchanges
te1, e2u and te3, e4u. On the 4-dimensional space xe1, e2, e3, e4y, such an
element, β say, is a product of two reflections one swapping e1 and
e3 and one swapping e2 and e4. Then β has determinant 1 and, as
Qpe1 � e3q � Qpe2 � e4q, β is contained in Ωε

npqq. �
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The next lemma illustrates how the bases for the θ-decomposition we
have chosen reveal the Sylow 2-structure of G. The subgroups defined
in this lemma are stabilizers of θ-decompositions if V .

Lemma 3.8. One of the following holds.

(i) n � 2m, V � U , ε � θm and

GOθ
2pqq o SympΣq � GOθ

2pqq o Sympmq

contains a Sylow 2-subgroup of G.
(ii) n � 2m� 1, codim U � 1 and, setting δ � θmε, we have

pGOθ
2pqq o SympΣqq �GOδ

1pqq � pGOθ
2pqq o Sympmqq �GOδ

1pqq

contains a Sylow 2-subgroup of G.
(iii) n � 2m� 2, codim U � 2, ε � �θm�1 and

pGOθ
2pqq o SympΣqq �GO�θ

2 pqq � pGOθ
2pqq o Sympmqq �GO�θ

2 pqq

contains a Sylow 2-subgroup of G.

Proof. If n � 2 or n � 3, the result is true (where for (iii) we interpret
GOθ

2pqq o Symp0q as the trivial group). So we proceed by induction to
prove the result. We take the orders of the orthogonal groups from [17,
pg. 72].

First we suppose that U � V . Then ε � θm and we have the following
possibilities

|GOθm

2mpqq : GOθm�1

2m�2pqq| �

$'''&'''%
pqm�1 � 1qpqm � 1q θm � �, θm�1 � �

pqm�1 � 1qpqm � 1q θm � �, θm�1 � �

pqm�1 � 1qpqm � 1q θm � �, θm�1 � �

pqm�1 � 1qpqm � 1q θm � �, θm�1 � �.

Evidently the fourth possibility cannot arise. In the first case, we have
ε � θ � � and q � 1 pmod 4q. Therefore

ppqm�1 � 1qpqm � 1qq2 � 2pqm � 1q2 � 2m2pq � 1q2 � 2m2pq � θq2.

In the second case, ε � �, θ � �, q � �1 pmod 4q and m is even.
Hence

ppqm�1 � 1qpqm � 1qq2 � 2m2pq � θq2.

In the third possibility, ε � θ � �, q � �1 pmod 4q and m is odd.
Hence

ppqm�1 � 1qpqm � 1qq2 � 2pqm�1 � 1q2 � 2m2pq � θq2.

Since the 2-part of the index of GOθ
2pqqoSympm�1q in GOθ

2pqqoSympmq
is exactly 2m2pq � θq2, we have proved (i).
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Suppose that dimV�1 � 1. Then |GO2m�1pqq : GOθm

2mpqq| � qm� θm.
Since q � θ pmod 4q, qm � θm pmod 4q and so qm � θm � 2 pmod 4q.
Hence, using (i) and the definition of type of an orthogonal group of
odd degree, we get that (ii) holds.

Assume that dimV�1 � 2, and set n � 2m�2. Observe that V�1 has
type �θ. Hence ε � �θm�1 and we are interested in the index

|GO�θm�1

2m�2 pqq : GOθm

2mpqq| �

$'''&'''%
pqm � 1qpqm�1 � 1q �θm�1 � �, θm � �

pqm � 1qpqm�1 � 1q �θm�1 � �, θm � �

pqm � 1qpqm�1 � 1q �θm�1 � �, θm � �

pqm � 1qpqm�1 � 1q �θm�1 � �, θm � �.

Notice that the second case cannot occur as then θ � � and m is
odd which means that m � 1 is even and so θm�1 � �. Suppose that
the first possibility arises. Then θ � � and m is even. As θ � �, q � 3
pmod 4q, and m� 1 is odd, qm�1 � 1 � qm � 1 � 2 pmod 4q. Hence

pqm � 1qpqm�1 � 1q � 4 pmod 8q.

In the third case, we have θ � � and q � 1 pmod 4q which gives
pqm�1qpqm�1�1q � 4 pmod 8q. In the final case, θ � �, m�1 is even
and q � 3 pmod 4q and so again pqm�1qpqm�1�1q � 4 pmod 8q. Since
the Sylow 2-subgroups of GO�θ

2 pqq have order 4, part (iii) holds. �

We call the subgroups introduced in Lemma 3.8, θ-decomposition
subgroups of G or more succinctly θ-subgroups. Exploiting the descrip-
tions of the θ-subgroups given in Lemma 3.8, we intend to decompose
the Sylow 2-subgroup according to the 2-adic decomposition of m. Thus
we set

m � 2m1 � � � � � 2ms

with m1 ¡ � � � ¡ ms ¥ 0. Set J � t1, . . . , su. Recalling the definition of
Σ from before Lemma 3.7, we write Σ � Σ1 Y � � � YΣs with |Σi| � 2mi

just as we did for Ω.
Following our standard notation for symmetric groups, Tmk

denotes
a Sylow 2-subgroup of SympΣkq � Symp2mkq which here we regard as
a subgroup of SympΣkq ¤ SympΣq. Let βi � te2i�1, e2iu P Σj and set
Dβi � xx2i�1, y2i�1y � Dihp2pq � θq2q. Then we define

Smj
� p
¹
βPΣj

DβqTmj

and note that Smj
is a Sylow 2-subgroup of GOµ

2mj pqq where µ � θ2mj
by

Lemma 3.8. Of course, for a fixed β P Σj, we could also have described
Smj

� Dβ o Tmj
.
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Define Vmj
� rV, Smj

s � xxβy | β P Σjy and observe that Lemma 3.8
implies that

V � Vm1 K � � � K Vms K V�1

where V�1 is either the zero space, one-dimensional of type δ � θmε or
a 2-dimensional non-degenerate space of type �θ with orthogonal basis
te�1, f�1u. In the cases when V�1 is zero we take S�1 to be the trivial
group (acting on a zero-dimensional space). When dimV�1 � 1, we set
S�1 � xx�1y if θmε � � and xy�1y if θmε � �. If dimV�1 � 2, we write
S�1 � xx�1, y�1y. Finally, we put

S �
s¹
j�1

Smj
� S�1

and note that S P Syl2pGq by Lemma 3.8. This gives us a “hands-on”
description of S.

We record the following consequence of our notational choices.

Lemma 3.9. We have Vmj
is a perpendicular sum of 2mj subspaces of

θ-type and dimVmj
� 2mj�1. In particular, if j P J and mj ¥ 1, then

Vmj
is of �-type and if mj � ms � 0, then V0 is of θ-type.

Notice that
U � Vm1 K � � � K Vms

and, as we mentioned before, U has type θm.

Lemma 3.10. Suppose that n ¥ 4, H � Ωε
npqq and SH � SXH. Then

(i) for 1 ¤ i ¤ s, SH acts irreducibly on Vmi
.

(ii) S and SH act in the same way on V�1.

Furthermore, if W ¤ V is SH-invariant and non-zero, then W is S-
invariant and non-degenerate.

Proof. Suppose first that dimVmi
¥ 4. To simplify notation we may as

well suppose that V � Vmi
and so has basis e1, . . . , e2m. Recall xj is the

reflection that negates ej and x1, . . . , x2m P S. For 1 ¤ j   k ¤ 2m,
xjxk has spinor norm a square and determinant 1 and so xjxk P SH .
Assume that W is a non-zero SH-invariant subspace of V . We know
Tm ¤ Xm ¤ H by Lemma 3.7, and so Tm leaves W invariant. Choose
a non-zero w �

°2m
i�1 λiei P W such that the number dpwq of terms

with λi � 0 is minimal. If dpwq � n, then dpw�wxn�1xnq � dpwq � 2,
a contradiction as dimVmi

¥ 4. Hence we can suppose λj � 0 and
λk � 0 for some j, k P t1, . . . , 2mu. Then dpw � wxjxkq � dpwq � 1
which is contradiction unless w � wxjxk � 0. Because of this we may
suppose that ek P W for some k P t1, . . . , 2mu. Applying elements
from Tm, we have e` P W for all ` � k pmod 2q. We know y1y3 P SH .
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Since e1y1y3 � e1y1 P xe1, e2yzxe1y and e2y1y3 � e2y1 P xe1, e2yzxe2y, we
deduce that xe1, e2y ¤ W and, as W is Tm-invariant, we have V � W .
This proves (i) when dimVmi

¥ 4. Suppose that dimVmi
  4. Then

mi � ms � 0 and Vms � V0 is isometric to Vθ. Since n ¥ 4, either
n � 4, m1 � 0 and V � V0 � V�1 with V�1 � xe�1, f�1y or m1 ¥ 1.

Taking Σ0 � tλu with λ � tea, ea�1u, we have S0 � Dλ is non-
abelian. Hence S0 acts irreducibly on V0 as dimV0 � 2. Now set x �
x1xa and y � y2ya�1 if m1 ¥ 1 or x � xax�1 and y � ya�1y�1 if m1 � 0.
Then xx, yy ¤ SH and acts on V0 as S0 and thus V0 is irreducible as an
SH-module as claimed. This confirms that (i) holds.

Part (ii) is demonstrated by considering the one of or both of ele-
ments x1x�1 and y1y�1.

By parts (i) and (ii), as an SH-module, V is a direct sum of the pair-
wise non-isomorphic irreducible submodules. Hence every irreducible
SH-submodule of V is S-invariant and so it follows from Maschke’s
Theorem that every SH-submodule is an S-submodule. �

Lemma 3.11. The following hold.

(i) If V � U (so n � 2m and ε � θm), then G contains GO�
1 pqq o

Sympnq. In particular, G contains two conjugacy classes of sub-
groups isomorphic to 2 o Sympnq.

(ii) If codim U � 1 (so n � 2m� 1 and δ � θmε), then G contains
GOδ

1pqq o Sympnq.
(iii) If codim U � 2 (so n � 2m � 2 and ε � �θm�1), then G

contains the two subgroups GO�
1 pqq oSympn�1q�GO	

1 pqq. �

Proof. This follows from Witt’s Lemma. �

We consider the subgroups appearing in Lemma 3.11 when q � 3, 5
pmod 8q and investigate how they intersect with our various candidates
for H. Recall that we have fixed e1, . . . , e2m to be an orthogonal bases
for U with ei of �-type just after Lemma 3.11. In this case a Sylow
2-subgroup of GOθ

2pqq is generated by two reflections p �1 0
0 1 q and p 0 1

1 0 q
(with respect to te1, e2u) and so in this case, as 2 is not a quadratic
residue mod p because q � 3, 5 pmod 8q, we can manufacture the basis
f1, . . . , f2m as follows: f2j�1 � e2j�1 � e2j�2 and f2j�2 � e2j�1 � e2j�2

for 0 ¤ j ¤ m � 1. Then the type of fi is � and f1, . . . , f2m is an
orthogonal basis for U . In particular, in this instance we see that S
preserves both these decompositions and that the groups described in
Lemma 3.11 all contain S.

Lemma 3.12. Suppose that q � 3, 5 pmod 8q.
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(i) If V � U (n � 2m and ε � θm), then

pGO�
1 pqq o Sympnqq XH �

$'''&'''%
2n�1.Sympnq H � 	GOε

npqq

GO�
1 pqq o Altpnq H � �GOε

npqq

2n�1.Sympnq H � SOε
npqq

2n�1.Altpnq H � Ωε
npqq

.

(ii) If codim U � 1 (n � 2m� 1 and δ � θmε), then

pGOδ
1pqq o Sympnqq XH �

$'''&'''%
2n�1.Sympnq H � �δGOε

npqq

GOδ
1pqq o Altpnq H � δGOε

npqq

2n�1.Sympnq H � SOε
npqq

2n�1.Altpnq H � Ωε
npqq

.

(iii) If codim U � 2 (n � 2m� 2 and ε � �θm�1), then

pGO�
1 pqqoSympn�1q�GO	

1 pqqqXH �

$'''&'''%
2n�2.Sympn� 1q � 2 H � 	GOε

npqq

2n�1.Sympn� 1q H � �GOε
npqq

2n�1.Sympn� 1q H � SOε
npqq

2n�2.Sympn� 1q H � Ωε
npqq

.

(Notice that the subgroups of the same shape in lines one and three in
the above statements (i), (ii) and (iii) are not equal.) In all cases SXH
is a Sylow 2-subgroup of these groups.

Proof. This follows from the discussion prior to the lemma. �

Extending our notation to cover all possibilities for H ¤ G we set
SH � S X H P Syl2pHq, BH � NHpS X Hq and B � BG. As we now
see, if n ¥ 6, BH � B XH � SH .

Lemma 3.13. We have that BXH � SH is a Sylow 2-subgroup of H.
Furthermore B XH � SH � BH unless H   G, q � 3, 5 pmod 8q and
one of the following holds:

(i) G � GOε
3pqq and H ¤ εGOε

3pqq � 2 � PSL2pqq when q �
5 pmod 8q and H ¤ �εGOε

3pqq � 2 � PSL2pqq when q � 3
pmod 8q.

(ii) G � GO�
4 pqq and H ¤ �GO�

4 pqq.
(iii) G � GOε

5pqq and H ¤ εGOε
5pqq � 2� PSp4pqq.

Proof. That SH is a Sylow 2-subgroup of H follows from Lemma 3.8
and our construction of S. The fact that B � S � NGpSq is stated as
Theorem 5 of [2]. For H   G, we refer to [7, Theorem 1] to see that
typically B XH � SH � BH and to locate the exceptions which occur
when n � 3, 4 and 5 and q � 3, 5 pmod 8q.
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For n � 3, we have K � ZpGqG1 � 2 � Ωε
3pqq � 2 � PSL2pqq is

θεGOε
3pqq by Lemma 3.5 (ii) and this leads to the case distinction in

(i).
When n � 4, we additionally know that V has �-type. Since q � 3, 5

pmod 8q, B{O2pBq � Symp3q � Symp3q and we find BH{O2pBq � 3 �
Symp3q when H � �GO�

4 pqq and BH{O2pBq � 3� 3 when H � Ω�
4 pqq.

When H � SO�
4 pqq, the Sylow 3-subgroup is inverted. Hence we have

the three possibilities as listed in (ii).
When n � 5, Lemma 3.5 (ii) gives K � ZpGqG1 � 2 � Ωε

5pqq is
εGOε

5pqq as m � 2. This is (iii).
�

Our general strategy for locating the 2-minimal subgroups of H is
guided by the Proposition 3.14. As mentioned in the introduction the
existence of the exceptional Coxeter groups E7 and E8 play a role in
the subgroup structure of the orthogonal groups in dimensions 7 and
8. The Coxeter group E6 doesn’t get invited to the party as its Sylow
2-subgroup is a factor of 2 too small to contain a Sylow 2-subgroup of
Ω�

6 pqq. This can lead to some confusion as H � Ω�
6 p3q contains sub-

groups GO�
5 p3q X H � PSU4p2q.2 � E6 but the latter group contains

reflections whereas Ω�
6 p3q does not. In dimension 8, the �-type reflec-

tions and �-type reflections become conjugate in the conformal group.
Hence in GO�

8 pqq there are two conjugacy classes of subgroups isomor-
phic to E8 one generated by �-type reflections and the other by �-type
reflections. These classes decompose into two classes in �GO�

8 pqq and
eventually, when q � 3, 5 pmod 8q, we obtain four conjugacy classes
of subgroups containing the Sylow 2-subgroup of Ω�

8 pqq each being iso-
morphic to E1

8 � 2.Ω�
8 p2q. The situation is similar in dimension 7 except

that there is only one conjugacy class of subgroups isomorphic to E7

and this subgroup is generated by reflections of type θ3ε and gives rise
to just two conjugacy classes of subgroups isomorphic to E1

7 � Sp6p2q
in Ωε

7pqq.

Proposition 3.14. Suppose that G � GOε
npqq, n ¥ 6 and P   H has

odd index in H. Then either

(i) P normalizes a subfield subgroup of G;
(ii) P leaves a proper subspace of V invariant;

(iii) P leaves invariant a decomposition of V into an orthogonal
sum of non-degenerate subspaces of dimension 2k for some k ¥
0;

(iv) n � 7, q � 3, 5 pmod 8q and H � θ3εGOε
7pqq with P contained

in a subgroup isomorphic to E7;
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(v) n � 7, q � 3, 5 pmod 8q and H � Ωε
7pqq with P contained

in a subgroup isomorphic to E1
7 � Sp6p2q. There are two H-

conjugacy classes of such subgroups and they are conjugate in
G;

(vi) n � 8, q � 3, 5 pmod 8q and H � �GO�
8 pqq with P contained

in a subgroup isomorphic to E8. There are two H-conjugacy
classes of such subgroups and they are conjugate in G; or

(vii) n � 8, q � 3, 5 pmod 8q and H � Ω�
8 pqq with P contained

in a subgroup isomorphic to E1
8 � 2.Ω�

8 p2q. There are four H-
conjugacy classes of such subgroups and two conjugacy classes
in G.

Proof. By Lemma 3.13, as n ¥ 6, BH is both a Sylow 2-subgroup of
H and its own normalizer in H. Suppose that (i), (ii) and (iii) do not
hold. Then by [9, Theorem] or [11, 12], n � 7 or pn, εq � p8,�q and P
is contained in a subgroup of G isomorphic to E7 � 2 � Sp6p2q or E8

(which has shape 2.Ω�
8 p2q.2) respectively. Since both are generated by

a single conjugacy class of reflections, they do not contain a Sylow 2-
subgroup of G. However, they do contain Sylow 2-subgroups of some of
the subgroups of G of index 2 . The exact description of these groups
is given in the statement. For this we note that in odd dimensional
orthogonal groups GOε

2m�1pqq the subgroup isomorphic to 2�Ωε
2m�1pqq

is θmεGOε
2m�1pqq by Lemma 3.5 (ii). �

With all our notation established, we now gather it together in one
place.

Notation 3.15. We take n ¥ 2 a natural number, q � pa with p an
odd prime, G � GOε

npqq, θ � q pmod 4q and fix a θ-decomposition of
V .

(i) H is one of the five groups GOε
npqq,

�GOε
npqq,

�GOε
npqq, SOε

npqq
and Ωε

npqq.
(ii) V � U K V�1 where dimU � 2m, dimV�1 ¤ 2 and n �

2m� dimV�1.
(iii) m � 2m1 � � � � � 2ms with m1 ¡ � � � ¡ ms ¥ 0 and J �

t1, . . . , su.
(iv) U has an orthogonal bases e1, . . . , e2m and f1, . . . , f2m with

Qpe1q � Qpe2q � � � � � Qpe2mq a square and Qpf1q � Qpf2q �
� � � � Qpf2mq a non-square. Either V�1 � 0, V�1 � xd�1y
with d�1 of type θmε and Qpd�1q P tQpe1q, Qpf1qu or V�1 �
xe�1, f�1y, Qpe�1q � Qpe1q and Qpf�1q � Qpf1q.

(v) for 1 ¤ i ¤ 2m, xi is the reflection negating ei and yi is the
reflection negating fi. We have xxi, yiy � Dihp2pq � θq2q.
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(vi) S �
±

jPJ Smj
� S�1 is a Sylow 2-subgroup of G with Vmj

�
rV, Smj

s and rV, S�1s � V�1 as described before Lemma 3.9.
(vii) SH � S XH P Syl2pHq, BH � NHpS XHq and B � NGpSq.

4. 2-minimal subgroups of orthogonal groups in dimension
at most 5

In this section we continue to use the notation as in 3.15 and capture
the 2-minimal subgroups when n ¤ 5. We begin this section by item-
izing the 2-minimal subgroups of Ω�

3 pqq � PSL2pqq. In Theorem 4.1,
the superscript r2s indicates that there are two conjugacy classes of the
given group.

Theorem 4.1. Suppose that H � Ωε
3pqq � PSL2pqq with q � pa odd.

(i) If q � 3, 5 pmod 8q and p � 3, 5, then one of the following
holds:
(a) q � �11,�19 pmod 40q and

MpH,BHq � tAltp5qr2s,Ωε
3pp

stq | st P Πpaqu; or

(b) q � �11,�19 pmod 40q and

MpH,BHq � tΩε
3pp

stq | st P Πpaq Y t1uu.

(ii) If q � 3, 5 pmod 8q and p � 3, then

MpH,BHq � tΩε
3p3

stq | st P Πpaqu.

(iii) If q � 3, 5 pmod 8q and p � 5, then

MpH,BHq � tΩε
3p5

stq | st P Πpaq Y t1uu.

(iv) If q � 1 pmod 8q, then one of the following holds:
(a) a2 ¡ 2 or a2 � 2 and q � 1 pmod 16q,

MpH,BHq �MpDihpq � 1q, BHq Y tSO�
3 pp

a2{2qu;

(b) p � 5, a2 � 2 and

MpH,BHq �MpDihpq � 1q, BHq Y tSO�
3 p5qu Y tSymp4qr2su;

(c) p � 3, a2 � 2 and

MpH,BHq �MpDihpq � 1q, BHq Y tSO�
3 p3qu;

(d) a2 � 2 and q � 9 pmod 16q with p ¡ 5,

MpH,BHq �MpDihpq � 1q, BHq Y tSymp4qr2su;

(e) q � 1 pmod 16q, a2 � 1,

MpH,BHq �MpDihpq � 1q, BHq Y tΩε
3ppqu; or
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(f) q � 9 pmod 16q, a2 � 1,

MpH,BHq �MpDihpq � 1q, BHq Y tSymp4qr2su.

(v) If q � 7 pmod 8q, then one of the following holds:
(a) q � 7 pmod 16q,

MpH,BHq �MpDihpq � 1q, BHq Y tSymp4qr2su; or

(b) q � 15 pmod 16q,

MpH,BHq �MpDihpq � 1q, BHq Y tSOε
3ppqu.

Proof. See Theorem 13.2 of [13]. �

We make some remarks about the subgroups appearing in Theo-
rem 4.1. The subgroups Dihpq � θq are GOθ

2pqq � GO1pqq. Just as
in Proposition 3.14 we see the shadow of Coxeter groups in the pic-
ture. In this case the projection of H3 � 2 � Altp5q appears in (i) and
B3 � 2 o Symp3q appears in various other parts.

In the next theorem notice that SO3pqq �
�εθGOε

3pqq � PGL2pqq.

Theorem 4.2. Assume that H � SO3pqq or H � �εθGOε
3pqq with

q � pa odd. Then under the given conditions MpH,BHq is as follows.

(i) q � θ pmod 8q and

MpDihp2pq � θqq, BHq Y t�εθGOε
3pp

a2qu.

(ii) q � 4� θ pmod 8q, p � 5, and

MpDihp2pq � θqq, BHq Y tSymp4qu.

(iii) q � 5a with a odd and

MpDihp2pq � 1qq, BHq Y t�εθGOε
3p5qu Y tSymp4qu.

Proof. This can be written down using [13, Proposition 9.3]. �

Since GOε
3pqq � 2 � PGL2pqq, and εθGOε

3pqq � 2 � Ωε
3pqq, we may

now use Theorems 4.1 and 4.2 to write down the 2-minimal subgroups
for all H in dimension 3.

For application in the proof of our main theorem, Theorem A, we
present the following corollary.

Corollary 4.3. Suppose that G � GOε
3pqq and P PMpG,BqzMpGOθ

2pqq�
GOθε

1 pqqq. Then one of the following holds:

(i) q � 1, 7 mod 8 and P � GOε
3pp

a2q;
(ii) q � 3, 5 pmod 8q and P � GOεθ

1 pqq o Symp3q;or
(iii) p � 5, a is odd and P � GOε

3p5q.

In particular, G P MpG,Bq, if and only if G � GOε
3pp

a2q with pa2 �
1, 7 pmod 8q, G � GOε

3p5q or G � GOε
3p3q � GO�ε

1 p3q o Symp3q. �
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If G � GO�
4 p3q, then G{O2pGq � Symp3q�Symp3q and so this group

has two 2-minimal subgroups each of index 3 in G. Since GO�
4 p3q is

isomorphic to the Coxeter group of type F4, these novelty 2-minimal
subgroups perpetuate in GO�

4 pqq whenever q � 3, 5 pmod 8q. When-
ever q � 3, 5 pmod 8q and H � Ω�

4 pqq, then F4 is realized as NGpSHq
where SH is the central product of two quaternion groups of order 8. No-
tice that F4 contains GO�

1 pqq oSymp4q � B4 and GO�
1 pqq oSymp4q � B4

as maximal subgroups.

Lemma 4.4. Suppose that G � GO�
4 pqq and P P MpH,BHq. Let K1

and K2 be subnormal subgroups of G isomorphic to SL2pqq, K � K1K2

and B0 � NBH
pK1q � NBH

pK2q. Then either

(i) there exists

X PMpK1B0, NK1B0pS XB0qq YMpK2B0, NK2B0pS XB0qq

such that P � xX,BHy; or
(ii) q � 3, 5 pmod 8q and P PMpNHpS XKq, BHq.

Proof. Suppose first that H P tSO�
4 pqq,Ω

�
4 pqqu. Then BH � NHpSXHq

normalizes K1 and K2 and so Lemma 2.8 applies to give possibility (i)
or (ii) holds.

So we may suppose that H � GO�
4 pqq or H � �GO�

4 pqq.
Assume that (ii) does not hold. Then G � GO�

4 p3q and so K1 and
K2 are components of G and there exists a reflection b P BH such that
Kb

1 � K2. Set S0 � S XB0.
We have P � BHpP X Kq, pP X K1q

b � P X K2 and both P X K1

and P X K2 are normalized by P X K. If P normalizes S X K, then
NHpS XKq is not a 2-group by Lemma 3.13 and so q � 3, 5 pmod 8q
and (ii) holds, a contradiction. Hence P XK does not normalize SXK
and so S XK1 is not normalized by P XK. Set R � xpS XK1q

PXKy.
Then R is normalized by B0.

Set X � RB0. We claim that NK1B0pS0q ¤ X. This plainly holds if
B0 � NK1B0pS0q. Assume thatB0   NK1B0pS0q. In this case Lemma 3.13
implies q � 3, 5 pmod 8q, S0 � S X K and we know H � �GO�

4 pqq.
In addition, we have B0 ¤ K, |BH : S X H| � 3 � |NKpS XKq : B0|
and |BH : B0| � 2. Since B0 normalizes R and K2 centralizes R, R is
normalized by

B0NK2pS XK2q � NKpS XKq ¥ NK1pS XKq.

Using Theorem 4.1 or more directly [4, II.8.27] we observe that any
subgroup of K1 which is normalized by NK1pSXK1q contains NK1pSX
K1q. Hence NK1pS XK1q ¤ R and NK1pS XK1qB0 � NK1B0pS0q ¤ X
as claimed.
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Since P XK1 normalizes R, we have P XK1 � RNPXK1pS XK1q �
R. Hence P � xX,BHy. Assume that X is not 2-minimal. Then X
contains maximal subgroups U1 and U2 both containing NXpS0q with
U1 � U2. We have BU1U

b
1 is a proper over-group of B in P containing

B. Similarly BU2U
b
2 is a proper over-group of B contained in P . Since

pP XKqB0 � xU1, U2y, we have a contradiction to the 2-minimality of
P . Hence X is a 2-minimal subgroup of K1B0 and P � xX,BHy as
claimed in (i). �

Lemma 4.5. Suppose that G � GO�
4 pqq. Let K1 and K2 be subnor-

mal subgroups of G isomorphic to SL2pqq, K � K1K2 and select re-
flections x1 and y3 such that rV, x1s � xe1y and rV, y3s � xf3y. Put
B0 � NBH

pK1q � NBH
pK2q. Assume that P PMpH,BHq. Then

(i) If X PMpK1B0, NK1B0pS XB0qq YMpK2B0, NK1B0pS XB0qq
is such that P � xX,BHy, then either
(a) H � G � GO�

4 pqq, K1xx1y3y{ZpK1q � PGL2pqq and

MpH,Bq � tRRx1B | R PMpK1xx1y3y, B XK1xx1y3yqu

(see Theorem 2.6 for the candidates for R).
(b) H � �GO�

4 pqq,

MpH,BHq � tRRx1BH | R PMpK1, NK1pS XK1qqu

(see Theorem 4.1 for the candidates for R).
(c) H � SO�

4 pqq and

MpH,BHq � tRBH , R
x1BH | R PMpK1xx1y3y, BH XK1xx1y3yqu

(see Theorem 2.6 for the candidates for R).
(d) H � Ω�

4 pqq and

MpH,BHq � tRBH , R
x1BH | R PMpK1, BH XK1qu.

(see Theorem 4.1 for the candidates for R).
(ii) If q � 3, 5 pmod 8q and P PMpNHpS XKq, BHq, then one of

the following holds:
(a) H � G, and P � rNKpS XKq, x1sB � GO�

1 pqq o Symp4q
or P � rNKpS XKq, y3sB � GO�

1 pqq o Symp4q.
(b) H � �GO�

4 pqq, and P � rNKpS XKq, x1sBH .
(c) H � �GO�

4 pqq, and P � rNKpS XKq, y3sBH .
(d) H � SO�

4 pqq, and P P tNK1pSXKqBH , NK2pSXKqBH , rNKpSX
Kq, x1sBH , rNKpS XKq, y3sBHu.

Proof. Suppose that X P MpK1B0, NK1B0pS X B0qq and P � xX,BHy
be as in Lemma 4.4 (i). Set D � xx1y3y XH. Then B0 � pBH XKqD
and |D| ¤ 2. Since X ¥ NK1B0pS XB0q ¥ B0, we have

X � pX XK1qB0 � pX XK1qDpB0 XK2q.
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Set R � pX XK1qD. Now

NK1DpS XK1Dq � NK1DppS XK1qDq

� NK1B0ppS XKqDq XK1D

¤ X XK1D � R.

Let U� be the unique maximal subgroup of X containing NK1B0pSXB0q
and assume that NK1DpSXK1Dq ¤ T   R. Then T � pT XK1qD and
so T0 � TNK1B0pS XB0q � pU� XK1qDpB0 XK2q and T0 XK1D � T .
Hence NK1B0pS XB0q   T0   X which means that T0 ¤ U�. It follows
that T ¤ U� X R and so R P MpK1D,NK1DpS X K1Dqq. Now P �
xX,BHy � RBH if BH � B0 and otherwise P � RRx1BH . This proves
part (i).

If Lemma 4.4 (ii) holds, then part (ii) follows as NGpS X Kq � F4

and F4{O2pF4q � Symp3q � Symp3q. �

Corollary 4.6. Suppose that G � GO�
4 pqq and P PMpG,BqzMpGOθ

2pqqo
T1, Bq. Then one of the following holds

(i) q � 1, 7 pmod 8q and P � GO�
4 pp

a2q;
(ii) q � 3, 5 pmod 8q, P PMpF4, Bq P tGO�

1 pqq oSymp4q,GO�
1 pqq o

Symp4qu;
(iii) p � 5, and P � GO�

4 p5q.

In particular, G PMpG,Bq if and only if G � GO�
4 pp

a2q with pa2 � 1, 7
pmod 8q, or q � 5 and G � GO�

4 p5q.

Proof. Parts (i), (ii) and (iii) follow from Lemma 4.5.
Suppose that G P MpG,Bq. If q � 1, 7 pmod 8q, then pa2 � 1, 7

pmod 8q. If pa2   q, then GOθ
2pqq o T1 is not contained in any proper

subfield subgroup and this leads to a contradiction. Hence if G is 2-
minimal, then q � pa2 .

Suppose that q � 3, 5 pmod 8q with q ¡ 3. Then the subgroup F4 is
contained in GO�

4 ppq and this subgroup with GOθ
2pqq o T1 generates G

unless GOθ
2pqq o T1 ¤ F4. This latter possibility holds only if q � θ is

a power of 2. Since q � 3, 5 pmod 8q, this is only if q P 5 as q � 3. If
q � 3, then GO�

4 p3q � F4, and this group is not 2-minimal. �

Before we study the 2-minimal subgroups of GO�
4 pqq, we draw at-

tention to a perplexing consequence of the definition of the type of a
quadratic space of odd dimension. The situation of interest arises when
m is odd, n � 2m � 2 and q � �1 pmod 4q so that θ � �. Now in
this case U has type θm � � and V�1 has type �θ � �. In particular,
V has �-type. We take our standard basis e1, . . . , e2m for U and let
e�1, f�1 be our usual basis for V�1. Then W � fK�1 � xe1, . . . , e�1y and
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eK�1XW � U which has �-type. Since e�1 is a �-vector, it follows from
the definition of type of an odd dimensional orthogonal space that W
has �-type. Thus the stabilizer of the decomposition W K WK has type
GO�

2m�1pqq � GO�
1 pqq whereas we may have expected the superscripts

to product to a �. This leads to the matching of signs being rather
bizarre in part (iii) of the next lemma.

Lemma 4.7. Suppose that G � GO�
4 pqq and P P MpH,BHq. Then

P � pP X H where pP P MpG,Bq. Furthermore, if H � G and P P
MpG,Bq, then one of the following occurs:

(i) P is contained in GO�
2 pqq �GO�

2 pqq;
(ii) P is isomorphic to one of the two subgroups GO�

3 pp
a2q�GO	

1 pqq
if q � 1 pmod 8q;

(iii) P is isomorphic to one of the two subgroups GO�
3 ppq�GO�

1 pqq
if q � 7 pmod 8q;

(iv) P is isomorphic to one of the two subgroups GO1pqq
�oSymp3q�

GO1pqq
	 if q � 3, 5 pmod 8q; or

(v) q � 5a, a odd, P � GO�
3 p5q �GO	

1 p5q.

Proof. The subgroups presented in parts (ii) to (iv) are 2-minimal. To
prove the lemma, we show that there are no more by determining all
the 2-minimal subgroups of of Ω�

4 pqq � PSL2pq
2q using Theorem 4.1

and noting that these are the intersection of the groups listed in (i) to
(iv) with Ω�

4 pqq and are consequently normalized by B. To use Theo-
rem 4.1 in a transparent way, we temporarily take π � q2 � p2a and let
α2 � 2a2. Thus we see that α2 ¡ 1 and π � 1 pmod 8q. Thus we are
immediately in case (iv) of Theorem 4.1. Hence we have the following
possibilities for the 2-minimal subgroups of Ω�

4 pqq:

(i) α2 ¡ 2 or α2 � 2 and π � 1 pmod 16q,

MpG,Bq �MpDihpπ � 1q, Bq Y tPGL2pp
α2{2qr2su;

(ii) p � 5, α2 � 2 and

MpG,Bq �MpDihpπ � 1q, Bq Y tPGL2p5q
r2su Y tSymp4qr2su;

(iii) p � 3, α2 � 2 and

MpG,Bq �MpDihpπ � 1q, Bq Y tPGL2p3q
r2su;

(iv) p ¡ 5, α2 � 2 and π � 9 pmod 16q,

MpG,Bq �MpDihpπ � 1q, Bq Y tSymp4qr2su.

Now we note that GO�
2 pqq�GO�

2 pqq intersects H in a dihedral group
Dihpπ � 1q, the groups PGL2pp

α2{2q are just the groups SO3pp
α2{2q

and the two classes of subgroups isomorphic to Symp4q, which arise
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when π � 9 pmod 16q or p P t3, 5u with α2 � 2, are just GO	
1 pqq �

GO�
1 pqq oSymp3q intersected with Ω�

4 pqq. These considerations validate
the lemma. �

Lemma 4.8. Suppose that G � GOε
5pqqand P PMpH,BHq. Then P �pP XH where pP PMpG,Bq. In addition, if H � G and P PMpG,Bq,

then one of the following holds:

(i) P PMpGO�
4 pqq �GOε

1pqq, Bq;
(ii) q � 3, 5 pmod 8q, P � GOε

1pqq o Symp5q; or
(iii) q � 1, 7 pmod 8q, P � GOε

5pp
a2q.

In particular, H P MpH,BHq if and only if q � 1, 7 pmod 8q and
a � a2.

Proof. Since GOε
5pqq � 2 � PGSp4pqq and Ωε

5pqq � PSp4pqq, we may
read the 2-minimal subgroups for Ωε

5pqq from Lemma 3.1 of [14]. Given
this list we then argue as in Lemma 4.7 that the statement of Lemma 4.8
is correct. �

We close this section with a lemma which applies when n � 7 and
when n � 8.

Lemma 4.9. Suppose that q � 3, 5 pmod 8q and that n P t7, 8u. As-
sume that K ¤ H is one of the exceptional configurations given in
Proposition 3.14 (iv) –(vii) (so K is isomorphic to one of E7, E1

7, E8

or E1
8). If P PMpK,BXKq, then either P leaves a proper subspace of

V invariant or P leaves a decomposition of V into an orthogonal sum
of equal dimensional subspaces invariant.

Proof. Suppose first that n � 7. Then K � E7 � 2 � Sp6p2q or
K � Sp6p2q. Let W be the natural Sp6p2q symplectic module. The
2-minimal subgroups of K 1 are the minimal parabolic subgroups of K 1

and are contained in the stabilizer of an isotropic 1-space of W or in the
stabilizer of an isotropic 2-space of W . In particular, every 2-minimal
subgroup of K containing B centralizes a non-central involution of K
in the centre of BXK 1. As the centralizer in V (the orthogonal module
for G) of such an involution is a proper subspace of V , we have our
conclusion in this case.

Suppose that n � 8 and, so, this time K is either E8, which has
shape 2.Ω�

8 p2q.2, or K has index 2 in E8. The centralizer X of a 2-
central involution in Ω�

8 p2q has shape 21�8
� :pSymp3q�Symp3q�Symp3qq

and this class of involutions lift to elements of order 2 in K [3]. Let
F be the fours group such that F maps to the central subgroup of X,
then, letting z be the central involution of G and f P F zxzy, we have
V � rV, f s K rV, fzs is a non-trivial decomposition of V preserved by
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X and hence by all the 2-minimal subgroups contained in X. The only
member of P PMpK 1, B XK 1q which does not normalize F is the one
which corresponds to the middle node of the Dynkin diagram for D4.
This subgroup P � is normalized by BH and the product P � BHP

� is
a 2-minimal subgroup of H. Viewing P as contained in E8, we see P is
contained in the subgroup which corresponds to the Weyl group of type
D8 which itself has shape 27 : Symp8q. Now, in K the normal subgroup
R of order 27 in D8 � 27 : Symp8q remains normal in D8 XK. We may
write V � CV pRq K `|R:R1|�2CV pR1q and as Altp8q has no subgroups of
index less than 8, we get that V � `|R:R1|�2CV pR1q and each non-zero
summand has dimension 1; furthermore, the sum is orthogonal. Hence
P ¤ GOτ

1pqq oSymp8q for some τ where τ is the type of reflections used
to generate E8. This completes the proof of the lemma. �

5. The 2-minimal subgroups of θ-decomposition subgroups

In this section we maintain the notation and assumptions presented
in 3.15 and in addition we assume that n ¥ 6. Our intention is to
start the study of 2-minimal subgroups of the θ-subgroup in each of
the different candidates for H. Of course, Lemma 3.13 tells us that
BH � SH and that B � NGpSq � S. Since B is so ingrained as the
normalizer of S in G, when we wish to emphasize this role we still use
B in place of S.

Our modus operandi for pinning down the 2-minimal subgroups of
orthogonal groups is to find a smaller collection of subgroups which
corral the 2-minimal subgroups. To this end we let N be one of the
θ-subgroups which appear in Lemma 3.8. Recall that

Σ � tte1, e2u, te3, e4u, . . . , te2m�1, e2muu.

For βi � te2i�1, e2iu P Σ, set Fi � GOpxe2i�1, e2iyq � GO2pxβiyq �
GOθ

2pqq (understanding as usual that it acts trivially on xe2i�1, e2iy
K).

Considering the three possibilities for N portrayed in Lemma 3.8, we let
F � � F1 � � � � �Fm be the base group of the wreath product subgroup
of N . Define F�1 � GOpV�1q and F � F � � F�1. This means

F �

$'&'%
F � V � U

F � �GOεθm

1 pqq codim U � 1

F � �GO�θ
2 pqq codim U � 2

and

N �

$'&'%
F1 o Sympmq V � U

F1 o Sympmq �GOεθm

1 pqq codim U � 1

F1 o Sympmq �GO�θ
2 pqq codim U � 2.
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We further define C� to be the direct product of the cyclic 2-subgroups
of maximal order in F1 to Fm and put C � C� � S�1. Obviously C is
abelian and N normalizes C if n � 2m, or n � 2m� 1.

Lemma 5.1. We have N � NGpC
�q � NGpΩ1pC

�qq ¥ NGpCq and C
is weakly closed in S with respect to G.

Proof. We write C � C1 � � � � � Cm � S�1 where, for 1 ¤ i ¤ m, Ci
is the maximal cyclic subgroup of Fi. Let ci be the involution in Ci.
We first show that NGpC

�q � NGpΩ1pC
�qq � N . Since N ¤ NGpC

�q ¤
NGpΩ1pC

�qq, it suffices to show that N � NGpΩ1pC
�qq. Because rV, cis

is a 2-dimensional space of type θ, for d P S�1, we have rV, ds has
dimension at most 1 or is of type �θ and all the other elements of
Ω1pCq have commutator subspace of dimension at least 3, we infer
that NGpΩ1pCqq permutes the set tc1, . . . , cmu. Since N permutes this
set as Sympmq, we get

NGpΩ1pC
�qq � N

�
m£
i�1

CGpciq

�
� NF � N.

Because Ω1pC
�q � Ω1pCq, we have NGpCq ¤ NGpC

�q � N .
Now suppose that Cg ¤ S. If N � GOθ

2pqq o Sympmq, then S is a
wreath product of a dihedral group of order at least 8 with a Sylow
2-subgroup of Sympmq, and the lemma follows from Lemma 2.5. If N �
GOθ

2pqq o Sympmq �GO�θ
2 pqq or N � GOθ

2pqq o Sympmq �GO1pqq, then
S is isomorphic to the direct product of a wreath product of a dihedral
group of order at least 8 with a Sylow 2-subgroup of Sympmq and an
elementary abelian group S�1 of order 2 or 4. Applying Lemma 2.5 to
S{S�1, we see that CgS�1{S�1 is contained in the base group of S{S�1

and then that Cg ¥ S�1 by comparing the order of C and Cg. But then
Cg � C, as claimed. �

Lemma 5.2. We have pSH X F q1 � pS X F q1 and

Ω1pC
�q � Ω1ppSH X F q1q � Ω1ppS X F q1q

is a characteristic subgroup of SH X F .

Proof. Since n ¥ 6, m ¥ 2. For 1 ¤ i ¤ m, recall that Di � S X Fi is a
dihedral group of order 2pq�θq2 at least 8. We know Di � xx2i�1, y2i�1y.
Now S X F � D1 . . . DmS�1 and so

pS X F q1 � D1
1 . . . D

1
m � xrx2i�1, y2i�1s | 1 ¤ i ¤ my

and Ω1pC
�q � Ω1ppS X F q1q.

To prove the lemma, it remains to show that pSH X F q1 � pS X F q1

and to do this it is sufficient to assume that H � ΩpV q. We only need
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to show that rx2i�1, y2i�1s P pSHXF q
1 for 1 ¤ i ¤ m. Since m ¥ 2, there

exists 1 ¤ j ¤ m with i � j and, in addition, as n ¥ 5, there exists a
reflection t P F such that t commutes with DiDj. We assume notation
is chosen so that t is conjugate to x2i�1. Then y2i�1y2j�1 and x2i�1t have
determinant 1 and spinor norm a square. Therefore y2i�1y2j�1, x2i�1t P
H and so

rx2i�1, y2i�1s � rx2i�1t, y2i�1y2j�1s P pSH X F q1.

It follows that pSH X F q1 � pS X F q1, as claimed. �

Recall that Xm � SympΣq � Sympmq is the subgroup of N which
faithfully permutes Σ and N � FXm.

Lemma 5.3. We have NGpS X F q � NGpSH X F q � pS X F qXm.

Proof. Obviously, NGpS X F q ¤ NGpSH X F q. Since Ω1pC
�q is a char-

acteristic subgroup of S X FH by Lemma 5.2, Lemma 5.1 implies that
NGpSH X F q � NNpSH X F q. Furthermore, Xm ¤ NGpSH X F q. Since
N � FXm, we only need to show NF pSHXF q � SXF . This follows as
F is a direct product of dihedral groups and SHXF does not centralize
any elements of odd order in F . This proves the lemma. �

Finally we can establish a result on 2-minimal subgroups of N .

Lemma 5.4. Suppose that P PMpNXH,BHq. Then PB PMpN,Bq.

Proof. We must show that the reflections in B normalize P . Let FH �
F X H. As P ¤ N , P normalizes FH . Hence by Lemma 2.6, either
P ¤ BHFH or P ¤ NGpS X FHq. Suppose that the latter possibility
holds. Then noting that S X FH � SH X F , Lemma 5.3 yields NGpS X
FHq � NGpS X F q. Consequently

rS X F, P s ¤ S X F XH � S X FH ¤ P.

As B � pS X F qBH , we are done in this case. So we now suppose
that P ¤ BHFH . Then P � BHpP X FHq and, as FH has a normal 2-
complement, P � BHO21pP q. Since BH is normalized by B and O21pP q
is normalized by BHC, we just need to show that O21pP q is normalized
by reflections in B.

Note that, as n ¥ 6, x1x3 and x3x
�
5 P Ωε

npqq where, if n � 6 and
2m � 4, x�5 � x�1 and otherwise x�5 � x5. Hence these elements are in
P . Now let g P O21pP q. Then rg, x1x3s P O21pP q and

rg, x1x3s � rg, x1s
x3rg, x3s � rg, x1srg, x3s

as rg, x1s P F1, x3 P F2 and rF1, F2s � 1. Therefore

prg, x1srg, x3sq
x3x

�

5 � rg, x1srg, x3s
�1 P O21pP q.
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Because O21pF q is abelian, it follows that

rg, x1s
2 � rg, x1srg, x3srg, x1srg, x3s

�1 P O21pP q

which as O21pF q has odd order means that rg, x1s P O21pP q. Thus
rO21pP q, x1s ¤ O21pP q and a similar argument demonstrates that y1 nor-
malizes O21pP q. We conclude that B normalizes P and PB PMpG,Bq.

�

We now enumerate the 2-minimal subgroups in MpN,Bq. We first
consider the case when n � 2m. In this case N � F1 o SympΣq �
F1 o Sympmq. As normal 2-subgroups are contained in every 2-minimal
subgroup, the 2-minimal subgroups of N are described in Theorem 2.4.
Hence the 2-minimal subgroups of GOθ

2pqq o Sympmq are

X � tO2pF qXpni � njq | i, j P I, i   ju

YtO2pF qXpni; jq | i P I, j P t2, . . . , ni � 1uu

YtUpni; f
c;niqS | i P I, and f c P Πpq � θqu,

where these subgroups are as described in Definition 2.3 modulo O2pF q.
Recall that

Upni; f
c;niqS � Dihp2pq � θq2f

cq o Tni�1 �
s¹

j�1,j�i

Smj
.

Because of Lemma 3.8, we obtain a collection of 2-minimal subgroups
of G contained in N as follows.

Definition 5.5.

N pG,Bq � tY � S�1 | Y P X u.

Lemma 3.8 also provides the following set of 2-minimal subgroups.

Definition 5.6. When n � 2m� 2 with ε � �θm�1 define

D2pG,Bq � t
¹
kPJ

Smk
�Dihp4f sqq | f s P Πpq � θqu.

Obviously the subgroups in D2pG,Bq and N pG,Bq are 2-minimal.
We record the following observation:

Lemma 5.7. MpN,Bq � N pG,Bq YD2pG,Bq.

Proof. This comes from Lemma 2.7 and Theorem 2.4. �

Proposition 5.8. Suppose that n ¥ 6 and P PMpN XH,BHq. Then

P � pP XH where pP PMpN,Bq � N pG,Bq YD2pG,Bq.
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Proof. For P P MpN X H,BHq, we have shown in Lemma 5.4 that

PB P MpG,Bq. Thus there is a 2-minimal subgroup pP of G such

that PB � pP and pP X H � PBH � P . Conversely, suppose thatpP P MpG,Bq. Then pP X H is generated by 2-minimal subgroups in

Mp pP X H,BHq. Since each of these is normalized by B, we obtainpP � BR for some R P MpH,BHq. Using Lemma 5.7 finishes the
explanation. �

6. The 2-minimal subgroups of the orthogonal groups

We continue with our standard assumptions as listed in 3.15.

Lemma 6.1. Suppose that n ¥ 6. Then H PMpH,BHq if and only if
n � 2m1�1 � 1, q � 1, 7 pmod 8q and a � a2.

Proof. Lemma 3.13 indicates thatBH � SH . Assume thatH PMpH,BHq.
We consider the various possibilities for the over-groups of BH . Recall
that m � 2m1 � � � � � 2ms with m1 ¡ � � � ¡ ms ¥ 0. Assume that s ¡ 1.
Then YH � pΩpVm1q �ΩpV K

m1
qqBH is an over-group of BH contained in

H. Since YH is a maximal subgroup of H by [9] and, as s ¡ 1, N XH
is not contained in YH , H is not 2-minimal, a contradiction. Hence we
have s � 1 and so 2m � 2m1�1 ¥ 4.

If n � 2m � 2m1�1, then n ¥ 8 and ε � θm � θ2m1 � �. Thus
H contains a maximal subgroup isomorphic to pΩ�

4 pqq o Sympm{2qqBH

and this subgroup together with N XH, where N � GOθ
2pqq o Sympmq,

generate H. Hence H is not 2-minimal in this case.
If n � 2m�2, then ε � �θm�1 andG contains subgroups GO�

2m�1pqq�
GO�

1 pqq and GO�
2m�1pqq � GO�

1 pqq both containing S and which to-
gether generate G. Intersecting these subgroups with H, we have H is
not 2-minimal in this case either.

So we are left with the case n � 2m � 1 � 2m1�1 � 1. Note that as
m is a power of 2, θm � � and correspondingly εθm � ε.

Let

M � ΩpVm1qBH .

If q � 3, 5 pmod 8q, then, in addition to M , G also contains GOε
1pqq o

Sympnq XH as an over-group of BH by Lemma 3.11 and so H is not
2-minimal in this situation. Therefore we must have q � 1, 7 pmod 8q.
If a2   a, then Ωε

npp
a2qBH also contains BH and this subgroup together

with M generates H which again means that H is not 2-minimal. Hence
we have a � a2 and this is our example. Conversely, by Proposition 3.14
these groups are 2-minimal.

�
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Lemma 6.2. Suppose that n ¥ 5, q � 3, 5 pmod 8q and P PMpH,BHq.
Assume that P is contained in one of the subgroups listed in Lemma 3.11
(i) or (ii). Then one of the following holds.

(i) P leaves a proper subspace of V invariant; or
(ii) P leaves invariant a decomposition of V into an orthogonal

sum of subspaces of dimension 2k ¡ 1; or
(iii) n � 2m1�1 � 1, and P � GOε

1pqq o Sympnq XH.

Proof. This follows from Lemma 3.12 by using the description of 2-
minimal subgroups of Sympnq and Altpnq given in Theorem 2.2. �

Inspired by Corollary 4.3 and Lemmas 4.8, 6.1 and 6.2, we produce
the following sets of 2-minimal subgroups of G which depend on n and
the congruence of q mod 8. We recall the 2-adic decomposition of m is
2m1 � � � � � 2ms and J � t1, . . . , su.

Definition 6.3. Assume that n ¥ 6.

(i) Suppose that n is odd.
(a) If q � 1, 7 pmod 8q, then define

O1,7pG,Bq �

#
GO

δj

2mj�1�1
ppa2qB | δj �

"
εθm mj ¡ 0

ε mj � 0
, j P J

+
.

(b) If q � 3, 5 pmod 8q, then

O3,5pG,Bq � tpGOε
1pqq o Symp2mj�1 � 1qB | j P Ju.

(ii) Suppose that n � 2m� 2 and ε � �θm�1.
(a) If q � 1, 7 pmod 8q, then

O1,7pG,Bq � tppGOτ
2mj�1�1

ppa2q �GO�τ
1 pqqqB | j P J, τ � �u.

(b) If q � 3, 5 pmod 8q, then

O3,5pG,Bq � tpGOτ
1pqq o Symp2mj�1 � 1q �GO�τ

1 pqqqB | j P J, τ � �u.

Remark 6.4. (i) Note that when n is odd, the sets O3,5pG,Bq
and O1,7pG,Bq have sizes |J | � s whereas when n � 2m � 2
they have size 2|J | � 2s.

(ii) When n � 2m� 2, we could suppress mention of the subgroup
GO�τ

1 pqq as it is contained in B, however we think that its
inclusion adds meaning to the description.

(iii) In Definition 6.3 (i)(a), δj does not depend on j when mj ¡ 1.
(iv) This definition is only for n ¡ 2m.

Suppose that n � 2m � 2k` with k ¥ 1 and let Nk be the subgroup
of G which preserves the decomposition

V � xe1, . . . , e2ky K � � � K xe2m�2k�1, . . . , e2my
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of V into a perpendicular sum of ` subspaces of V of dimension 2k

each preserved by B. We have N � N1 is the θ-subgroup studied in
Section 5. For k ¥ 2, Nk � GO�

2k
pqq oSymp`q. Let Lk be the base group

of Nk and note that L1 � F as in Section 5.

Lemma 6.5. Suppose that n � 2k` with k ¥ 1 and Fk is the base group
of Nk. If P acts irreducibly on V and P PMpNkXH,BHq, then either

(i) ` � 2b and P PMppLk XHqBH , BHq; or
(ii) P PMpN XH,BHq.

Proof. By Lemma 2.6, either P PMppLkXHqBH , BHq or P ¤ NGpSHX
Lkq. If P PMpLkB,Bq, then as P acts irreducibly on V , we must have
` � 2b and so (i) holds. On the other hand, if P ¤ NGpSH XLkq, then,
as C ¤ S X F ¤ S X Lk and C is weakly closed in S with respect to
G by Lemma 5.1, we obtain P ¤ NGpCq � N which yields possibility
(ii). �

Set

X4 �

$'&'%
tGO�

4 pp
a2qu q � 1, 7 pmod 8q

tGO�
1 pqq o Symp4qu q � 3, 5 pmod 8q, q � 5a, a odd

tGO�
1 pqq o Symp4q,GO�

4 p5qu q � 5a, a odd

.

By Corollary 4.6, the members of X4 are 2-minimal and are the candi-
dates for 2-minimal subgroups of GO�

4 pqq which are not contained in
GOθ

2pqq o T1. We define two further collections of 2-minimal subgroups.

Definition 6.6. (i)

G�
4 pG,Bq � tX o Tmi�1 �

¹
jPJztiu

Smj
| 1 ¤ i ¤ s,mi ¥ 1 and X P X4u.

(ii) When m is odd, q � 5a with a odd and n � 2m

G3pG,Bq �

#
tGOδ

3p5q �
±s�1

j�1 Smj
u n � 2m� 1

tGOτ
3p5q �GO�τ

1 p5q �
±s�1

j�1 Smj
| τ P �u n � 2m� 2

.

7. A proof of Theorem A

At last we prove the main theorem of this paper. For convenience we
repeat its statement here.

Theorem A. Suppose that n ¥ 5 and G � GOε
npqq where q � pa is

odd. Let S P Syl2pGq and B � NGpSq. Assume that H is a subgroup of
G which contains Ωε

npqq. If P PMpH,NHpS XHqq, then there existspP P O1,7pG,BqYO3,5pG,BqYN pG,BqYD2pG,BqYG�
4 pG,BqYG3pG,Bq

such that P � pP XH or n P t7, 8, 9u, q � 3, 5 pmod 8q and either
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(i) H � Ωε
9pqq or εGOε

9pqq � 2 � Ωε
9pqq and xP,By � GO�

1 pqq o
Symp4q o 2� S�1 P G�

4 pG,Bq and

MpxP,By XH,NHpS XHqq � tP, P xu

where x P B is a reflection of type �ε.
(ii) n � 8, P acts irreducibly on V and either

(a) H � Ω�
8 pqq and xP,By � GO�

1 pqq o Symp4q o 2 P G�
4 pG,Bq

and

MpxP,By XH,NHpS XHqq � tP, P xu

where x P B is a reflection.
(b) H � τGO�

8 pqq, τ � � and xP,By � GOτ
1pqq o Symp4q o 2 P

G�
4 pG,Bq and

MpxP,By XH,NHpS XHqq � tP, P xu

where x P B is a reflection of type �τ .

(iii) H � Ωε
7pqq or εGOε

7pqq � 2 � Ωε
7pqq, xP,By � x pP1, pP2y wherepP1 � GOθ3ε

1 pqq o Symp4q � S0 � S�1 P G�
4 pG,Bq and pP2 �

S1 �GOθ3ε
1 pqq o Symp3q P O3,5pG,Bq. Furthermore,

MpxP,By XH,NHpS XHqq � t pP1 XH, pP2 XH,P, P xu

where x is a reflection in B of type �ε.

Proof. Let WpG,Bq be the set of 2-minimal subgroups

O1,7pG,BqYO3,5pG,BqYN pG,BqYD2pG,BqYG�
4 pG,BqYG3pG,Bq.

For inductive reasons, we observe that, if n   6, then WpG,Bq in fact
contains all the 2-minimal subgroups of GOε

npqq by Corollaries 4.3 and
4.6 and Lemmas 4.7 and 4.8 (we don’t consider the proper subgroups
H in these cases).

Assume that n ¥ 6 and that the theorem is false. Accordingly, let
P P MpH,BHq be a counter example chosen with n is as small as

possible. In particular, P is not equal to pP XH for any pP PWpG,Bq.

By Lemma 6.1, we may assume that P   H as otherwise P � pP XH

with pP P O1,7pG,Bq �WpG,Bq.
We analyze the action of P on V . Suppose P is in a maximal sub-

group which preserves a proper subspace of V . Then P acts reducibly
on V and there exists a P -invariant proper subspace W of V which we
select to have maximal dimension. Since W is BH-invariant, it is B-
invariant and non-degenerate by Lemma 3.10. Hence V � W K WK is a
xP,By-invariant decomposition. The maximal choice of W implies that

dimW ¥ dimWK. Set xM1 � GOpW q, xM2 � GOpWKq, M1 � ΩpW q
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and M2 � ΩpWKq. Suppose that PB is a group. Then PB PMpG,Bq

and PB ¤ xM1 � xM2. Thus Lemma 2.7 implies that

PB PMpxM1 � pB X xM2q, Bq YMppB X xM1q � xM2, Bq.

Hence PB � RB where, by induction,

R P MpxM1, B X xM1q YMpxM2, B X xM2q

� WpxM1, B X xM1q YWpxM2, B X xM2q.

By construction, this means that PB � RB P WpG,Bq, a contradic-
tion. In particular, we have shown that P is not normalized by B and
so we must have P ¤ H   G.

Suppose that

P PMpM1BH , BHq YMpM2BH , BHq

and dimW ¥ dimWK ¥ 2. Assume that P P MpMiBH , BHq for some

i P t1, 2u. Lemma 3.1 implies pB X xM3�iqH � G. Since P X Mi is

centralized by xM3�i, we have PB is a group, a contradiction.
We have proved

(7.0.1) If dimWK ¥ 2, then

P RMpM1BH , BHq YMpM2BH , BHq.

Assume that either NM1pS X M1q � B X M1 or NM2pB X M2q �
B XM2. Then Lemma 2.7 combined with (7.0.1) yields dimWK � 1.
Since dimWK � 1, B leaves a 1-space invariant and so V�1 � 0 and

n � 2m� 1 or 2m� 2. Since P leaves WK invariant, xM2 is centralized
by P . Plainly we also have ZpGq ¤ NGpP q. If n � 2m � 2, then

Lemma 3.5 (iv) implies that xBH , xM2, ZpGqy � B and so PB is a

group, a contradiction. Hence n � 2m�1 is odd and, as xM2 centralizes

P , P xM2 PMpHxM2, BH
xM2q and so we may assume that xM2 ¤ P ¤ H.

Therefore xM1 � xM2 X H � pxM1 X Hq � xM2. In particular, P X xM1 P

MpxM1XH,BHXxM1q. If n ¡ 9, then, by the minimality of n, P � pPXH
for some pP P WpxM1, B X xM1q and so PB is a group, a contradiction.
Hence n P t7, 9u. Suppose that n � 9. Since P is not B-invariant andxM1 � GO�

8 pqq, P X xM1 is described in part (ii) of the theorem. Thus P
is described in (i), which is a contradiction. Assume that n � 7. Then
M1 has all its 2-minimal subgroups normalized by B by induction, and
so this is not the case. We have now completed the analysis when either
NM1pB XM1q � B XM1 or NM2pB XM2q � B XM2.
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Assume that NM1pBXM1q ¡ BXM1 and NM2pBXM2q ¡ BXM2.
Then 5 ¥ dimW ¥ dimWK ¥ 3 and q � 3, 5 pmod 8q by Lemma 3.13.
If n P t9, 10u, then 2m ¥ 8 and so m1 � 2 and B leaves Vm1 invariant.
As dimVm1 � 2m1�1 � 8, these cases are impossible.

If n � 8, then as P is not irreducible neither is BH . Hence we get
that n � 2m� 2, m � 3 with ε � �θm�1 � �. Thus

V � V1 � V0 � V�1 � V1 � V0 � xe�1y � xf�1y

is a B-invariant decomposition of V . Thus, as 4 ¤ dimW ¤ 5,

W P tV1 � xe�1y, V1 � xf�1y, V1, V0 � V�1u

and correspondingly

WK P tV0 � xf�1y, V0 � xe�1y, V0 � V�1, V1u.

Since, by Lemma 3.13 we cannot have a factor which is 4-dimensional
of �-type, we must have one of the first two possibilities. In particular,

dimW � 5 and dimWK � 3 and P is normalized by xZpGq, ZpxM1qy.

Using Lemma 3.5, we have B � xBH , ZpGq, ZpxM1qy and so P is nor-
malized by B, a contradiction.

Suppose that n � 7 and to simplify notation assume that V �
V1�V0�xe�1y and G � GOε

7pqq with ε � θ. Then W � V1 or V1�xe�1y
and so P is contained in a subgroup isomorphic to GO�

4 pqq � GOθ
3pqq

or GO�
5 pqq � GOθ

2pqq. In the latter case, Lemma 3.6 (i) implies thatxM1�xM2XH contains a subgroup isomorphic to Ω�
5 pqq�

�θGOθ
2pqq where

�θGOθ
2pqq � Dihpq � θq and the second factor has a self-normalizing

Sylow 2-subgroup. Hence we can apply Lemma 2.7 to see that

P PMpM1BH , BHq YMpM2BH , BHq,

contrary to (7.0.1).
Assume then that P is contained in GO�

4 pqq � GO�
3 pqq. Then, as

P R MpM1BH , BHq YMpM2BH , BHq by (7.0.1), Lemma 2.8 implies
that P ¤ NHpSH XM1M2q.

We may suppose that ZpGq ¤ H and so, as H   G, we have H �
�GOε

2m�1pqq and in addition we know q � 3, 5 pmod 8q. We also have

NGpSH XM1M2q � F4 �GOθ
1pqq o Symp3q � F4 � B3.

Hence

NGpSH XM1M2q{pSH XM1M2q � Symp3q � Symp3q � Symp3q.

By Lemma 4.5 (ii) (a), MpF4, B X F4q has two 2-minimal subgroups
while GOθ

1pqq o Symp3q is itself 2-minimal. Hence NHpSH XM1M2q has

three 2-minimal subgroups which arise as pPXH. Let D P Syl3pNGpSHX
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M1M2qq and set NGpSH XM1M2q � NGpSH XM1M2q{pSH XM1M2q.
Then D is elementary abelian of order 27, NHpSXM1M2q � DSH and
SH acts on D as an elementary abelian group of order 4. Since SH �
BH , SH does not centralize any non-trivial element of D and SH acts on
D (after some choice of generators forD) as either xdiagp�1,�1, 1q, diagp1,�1,�1qy
or xdiagp�1,�1,�1q, diagp�1,�1, 1qy. Correspondingly there are ei-
ther three or five subgroups which are 2-minimal subgroups of NHpSHX
M1M2q. By Lemma 3.12 (ii),

GO�
1 pqq o Symp7q XH � GO�

1 pqq o Altp7q

and this group contains Y � 27.pAltp4q � Altp3qq : 2 containing SH .
Visibly Y preserves the decomposition of V into a 4-space and a 3-space
and so Y ¤M1M2XH. Since Y XM1M2 has shape 27.pAltp4q�Altp3qq,
Y normalizes pSH XM1qpSH XM2q. It is easy to calculate that Y has
four 2-minimal subgroups only one of which is contained in M1. Hence
NHpSH XM1M2q contains exactly five 2-minimal subgroups only three
of which are normalized by B. Thus two are not normalized by B and
so there exists a reflection x P B such that the 2-minimal subgroups in
MpNHpS XM1M2q, BHq are

tP, P x, pP XH | pP PMpNGpS XM1M2q, Bq �WpG,Bqu.

In particular, (iii) holds, contrary to P being a counter example.
Suppose that n � 6. First assume that ε � θ3 and 6 � 2m. The only

possibility is that P is contained in GO�
4 pqq �GOθ

2pqq. By Lemma 3.6
(iv) applied with W1 of type θ, this group contains a normal subgroup
contained in Ωε

6pqq which is isomorphic to SO�
4 pqq�Ωθ

2pqq. Lemma 3.13
allows us to apply Lemma 2.7 to this subgroup and we obtain P is
normalized by B, a contradiction.

If n � 6 and ε � �θ3, then V � V1�V�1 and Lemma 3.6 (ii) applied

with W1 � V�1 of type �θ yields xM1� xM2XΩpV q contains a subgroup
isomorphic to ΩpV�1q � SOpV1q, and again Lemma 2.7 applies. This
yields a contradiction and completes the discussion of the case when P
acts reducibly on V .

Suppose that P acts irreducibly on V and that P preserves a decom-
position of V into subspaces of dimension 2k ¥ 2 with k chosen maxi-
mally (See Proposition 3.14 (iii)). Then P ¤ Nk � GOε1

2k
pqqoSympn{2kq.

We shall show that P � pP XH where pP P N pG,BqYG�
4 pG,Bq, which

is a contradiction.
By Proposition 5.8 we may also suppose that P �¤ N1. Hence k ¥ 2.

Lemma 6.5 implies that P P MppLk X HqBH , BHq and n � 2k�b.
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The maximal choice of k now gives 2k � n{2. Furthermore, as n ¡ 4,
V � W1 K W2 with dimWi � 2k and Wi have �-type (see Lemma 3.9).

Let xK1 � GOpW1q, K1 � ΩpW1q, xK2 � GOpW2q, K2 � ΩpW2q
and B0 � NBpK1q. If n ¥ 16 or n � 8 and q � 1, 7 pmod 8q, we
have NK1pS X K1q � S X K1. By Lemma 2.11, B0 is contained in a
unique maximal subgroup of pP X K1qB0 and of pP X K2qB0. Since
K1K2B0{B0 � GO�

2k
pqq, we now have that P X K1 is a 2-minimal

subgroup of K1 which is normalized by B X GOpW1q. It follows that

PXK1 � pP1XK1 where pP1 P N pxK1,xK1XBqYG�
4 pxK1,xK1XBq and then

by definition pP � pP1 o T1 PWpG,Bq and P � pP XH, a contradiction.
Thus we have n � 8, K1 � Ω�

4 pqq and q � 3, 5 pmod 8q. Applying
Lemma 2.11 we obtain pP XK1qNBpK1q PMpK1NBpK1q, NBpK1qq or
P ¤ NGppK1 X SqpK2 X Sqq. In the first case, we argue as above that

P � H X pP with pP PWpG,Bq, which is a contradiction. Suppose that
P ¤ NGppK1 X SqpK2 X Sqq � F4 o T1. This group has order 214.34

and contains exactly two 2-minimal subgroups pGO�
1 pqq o Symp4qq o

T1q P G�
4 pG,Bq. Denote these 2-minimal subgroups by pP� and pP�. In

particular, if H � G , we have a contradiction.
Suppose that H � Ω�

8 pqq. Let L� � GO�
1 pqq o Symp8q and L� �

GO�
1 pqq o Symp8q. Then P� ¤ L� and P� P L�. By Lemma 3.12, L� X

H � 27.Altp8q. Since Altp8q � SL4p2q has three parabolic subgroups,
we can see that each group P� X H and P� X H splits into two 2-
minimal subgroups (and these are listed in (ii)). Thus NHpK1K2 X Sq
has at least four 2-minimal subgroups. We need to show that there are
no more. Set NHpK1K2 X Sq � NHpK1K2 X Sq{pK1K2 X Sq. We may
write

NHpK1K2 X Sq � DSH

with D elementary abelian of order 34 and SH elementary abelian of
order 23. We write SH � xh, g1, g2y with notation chosen so that g1 and
g2 normalizes D X K1 and D X K2. Then we further define δ1, δ2, δ3

and δ4 such that D � xδ1, δ2, δ3, δ4y and so that, for i � 1, 2, gi cen-
tralizes δi and δ2�i and inverts δ3�i and δ5�i. We may also assume that
h conjugates δ1 to δ3 and δ2 to δ4. Then we check that the follow-
ing subgroups are the only 2-minimal subgroups xSH , δ1δ3y, xSH , δ2δ4y,
xSH , δ1δ

�1
3 y and xSH , δ2δ

�1
4 y. It follows that each of these groups is al-

ready accounted for in the subgroups P�XH and P�XH. We conclude
that H � Ω�

8 pqq. The contradiction for H � �GO�
8 pqq can be calcu-

lated from the information presented using Lemma 3.12 to see when
P� XH remains 2-minimal.
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Suppose now that P ¤ GO�
1 pqq o Sympnq and that P is both ir-

reducible on V and does not preserve any blocks of imprimitivity of
dimension greater than 1. Then Lemma 6.2 implies that n � 2ms�1� 1

and P � pP X H where pP P O3,5pG,Bq, which is impossible as P is a
counter example.

Thus P is both primitive and irreducible. By Proposition 3.14 and
Lemma 4.9, P is the normalizer of a subfield subgroup of G. Lemma 6.1
implies that n � 2ms�1 � 1, q � 1, 7 pmod 8q and PB � GOε

npp
a2q P

O1,7pG,Bq � WpG,Bq, which is a contradiction. This completes the
proof of the theorem. �

Proof of Corollary 1.1. We have n � 2k and qk � ε pmod 4q. Hence
θk � ε and so k � m and n � 2m. It follows that O3,5pG,Bq �
O1,7pG,Bq � D2pG,Bq � G3pG,Bq � H. Now Theorem A implies
MpG,Bq � N pG,Bq Y G�

4 pG,Bq. This proves the corollary. �

8. Examples

Example 8.1. Suppose that G � GO�
10pqq.

q � 1 pmod 4q We have θ � � and so θn{2 � �. Therefore n � 2m � 2. The
2-minimal subgroups are as follows:

N pG,Bq: pDihp2pq � 1q2q o Symp4q � S�1;
N pG,Bq: Dihp2pq � 1q2f

cq o T2 � S�1 where f c P Πpq � 1q;
D2pG,Bq: Dihp2pq � 1q2q o T2 �Dihp22f cq where f c P Πpq � 1q;

O1,7pG,Bq: GO�
9 pp

a2q �GO	
1 pqq, when q � 1 pmod 8q; and

O3,5pG,Bq: GO�
1 pqq o Symp9q � GO	

1 pqq � 29.Symp9q � 2 when q � 5
pmod 8q.

G�
4 pG,Bq: X o T1 � S�1, X P X4;

q � 3 pmod 4q We have θ � � and so θn{2 � �. Therefore n � 2m and Corol-
lary 1.1 is in play. The 2-minimal subgroups are as follows:

N pG,Bq: Dihp2pq � 1q2q o Symp5q;
N pG,Bq: Dihp2pq � 1q2q o Symp4q �Dihp2pq � 1q2qq;
N pG,Bq: Dihp2pq � 1q2f

cq o T2 �Dihp2pq � 1q2q with f c P Πpq � 1q;
N pG,Bq: Dihp2pq � 1q2q o T2 �Dihp2pq � 1q2f

cq with f c P Πpq � 1q;
G�

4 pG,Bq: X o T1 �Dihp2pq � 1q2q, X P X4.

In all cases, MpH,BHq � t pP XH | pP PMpG,Bqu.

To depict the similarity between the 2-minimal subgroups in the
groups of �-type and the groups of �-type we also have the following
example (which illustrates the expected “Ennola”-type duality).

Example 8.2. Suppose that G � GO�
10pqq and q � 1 pmod 4q. Then

θ � � and n � 2m. In this case Corollary 1.1 yields that the 2-minimal
subgroups are as follows:
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N pG,Bq: Dihp2pq � 1q2q o Symp5q;
N pG,Bq: Dihp2pq � 1q2q o Symp4q �Dihp2pq � 1q2q;
N pG,Bq: Dihp2pq � 1q2t

cq o T2 �Dihp2pq � 1q2q with tc P Πpq � 1q;
N pG,Bq: Dihp2pq � 1q2q o T2 �Dihp2pq � 1q2t

cq with tc P Πpq � 1q;
G�

4 pG,Bq: X o T1 �Dihp2pq � 1q2q, X P X4.

A similar phenomenon emerges when q � 3 pmod 4q.
We close with an odd dimensional example which illustrates the un-

usual behaviour at the prime 5 as well as exhibiting an example with
exceptional 2-minimal subgroups.

Example 8.3. Suppose that H � Ω�
7 p5q. Then θ � �, m � 3 � 2� 1,

S � S1 � S0 � S�1 and

O3,5pH,BHq : P1 � pGO�
1 p5q o Symp5q � S0q XH;

O3,5pH,BHq : P2 � pGO�
1 p5q o Symp3q � S1q XH;

N pH,BHq: P3 � pDihp8q o Symp3q � S�1q XH;
G�

4 pH,BHq: P4 � pGO�
1 p5q o Symp4q � S0 � S�1q XH;

G�
4 pH,BHq: P5 � pGO�

1 p5q o Symp4q � S0 � S�1q XH;
G�

4 pH,BHq: P6 � pGO�
4 p5q � S0 � S�1q XH;

G3pH,BHq: P7 � pGO�
3 p5q � S1 � S�1q XH;

Exceptions: P , P x contained in pGO�
1 p5qoSymp4q�GO�

1 p5qoSymp3qqXH ¤
GO�

1 pqq o Symp7q XH which has shape 26.Altp7q.

We have xP2, P5y has shape 21�4.Symp6q and xP2, P4y has shape 21�4�1.Altp6q.
Together these two groups generate GO�

6 p5q � GO�
1 p5q X H. We have

xP2, P5, P y � Sp6p2q � xP2, P5, P
xy and the corresponding coset geom-

etry is a simplicial complex ∆pP2, P5, P, P
xq that Kantor calls a GAB

and is described in [5, Section 5].

An unintuitive aspect of the last example is that pGO�
1 p5q oSymp4q�

GO�
1 p5qoSymp3qqXH contains four 2-minimal subgroups as is transpar-

ent from the proof of Theorem A whereas the group which looks very
much the same pGO�

1 p5qoSymp4q�GO�
1 p5qoSymp3qqXH has a quotient

Symp3q� Symp3q and so contains just two 2-minimal subgroups one of
which is in the first group.
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