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Abstract In this paper, we develop and significantly extend the thermal phase change model, introduced in
Needham et al. (QJMAM 67:93–125, 2014), describing the process of paraffinic wax layer formation on the interior
wall of a circular pipe transporting heated oil, when subject to external cooling. In particular, we allow for the
natural dependence of the solidifying paraffinic wax conductivity on local temperature. We are able to develop a
complete theory, and provide efficient numerical computations, for this extended model. Comparison with recent
experimental observations is made, and this, together with recent reviews of the physical mechanisms associated
with wax layer formation provide significant support for the thermal model considered here.

Keywords Asymptotic limit · Generalised Stefan problem · Heated oil pipeline · Quasi-linear parabolic PDE ·
Wax layers

Mathematics Subject Classification 76T99 · 80A22 · 80M35 · 80M20

1 Introduction

In oil field operation, it is generally required that oil is transported in long sea bed pipelines. In a recent paper [1],
one of the main undesirable features for pipeline oil transportation, namely the formation of paraffinic wax deposits
on the inside of the pipe wall, was considered. This wax deposit happens when the temperature of the pipe wall
falls below the wax solidification temperature, generally in the range 35–40 ◦C, but this can be in a wider range of
20–60 ◦C, when dealing with real crude oils, rather than experimentally controlled oils. Notably, the accumulation
of a wax deposit on a pipe wall effectively reduces the inner diameter of the pipe, which lessens the transport
capacity of the pipe for a given driving pressure. A more detailed discussion of this phenomena is given in [1]. In
particular, [1] was concerned with the introduction of a thermal phase change model (first proposed by Schulkes
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in [2]) to capture the fundamental mechanism in the wax layer deposition process accurately. The fundamentals
in this model are based on the assumption that the wax layer forms on cooling, as a thermal phase change from
the dissolved wax in the hot oil, and therefore that the dynamics of the wax layer are dictated by thermal energy
balances. The associated mathematical model was both formulated and analysed in detail in [1]. The outcomes were
encouraging, in that a number of key observations in the wax layer deposition process, which were at odds with
the historic material diffusion mechanism, were now fully accounted for in the thermal phase change model. This
model has had further recent support in the independent works in [3] and [4].1

In [1], a thermal model for the deposition of paraffinic wax on the inside of the pipe wall was proposed. The
principal hypothesis introduced in [1] is that the key mechanism leading to wax deposition is a thermal phase
change process. This led to a simple mathematical model based on balancing heat conduction from the heated oil,
within the growing solid wax layer, and pipe wall, and into the coolant surrounding the exterior of the pipe. The
mathematical formulation of this model gave rise to a free boundary problem (referred to as [IBVP] in [1]) of
generalised Stefan type. This fundamental problem was analysed in considerable detail in [1]. A number of key
salient features arising from the model were identified (see [1, Sect. 8, pp. 119–122]) with the intention of qualifying
and quantifying the basis of the thermal model with detailed experiments performed by Hoffman & Amundsen [5]
and Halstensen et al. [6] amongst others. The experiments of Hoffman & Amundsen [5] show that with a constant
flow rate, the wax layer reaches an equilibrium height after sufficient time, with this time decreasing as the oil
temperature increases. This basic feature is not predicted by the molecular diffusion model that is widely applied
in the oil and gas industry [7,8] and a “shear-stripping” mechanism has to be introduced to match experimental
observation with model predictions. A modelling approach based on the thermal phase change mechanism as
outlined in [1] shows that this, and other fundamental experimental observations can be explained without the need
to include rather speculative physical mechanisms. Very recently, the extensive review by Mehrotra et al. [9] has
given a thorough consideration of experimental evidence, which provides significant and substantial support for
the thermal phase change mechanism introduced in [1], as the principal and key mechanism in the process of wax
deposition on the interior wall of pipes transporting heated oil. Most recently, a further review has been provided
by Van der Geest et al. [10], which again supplies detailed and critical experimental support for the thermal phase
change mechanism. In addition to these reviews, a recent thesis has addressed this issue experimentally, Mahir
[4], and has also provided significant support for the thermal mechanism proposed in [1].2 With the very recent
emergence of this significant and compelling support for the basic thermal model introduced in [1], the purpose of
the present paper is to investigate how the mathematical model in [1] can be further developed to accommodate
more detailed features associated with wax phase change. Specifically, in this paper, we develop the model in [1]
to account for the dependence of the thermal conductivity of the paraffinic wax solid on local temperature. This
effect can be significant in many paraffinic wax materials when in solid crystalline state and is therefore an effect
which should be investigated in the modelling process. Indeed, this feature of a temperature-dependent crystalline
wax conductivity has been addressed experimentally in the recent paper by Viega et al. [11]. In the conclusion of
[11] it is reported that up to a 30% drop in measured wax conductivity can be recorded through the wax layer, as
the temperature drops from the wax appearance temperature, at the wax formation interface, to the temperature at
the solid boundary of the pipe. This is attributed, in [11], to variations in the small liquid fraction captured in the
crystallised wax structure. This paper certainly gives impetus to the study undertaken here. It specifically indicates
that we may expect wax layer local conductivity to decrease as local temperature decreases, with as much as a 30%
variation within a given wax layer. With this inclusion in the mathematical model developed in [1], the significant
change is that the associated free boundary problem [IBVP] becomes non-linear. In particular, the partial differential
equation, rather than being the associated linear heat conduction equation, becomes a non-linear (in fact uniformly
quasi-linear) strictly parabolic equation, with, in addition, the mixed Robin-type linear boundary condition on the

1 Additionally see https://www.linkedin.com/company/tupdp/?feedView.
2 An interesting video of the experimental formation of a wax layer can be found at https://www.tupdp.org/?
trk=organization-update_share-update_update-text, which also provides qualitative visual support for the wax thermal phase change
mechanism.
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solid interior pipe wall, and the latent heat boundary condition on the free solid wax layer surface, both adopting a
generalised non-linear form.

The principal aim of the current paper is to fully investigate the effects of the inclusion of the temperature-
dependent solid wax thermal conductivity in the model developed in [1]. In Sect. 2, we review and extend the
thermal phase change model and its mathematical formulation. This is followed in Sect. 3 by an extensive study of
associated qualitative results for [IBVP]. These structural results are then complemented by consideration of the
nature of the solution to [IBVP] as t → 0+ and t → ∞. In Sect. 5, we devote attention to developing a complete
and tractable theory for [IBVP] when the parameter ε is small, a case which often pertains in physical applications.
In Sect. 6, we consider numerical solutions to [IBVP] for comparison with the theory developed earlier, whilst Sect.
7 gives a qualitative comparison with experiments presented in [5]. Finally, we end with a discussion in Sect. 8.

2 The model

Here, following [1], we develop the thermal phase change model which was introduced in [1], and discussed in Sect.
1. A schematic diagram of the model is displayed in Fig. 1. The heated oil is in uniform flow through a long, straight
section of pipe, with circular cross section, and internal radius R. When the wax layer thickness on the interior pipe
wall h is very much smaller than the pipe radius R (h � R), which is generally the case in applications (see, for
example, the measurements reported in Halstensen et al. [6], where a typical pipe diameter is approximately 30 mm
and wax layer thickness is approximately 1–2 mm) then we can take full advantage of this in the model to reduce
the spatial dimension to one. Following [1], we consider a long straight section of the pipe which is unaffected by
the localised effects of fluid entering or leaving the pipe. Specifically, in this situation, we may suppose that all
quantities of interest in the model are independent of the axial distance along the pipe. Therefore, the dependent
variables in the model are functions of x and t only, with x denoting the normal distance from the inner pipe wall
towards the centre of the pipe, and with t denoting time. The pipe is surrounded by an aligned circular coolant jacket
of width dc. Moreover, the fluid in the coolant jacket is kept at a constant temperature Tc. The thickness of the pipe
wall is dp, with the outer pipe wall located at x = −dp and the inner pipe wall located at x = 0. The temperature
within the pipe wall is denoted by Tp. The solid wax layer is initiated, when t = 0, at the inner pipe wall x = 0, with
its upper surface at x = h. The temperature within the solid wax layer is denoted by T , with Th being the constant
temperature of the wax formation, at x = h. The experimental observations in [3] justify an approximation of the
temperature of the oil flowing in the pipe, denoted by To for h < x ≤ R, to be constant. Throughout, we consider
the situation when

Tc < Th < To. (1)

We now consider the temperature field in the pipe wall. An application of Fourier’s law gives

Tpt = kp

cpρp
Tpxx , −dp < x < 0, t > 0, (2)

where kp, cp and ρp are the conductivity, specific heat capacity and density of the pipe wall, respectively. With ts
(as given in (12) and (18)) being the time scale associated with wax layer formation, the thickness of the pipe wall
is thin, and such that

d2
p �

(
kpts

)

(
cpρp

) .

Consequently, the temperature in the pipe wall is in a quasi-steady state, and Eq. (2) may be approximated by

Tpxx = 0; −dp < x < 0, t ≥ 0, (3)

subject to the following boundary conditions:
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Fig. 1 Schematic diagram of the physical problem

kpTpx = kcNuc

dc
(Tp − Tc) x = −dp, t ≥ 0, (4)

kpTpx = kw(T )Tx x = 0, t ≥ 0, (5)

Tp = T x = 0, t ≥ 0. (6)

Here kc is the coolant conductivity, Nuc is the Nusselt number for the coolant flow and kw(T ) is the temperature-
dependent solid wax conductivity. Condition (4) represents continuity of heat flux across the exterior wall of the
pipe, which is in contact with the coolant jacket, whilst condition (5) represents continuity of heat flux from the
lower boundary of the wax layer into the interior pipe wall and condition (6) represents continuity of temperature at
the lower boundary of the wax layer and the inner pipe wall. In allowing the solid wax conductivity to be temperature
dependent, we write

kw(T ) = khwD

(
T − Tc

Th − Tc

)

for −∞ < T < ∞, where khw is the conductivity of the solid wax at the temperature of wax solidification T = Th ,
and D : R → R is the dimensionless solid wax conductivity, representing the variation in solid wax conductivity
with

u = (T − Tc)

(Th − Tc)
.

In general D : R → R will be taken as smooth, bounded and bounded above zero. Thus, throughout, we will
consider D : R → R to satisfy the conditions:

(D1) D(1) = 1,

(D2) Dm ≤ D(u) ≤ DM for all u ∈ R, with Dm and DM being positive constants,
(D3) D ∈ C3(R).

Although conditions (D1)–(D3) are sufficient to develop a theory for the model under examination here, we note
that the conclusions section of [11], after a programme of careful experiments, highlight that D(u) should also be
an increasing function for u ∈ [0, 1], and that D(u) evaluated at the pipe wall should be generally about 30% less
than D(u) evaluated at the wax formation interface. Now, the solution to (3), (4) and (6) is given by

Tp(x, t) = kcNuc (T (0, t) − Tc)(
kpdc + kcNucdp

) x + T (0, t); −dp ≤ x ≤ 0, t ≥ 0,

after which boundary condition (5) then requires

kw(T )Tx = kpkcNuc(
kpdc + kcNucdp

) (T − Tc), x = 0, t > 0,
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which is a condition on T at x = 0, the lower boundary of the solid wax layer at the inner pipe wall. We are now
in a position to consider the temperature field T in the solid wax layer. Fourier’s law requires that
ρwcwTt = (kw(T )Tx )x 0 < x < h(t), t > 0, (7)

subject to the boundary conditions

kw(T )Tx = kpkcNuc(
kpdc + kcNucdp

) (T − Tc) x = 0, t > 0, (8)

T = Th x = h(t), t > 0, (9)

ρwHwht = kw(T )Tx − koNu

R
(To − Th) x = h(t), t > 0, (10)

where ρw, cw and Hw are the density, specific heat capacity and latent heat of the solid wax, respectively, whilst
ko and Nu are the conductivity of oil and the Nusselt number for the oil flow, respectively. The conditions (9)
and (10) express that the outer surface of the solid wax layer must be at the wax solidification temperature, and
that the difference in heat flux across this interface balances the latent heat required for solid wax formation.
For convenience, we non-dimensionalised the free boundary problem for T (x, t) and h(t) given by (7)–(10). We
introduce the dimensionless variables

u = T − Tc

Ts
, x ′ = x

xs
, t ′ = t

ts
, h′ = h

xs
(11)

with the scales Ts, xs and ts chosen as

Ts = Th − Tc, xs = Rkhw (Th − Tc)

koNu (To − Th)
, ts = R2ρwHwkhw (Th − Tc)

ko
2Nu2 (To − Th)2 . (12)

On substituting (11) and (12) into (7)–(10), we obtain the non-dimensional form of the free boundary problem as

εut = (D(u)ux )x 0 < x < h(t), t > 0, (13)

D(u)ux = ku x = 0, t > 0, (14)

u = 1 x = h(t), t > 0, (15)

ht = D(u)ux − 1 x = h(t), t > 0, (16)

where the two dimensionless parameters ε and k are given by

ε = cw (Th − Tc)

Hw
, k = kpkcNucR (Th − Tc)

koNu
(
kpdc + kcNucdp

)
(To − Th)

. (17)

Here primes have been dropped for ease of notation. The parameter ε is a dimensionless solid wax conductivity
number, and measures the ratio of the time scale for heat conduction in the wax layer to the time scale for wax layer
growth, whilst the parameter k is a dimensionless boundary cooling number, and measures the ratio of heat extracted
from the wax layer, by cooling, to the heat the wax layer gains from the oil. This is a free boundary problem for
u(x, t) with 0 ≤ x ≤ h(t), t > 0 and h(t) ≥ 0. It is worth noting that typical values, estimated in Schulkes [2] and
Kaye and Laby [12], for the scales in (12), are
Ts ∼ 10 ◦C, xs ∼ 0.16 m, ts ∼ 2 × 106 s ∼ 20 days (18)

with the dimensionless parameters

ε ∼ O
(

10−1
)

, k ∼ O

(
2Nuc

1 + 10−3Nuc

)
.

We observe from (17) that the parameter ε is independent of both the core oil flow Nusselt number Nu and the
coolant flow Nusselt number Nuc. However, the parameter k decreases with the increase in oil Nusselt number,
whilst it increases with the increase in coolant Nusselt number, with the limiting value being

k ∼ kpR(Th − Tc)

koNudp(To − Th)
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for large Nuc.

3 The free boundary problem [IBVP]

The free boundary problem associated with the mathematical model introduced in Sect. 2 ((13)–(16)) may be written
fully as

εut = (D(u)ux )x 0 < x < h(t), t > 0, (19)

D(u)ux = ku x = 0, t > 0, (20)

u = 1 x = h(t), t > 0, (21)

ht = D(u)ux − 1 x = h(t), t > 0, (22)

u → 1 as t → 0+ uniformly for 0 ≤ x ≤ h(t), (23)

h → 0 as t → 0+. (24)

The problem, (19)–(24), will be referred to as [IBVP]. For any T > 0, the following subsets of R
2 are also

introduced, namely,

DT = {(x, t) ∈ R
2 : 0 < x < h(t), 0 < t ≤ T },

∂DT
L = {(x, t) ∈ R

2 : x = 0, 0 < t ≤ T },
∂DT

R = {(x, t) ∈ R
2 : x = h(t), 0 < t ≤ T },

∂DT = ∂DT
L ∪ ∂DT

R,

with closures denoted by DT , ∂D
T
L , ∂D

T
R and ∂DT . A solution to [IBVP] will be considered as classical, with the

following regularity requirements,

(R1) h : [0,∞) → R is continuous and the derivative ht exists and is continuous on (0,∞), with h and ht
non-negative on (0,∞).

(R2) u : D∞ → R is continuous and ux , ut both exist and are continuous on D∞ and uxx exists and is continuous
on D∞.

A reformulation of [IBVP] (with (R1) and (R2)) in terms of coupled integral equations is given by Friedman [13]
and used by Schatz [14] and Cannon and Hill [15] to study the regularity of solutions to [IBVP]. It is established
by Cannon and Hill [15] that with u : D∞ → R and h : [0,∞) → R being a solution to [IBVP] (with (R1) and
(R2)) then, in fact,

u ∈ C3(D∞) and h ∈ C1([0,∞)), (25)

which requires (D3), in particular. A consequence of (R1) and (25) is also

h(t) ≥ 0 and ht (t) ≥ 0 ∀t ∈ [0,∞). (26)

Before proceeding to analyse [IBVP] further, we first consider steady state solutions associated with [IBVP].

3.1 Steady state solutions to [IBVP]

A steady state solution to [IBVP] is a solution to [IBVP] which is independent of t . Thus, us : [0, hs] → R and
hs > 0 is a steady solution to [IBVP] whenever us ∈ C1([0, hs]) ∩ C2((0, hs)), and satisfies the boundary value
problem
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(D(us)usx )x = 0 0 < x < hs, (27)

D(us)usx = kus x = 0, (28)

us = 1 x = hs, (29)

D(us)usx = 1 x = hs. (30)

It is now convenient to introduce F : R → R given by

F(X) =
∫ X

0
D(λ)dλ ∀X ∈ R, (31)

where F(0) = 0 and

F ′(X) = D(X) > 0 ∀X ∈ R. (32)

Observe, via (D2) and (D3), that F(X) is strictly increasing with X , and F ∈ C4(R). Therefore, the inverse
F−1 : R → R exists, with F−1 ∈ C4(R), via (32). The boundary value problem (27)–(30) can now be written as

(F(us))xx = 0 0 < x < hs, (33)

(F(us))x = kus x = 0, (34)

us = 1 x = hs, (35)

(F(us))x = 1 x = hs. (36)

An integration of (33) gives

F(us(x)) = Ax + B 0 ≤ x ≤ hs, (37)

where A, B ∈ R are constants. Applying (34) and (36), we obtain

A = 1 and B = F(k−1), (38)

after which, (37) becomes

F(us(x)) = x + F(k−1); 0 ≤ x ≤ hs. (39)

Finally, applying (35) and rearranging, we require

hs = F(1) − F(k−1). (40)

In a steady state we must have hs > 0. Therefore, it follows from (39) and (40) that we have established:

Proposition 1 A steady state solution to [IBVP] exists, and is unique, if and only if, k > 1. The steady state solution
is given by (39) with (40).

It is worth noting that (40) may be written as

hs = (1 − k−1)〈D([k−1, 1])〉, (41)

where

〈D([k−1, 1])〉 = (1 − k−1)−1
∫ 1

k−1
D(λ)dλ (42)

is the mean value of D(λ) over the interval λ ∈ [
k−1, 1

]
. Also, we may rewrite (39) explicitly as

us(x) = F−1(x + F(k−1)) 0 ≤ x ≤ hs. (43)

An examination of hs = hs(k) in (41) establishes the following properties:
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Fig. 2 Sketch of hs(k) against k

Fig. 3 Plots of y = us(x) for D(u) = c + (1 − c)u with k = 2 and 10 in a and b, respectively

(i) hs ∈ C4([1,∞)) and is strictly monotone increasing,
(ii) h′

s(k) = D
(
k−1

)
k−2 ∀k ∈ [1,∞),

(iii) hs(k) = (k − 1) + O
(
(k − 1)2) as k → 1+,

(iv) hs(k) = 〈D([0, 1])〉 − D(0)k−1 + O
(
k−2

)
as k → ∞.

We give a qualitative sketch of hs(k) against k in Fig. 2. Next, an examination of (43) establishes the following
properties of us : [0, hs] → R:
(i) us ∈ C4([0, hs]) and is monotone increasing,

(ii) us(0) = k−1 and us(hs) = 1,

(iii) u′
s(x) = 1

D(us(x))
> 0 ∀x ∈ [0, hs],

(iv) u′′
s (x) = − D′(us(x))

D(us(x))3 ∀x ∈ [0, hs].

For illustrative purposes, steady state solutions associated with specific crystallised wax conductivities given by
D(u) = c+ (1 − c)u for all u ∈ [0, 1] with values of c = 1.0, 0.7, 0.4 and 0.1 are shown in Fig. 3a–b. This form is
taken so as to conform with the experimental measurements reported by Viega et al. in [11]. The values of c = 0.4
and c = 0.7 are chosen to reproduce a reduction in wax conductivity of order of 30% across the wax layer in Fig. 3a
and b, respectively, in accord with [11]. We see, in Fig. 3a–b, that the effect of making the conductivity variation
stronger is to lower the temperature profile across the crystallised wax layer. Each temperature profile, apart from
that with constant conductivity (c = 1), has a weak negative curvature. This is in very good agreement with the
temperature profiles measured experimentally in [11]. Indeed, a comparison between the theoretical profiles, shown
in Fig. 3a–b, and the experimental profiles, reported in [11, Fig. 12], shows remarkable agreement which is very
encouraging for the present theory. We now return to [IBVP].
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3.2 Qualitative theory for [IBVP]

In this subsection, we determine the principal structure and qualitative properties of the solution to the free boundary
problem [IBVP]. To begin with, we have:

Proposition 2 Let u : D∞ → R be a solution to [IBVP]. Then

0 ≤ u(x, t) ≤ 1 ∀(x, t) ∈ D∞.

Proof Consider u : D∞ → R on the compact region DT (for any T > 0). Then u is continuous on DT since u
is continuous on D∞ (via (R2)). Also, we have that ux , ut and uxx all exist and are continuous on D∞ and so are
continuous on DT (via (R2)). Also, we have from (19) that

εut = (D(u)ux )x on D∞,

and so,

ut − ε−1D′(u)ux
2 − ε−1D(u)uxx = 0 on D∞. (44)

Now for each (x, t) ∈ DT , set

a(x, t) = ε−1D(u) ≥ ε−1Dm > 0, (45)

via (D2) and

b(x, t) = ε−1D′(u)ux . (46)

Now suppose that u is not non-negative on DT . Then using (44)–(46), we may apply the Weak Parabolic Minimum
Principle [16] to conclude that there exists a point (x∗, t∗) ∈ ∂DT such that

u(x∗, t∗) = inf
(x,t)∈DT

u(x, t) < 0. (47)

Since (x∗, t∗) ∈ ∂DT = ∂D
T
L ∪ ∂D

T
R we must have (x∗, t∗) = (0, t∗) ∈ ∂D

T
L otherwise u(x∗, t∗) = 1. Thus, at

(0, t∗) we have

D(u(0, t∗))ux (0, t∗) = ku(0, t∗) < 0,

via condition (20) and (47). Then, via (D2), we conclude that

ux (0, t∗) < 0. (48)

However, since u achieves its infimum at (0, t∗) then ux (0, t∗) ≥ 0, which contradicts (48). Thus, we conclude that
u must be non-negative on DT . This holds for any T > 0 and so u(x, t) ≥ 0 for all (x, t) ∈ D∞. Next it follows
from (21) that

sup
(x,t)∈DT

u (x, t) ≥ 1. (49)

However, via (44)–(46), it follows from the Weak Parabolic Maximum Principle [16] that there exists a point
(x∗, t∗) ∈ ∂DT such that

u(x∗, t∗) = sup
(x,t)∈DT

u(x, t) ≥ 1 (50)

via (49). Now suppose that (x∗, t∗) ∈ ∂D
T
L , so that (x∗, t∗) = (0, t∗), and from (20) and (50) we have that

D(u(0, t∗))ux (0, t∗) = ku(0, t∗) ≥ k > 0
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and so,

ux (0, t∗) > 0 (51)

via (D2). However, since u achieves its supremum at (0, t∗) then ux (0, t∗) ≤ 0, which contradicts (51). Hence we

conclude that (x∗, t∗) ∈ ∂D
T
R , and so, via (21),

u(x∗, t∗) = sup
(x,t)∈D̄T

u(x, t) = 1.

Therefore, u ≤ 1 on DT . Since this holds for any T > 0, we conclude that u(x, t) ≤ 1 for all (x, t) ∈ D∞.
Consequently, we have

0 ≤ u(x, t) ≤ 1 ∀(x, t) ∈ D∞,

as required. ��
We next refine these inequalities in

Corollary 1 Let u : D∞ → R be a solution to [IBVP]. Then

0 < u(x, t) < 1 ∀(x, t) ∈ D∞.

Proof From Proposition 2 we have

0 ≤ u(x, t) ≤ 1 ∀(x, t) ∈ D∞.

Now suppose there exists a point (x∗, t∗) ∈ D∞ such that u(x∗, t∗) = 0. Then

inf
(x,t)∈D∞

u(x, t) = 0

and it follows from the Strong Parabolic Minimum Principle [16] that

u(x, t) = 0 ∀(x, t) ∈ DT ∗ ,

where

T ∗ = sup{t ∈ (0, T ] : ∃ x ∈ (0, h(t)) with u(x, t) = 0} ≥ t∗ > 0.

This contradicts condition (21). Thus, u(x, t) > 0 for all (x, t) ∈ D∞. Next suppose that there exists (x∗, t∗) ∈ D∞
such that u(x∗, t∗) = 1. Then

sup
(x,t)∈D∞

u(x, t) = 1, (52)

and it follows from the Strong Parabolic Maximum Principle [16] that

u(x, t) = 1 ∀(x, t) ∈ DT ∗ ,

where now

T ∗ = sup{t ∈ (0, T ] : ∃ x ∈ (0, h(t)) with u(x, t) = 1} ≥ t∗ > 0.

Also, via condition (20) with regularity condition (R2), we have from (52),

D(u(0, t))ux (0, t) = ku(0, t) = k > 0 ∀t ∈ [
0, T ∗] ,

and so, via (D2),

ux (0, t) > 0 ∀t ∈ [
0, T ∗] . (53)

However, since u(x, t) = 1 for all (x, t) ∈ DT ∗ , then ux (0, t) = 0 for all t ∈ [
0, T ∗], which contradicts (53). Thus

u(x, t) < 1 for all (x, t) ∈ D∞. Therefore,

0 < u(x, t) < 1 ∀(x, t) ∈ D∞,

as required. ��
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Next we have

Proposition 3 Let u : D∞ → R be a solution to [IBVP]. Then

ut (x, t) ≤ 0 ∀(x, t) ∈ D∞.

Proof Firstly, from (19) we have

εD(u)ut = D(u)(D(u)ux )x on D∞. (54)

Next we introduce f : D∞ → R defined by

f (x, t) = F(u(x, t)) ∀(x, t) ∈ D∞, (55)

with F : R → R as introduced in (31). It follows from (31), (25) and (D3) that

f ∈ C3(D∞
)
, (56)

and we have, for (x, t) ∈ D∞,

ft (x, t) = F ′(u(x, t))ut (x, t) = D(u(x, t))ut (x, t), (57)

fx (x, t) = F ′(u(x, t))ux (x, t) = D(u(x, t))ux (x, t), (58)

fxx (x, t) = D′(u(x, t))u2
x (x, t) + D(u(x, t))uxx (x, t). (59)

Therefore, via (57) and (58), we observe that (54) becomes

ε ft = D(u) fxx on D∞. (60)

Similarly, (20)–(22) becomes

fx = ku x = 0, t > 0, (61)

f = F(1) x = h(t), t > 0, (62)

ht = fx − 1 x = h(t), t > 0. (63)

We next introduce w : D∞ → R defined by

w(x, t) = ft (x, t) ∀(x, t) ∈ D∞. (64)

From (56) it follows that

w ∈ C2(D∞
)
, (65)

whilst from (56) and (60), we have that

ε ft t = D(u) fxxt + D′(u)ut fxx on D∞,

which becomes, via (57) and (64),

εwt = D(u)wxx + D′(u)

D(u)
fxxw on D∞.

Hence, we have

wt − a(x, t)wxx − c(x, t)w = 0 on D∞, (66)

where

a(x, t) = D(u(x, t))

ε
>

Dm

ε
> 0 ∀(x, t) ∈ D∞, (67)
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via (D2), and

c(x, t) = D′(u(x, t))

εD(u(x, t))
fxx (x, t) ∀(x, t) ∈ D∞.

It follows from (25), (D3) and (56) that c(x, t) is continuous on D∞, and so is continuous and bounded on DT , for
any T > 0. Also, via (61) together with (25) and (56),

fxt = kut x = 0, t > 0,

and so, via (57) and (64),

wx = kw

D(u)
x = 0, t > 0. (68)

In addition, via (56), (62), regularity condition (R1) and the chain rule we have

ft + ht fx = 0 x = h(t), t > 0,

and so, via (64),

w = −ht fx x = h(t), t > 0.

However, regularity condition (R1) requires ht ≥ 0, and so, via (63),

fx ≥ 1 x = h(t), t > 0. (69)

Thus, we conclude from regularity condition (R1) and (69) that

w ≤ 0 x = h(t), t > 0. (70)

Next we introduce v : D∞ → R such that

w(x, t) = eλtv(x, t) ∀(x, t) ∈ D∞, (71)

with λ ∈ R to be chosen. From (65) it follows that

v ∈ C2(D∞
)
. (72)

Thus, for (x, t) ∈ D∞ we have

wx (x, t) = eλtvx (x, t), (73)

wt (x, t) = λeλtv(x, t) + eλtvt (x, t), (74)

wxx (x, t) = eλtvxx (x, t). (75)

Then, via (71) and (72), with (66), we obtain

vt − a(x, t)vxx − (c(x, t) − λ) v = 0 on D∞. (76)

Now set T > 0 and let CT > 0 be a bound for c on DT , so that

|c(x, t)| ≤ CT ∀(x, t) ∈ DT . (77)

We next choose

λ = 2CT > 0 (78)

so that

c(x, t) − λ ≤ −CT < 0 ∀(x, t) ∈ DT . (79)
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Suppose that v is not non-positive on DT . Then

sup
(x,t)∈DT

v(x, t) > 0,

and, via (70) and (71), this cannot be achieved on ∂D
T
R . Thus, there exists

(
x∗, t∗

) ∈ DT ∪ ∂DT
L , (80)

such that

v(x∗, t∗) = sup
(x,t)∈DT

v(x, t) > 0. (81)

If (x∗, t∗) ∈ DT then t∗ ∈ (0, T ) or t∗ = T . When t∗ ∈ (0, T ) then (x∗, t∗) is such that

vt (x
∗, t∗) = vx (x

∗, t∗) = 0, (82)

vxx (x
∗, t∗) ≤ 0. (83)

However, from (76) with (67), (79), (81) and (83), we have

vt (x
∗, t∗) = a(x∗, t∗)vxx (x∗, t∗) + (

c(x∗, t∗) − λ
)
v(x∗, t∗) < 0,

which contradicts (82). Similarly, when t∗ = T , then (x∗, T ) is such that

vx (x
∗, T ) = 0, vxx (x

∗, T ) ≤ 0, (84)

and

vt (x
∗, T ) ≥ 0. (85)

However, via (76) with (67), (79), (81) and (84), we have

vt (x
∗, T ) = a(x∗, T )vxx (x

∗, T ) + (
c(x∗, T ) − λ

)
v(x∗, T ) < 0,

which contradicts (85). Hence, we conclude that (x∗, t∗) /∈ DT , so that, from (80),
(
x∗, t∗

) = (
0, t∗

) ∈ ∂DT
L ,

and, via (81),

vx (0, t∗) ≤ 0. (86)

However, via (68), (71) and (73), we have

vx (0, t∗) = kv(0, t∗)
D(u(0, t∗))

> 0,

using (D2) and (81), which contradicts (86). Thus, we concluded that
(
x∗, t∗

)
/∈ DT ∪ ∂DT

L ,

which contradicts (80). Hence, v must be non-positive on DT , so that

v(x, t) ≤ 0 ∀(x, t) ∈ DT . (87)

It then follows, via (64) and (71), that

ft (x, t) ≤ 0 ∀(x, t) ∈ DT .

Therefore, from (57), we have

ut (x, t) ≤ 0 ∀(x, t) ∈ DT .

Since this holds for any T > 0 we have

ut (x, t) ≤ 0 ∀(x, t) ∈ D∞
as required. ��
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As a consequence, we have the refinement,

Corollary 2 Let u : D∞ → R be a solution to [IBVP]. Then

ut (x, t) < 0 ∀(x, t) ∈ D∞.

Proof We introduce the function v̄ : D∞ → R such that

v(x, t) = eμt v̄(x, t) ∀(x, t) ∈ D∞, (88)

with v : D∞ → R as introduced in (71) and with μ ∈ R to be chosen. From (72) it follows that

v̄ ∈ C2(D∞
)
. (89)

whilst from (87),

v̄(x, t) ≤ 0 ∀(x, t) ∈ D∞. (90)

From (88) we have that for (x, t) ∈ D∞,

vx (x, t) = eμt v̄x (x, t), (91)

vt (x, t) = μeμt v̄(x, t) + eμt v̄t (x, t), (92)

vxx (x, t) = eμt v̄xx (x, t). (93)

Hence, after substituting (91)–(93) into (76), we obtain

v̄t − a(x, t)v̄xx − (c(x, t) − (λ + μ)) v̄ = 0 ∀(x, t) ∈ D∞. (94)

Setting T > 0 and recalling (77) and (78), we have

c(x, t) − (λ + μ) ≥ −CT − (2CT + μ) = −3CT − μ ∀(x, t) ∈ DT .

We now choose

μ = −3CT ,

so that

c(x, t) − (λ + μ) ≥ 0 ∀(x, t) ∈ DT . (95)

Thus, from (94) and (95) together with (90), we have

v̄t − a(x, t)v̄xx ≤ 0 ∀(x, t) ∈ DT . (96)

Now suppose there exists (x∗, t∗) ∈ DT such that

v̄(x∗, t∗) = 0 = sup
(x,t)∈DT

v̄(x, t).

Then, via (89), we have that v̄ is continuous on DT and that v̄x , v̄t and v̄xx exist and are continuous on DT . Hence,
with (96), we may apply the Strong Parabolic Maximum Principle [16] to v̄ on DT , which requires

v̄(x, t) = 0 ∀(x, t) ∈ Dt∗. (97)

Then, using (97) together with (88), (71), (64), (57) and (D2), we have

ut (x, t) = 0 ∀(x, t) ∈ Dt∗.

It then follows, via (21) and regularity conditions (R1) and (R2) that

u(x, t) = 1 ∀(x, t) ∈ Dt∗.
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However, this contradicts (20). Therefore,

v̄(x, t) < 0 ∀(x, t) ∈ DT ,

and, via (88), (71), (64), (57) and (D2), we have

ut (x, t) < 0 ∀(x, t) ∈ DT .

Since this holds for any T > 0, we have

ut (x, t) < 0 ∀(x, t) ∈ D∞,

as required. ��
We next have

Proposition 4 Let u : D∞ → R be a solution to [IBVP]. Then

1 < D(u(x, t))ux (x, t) < k ∀(x, t) ∈ D∞.

Proof Fix t > 0 and let (x, t) ∈ D∞. Applying the mean value theorem, with f : D∞ → R as defined in (55), we
have

fx (x, t) − fx (0, t) = fxx (θx, t)x, (98)

and

fx (h(t), t) − fx (x, t) = fxx (x + θ ′(h(t) − x), t)(h(t) − x), (99)

with 0 < θ, θ ′ < 1. Now, from (60), we have

ε

D(u)
ft = fxx on D∞.

Thus, via (D2), (57) and Corollary 2, it follows that

fxx < 0 on D∞. (100)

Consequently, via (98), we have

fx (x, t) < fx (0, t) ∀(x, t) ∈ D∞,

and, via (58),

D(u(x, t))ux (x, t) < D(u(0, t))ux (0, t) ∀(x, t) ∈ D∞. (101)

Next, using (20) and Proposition 2, we have

D(u(0, t))ux (0, t) = ku(0, t) ≤ k ∀t ∈ (0,∞) .

Hence, via (101),

D(u(x, t))ux (x, t) < k ∀(x, t) ∈ D∞. (102)

Similarly, via (99) and (100), we have

fx (h(t), t) < fx (x, t) ∀(x, t) ∈ D∞,

which, via (58), becomes

D(u(x, t))ux (x, t) > D(u(h(t), t))ux (h(t), t) ∀(x, t) ∈ D∞. (103)
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Also, using (22) and regularity condition (R1), we have

D(u(h(t), t))ux (h(t), t) = ht (t) + 1 ≥ 1 ∀t ∈ (0,∞) .

Hence, via (103),

D(u(x, t))ux (x, t) > 1 ∀(x, t) ∈ D∞,

and therefore, with (102), we have

1 < D(u(x, t))ux (x, t) < k ∀(x, t) ∈ D∞,

as required. ��
The regularity condition (R2) with (D3) then immediately allows for

Corollary 3 Let u : D∞ → R be a solution to [IBVP]. Then

1 ≤ D(u(x, t))ux (x, t) ≤ k ∀(x, t) ∈ D∞.

In addition, we have

Corollary 4 The existence of a solution to [IBVP] requires k > 1.

Proof Let u : D∞ → R and h : [0,∞) → R be a solution to [IBVP]. Then from Proposition 4, we have

1 < D(u(x, t))ux (x, t) < k ∀(x, t) ∈ D∞,

which is only possible when k > 1. ��
Next we have

Proposition 5 Let u : D∞ → R be a solution to [IBVP]. Then

u(0, t) ≥ 1

k
∀t ∈ (0,∞),

u(x, t) >
1

k
∀(x, t) ∈ D∞ \ ({0} × (0,∞)).

Proof From (20), we have

ku(0, t) = D(u(0, t))ux (0, t) ∀t ∈ (0,∞).

It then follows, from Corollary 3, that

u(0, t) ≥ 1

k
∀t ∈ (0,∞). (104)

In addition,

u(x, t) − u(0, t) =
∫ x

0
uλ(λ, t)dλ > 0 ∀(x, t) ∈ D∞ \ ({0} × [0,∞)), (105)

via Corollary 3 and (D2). Thus, from (105) and (104), we have

u(x, t) >
1

k
∀(x, t) ∈ D∞ \ ({0} × [0,∞)).

However, u(0, 0) = 1 > k−1, via Corollary 4, and so,

u(x, t) >
1

k
∀(x, t) ∈ D∞ \ ({0} × (0,∞)),

as required. ��
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We now obtain bounds on h in the following:

Proposition 6 Let h : [0,∞) → R describe the free boundary in [IBVP]. Then

0 < h(t) < F(1) − F(k−1) ∀t ∈ (0,∞) .

Proof First, via (24) and (25), we have h(0) = 0. Also, from (21) and (25) we have u (0, 0) = 1. Hence, via (25),
Corollary 4, (20) and (D1) we have

D(1)ux (0, 0) = ux (0, 0) = ku (0, 0) = k > 1. (106)

Thus, via (22), (25) and (106),

ht (0) = ux (0, 0) − 1 = k − 1 > 0. (107)

It then follows from (107), with h(0) = 0 and regularity condition (R1), that

h(t) > 0 ∀t ∈ (0,∞) . (108)

Next take any t > 0. It follows from the mean value theorem with (55), (56) and (58) that

F(u(h(t), t)) − F(u(0, t)) = Fx (u(θ̂h(t), t))h(t) = D(u(θ̂h(t), t))ux (θ̂h(t), t)h(t), (109)

with 0 < θ̂ < 1. Then, via Proposition 4, (108) and (109),

F(u(h(t), t)) − F(u(0, t)) > h(t),

from which we obtain, via (21),

h(t) < F(1) − F(u(0, t)). (110)

However, via (20) and Corollary 3,

u(0, t) = D(u(0, t))ux (0, t)

k
≥ 1

k
.

Therefore, via (110) and (31),

h(t) < F(1) − F(u(0, t)) ≤ F(1) − F(k−1) ∀t ∈ (0,∞) . (111)

Thus, combining (108) and (111), we have

0 < h(t) < F(1) − F(k−1) ∀t ∈ (0,∞) ,

as required. ��
Now let k > 1 and let u : D∞ → R and h : [0,∞) → R be a solution to [IBVP]. It follows from (22), (R1)
and Proposition 6 that h(t) is a monotone increasing function of t and is bounded above by F(1) − F(k−1) > 0.
Consequently, there exists a constant 0 < h̄ ≤ F(1) − F(k−1) such that

h(t) → h̄ as t → ∞.

Similarly, Proposition 2, Proposition 3, Corollary 3 and Proposition 5 together with the Ascoli–Arzelà Compactness
Theorem establish the existence of a continuous function ū : [0, h̄] → R such that

u(x, t) → ū(x) as t → ∞ uniformly for 0 ≤ x ≤ h(t),

with ū(x) monotone increasing for x ∈ [0, h̄], and
1

k
≤ ū(x) ≤ 1 ∀x ∈ [0, h̄].

Further, the bounds obtained on ux , ut and ht , and consequently bounds on uxx together with the Ascoli–Arzela
Theorem allow for a deduction that ūx and ūxx exist and are continuous, and moreover, ū : [0, h̄] → R and h̄ must
satisfy problem (27)–(30), and so are steady state solutions to [IBVP]. Hence ū = us and h̄ = hs, as discussed in
Sect. 3.1. It is convenient to summarise the results in this subsection in the following:
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Theorem 1 The existence of a solution to [IBVP] requires k > 1. With k > 1, let u : D∞ → R and h : [0,∞) → R

be a solution to [IBVP]. Then

(i) 1
k < u(x, t) < 1 ∀(x, t) ∈ D∞,

(ii) ut (x, t) < 0 ∀(x, t) ∈ D∞,
(iii) 1 < D(u(x, t))ux (x, t) < k ∀(x, t) ∈ D∞,
(iv) (D(u)ux )x < 0 ∀(x, t) ∈ D∞,

(v) 0 < h(t) < F(1) − F
(
k−1

)
and 0 ≤ ht (t) < k − 1 ∀t ∈ (0,∞),

(vi) h(t) → h−
s = F(1) − F

(
k−1

)
as t → ∞,

(vii) u(x, t) → u+
s (x) = F−1

(
x + F

(
k−1

))
as t → ∞ uniformly for 0 ≤ x ≤ h(t).

We recall that the limit in (vi) is from below, whilst the limit in (vii) is from above. Also, we note that in physical
terms the requirement that k > 1, for a solution to [IBVP] to exist, requires that the cooling process has to be
sufficiently strong in order for the development of a wax layer to initiate. From Theorem 1 (i)–(v), we have obtained
a priori bounds for [IBVP] on u : D∞ → R, the partial derivative ux : D∞ → R, together with h : (0,∞) → R.
Consequently, both global existence and uniqueness for [IBVP] can be anticipated by adopting an iterative approach
to accommodate the quasi-linear terms (see, for example [17]), whilst following, in principle, Cannon and Hill [15].
We next develop the analysis of [IBVP] by considering the structure of the solution as t → 0+ and correspondingly
as t → ∞.

4 Coordinate expansions

We begin this section by analysing the structure of the solution to [IBVP] as t → 0+. After which we consider the
structure of the solution to [IBVP] as t → ∞.

4.1 Coordinate expansions as t → 0+

We consider the structure of the solution to [IBVP] (with k > 1) as t → 0+. It follows, from (20)–(24), that

h = O(t), u = 1 + O(t), x = O(t),

as t → 0+. Therefore, we introduce the scaled coordinate

X = x

t
= O(1) as t → 0+, (112)

and write

h(t) = t H(t), (113)

u(X, t) = 1 + tU (X, t), (114)

with

H(t) = H1 + H2t + O(t2), (115)

U (X, t) = U1(X) +U2(X)t + O(t2), (116)

123



The development of a wax layer on the interior wall of a circular pipe Page 19 of 30     7 

as t → 0+ with 0 ≤ X ≤ H(t). In terms of X , t , H and U , [IBVP] becomes

εt (U − XUX + tUt ) = (D(1 + tU )UX )X 0 < X < H(t), t > 0, (117)

D(1 + tU )UX = k (1 + tU ) X = 0, t > 0, (118)

U = 0 X = H(t), t > 0, (119)

H + t Ht = D(1 + tU )UX − 1 X = H(t), t > 0, (120)

U bounded as t → 0+ uniformly for 0 ≤ X ≤ H(t), (121)

H bounded as t → 0+. (122)

Substituting from (115) and (116) into (117)–(120), we have at leading order

U ′′
1 = 0 0 < X < H1, (123)

U ′
1(0) = k, (124)

U1(H1) = 0, (125)

H1 = U ′
1(H1) − 1. (126)

The solution to this boundary value problem is readily obtained as

H1 = k − 1 > 0, (127)

with

U1(X) = k(X − (k − 1)) ∀ 0 ≤ X ≤ k − 1. (128)

Terms at O(t) lead to the following boundary value problem for H2 and U2

(
D′(1)U1U

′
1 +U ′

2

)′ = ε
(
U1 − XU ′

1

)
0 < X < H1, (129)

D′(1)U1(0)U ′
1(0) +U ′

2(0) = kU1(0), (130)

U ′
1(H1)H2 +U2(H1) = 0, (131)

(2 −U ′′
1 (H1))H2 = D′(1)U1(H1)U

′
1(H1) +U ′

2(H1). (132)

After some calculation, we obtain the solution to this boundary value problem as

H2 = −1

2
k(k − 1)(k + ε(k − 1)), (133)

U2(X) = −
(

ε

2
k(k − 1) + D′(1)k2

2

)
X2 −

(
k2(k − 1) − D′(1)k2(k − 1)

)
X

+ k2(k − 1)2
(

ε − D′(1)

2
+ 1

)
+ k3

2
(k − 1) + ε

2
k(k − 1)3 ∀ 0 ≤ X ≤ H1. (134)

Thus, the coordinate expansions (113) and (114) as t → 0+, via (115), (116), (127), (128), (133) and (134), are
given by

h(t) = (k − 1)t − k

2
(k − 1) (ε(k − 1) + k) t2 + O(t3) as t → 0+, (135)
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and

u(X, t) = 1 + (kX − k(k − 1))t +
(

−
(

ε

2
k(k − 1) + D′(1)k2

2

)
X2

−
(
k2(k − 1) − D′(1)k2(k − 1)

)
X

+ k2(k − 1)2
(

ε − D′(1)

2
+ 1

)
+ k3

2
(k − 1) + ε

2
k(k − 1)3

)
t2

+ O(t3) as t → 0+ uniformly for 0 ≤ X ≤ t−1h(t). (136)

We obtain, from (135) and (136), that

ht (t) → (k − 1) as t → 0+,

whilst recalling (112) we have

ux (x, t) → k as t → 0+ uniformly for 0 ≤ x ≤ h(t), (137)

and

uxx (x, t) → −εk(k − 1) − D′(1)k2 as t → 0+ uniformly for 0 ≤ x ≤ h(t). (138)

4.2 Coordinate expansions as t → ∞

We now consider the structure of the solution to [IBVP] as t → ∞. From Theorem 1, it follows that

h = hs + o(1), u = us(x) + o(1),

as t → ∞. Thus we write

h(t) = hs + h̄(t), (139)

u(x, t) = us(x) + ū(x, t), (140)

with

h̄(t) = o(1) as t → ∞,

ū(x, t) = o(1) as t → ∞ uniformly for 0 ≤ x ≤ h(t).

On substituting from (139) and (140) into [IBVP], we obtain the leading order problem for ū and h̄, as

εūt = (D(us(x))ū)xx 0 < x < hs, t � 1, (141)

(D(us(x))ū)x = kū x = 0, t � 1, (142)

ū + h̄ = 0 x = hs, t � 1, (143)

h̄t = (D(us(x))ū)x x = hs, t � 1. (144)

We can eliminate h̄(t) from (141)–(144) to obtain

εūt = (D(us(x))ū)xx 0 < x < hs, t � 1, (145)

(D(us(x))ū)x = kū x = 0, t � 1, (146)

ūt = − (D(us(x))ū)x x = hs, t � 1, (147)
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after which h̄(t) is recovered as

h̄(t) = −ū(hs, t); t � 1. (148)

We look for a solution to (145)–(147) in the form

ū(x, t) = φ(x)e−λt (149)

with λ ∈ C to be determined. After substituting from (149) into (145)–(147), we obtain the linear eigenvalue
problem

(D(us(x))φ)xx = −ελφ 0 < x < hs, (150)

(D(us(x))φ)x = kφ x = 0, (151)

λφ = (D(us(x))φ)x x = hs (152)

with eigenvalue λ ∈ C. It is now convenient to introduce the function ψ : [0, hs] → R defined by

ψ(x) = D(us(x))φ(x) ∀ 0 ≤ x ≤ hs, (153)

together with the prescribed function Δ : [0, hs] → R given by

Δ(x) = D(us(x)) ∀ 0 ≤ x ≤ hs. (154)

Substituting from (153) into (150)–(152) we obtain the equivalent eigenvalue problem,

ψ ′′ + ε

Δ(x)
λψ = 0 0 < x < hs, (155)

ψ ′ = k

D(k−1)
ψ x = 0, (156)

ψ ′ = λψ x = hs. (157)

Henceforth, we will refer to the generalised Sturm–Liouville eigenvalue problem given by (155)–(157) as [S-L].
We note that [S-L] has the following properties:

(S1) The eigenvalues of [S-L] are all real and may be written as

λ0 < λ1 < λ2 < · · · < λr < · · ·
with λr → ∞ as r → ∞.

(S2) For λ = λr (where r = 0, 1, 2, . . .) then the corresponding eigenfunction is real valued, say, ψr : [0, hs] → R,

and may be normalised so that, ψr (0) > 0 and,
∫ hs

0

1

Δ(σ)
ψ2
r (σ )dσ = 1. (158)

(S3) ψr (x) > 0 for all x ∈ [0, hs] if and only if r = 0.

We are now able to establish the following:

Proposition 7 Let λ0 ∈ R andψ0 : [0, hs] → R be the zeroth eigenvalue and the corresponding zeroth normalised
eigenfunction of [S–L]. Then λ0 > 0.

Proof In [S-L], we will set λ = λ0 and ψ(x) = ψ0(x), so that

ψ ′′
0 + ε

Δ(x)
λ0ψ0 = 0 0 < x < hs, (159)

ψ ′
0 = k

D(k−1)
ψ0 x = 0, (160)

ψ ′
0 = λ0ψ0 x = hs. (161)
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We first multiply both sides of (159) by ψ0 to obtain, after an integration,

[ψ0(x)ψ
′
0(x)]hs

0 −
∫ hs

0

(
ψ ′

0(x)
)2 dx + ελ0 = 0, (162)

where use has been made of (158). With use of (160) and (161), we obtain from (162),

ψ2
0 (hs)λ0 − k

D(k−1)
ψ2

0 (0) −
∫ hs

0

(
ψ ′

0(x)
)2 dx + ελ0 = 0,

and so, after rearranging,

λ0 =
(
kD(k−1)−1ψ2

0 (0) + ∫ hs
0

(
ψ ′

0(x)
)2 dx

)

(
ψ2

0 (hs) + ε
) .

Hence, via (D2) and (S2) we have λ0 > 0, as required. ��
It is now instructive to consider [S-L] as ε → 0. We write the eigenvalues of [S-L] as

0 < λ0(ε) < λ1(ε) < λ2(ε) < · · · < λr (ε) < · · ·
where λr (ε) → ∞ as r → ∞. There are two possibilities as ε → 0:

(i) λ = O(1), or (ii) λ = O(ε−1).

We first consider case (i). Hence we introduce the expansions

ψ(x, ε) = χ0(x) + εχ1(x) + O(ε2), x ∈ [0, hs], (163)

λ(ε) = l0 + εl1 + O(ε2), (164)

as ε → 0. After substituting from (163) and (164) into [S-L], we obtain at leading order

χ ′′
0 = 0 0 < x < hs, (165)

χ ′
0 = kχ0

D(k−1)
x = 0, (166)

χ ′
0 = l0χ0 x = hs. (167)

On integrating (165), we obtain

χ0(x) = αx + β, (168)

where α, β ∈ R are constants of integration. Applying condition (166), we have

α − k

D(k−1)
β = 0,

and (168) becomes

χ0(x) = α

(
x + D(k−1)

k

)
∀0 ≤ x ≤ hs. (169)

Finally applying condition (167) requires
(
l0

(
hs + D(k−1)

k

)
− 1

)
α = 0,

and so, for a non-trivial solution (α �= 0), we have

l0 = k
(
D(k−1) + khs

) . (170)
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The constant α is now fixed via the normalisation condition (158) as

α =
(∫ hs

0

1

Δ(s)

(
s + D(k−1)

k

)2

ds

)− 1
2

. (171)

We observe from (169) and (D2) that χ0(x) > 0 for all x ∈ [0, hs]. Thus in (163) and (164) it follows from (S3)
that ψ = ψ0 and λ = λ0, and so we have constructed the lowest eigenvalue and eigenfunction only in case (i). It
follows from (S1) that all higher eigenvalues will fall into case (ii), and need not be considered further. In summary,
we have, from (164) and (170), that

λ0(ε) = k

(D(k−1) + khs)
+ O(ε), (172)

as ε → 0, whilst from (163) and (169), we have

ψ0(x, ε) = α

(
x + D(k−1)

k

)
+ O(ε) (173)

as ε → 0 uniformly for x ∈ [0, hs], with the positive constant α given by (171). We observe that (172) gives

λ0(ε) ∼ k
(
D(k−1) + (k − 1)

〈
D

([
k−1, 1

])〉) , (174)

as ε → 0, where
〈
D

([
k−1, 1

])〉
is as defined in (42). Equation (174) highlights the contribution of the variable

diffusivity across the steady state layer and in particular the mean of this diffusivity together with the diffusivity
closest to the coolant. Finally, returning to (139) and (140) via (148), (149) and (153) (with (S1)–(S3)), we have

u(x, t) = us(x) + u∞
ψ0(x)

D(us(x))
e−λ0t + o(e−λ0t ) ∀0 ≤ x ≤ hs, (175)

h(t) = hs − u∞ψ0(hs)e
−λ0t + o(e−λ0t ) (176)

as t → ∞, with u∞ being a positive (via Theorem 1 (vi) and (vii)) global constant, which remains undetermined in
this large-t analysis. The structure of λ0 and ψ0(x) as ε → 0 is given by (172)and (173). The steady state solution
is approached through terms exponentially small in t , with exponent λ0, as t → ∞.

5 Asymptotic solution to [IBVP] as ε→0

In many applications, the parameter ε is small (see, for example [12] and [18]). Therefore, it is of value to consider
[IBVP] as a parameter perturbation problem with 0 < ε � 1, and consider its asymptotic solution as ε → 0, with
k > 1. We expand the solution to [IBVP] in the form

u(x, t) = u0(x, t) + εu1(x, t) + O(ε2), (177)

h(t) = h0(t) + εh1(t) + O(ε2), (178)

as ε → 0 with x, t = O(1). On substituting from (177) and (178) into [IBVP], we obtain the following problem at
leading order for u0(x, t) and h0(t), namely,

(F(u0))xx = 0 0 < x < h0(t), t > 0, (179)

(F(u0))x = ku0 x = 0, t > 0, (180)

u0 = 1 x = h0(t), t > 0, (181)

1 + (h0)t = (F(u0))x x = h0(t), t > 0, (182)

u0 → 1 as t → 0+ uniformly for 0 ≤ x ≤ h0(t), (183)

h0 → 0 as t → 0+, (184)
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where F : R → R is given by (31). An integration of (179) gives

F(u0(x, t)) = A(t)x + B(t) 0 ≤ x ≤ h0(t), t > 0, (185)

where A(t) and B(t) are smooth functions of t to be determined. Applying condition (180) we require,

A(t) = kF−1(B(t)) t > 0. (186)

Therefore, after rearranging (186), we can rewrite (185) as

F(u0(x, t)) = A(t)x + F
(
k−1A(t)

)
0 ≤ x ≤ h0(t), t > 0. (187)

We next apply condition (181) to (187) to obtain

h0(t) = G(A(t)) t > 0, (188)

where G : R+ → R is such that

G(λ) = F(1) − F(k−1λ)

λ
∀λ ∈ R

+. (189)

It is readily established that the following properties are satisfied:

(G1) G ∈ C3(R+),

(G2) G(k) = 0,

(G3) G(λ) > 0 for all λ ∈ (0, k),
(G4) G ′(λ) < 0 for all λ ∈ (0, k].
Finally, we must apply condition (182), which gives

h0 t (t) = A(t) − 1, t > 0. (190)

We observe, from Theorem 1 (v) and (190), that (recalling k > 1)

1 ≤ A(t) ≤ k ∀t > 0. (191)

Thus, via (G4), (191) and (188), we may deduce that

0 ≤ h0(t) ≤ hs(k) ∀t > 0, (192)

(which is in agreement with Proposition 6, recalling that hs(k) = F(1) − F(k−1)) after which, via (G4), we may
invert (188) to obtain

A(t) = G−1(h0(t)), t > 0. (193)

Here G−1 : [0, hs(k)] → [1, k] is such that G−1 ∈ C3([0, hs(k)]), and

G−1(0) = k, G−1(hs(k)) = 1 (194)

with

G−1
λ (λ) < 0 ∀λ ∈ [0, hs(k)]. (195)

Therefore, via (190) and (193) (together with the condition (184)), we require that h0 : [0,∞) → R satisfies the
autonomous 1-dimensional dynamical system

h0 t = G−1(h0) − 1, t > 0, (196)

h0(t) → 0+ as t → 0+. (197)

This problem has a unique solution, say

h0 = H(t), t ≥ 0,

with H ∈ C3([0,∞)), and
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(H1) H(0) = 0,
(H2) H ′(t) > 0 for all t ∈ [0,∞),
(H3) H(t) = (k − 1)t + O(t2) as t → 0+,
(H4) H(t) ∼ hs(k) − A∞(k)e−μ(k)t as t → ∞.

Here A∞(k) > 0 is a global constant, and

μ(k) = k

khs(k) + F ′(k−1)
. (198)

We observe that (H4) and (198) are in agreement with (176). An implicit form for H(t) is obtained from (196) and
(197) as
∫ H(t)

0

dλ

(G−1(λ) − λ)
= t, ∀t ≥ 0. (199)

Finally, having determined h0(t), we obtain from (187),

u0(x, t) = F−1(A(t)x + F(k−1A(t))); 0 ≤ x ≤ h0(t), t ≥ 0, (200)

with A(t) given in terms of h0(t) in (193). It is worth observing from (200) that

u0(0, t) = k−1A(t) = k−1G−1(h0(t)), t ≥ 0,

which, via (194) and (195), is monotonic decreasing from unity to k−1 with increasing t .

6 Numerical solution to [IBVP]

In this section, we consider numerical solutions to [IBVP] for comparison with the theory of the previous sections.
For [IBVP] with constant diffusivity, the method of fundamental solutions was employed in [1] to provide numerical
approximation of the solution to [IBVP]. A useful feature of this method is that a node can be placed at (x, t) = (0, 0)

in the domain to encapsulate the initial-boundary conditions (23) and (24). However, for non-constant diffusivity, the
partial differential equation (19) is quasi-linear, and consequently, the non-linearity precludes numerical methods
based on fundamental solutions. Hence, in the current situation, we employ an explicit finite-difference method to
provide numerical approximations to [IBVP].3 We note that although this method is simple to apply, in this setting
there are several limitations, primarily due to the representation of conditions (23) and (24). We first transform
[IBVP] to a rectangular domain, by introducing

u(x, t) = v(X, t), X = x

h(t)
∀(x, t) ∈ D∞ ∪ ∂D∞. (201)

It then follows from (19)–(22) that [IBVP] becomes

εh2vt = D(v)vXX + εXhthvX + D′(v)v2
X 0 < X < 1, t > 0, (202)

D(v)vX = kvh X = 0, t > 0, (203)

v = 1 X = 1, t > 0, (204)

hht = vX − h ≥ 0 X = 1, t > 0, (205)

whilst conditions (23) and (24) are extended, via (135) and (137)–(138) to

h(t) ∼ (k − 1)t − k

2
(k − 1) (ε(k − 1) + k) t2 as t → 0+ (206)

v(X, t) ∼ 1 + kh(t)(X − 1) − k

2
h2(t)(ε(k − 1) − D′(1)k)(X − 1)2 as t → 0+, (207)

3 The MATLAB files used to perform numerical simulations can be found here https://github.com/JCMUoB/
The-Development-of-a-Wax-Layer-on-the-Interior-Wall-of-a-Circular-Pipe/tree/JCMUoB-resubmitted-manuscript-version.
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for X ∈ [0, 1]. Due to the degeneracy of (202) at t = 0, we set the initial conditions for the numerical method at
t = δ > 0, with δ sufficiently small so that we can use the asymptotic forms for h and v in (206) and (207) at t = δ,
respectively. We refer to the initial-boundary value problem given by (202)–(207) as [IBVP∗].

To implement the finite-difference method, we employed a uniform spatial grid with Nx grid points to represent
the interval [0, 1] so that the i th spatial grid points Xi = (i − 1)dX with dX = 1/(Nx − 1). The temporal grid
points t j , used to represent [δ, T ], were not uniformly spaced, with the time step dt chosen sufficiently small at
each step to accommodate numerical stability conditions on the discrete evolution equations for vi, j ≈ v(Xi , t j )
and h j ≈ h(t j ), namely

dt � min

{
(hdX)2ε

2 supX∈[0,1] D(v(X, t))
,

2(hdX)2ε

supX∈[0,1] D′(v(X, t))
,

hdX

(1 − k)

}

.

We note that this local stability condition limiting dt relaxes, as h increases. The discretisation of (205), (204),
(202) and (203), respectively, in the order that h j+1 and vi, j+1 are computed, is given by

vNx , j = 1

h j+1 = h j + dt

(
vNx , j − vNx−1, j

dxh j
− 1

)

vi, j+1 = vi, j + dt

εh2
j

(
D(vi, j )

(
vi−1, j − 2vi, j + vi+1, j

dx2

)

+ εXih j

(
h j+1 − h j

dt

) (
vi+1, j − vi−1, j

2 dx

)

+ D′(vi, j )
(

vi+1, j − vi−1, j

2 dx

)2 )
i = 2, . . . , Nx − 1;

v1, j+1 = v2, j+1 − kdxh j+1v2, j+1

D(v2, j+1)
.

Using this numerical scheme, we approximated the solution to [IBVP∗] in the cases when D(v) = c+ (1 − c)v,
with c = 1.0, c = 0.7, c = 0.4 and 0.1. The parameters k(> 1) and ε(> 0) were chosen from k = 2, 10 and 20
with ε = 0.1, 0.5 and 1. For the discretisation, we found that Nx = 161 was sufficient to achieve good accuracy
in all cases. Numerical approximations to [IBVP∗] were obtained on domains which extended up to t = 20, and in
all cases, monotone convergence to the steady state solution was observed. Moreover, in all cases, the discrepancy
between the numerical approximations for v and h evaluated at the final time level, with their respective steady
state solutions, was less than 0.03 and 0.006, respectively. The 36 simulations took approximately 4 hours to run on
a standard laptop with an Intel(R) Core(TM) i5-7Y54 CPU @ 1.20GHz 1.60 GHz processor. See Summary Data4

for details related to run-time and ‘numerical convergence’ times. Also, it should be noted, in Figs. 4a–d and 5a–b
that the similarity is due to differential scaling of the numerical axis to allow the complete graph to be recorded. We
observe in Fig. 4a–d various qualitative features of solutions to [IBVP]. Specifically, in Fig. 4a–d, we observe that
as ε increases, with D and k fixed, the solutions to [IBVP] converge to the steady state us at a slower exponential
rate. This is further illustrated in Fig. 5a, b which graph h against t for each of the cases illustrated in Fig. 4a–d.
Additionally, in Fig. 4a–d, we observe that as k increases, with D and ε fixed, the time taken for u to approach the
steady state us decreases.

We next consider [S-L] given by (155)-(157), and, in particular, we determine the lowest eigenvalue λ0. For
constant D(= 1), λ0 can be determined by an algebraic equation (see Fig. 6a and [1, p. 106] for details). For
non-constant D, to approximate λ0 we numerically approximate the boundary condition (156), with ψ(0) = 1, and

4 Summary Data from numerical simulations is available here https://github.com/JCMUoB/The-Development-of-a-Wax-Layer-on-the-
Interior-Wall-of-a-Circular-Pipe/tree/JCMUoB-resubmitted-manuscript-version.
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Fig. 4 Plots of y = u(x, t) for 0 ≤ x ≤ h(t) with u and h being the numerical solution to [IBVP], obtained from vi, j and h j . In a–d,
we illustrate surface plots for D(u) = 0.7 + 0.3u with a k = 2 and ε = 0.1; b k = 20 and ε = 0.1; c k = 2 and ε = 1; and d k = 20
and ε = 1

Fig. 5 Plots of the free boundary component of the numerical solution to [IBVP∗], y = h(t). Time domains are chosen to highlight the
discrepancy in time taken for h to get close to its steady state hs. Here we consider [IBVP∗] with D(u) = c + (1 − c)u and a k = 10
with (c, ε) varying, and b ε = 1 with (c, k) varying

then employ a shooting method which numerically approximates (155) with an explicit Euler method. We combine
this with a bisection method using criteria (157) to numerically approximate λ0 for D(u) = 0.7+0.3u (see Fig. 6b).
Specifically, 1056 eigenvalues are represented in Fig. 6 which are computed to 0.001 precision using Nx = 161
grid nodes as above, to represent ψ in each case. On the computer referred to above, it took approximately 6 hours
to complete the eigenvalue computations to produce Fig. 6b.

The eigenvalue surfaces for [S-L] in Fig. 6a, b are qualitatively different. The surface for D = 1 is concave up,
in contrast to the surface for D(u) = 0.7 + 0.3u which is not concave. As ε → 0+ the asymptotic form of (172)
is well represented by the numerical solution. We conclude from this that the rate of convergence of the evolving
crystallised wax layer to its steady state is significantly affected by the variation in crystallised wax conductivity.
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Fig. 6 Plots of the surface y = λ0(ε, k) for D(u) = c + (1 − c)u with a c = 1 and b c = 0.7

7 Comparison with experiments

Detailed experiments on the formation of wax-deposited layers in straight circular pipes transporting heated oil,
when subject to external wall cooling, have been performed and reported by Hoffman and Amundsen [5]. In this
section, we make qualitative and trend comparisons with the theory presented in this paper and the experimental
results in [5]. We observe that the experiments reported in [5] have fixed paraffinic wax and oil properties in all
experiments, whilst the bulk oil temperature To, the coolant temperature, Tc and the oil flow Nusselt number Nu are
varied in turn, with a series of experiments performed in each case and wax layer evolving profile and equilibrium
thickness measured. First, we relate the variations in To, Tc and Nu , respectively, to the dimensionless parameters in
the model, namely ε and k. We observe from (17) that, first k > 1 for wax layer formation to occur, and thereafter,

(a) Increasing To decreases k whilst keeping ε fixed.
(b) Decreasing Tc increases k and ε together.
(c) Increasing Nu decreases k whilst leaving ε fixed.

Thus, via Sect. 6, we can refer, for comparison, to the evolution of the dimensionless wax layer thickness with
dimensionless time in Figs. 5a and b. Figure 5b corresponds to cases (a) and (c) above. Additionally, Fig. 5a and
b when combined correspond to case (b) above. The purpose of this section is now to verify that the outcomes
of the theory developed in this paper, in terms of the spatiotemporal dynamics of the evolving wax layer, and its
long time steady state form (as detailed in Sects. 2–6) do, in fact, capture the principle features of the dynamics of
wax layer formation, as recorded in a number of experimental and observational studies. For definiteness in this
comparison, we make comparisons between the numerically determined model wax layer properties of Sect. 6, and
the experimentally reported results in [5].

We first consider Fig. 11 in [5]. This graphs the experimental wax layer equilibrium height against the wall
temperature Tc, at two different values of Nu . Each graph has a critical value of Tc, above which a wax layer does
not form. This is consistent with the theory corresponding to the critical value k = 1. As Tc decreases from the
critical value, the equilibrium wax layer thickness increases; this is born out for the theory in Fig. 5b.

We now consider Fig. 15 in [5], which graphs the evolution of the wax layer thickness with time, for a number
of increasing oil temperatures To. These profiles show remarkably similar structure to those theoretical profiles in
Fig. 5a and b. The experimental graphs show a lowering of the profile with increasing To. These can be compared
with Fig. 5b, which show lowering profiles with decreasing k. This is consistent via (a). Note that the experiments
show that a wax layer will not form for To sufficiently large. This corresponds to k decreasing to k = 1 in the theory.

Finally, we consider Fig. 18 in [5]. This shows the evolution of the wax layer thickness with time, for a number
of Nusselt numbers, with Nu increasing. We see that the wax layer profiles are lowering with increasing Nusselt
number. This corresponds to case (c) in the theory, and we compare with Fig. 5b. We see that, with ε fixed, the
corresponding profiles are lowering as k decreases, in line with the experiments. To conclude, we note the striking
similarity between the experimental profiles in Fig. 18 of [5] and the model profiles given in Fig. 5.
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8 Conclusions

In this paper, we have developed and analysed in detail the simple thermal model for the development of a wax
layer on the interior wall of a circular pipe transporting heated oil containing dissolved paraffinic wax, which was
introduced in [1]. This approach is gaining considerable traction compared to the traditional mechanical and material
diffusion theories; it is able to describe features associated with wax layer formation which have been absent from,
or even contrary to, the outcomes from the mechanical and material diffusion theories. This view point is vindicated
in a number of recent detailed reviews of the wax layer formation process, see, for example [4,9,12] and [10]. The
current paper extends the theory developed in [1] to allow for the dependence of solid wax thermal conductivity
on local temperature, which is a significant feature of solidified paraffinic wax, and which should be included as
a principle component in the thermal model. The initial comparisons with experimental results in [5] considered
in this paper are very encouraging for the thermal mechanism model introduced in [1] and developed here. A key
feature identified, which is principally associated with the crystallised wax temperature-dependent conductivity, is
the effect this has on the time scale to reach steady state. A more detailed experiment with model comparison to
consider quantitative agreement appears to be a worthwhile and appropriate endeavour to undertake. In addition,
we make the final observation that pipelines in the field are exceptionally long in general, and under such field
conditions, it is to be expected that core temperature reduction with axial distance will play a significant role in the
axial variation of wax layer formation. The authors are considering this development at present.
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