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Abstract. We present results from an ensemble of eight
climate models, each of which has carried out simulations
of the early Eocene climate optimum (EECO, ∼ 50 million
years ago). These simulations have been carried out in the
framework of the Deep-Time Model Intercomparison Project
(DeepMIP; http://www.deepmip.org, last access: 10 January
2021); thus, all models have been configured with the same
paleogeographic and vegetation boundary conditions. The
results indicate that these non-CO2 boundary conditions con-
tribute between 3 and 5 ◦C to Eocene warmth. Compared
with results from previous studies, the DeepMIP simulations
generally show a reduced spread of the global mean surface
temperature response across the ensemble for a given atmo-
spheric CO2 concentration as well as an increased climate
sensitivity on average. An energy balance analysis of the
model ensemble indicates that global mean warming in the
Eocene compared with the preindustrial period mostly arises
from decreases in emissivity due to the elevated CO2 con-
centration (and associated water vapour and long-wave cloud
feedbacks), whereas the reduction in the Eocene in terms of
the meridional temperature gradient is primarily due to emis-
sivity and albedo changes owing to the non-CO2 boundary
conditions (i.e. the removal of the Antarctic ice sheet and
changes in vegetation). Three of the models (the Community
Earth System Model, CESM; the Geophysical Fluid Dynam-
ics Laboratory, GFDL, model; and the Norwegian Earth Sys-
tem Model, NorESM) show results that are consistent with
the proxies in terms of the global mean temperature, merid-
ional SST gradient, and CO2, without prescribing changes
to model parameters. In addition, many of the models agree
well with the first-order spatial patterns in the SST prox-
ies. However, at a more regional scale, the models lack skill.
In particular, the modelled anomalies are substantially lower
than those indicated by the proxies in the southwest Pacific;
here, modelled continental surface air temperature anoma-
lies are more consistent with surface air temperature proxies,
implying a possible inconsistency between marine and ter-
restrial temperatures in either the proxies or models in this
region. Our aim is that the documentation of the large-scale
features and model–data comparison presented herein will
pave the way to further studies that explore aspects of the
model simulations in more detail, for example the ocean cir-
culation, hydrological cycle, and modes of variability, and
encourage sensitivity studies to aspects such as paleogeogra-
phy, orbital configuration, and aerosols.

1 Introduction

Paleoclimate model–data comparisons allow us to (1) assess
confidence in the results from model sensitivity studies that
explore the mechanisms that drove past climate change and
(2) assess confidence in the future climate predictions from
these models. Past warm climates, particularly those asso-
ciated with high atmospheric CO2 concentrations, are espe-

cially relevant because they share characteristics with pos-
sible future climates (Burke et al., 2018). In this context,
there has been a community focus on the Pliocene (∼ 3–
5 million years ago; Haywood et al., 2013) and Eocene
(∼ 50 million years ago; Lunt et al., 2012), which pro-
vide natural examples of past worlds with high CO2 con-
centrations of ∼ 300–400 ppmv and ∼ 1200–2500 ppmv re-
spectively. In this paper, we focus on the Eocene, present-
ing model results that have recently been produced in the
framework of the Deep-Time Model Intercomparison Project
(DeepMIP; http://www.deepmip.org; Lunt et al., 2017; Hol-
lis et al., 2019) and the associated model–data comparisons.
Given the similarity of Eocene CO2 concentrations and cli-
mate to those that are attained under high-growth and low-
mitigation future scenarios considered by the IPCC (Burke
et al., 2018), the Eocene provides a potential test bed for
state-of-the-art climate model predictions of the future.

Eocene modelling and model–data comparisons have a
long history (e.g. Barron, 1987; Sloan and Barron, 1992).
More recently, Lunt et al. (2012) carried out a synthesis of
a group of models that had all conducted Eocene simulations
(Lunt et al., 2010b; Heinemann et al., 2009; Winguth et al.,
2010; Huber and Caballero, 2011; Roberts et al., 2009), with
a focus on surface temperatures. Subsequent work also ex-
plored the precipitation in the simulations (Carmichael et al.,
2016) and the implications for ice sheet growth (Gasson
et al., 2014). This was an “ensemble of opportunity” in that
the model simulations were carried out independently, using
a variety of paleogeographic and vegetation boundary condi-
tions, under a range of different CO2 concentrations. A proxy
data synthesis was also produced as part of the Lunt et al.
(2012) study, consisting of sea surface temperatures (SSTs)
and a previously compiled continental temperature dataset
(Huber and Caballero, 2011). This model–data comparison
showed that (a) there was a wide spread in the global mean
temperature response across the models for a given CO2 con-
centration – e.g. at CO2 concentrations 4 times (× 4) those of
the preindustrial simulation, the range in the modelled global
mean continental near-surface air temperature was 5.8 ◦C;
(b) given CO2 concentrations 16 times those of the prein-
dustrial simulation (× 16), the Community Climate System
Model (CCSM3) model was able to reproduce the mean cli-
mate and meridional temperature gradient indicated by the
proxies; (c) the Hadley Centre Climate Model (HadCM3)
had relatively weak polar amplification compared with the
other models; (d) the climate sensitivity across the models
was fairly similar, but HadCM3 had a notable non-linearity
in sensitivity, in contrast to CCSM3; and (e) interpreting
middle- and high-latitude proxy SSTs as representing sum-
mer temperatures brought the modelled temperatures closer
to those indicated by the proxies.

At that time, due to uncertainties in pre-ice-core CO2 prox-
ies, it was not possible to rule out the high CO2 concen-
trations needed by CCSM3 to match the proxies, although
such high values were outside the range of many CO2 com-
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pilations (Beerling and Royer, 2011). As such, the Inter-
governmental Panel on Climate Change (IPCC) concluded
that “While recent simulations of the EECO... exhibit a wide
inter-model variability, there is generally good agreement be-
tween new simulations and data, particularly if seasonal bi-
ases in some of the marine SST proxies from high-latitude
sites are considered” (Masson-Delmotte et al., 2013). How-
ever, more recent work has indicated that early Eocene CO2
concentrations ranged from 1170 ppmv to 2490 ppmv (95 %
confidence interval) (Anagnostou et al., 2020), which is sub-
stantially lower than the × 16 (4480 ppmv) CCSM3 simula-
tion that was the best fit to proxy data of the models examined
in Lunt et al. (2012).

Following on from that initial modelling work, two stud-
ies (Sagoo et al., 2013; Kiehl and Shields, 2013) have shown
that the representation of clouds in models could be modified
to give greater polar amplification and climate sensitivity, re-
sulting in simulations that are more consistent with tempera-
ture proxies of the Eocene at lower CO2. Kiehl and Shields
(2013) decreased the cloud drop density and increased the
cloud drop radius to represent the effect of reduced cloud
condensation nuclei in the Eocene compared with the modern
simulation, and they obtained good agreement with data at a
CO2 concentration of 1375 ppmv and a CH4 concentration of
760 ppbv (their “pre-PETM” simulation). Sagoo et al. (2013)
perturbed 10 atmospheric and oceanic variables in an ensem-
ble (from which those associated with clouds were judged to
be the most important) and found that two ensemble mem-
bers were able to simulate temperatures that were in good
agreement with proxies at a CO2 concentration of 560 ppmv.
Although both of these studies indicated that clouds could
be the key to reconciling proxies and models, neither of the
changes applied were physically based. Furthermore, more
recent work has indicated that the response to modifying
cloud albedo is very similar to that of increasing CO2, at least
in terms of the meridional temperature gradient (Carlson and
Caballero, 2017), such that prescribing cloud changes can re-
sult in a system that is somewhat unconstrained. As such, the
relevance of these studies for future prediction or to other
paleo-time-periods remains unclear.

To facilitate an intermodel comparison, a standard set
of boundary conditions and a standard experimental design
have been proposed for a coordinated set of model simula-
tions of the early Eocene (Lunt et al., 2017). In addition, there
has been a community effort to better characterize the uncer-
tainties in proxy temperature and CO2 estimates of the latest
Paleocene, Paleocene–Eocene thermal maximum (PETM),
and early Eocene climate optimum (EECO) (Hollis et al.,
2019). Furthermore, some models are available for deep-
time paleoclimate simulations that are more advanced than
those used in the Lunt et al. (2012) study; for example, the
Community Earth System Model, version 1.2 (CESM1.2),
includes a more advanced cloud microphysics scheme com-
pared with CCSM3, HadCM3 has a higher ocean resolution
than HadCM3L, and INMCM (Institute of Numerical Math-

ematics Coupled Model) is a Coupled Model Intercompari-
son Project (CMIP) Phase 6 class model and can therefore
be considered state of the art. In this paper, we present an
ensemble of early Eocene simulations from a range of cli-
mate models, carried out in this framework, and compare
them with the latest paleo-data of the EECO. We address the
three following key scientific questions in this paper:

– What are the large-scale features of the DeepMIP
Eocene simulations?

– What are the causes of the model spread in these simu-
lations?

– How well do the models fit the proxy data, and has there
been an improvement in model fit compared with previ-
ous work?

2 DeepMIP model simulations

Here, we briefly describe the standard experimental design,
and give a brief description of the model and any departures
from the standard experimental design for each model.

2.1 Experimental design

The standard experimental design for the DeepMIP model
simulations, as well as the underlying motivation, is de-
scribed in detail in Lunt et al. (2017). In brief, the simulations
consist of a preindustrial control and a number of Eocene
simulations at various atmospheric CO2 concentrations (× 3,
× 6, and× 12 the preindustrial concentration of CO2, hence-
forth expressed as × 3, × 6, and × 12 etc, although, in prac-
tice, many groups chose different concentrations; see Ta-
ble 1). The paleogeography, vegetation, and river routing for
the Eocene simulations are prescribed according to the re-
constructions of Herold et al. (2014) (see Figs. 3a, b and 4
in Lunt et al., 2017). The solar constant, orbital configura-
tion, and non-CO2 greenhouse gas concentrations are set to
preindustrial values. Soil properties are set to homogeneous
global mean values derived from the preindustrial simulation,
and there are no continental ice sheets in the Eocene simu-
lations. A suggested initial condition for ocean temperature
and salinity was given, but many groups diverged from this.
The prescription of the calculation of atmospheric aerosols
was left to each individual group’s discretion.

2.2 Individual model simulations

An overview of the model simulations is presented in Ta-
bles 1 and S1 in the Supplement. Here, we describe each
model in turn, and the experimental design of the simulations
if they diverged from that described in Lunt et al. (2017).

https://doi.org/10.5194/cp-17-203-2021 Clim. Past, 17, 203–227, 2021
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Table 1. Summary of the DeepMIP Eocene model simulations described and presented in this paper. In addition to the simulations listed,
each model has an associated preindustrial control. More information about the spin-up of each simulation is given in Table S2. In this paper,
each model is referred to by its short name.

Model Short name CO2 CMIP generation Simulation reference

CESM1.2_CAM5 CESM ×1, ×3, ×6, ×9 CMIP5 Zhu et al. (2019)
COSMOS-landveg_r2413 COSMOS × 1, × 3, × 4 CMIP3 This paper
GFDL_CM2.1 GFDL ×1, ×2, ×3, ×4, ×6 CMIP3 This paper
HadCM3B_M2.1aN HadCM3 ×1, ×2, ×3 CMIP3 This paper
INM-CM4-8 INMCM × 6 CMIP6 This paper
IPSLCM5A2 IPSL ×1.5, ×3 CMIP5 Zhang et al. (2020)
MIROC4m MIROC × 3 CMIP3 This paper
NorESM1_F NorESM ×2, ×4 CMIP5-6 This paper

2.2.1 CESM (CESM1.2_CAM5)

CESM model description

The Community Earth System Model version 1.2 (CESM)
is used, which consists of the Community Atmosphere
Model 5.3 (CAM), the Community Land Model 4.0 (CLM),
the Parallel Ocean Program 2 (POP), the Los Alamos sea ice
model 4 (CICE), the River Transport Model (RTM), and a
coupler connecting them (Hurrell et al., 2013). In compar-
ison to previous versions of the CESM models that have
been used for Eocene simulation, such as CCSM3 (Hu-
ber and Caballero, 2011; Winguth et al., 2010; Kiehl and
Shields, 2013) and CESM1(CAM4) (Cramwinckel et al.,
2018), CESM1.2(CAM5) represents a nearly complete over-
haul of the physical parameterizations in the atmosphere
model, including new schemes for radiation, boundary layer,
shallow convection, cloud microphysics and macrophysics,
and aerosols (Hurrell et al., 2013). The new two-moment
microphysical scheme predicts both the cloud water mix-
ing ratio and particle number concentration. The new aerosol
scheme predicts the aerosol mass and number, and it is cou-
pled with the cloud microphysics, allowing for the inclu-
sion of aerosol indirect effects. The new boundary layer and
shallow convection schemes improve the simulation of shal-
low clouds in the marine boundary layer. These new pa-
rameterizations in CAM5 produce a cloud simulation that
agrees much better with satellite observations (Kay et al.,
2012) and a larger present-day equilibrium climate sensi-
tivity (∼ 4 ◦C) than previous versions (∼ 3 ◦C) (Gettelman
et al., 2012). CESM1.2(CAM5) reproduces key features of
the state and variability of past climates, including the mid-
Piacenzian warm period (Feng et al., 2019), the Last Glacial
Maximum (Zhu et al., 2017a), Heinrich events (Zhu et al.,
2017b), and the last millennium (Otto-Bliesner et al., 2015;
Thibodeau et al., 2018). To make the model suitable for a
paleoclimate simulation with a high CO2 level, the model
code has been slightly modified to incorporate an upgrade to
the radiation code that corrects the missing diffusivity angle
specifications for certain long-wave bands. As a result of the
code modification, CAM5 has been re-tuned with a different

relative humidity threshold for low clouds (rhminl= 0.8975,
versus the default value of 0.8875). These code and param-
eter changes are not found to alter the present-day climate
sensitivity in CESM (Zhu et al., 2019).

CESM model simulations

The CESM Eocene simulations are run at × 1, × 3, × 6,
and × 9 CO2 concentrations (Table 1). The atmosphere
and land have a horizontal resolution of 1.9◦× 2.5◦ (lati-
tude× longitude) with 30 hybrid sigma-pressure levels in the
atmosphere. The ocean and sea ice are on a nominal 1◦ dis-
placed pole Greenland grid with 60 vertical levels in the
ocean. CAM5 runs with a prognostic aerosol scheme with
prescribed preindustrial natural emissions that have been re-
distributed according to the Eocene paleogeography follow-
ing the method in Heavens et al. (2012). The vegetation
type from Herold et al. (2014) is prescribed in the land
model with active carbon and nitrogen cycling. A modified
marginal sea balancing scheme was applied for the Arctic
Ocean, which removes any gain or deficit of freshwater over
the Arctic Ocean and redistributes the mass evenly over the
global ocean surface excluding the Arctic. This implemen-
tation conserves ocean salinity and is necessary to prevent
the occurrence of negative salinity that results from high pre-
cipitation and river runoff under warm conditions. A similar
balancing scheme has been included for marginal seas in all
of the previously published CESM simulations (Smith et al.,
2010). The ocean temperature and salinity were initialized
from a previous PETM simulation using CCSM3 (Kiehl and
Shields, 2013). The sea ice model was initialized from a sea-
ice-free condition. All simulations have been integrated for
2000 model years, with the exception of × 1 which was run
for 2600 model years.
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2.2.2 COSMOS (COSMOS-landveg_r2413)

COSMOS model description

The atmosphere is represented by means of the ECHAM5
(European Centre Hamburg Model) atmosphere general cir-
culation model (Roeckner et al., 2003). ECHAM5 is based
on a spectral dynamical core and includes 19 vertical hy-
brid sigma-pressure levels. The series of spectral harmon-
ics is curtailed via triangular truncation at wave number 31
(approx. 3.75◦× 3.75◦). Ocean circulation and sea ice dy-
namics are computed by the Max-Planck-Institute for Mete-
orology Ocean Model (MPIOM) ocean general circulation
model (Marsland et al., 2003) that is employed at 40 un-
equally spaced levels on a bipolar curvilinear model grid with
formal resolution of 3.0◦× 1.8◦ (longitude× latitude). The
coupled ECHAM5–MPIOM model is described by Jung-
claus et al. (2006). A concise description of the applica-
tion of the Community Earth System Models (COSMOS)
for paleoclimate studies is given by Stepanek and Lohmann
(2012). The COSMOS version used here has proven to be a
suitable tool for the study of the Earth’s past climate, from
the Holocene (Wei and Lohmann, 2012; Wei et al., 2012;
Lohmann et al., 2013) and previous interglacials (Pfeiffer and
Lohmann, 2016; Gierz et al., 2017) to glacial (Gong et al.,
2013; Zhang et al., 2013, 2014; Abelmann et al., 2015; Zhang
et al., 2017) and tectonic timescales (Knorr et al., 2011;
Knorr and Lohmann, 2014; Walliser et al., 2016; Huang
et al., 2017; Niezgodzki et al., 2017; Stärz et al., 2017; Wal-
liser et al., 2017; Vahlenkamp et al., 2018; Niezgodzki et al.,
2019). The standard model code of the COSMOS version
COSMOS-landveg r2413 (2009) is available upon request
from the Max Planck Institute for Meteorology in Hamburg
(https://www.mpimet.mpg.de, last access: 10 January 2021).

COSMOS model simulations

The COSMOS simulations are carried out at × 1, × 3, and
× 4 preindustrial CO2 concentrations of 280 ppm. The ocean
temperatures in the 3×CO2 concentration simulation were
initialized with uniformly horizontal and vertical tempera-
tures of 10 ◦C. The initial ocean salinity was set to 34.7 psu.
The simulations with 1× and 4× CO2 concentrations were
restarted from 3×CO2 after 1000 years. All simulations
were run with transient orbital configurations until the model
year 8000. Subsequently, they were run for 1500 years (to
the model year 9500), with fixed, preindustrial orbital pa-
rameters. All simulations employ the hydrological discharge
model of Hagemann and Dümenil (1998) instead of the river
routing provided by Herold et al. (2014).

2.2.3 GFDL (GFDL_CM2.1)

GFDL model description

These simulations use a modified version of the Geophysi-
cal Fluid Dynamics Laboratory (GFDL) CM2.1 model (Del-
worth et al., 2006), similar to the late Eocene configuration
in Hutchinson et al. (2018, 2019). The ocean component uses
the modular ocean model (MOM) version 5.1.0, while the
other components of the model are the same as in CM2.1:
Atmosphere Model 2, Land Model 2 and the Sea Ice Simu-
lator 1. The ocean and sea ice components use a horizontal
resolution of 1◦× 1.5◦ (latitude× longitude). A tripolar grid
is used as in Hutchinson et al. (2018), with a regular latitude–
longitude grid south of 65◦ N, a transition to a bipolar Arctic
grid north of 65◦ N, and with poles over North America and
Eurasia. There is no refinement of the latitudinal grid spacing
in the tropics. The ocean uses 50 vertical levels with the same
vertical spacing as CM2.1. The atmospheric horizontal grid
resolution is 3◦× 3.75◦, with 24 vertical levels, as in CM2Mc
(Galbraith et al., 2010). This configuration enables relatively
high-resolution ocean and coastlines, with the advantage of
a faster-running atmosphere. The topography (both land and
ocean) uses the 55 Ma reconstruction of Herold et al. (2014),
re-gridded to the ocean and atmosphere components. Man-
ual adjustments are made to ensure that no isolated lakes or
seas exist and that any narrow ocean straits are at least two
grid cells wide to ensure non-zero velocity fields. The min-
imum depth of ocean grid cells is 25 m; any shallow ocean
grid cells are deepened to this minimum depth. In the at-
mosphere, the topography is smoothed using a three-point
mean filter to ensure a smoother interaction with the wind
field. This was introduced to remove numerical noise over
the Antarctic continent, due to the convergence of meridians
on the topography grid. Vegetation types are based on Herold
et al. (2014), adapted to the corresponding vegetation type in
CM2.1. Aerosol forcing is also adapted from Herold et al.
(2014) to the model, and it is a fixed boundary condition.
Ocean vertical mixing is identical to that in Hutchinson et al.
(2018) – i.e. a uniform bottom-roughness-enhanced mixing
with a background diffusivity of 1.0×10−5 m2 s−1.

GFDL model simulations

The model was initiated from idealized conditions, similar
to those outlined in Lunt et al. (2017) with reduced initial
temperatures: T (◦C)= (5000− z)/5000× 25cos(φ)+ 10 if
z ≤ 5000 m, and T (◦C)= 10 if z> 5000 m; here, φ is lati-
tude, and z is the depth of the ocean (positive downwards).
The initial salinity was a constant of 34.7 psu. The above-
mentioned initial conditions were used for the × 1, × 2, × 3,
and × 4 CO2 experiments. These simulations were initially
run for 1500 years, after which the ocean temperatures were
adjusted in order to accelerate the approach to equilibrium.
This adjustment consisted of calculating the average temper-
ature trend for the last 100 years at each model level below

https://doi.org/10.5194/cp-17-203-2021 Clim. Past, 17, 203–227, 2021

https://www.mpimet.mpg.de


208 D. J. Lunt et al.: DeepMIP model–data comparison

500 m, taking a level-by-level global average of this trend,
and applying a 1000-year extrapolation uniformly across the
ocean at that level. This choice was based on the observation
that all model levels below the mixed layer were consistently
cooling at a slow rate, and the rate of temperature adjust-
ment was consistent over a long timescale. After a further
500 years, a second adjustment using the same method was
performed. After the second adjustment, all simulations were
continuously integrated with no further adjustments for a fur-
ther 4000 years. Thus, the simulations were run for a total
of 6000 years. For the× 6 CO2 experiment, the initial condi-
tions described above led to transient instabilities due to over-
heating the surface. Thus, the × 6 experiment was instead
initialized using a globally uniform temperature of 19.32 ◦C.
This represents the same global average temperature as in the
other experiments and, hence, the same total ocean heat con-
tent. For the × 6 CO2, no stepwise adjustments were made;
the model was run continuously for 6000 years.

2.2.4 HadCM3 (HadCM3B_M2.1aN)

HadCM3 model description

The Hadley Centre Climate Model (HadCM3) simulations
are carried out with the HadCM3B-M2.1aN version of the
model, as described in detail in Valdes et al. (2017). Equa-
tions are solved on a Cartesian grid with horizontal resolu-
tions of 3.75◦× 2.5◦ in the atmosphere and 1.25◦× 1.25◦

in the ocean with 19 and 20 vertical levels respectively. A
few changes are made to the version described in Valdes
et al. (2017) to make it suitable for deep-time paleoclimate
modelling: (a) a salinity flux correction is applied to the
global ocean (at all model depths) in order to conserve salin-
ity; (b) the various modern-specific parameterizations in the
ocean model are turned off, such as those associated with
the Mediterranean and Hudson Bay outflow and the North
Atlantic mixing; and (c) a prognostic 1D ozone scheme is
used instead of a fixed vertical profile of ozone. The standard
configuration uses a prescribed ozone climatology which is a
function of latitude, height, and month of the year that does
not change with climate and can become numerically unsta-
ble at high CO2 levels. The prognostic ozone scheme uses
the diagnosed model tropopause height to assign three dis-
tinct ozone concentrations for the troposphere, tropopause,
and stratosphere (2.0×10−8, 2.0×10−7, and 5.5×10−6, in
mass mixing ratio, respectively). This allows for a dynamic
update of the 1D ozone field in response to the thermally
driven vertical expansion of the troposphere. Absolute val-
ues for the three levels are chosen to minimize the effects
on the global mean and overall tropospheric temperature
changes compared with the standard 2D climatology. Con-
centrations at the uppermost model level are fixed to the
higher stratospheric value to constrain the lower bound of
total stratospheric ozone. Significant differences to the stan-
dard configuration are limited to the stratospheric merid-

ional temperature gradient and zonal winds and are related
to the missing latitudinal variations in the 1D field. Although
HadCM3 has been used previously to simulate the Pliocene
(e.g. Lunt et al., 2008, 2010a), the presented simulations
represent the first published application of HadCM3 to pre-
Pliocene boundary conditions. However, the lower-resolution
HadCM3L model has been previously used to simulate a
range of pre-Quaternary climates (e.g. Lunt et al., 2016;
Farnsworth et al., 2019a, b).

HadCM3 model simulations

The HadCM3 simulations are carried out at× 1,×2, and× 3
CO2 concentrations. Several ocean gateways were artificially
widened to allow unrestricted throughflow, and maximum
water depths in parts of the Arctic Ocean were reduced. The
ocean temperatures were initialized from the final state of
Eocene model simulations using HadCM3L. The HadCM3L
simulations were set up identically to the corresponding
HadCM3 simulations, but with a lower ocean resolution
(3.75◦× 2.5◦ as opposed to 1.25◦× 1.25◦). The HadCM3L
simulations were initialized from a similar idealized temper-
ature and salinity state as described in Lunt et al. (2017) but
with a function that scales with cos2(lat) rather than cos(lat)
and overall reduced initial temperatures to ensure numerical
stability in tropical regions. Ocean temperatures below 600 m
were set to constant values of 4, 8, and 10 ◦C (at× 1,×2, and
× 3 CO2 respectively) based on results from previous Ypre-
sian simulations. The HadCM3 simulations were branched
off from the respective HadCM3L integrations after 4400 to
4900 years of spin up and run for a further 2950 years. The
initial 50 years of all HadCM3 runs used the simplified verti-
cal diffusion scheme from HadCM3L (Valdes et al., 2017) to
reduce numerical problems caused by the changed horizon-
tal ocean resolution. The remaining years of the runs use the
standard HadCM3 diffusion scheme (Valdes et al., 2017).

2.2.5 INMCM (INM-CM4-8)

INMCM model description

The INMCM simulations are carried out with the INM-
CM48 (INM-CM4-8) version of the model, as described in
Volodin et al. (2018). The INM-CM4-8 climate model has
a horizontal resolution of 2◦× 1.5◦ in the atmosphere; a to-
tal of 17 vertical sigma levels up to a value of 0.01 (about
30 km) are used for the Eocene experiment, and 21 levels are
used for the preindustrial experiment. The equations of the
atmosphere dynamics are solved by finite difference meth-
ods. The parameterizations of physical processes correspond
to the INM-CM5 model (Volodin et al., 2017). Parameteri-
zation of condensation and cloud formation follows Tiedtke
(1993). Cloud water is a prognostic variable. Parameteriza-
tion of the cloud fraction follows Smagorinsky (1963); cloud
fraction is a diagnostic variable. The surface, soil, and veg-
etation scheme follows Volodin and Lykossov (1998). The
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evolution of the equations for temperature, soil water, and
soil ice are solved at 23 levels from the surface to 10 m
depth. The fractional area of 13 types of potential vegetation
is specified. Actual vegetation and the leaf area index (LAI)
are calculated according to the soil water content in the root
zone and soil temperature. This model also contains a car-
bon cycle and an aerosol scheme (Volodin and Kostrykin,
2016), taking the direct impact of aerosols on radiation into
account, as well as the first indirect effect (the influence of
aerosols on the condensation rate). The concentration of 10
types of aerosol and their radiative properties are calculated
interactively. In the ocean component, the resolution of the
INM-CM4-8 model is 1.0◦× 0.5◦ (longitude× latitude) and
has 40 sigma levels vertically. Finite difference equations are
solved on a generalized spherical C-grid with the North Pole
shifted to Siberia; the South Pole is in the same place as the
geographical pole.

INMCM model simulations

The INM-CM4-8 Eocene simulation is carried out at a × 6
CO2 concentration. The INM-CM4-8 simulation was ini-
tialized from a similar idealized temperature and salinity
state as described in Lunt et al. (2017), but the initial for-
mula for the ocean temperature is modified as follows: T =
((5000−z)/5000×20cos(φ))+15, thereby reducing the ini-
tial temperatures to ensure numerical stability in tropical
regions. The 27 biomes were converted into the 13 model
types of vegetation. The duration for the Eocene simulation
is 1150 years. Output data are averaged over the years from
1051 to 1150.

2.2.6 IPSL (IPSLCM5A2)

IPSL model description

The Institut Pierre Simon Laplace (IPSL) simulations are
performed with the IPSL-CM5A2 Earth system model
(Sepulchre et al., 2020). IPSL-CM5A2 is based on the
CMIP5-generation previous IPSL Earth system model IPSL-
CM5A (Dufresne et al., 2013) but includes new revisions
of each components, a re-tuning of global temperature, and
technical improvements to increase computing efficiency. It
consists of the LMDZ5 (Laboratoire de Meétéorologie Dy-
namique Zoom) atmosphere model, the Organising Carbon
and Hydrology In Dynamic Ecosystems (ORCHIDEE) land
surface and vegetation model and the Nucleus for European
Modeling of the Ocean (NEMOv3.6) ocean model, which
includes the LIM2 sea ice model and the Pelagic Interac-
tions Scheme for Carbon and Ecosystem Studies (PISCES-
v2) biogeochemical model. LMDZ5 and ORCHIDEE run at
a horizontal resolution of 1.9◦× 2.5◦ (latitude× longitude)
with 39 hybrid sigma-pressure levels in the atmosphere.
NEMO runs on a tripolar grid at a nominal resolution of
2◦, enhanced up to 0.5◦ at the Equator, with 31 vertical lev-
els in the ocean. The performances and evaluation of IPSL-

CM5A2 on preindustrial and historical climates are fully de-
scribed in Sepulchre et al. (2020). Sepulchre et al. (2020)
also provide a description of the technical changes that were
implemented in IPSL-CM5A2 to carry out deep-time pale-
oclimate simulations. In particular, the tripolar mesh grid on
which NEMO runs has been modified to ensure that there are
no singularity points within the ocean domain. Modern pa-
rameterizations of water outflows across specific straits, such
as the Gibraltar or Red Sea straits, are also turned off.

IPSL model simulations

The IPSL simulations are run at × 1.5 and × 3 CO2 concen-
trations. The bathymetry is obtained from the Herold et al.
(2014) dataset, with additional manual corrections in some
locations, for instance in the West African region, to main-
tain sufficiently large oceanic straits. Modern boundary con-
ditions of NEMO include forcings of the dissipation asso-
ciated with internal wave energy for the M2 and K1 tidal
components (de Lavergne et al., 2019). The parameteriza-
tion follows Simmons et al. (2004) with refinements in the
modern Indonesian throughflow (ITF) region according to
Koch-Larrouy et al. (2007). To create an early Eocene tidal
dissipation forcing, the Herold et al. (2014) M2 tidal field
(obtained from the tidal model simulations of Green and
Huber, 2013) is directly interpolated onto the NEMO grid
using bilinear interpolation. In the absence of any estima-
tion for the early Eocene, the K1 tidal field is prescribed
as zero. In addition, the parameterization of Koch-Larrouy
et al. (2007) is not used here because the ITF does not ex-
ist in the early Eocene. The geothermal heating distribution
is created from the 55 Ma global crustal age distribution of
Müller et al. (2008), on which the age–heat flow relation-
ship of the Stein and Stein (1992) model is applied: q(t)=
510×t−1/2 if t ≤ 55 Ma, and q(t)= 48+96exp(−0.0278×t)
if t > 55 Ma. In regions of subducted seafloor where age in-
formation is not available, the minimal heat flow value is
prescribed, which is derived from a known crustal age. The
resulting 1◦× 1◦ field is then bilinearly interpolated onto
the NEMO grid. It must be noted that the Stein and Stein
(1992) parameterization becomes singular for young crustal
ages and yields unrealistically large heat flow values. Fol-
lowing Emile-Geay and Madec (2009), an upper limit of
400 mW m−2 is set for heat flow values after the interpola-
tion procedure. Salinity is initialized as globally constant to
a value of 34.7 psu following Lunt et al. (2017). The initial-
ization of the model with the proposed DeepMIP tempera-
ture distribution (Lunt et al., 2017) led to severe instabili-
ties in the model during the spin-up phase. Thus, the ini-
tial temperature distribution has been modified as follows:
T (◦C)= (1000−z)/1000×25cos(φ)+10 if z≤ 1000 m, and
T (◦C)= 10 if z> 1000 m; here, φ is the latitude, and z is the
depth of the ocean (metres below surface). This new equation
gives an initial globally constant temperature of 10 ◦C below
1000 m and a zonally symmetric distribution above 1000 m,
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reaching surface values of 35 ◦C at the Equator and 10 ◦C
at the poles. This corresponds to a 5 ◦C surface temperature
reduction compared with DeepMIP guidelines (Lunt et al.,
2017). No sea ice is prescribed at the beginning of the sim-
ulations. In IPSL-CM5A2, the NEMO ocean model is inher-
ently composed of the PISCES biogeochemical model. Bio-
geochemical cycles and marine biology are directly forced
by dynamical variables of the physical ocean and may affect
the ocean physics via its influence on chlorophyll produc-
tion, which modulates light penetration in the ocean. How-
ever, because this feedback does not much affect the ocean
state (Kageyama et al., 2013) and because the early Eocene
mean ocean colour is unknown, a constant chlorophyll value
of 0.05 g Chl L−1 is prescribed for the computation of light
penetration in the ocean. As a consequence, marine biogeo-
chemical cycles and biology do not alter the dynamics of the
ocean; as such, the biogeochemical initial and boundary con-
ditions have been kept at modern values. The topographic
field is created from the Herold et al. (2014) topographic
dataset; LMDZ includes a sub-grid-scale orographic drag pa-
rameterization that requires high-resolution surface orogra-
phy (Lott and Miller, 1997; Lott, 1999). A similar procedure
is applied for the standard deviation of orography provided
by Herold et al. (2014). Aerosol distributions are left identi-
cal to preindustrial values. The × 3 simulation is initialized
from rest and run for 4000 years. The × 1.5 simulation is
branched from the model year 1500 of the × 3 simulation
and run for 4000 years. The × 1.5 and × 3 simulations are
identical to those presented in Zhang et al. (2020).

2.2.7 MIROC (MIROC4m)

MIROC model description

The version of the Model for Interdisciplinary Research on
Climate (MIROC) used here is MIROC4m, a mid-resolution
model composed of atmosphere, land, river, sea ice, and
ocean components. Full documentation of the model can be
found in K-1 model developers (2004) and is summarized
in Chan et al. (2011). The atmosphere has a horizontal res-
olution of T42 and 20 vertical sigma levels. Details of the
land surface model, Minimal Advanced Treatments of Sur-
face Interaction and Runoff (MATSIRO), can be found in
Takata et al. (2003). The ocean component is basically ver-
sion 3.4 of the CCSR (Center for Climate System Research)
Ocean Component Model (COCO); the reader is referred to
Hasumi (2000) for details. The horizontal resolution is set to
256× 196 (longitude× latitude), with a higher resolution in
the tropics, and the vertical resolution is set to 44 levels, with
the top 8 levels in sigma coordinates. Present-day bathymetry
is derived from Earth topography five minute grid (ETOPO5)
data. For present-day experiments, areas of water such as
Hudson Bay and the Mediterranean Sea are represented as
isolated basins. As such, ocean salinity and heat are artifi-
cially exchanged with the open ocean through a two-way lin-

ear damping. This damping and all isolated basins and lakes
are removed in the DeepMIP simulation.

MIROC model simulations

Out of the three standard DeepMIP simulations, MIROC is
used with a × 3 CO2 concentration only and run for 5000
model years. The atmosphere is initialized from a previous
experiment without ice sheets and with a × 2 CO2 concen-
tration. For the initial ocean state, salinity is set to a con-
stant value of 34.7 psu, as recommended in Lunt et al. (2017).
However, the ocean temperatures are 15 ◦C cooler than those
recommended – i.e. T (◦C)= (5000− z)/5000× 25cos(φ) if
z≤ 5000 m, and T (◦C)= 0 if z> 5000 m. Previous MIROC
experiments similar to this × 3 CO2 DeepMIP simulation
show that this initialization should be much closer to the fi-
nal climate state. Simulations were also carried out at × 1
and × 2, but they are not discussed in this paper.

2.2.8 NorESM (NorESM1_F)

NorESM model description

The Norwegian Earth System Model (NorESM) simula-
tions are carried out with the NorESM1-F version of the
model, which is described in detail in Guo et al. (2019). The
NorESM version that contributes to CMIP5 is NorESM1-
M. It has a ∼ 2◦ resolution atmosphere and land configu-
ration and a nominal 1◦ ocean and sea ice configuration.
In NorESM1-F, the same atmosphere–land grid is used as
in NorESM1-M (CMIP5 version), whereas a tripolar grid is
used for the ocean–sea ice components in NorESM1-F, in-
stead of the bipolar grid in NorESM1-M. The tripolar grid
is also used in the CMIP6 version of NorESM (NorESM2).
NorESM1-F runs about 2.5 times faster than NorESM1-
M. For the preindustrial simulation, NorESM-F has a more
realistic Atlantic Meridional Overturning Circulation than
NorESM1-M.

NorESM model simulations

The NorESM simulations are carried out at× 2 and× 4 CO2
concentrations. The ocean temperatures were initialized from
the × 2 CO2 Eocene simulations with the lower-resolution
NorESM-L model (Zhang et al., 2012). The ocean salinity
was initialized with constant values of 25.5 psu in the Arc-
tic and 34.5 psu elsewhere. From the initial conditions, the
× 2 CO2 experiment was run for 2100 years in total. The
× 4 CO2 was branched from the end of the 100th year of the
× 2 CO2 experiment and was run for 2000 years. The results
from the last 100 years were used in the study. Note that the
NorESM simulations were carried out with the Baatsen et al.
(2016) paleogeography (based on a paleomagnetic reference
frame), not the Herold et al. (2014) paleogeography (based
on a mantle reference frame), in contrast to the other simula-
tions described in this paper.
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3 Results

We discuss the results from the model simulations, focusing
on the model spin-up and equilibrium (Sect. 3.1) followed
by three aspects which align with the research questions out-
lined at the end of Sect. 1: the large-scale features of the
modelled temperature response compared with those of the
preindustrial period (Sect. 3.2), the reasons for the different
model responses (Sect. 3.3), and a comparison with paleo-
proxy data (Sect. 3.4).

3.1 Model spin-up and equilibrium

It is important to assess the extent to which the Eocene sim-
ulations represent an equilibrated state. This is because the
initial condition may be far from the ultimate equilibrium for
many models; as such, very long simulations are required to
reach this equilibrium, which may be prohibitive in terms
of computation and time resources. For all of the Deep-
MIP simulations, the length as well as the top-of-atmosphere
(TOA) imbalance and near-surface global mean air temper-
ature trend at the end of the simulation are summarized in
Table S1. The TOA imbalance and temperature trends are
also given for the associated preindustrial simulations. As
part of the DeepMIP experimental design (Lunt et al., 2017)
– and formulated before any simulations had started run-
ning – it was suggested that appropriate criteria for suffi-
cient model equilibration would be that simulations should
ideally be “(a) at least 1000 years in length, and (b) have
an imbalance in the top-of-atmosphere net radiation of less
than 0.3 W m−2 (or have a similar imbalance to that of the
preindustrial control), and (c) have sea surface temperatures
that are not strongly trending (less than 0.1 ◦C per century in
the global mean).”. All the simulations satisfy criterion (a).
All simulations except for CESM (× 3, × 6, and × 9) and
IPSL (× 1.5 and× 3) satisfy criterion (b). Note that for some
models, the preindustrial TOA imbalance is relatively large;
this may be due to non-conservation of energy (e.g. COS-
MOS; Stevens et al., 2013) or owing to the fact that some
energy fluxes are calculated at the top of the model rather
than at the top of the atmosphere (e.g. INMCM); in these
cases, the TOA imbalance is not a good diagnostic for equi-
libration because there is some atmosphere above the top of
the model that can interact with incoming or outgoing radi-
ation (i.e. the model top is not at 0 mbar). All of the models
except for CESM (× 3), COSMOS (× 4), and HadCM3 (× 2
and × 3) satisfy criterion (c). Overall, all of the models sat-
isfy at least two of the three criteria, except for CESM at × 3
which is nonetheless close to both missed criteria (0.32 ver-
sus 0.30 W m−2 and 1.1 versus 1.0 ◦C). As such, we make a
decision to accept all simulations as being sufficiently equi-
librated and to include them in the ensemble; however, note
that further spin-up would be required to confirm the results
of those simulations with relatively large residual trends or
anomalous TOA imbalances.

It is also worth noting that some models crashed when run
under CO2 concentrations higher than in the simulations de-
scribed here. In particular, CESM crashed at× 12, COSMOS
crashed at× 6, HadCM3 crashed at× 4, IPSL crashed at× 6,
and MIROC crashed at × 4. These crashes have not been ex-
plored in detail, but they could be due to feedbacks becoming
more positive as temperature increases (for example associ-
ated with an increase in height of the tropopause; Meraner
et al., 2013); this could occur to such an extent that positive
feedbacks overcome the negative Planck feedback (Bloch-
Johnson et al., 2015), at which point a “runaway” phase is
entered and the temperature begins to increase rapidly. This
can then cause a violation of the Courant–Friedrichs–Lewy
(CFL) criterion due to high wind speeds associated with the
generation of large pressure and/or temperature gradients,
causing the model to crash.

3.2 Documentation of large-scale features

Here, we present the large-scale features of the DeepMIP
simulations, with a focus on annual mean temperature. We
start with global mean quantities, move on to latitudinal gra-
dients, and finish by describing the spatial patterns.

Figure 1a shows the global mean near-surface air temper-
ature as a function of model CO2 for each DeepMIP simu-
lation and associated preindustrial control as well as some
previous Eocene simulations carried out with other boundary
conditions (Lunt et al., 2012; Kiehl and Shields, 2013; Sa-
goo et al., 2013). The DeepMIP simulations are fairly con-
sistent in terms of global mean temperature for a given CO2
concentration across the ensemble. The exception to this is
INMCM, which at× 6 CO2 has a lower global mean temper-
ature than any of the × 3 simulations. This is consistent with
the fact that INMCM has the lowest climate sensitivity of all
the models in the CMIP6 ensemble (Zelinka et al., 2020).
With the exception of INMCM, the spread in the DeepMIP
simulations is substantially less than in the previous Eocene
simulations. In particular, at× 3 CO2, the CESM, COSMOS,
GFDL, HadCM3, IPSL, and MIROC simulations are within
1.9 ◦C, compared with 5.0 ◦C at × 4 for the previous simu-
lations. Part of the reason for the reduced spread of many
of the DeepMIP simulations compared with previous simula-
tions may be related to the fact that all of the DeepMIP model
simulations have the same prescribed paleogeography, land–
sea mask, and vegetation, whereas previous simulations used
a variety of these boundary conditions.

The DeepMIP models have a range of Eocene climate sen-
sitivities to CO2 doubling: from a minimum of 2.9 ◦C (for
NorESM) to a maximum of 5.6 ◦C (for IPSL, excluding the
anomalously warm × 9 CESM simulation). The average of
the DeepMIP climate sensitivities (again excluding the × 9
CESM simulation) is 4.5 ◦C, which is greater than the av-
erage of the previous simulations (3.3 ◦C). There is a non-
linearity (i.e. a global mean temperature that increases with
CO2 differently than would be expected from a purely log-
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Figure 1. (a) Global annual mean near-surface (2 m) air temperature in the DeepMIP simulations, as a function of atmospheric CO2. Large
coloured symbols show the Eocene simulations, and smaller coloured symbols show the associated preindustrial controls. Also shown are
results from some previous Eocene simulations (Lunt et al., 2012; Kiehl and Shields, 2013; Sagoo et al., 2013) and associated preindustrial
control simulations (small grey symbols). The models that have carried out Eocene simulations at more than one CO2 concentration are
joined by a straight line. The open square shows modern observations. The grey filled boxes show estimates of the global mean temperature
(from Inglis et al., 2020) and CO2 (from Anagnostou et al., 2020) derived from proxies. For temperature, the light grey box shows the 10 %
to 90 % confidence interval and the dark grey box shows the 33 % to 66 % confidence interval; for CO2, the light grey box shows ±1 SD
and the dark grey box shows ±2 SD; see Sect. 3.4 for more details. Panel (b) is the same as panel (a) but for the meridional SST gradient
as a function of global mean SST. The meridional SST gradient is defined here as the average SST equatorwards of ±30◦ minus the average
SST polewards of ±60◦. The grey filled boxes show estimates of the global mean SST (from Inglis et al., 2020) and SST gradient (from
Cramwinckel et al., 2018; Evans et al., 2018; Zhu et al., 2019) derived from proxies. For SST, the light grey box shows the 10 % to 90 %
confidence interval and the dark grey box shows the 33 % to 66 % confidence interval; for the meridional temperature gradient, the light grey
box shows the range (which extends below the y axis limit, down to 14 ◦C); see Sect. 3.4 for more details.

arithmic relationship) in the CESM model simulations (as
previously noted by Zhu et al., 2019) as well as in HadCM3
and (to a lesser extent) GFDL and COSMOS. In CESM, the
climate sensitivity, normalized to a CO2 doubling, increases
from 4.2 ◦C at × 1 to 4.8 and 9.7 ◦C at × 3 and × 6 respec-
tively. In GFDL, the climate sensitivity increases from 3.7 ◦C
at × 1 to 5.1 ◦C at × 3, but it then decreases to 4.7 ◦C at × 4.
In HadCM3, the climate sensitivity increases from 3.8 ◦C at
× 1 to 6.6 ◦C at× 2. In COSMOS, the climate sensitivity de-
creases from 5.2 ◦C at × 1 to 4.2 ◦C at × 3. In CESM, the
non-linearity has been shown to arise from an increase in the
strength of the positive short-wave cloud feedback as a func-
tion of temperature (Zhu et al., 2019); this is most apparent
in the transition from × 6 to × 9.

CESM, COSMOS, GFDL, and HadCM3 all carried out
simulations at × 1 CO2; comparison with the associated
preindustrial controls indicates that the non-CO2 compo-
nent of global warmth (i.e. due to changes in paleogeogra-
phy, vegetation, and aerosols, and the removal of continen-
tal ice sheets) is 5.1, 3.6, 3.5, and 3.1 ◦C for CESM, GFDL,
HadCM3, and COSMOS respectively. This is for compari-
son with previous simulations using CCSM3 (Caballero and
Huber, 2013) that indicated a non-CO2 warming of ∼ 5◦C.

The latitudinal gradient of SST, defined here as the average
SST equatorwards of ±30◦ minus the average temperature
polewards of±60◦, is shown in Fig. 1b. All DeepMIP models
that have carried out simulations at more than one CO2 con-
centration show a decrease in the meridional SST gradient
as temperature increases, apart from COSMOS. COSMOS
also has the strongest preindustrial meridional temperature
gradient. The × 1 CO2 Eocene simulations indicate that the
non-CO2 DeepMIP boundary conditions decrease the latitu-
dinal gradient by 3.4 ◦C for GFDL, 3.3 ◦C for CESM, 2.1◦

for COSMOS, and 0.8 ◦C for HadCM3. The GFDL model
displays a markedly non-linear response, with a more rapidly
decreasing temperature gradient as a function of temperature
at higher temperatures than at lower temperatures. In con-
trast to the global mean temperature, the DeepMIP models
show substantial spread in the meridional temperature gradi-
ent across the ensemble; COSMOS has a particularly strong
gradient in the Eocene at× 3 and× 4 CO2, and HadCM3 and
IPSL also have relatively strong gradients, similar to previ-
ous Eocene simulations with HadCM3L (Lunt et al., 2010b).

The zonal mean near-surface air temperature anomaly, rel-
ative to the preindustrial simulation, as a function of latitude
is shown in Fig. 2. Polar amplification is clear in both hemi-
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Figure 2. Zonal mean near-surface air temperatures in the DeepMIP simulations, as a function of latitude and prescribed atmospheric CO2
concentration, expressed as anomalies relative to the equivalent preindustrial control for (a) CESM, (b) COSMOS, (c) GFDL, (d) HadCM3,
(e) INMCM, (f) IPSL, (g) MIROC, and (h) NorESM.

spheres for all models at CO2>× 1. There is greater am-
plification in the Southern Hemisphere than in the North-
ern Hemisphere, due to the replacement of the Antarctic
ice sheets with vegetated land surface, with associated local
warming due to the altitude and albedo change. There is a
similar pattern of response across the models for a given CO2
concentration. However, although the models have a similar
response in the Southern Hemisphere, the CESM model has
greater polar amplification than other models in the Northern
Hemisphere for a given CO2 concentration (in particular at
× 3 CO2). The pattern of warming in the × 1 simulations is
similar between the CESM, GFDL, and HadCM3 models. In
particular, they all exhibit warming around 30–40◦ N, which
coincides with lower topography in the Tibetan Plateau re-
gion in the Eocene relative to the preindustrial period. There
is also consistent warming in the Northern Hemisphere Arc-
tic (except for COSMOS) that coincides with the absence of
the Greenland ice sheet and boreal forest in place of tundra
and bare soil in the preindustrial period. The same underly-
ing structure is seen in the higher CO2 simulations (see, for
example, GFDL, Fig. 2b).

The spatial pattern of surface air temperature response is
shown in Fig. 3. Because of the variation in continental posi-
tions between the preindustrial and Eocene periods, we show
the difference between the Eocene and the zonal mean of
the preindustrial simulation, i.e. GATm

e −GATm
p in the no-

tation of Lunt et al. (2012). This shows some consistent re-
sponses across the ensemble. In particular, in addition to the
polar amplification, the response is characterized by greater

warming over land than over ocean. Many of the continen-
tal regions where the warming is more muted (such as the
Rockies, tropical east Africa, India, and the mid-latitudes of
East Asia) are associated with regions of high topography in
the Eocene. There is also substantial warming in the North
Pacific in all simulations. This may be associated with deep-
water formation in this region driving poleward heat trans-
port in the Pacific, but the ocean circulation in these simula-
tions will be explored in a subsequent study.

A similar plot, but without the zonal mean of the prein-
dustrial simulation (i.e. GATm

e −GATm
p ), is shown in Fig. S1.

Figure S1 also includes the Eocene simulations at × 1 and
× 1.5. The Eocene × 1 simulations minus the preindustrial
simulations show the spatial impact of the changes to the
non-CO2 boundary conditions. Consistent across the ensem-
ble is the clear warming in Antarctica associated with the
altitude and albedo change, warming in the Tibetan Plateau
associated with altitude change, and cooling in Europe.

3.3 Reasons for model spread

Here, we first qualitatively explore the different model results
by presenting the changes in albedo and emissivity across
the ensemble. We then quantitatively relate these to the zonal
mean temperature change and global metrics by making use
of a 1D energy balance framework. Future work in the frame-
work of DeepMIP will explore the model simulations in more
detail, in particular the response of clouds, the hydrological
cycle, and ocean circulation.
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Figure 3. DeepMIP near-surface air temperature anomalies, relative to the zonal mean of the associated preindustrial simulation, ordered by
CO2 concentration and by model. Simulations with CO2 equal or greater than × 2 are shown. The variable plotted is GATm

e −GATm
p in the

notation of Lunt et al. (2012).

The patterns of surface albedo in the preindustrial and
Eocene simulations are shown in Fig. S2. The lower albedo
associated with the lack of Antarctic ice sheet in the Eocene
is clear for all the models. In addition, the Eocene models do
not have the high albedo associated with modern subtrop-
ical deserts (the Eocene experimental design specified av-
erage soil properties to be prescribed for all non-vegetated

surfaces). The gradual decrease in high-latitude albedo with
increasing surface temperature is apparent in all models, over
both land and ocean, due to decreasing snow and sea ice
cover. GFDL has a relatively low albedo prescribed over
land in the preindustrial simulation, which is consistent with
its relatively warm global mean (Fig. 1a; small red circle).
CESM generally retains more snow cover than other models
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over Antarctica for a given CO2 concentration. NorESM has
a relatively low prescribed albedo over land in the Eocene.
The patterns of planetary albedo in the preindustrial and
Eocene simulations are shown in Fig. S3. Again, the high
albedo over high-latitude regions is clear, although the plan-
etary albedo over Antarctica in the preindustrial simulation
is lower then the surface albedo, indicating that the presence
of clouds lowers the albedo in this region. Globally, there
is a transition to lower values as temperature increases, and
the regions associated with the lowest values (e.g. the sub-
tropics in CESM) tend to expand in area, associated with de-
creases in cloud cover and opacity (Zhu et al., 2019). How-
ever, GFDL retains a high planetary albedo in the Arctic,
even at× 6 CO2, despite a low surface albedo, indicating per-
sistent cloud cover in this region. MIROC appears to have
less spatial structure in planetary albedo than the other mod-
els. The patterns of emissivity in the preindustrial and Eocene
simulations are shown in Fig. S4. The relatively low emissiv-
ity associated with the high-altitude Antarctic ice sheet in the
preindustrial simulation is apparent. The emissivity gener-
ally decreases as temperature increases, which is likely asso-
ciated with increasing water vapour and changes in clouds,
and the patterns remain fairly consistent as temperature in-
creases, with the lowest values over the warm pool in the
western tropical Pacific.

In order to quantitatively relate these differences in ra-
diative fluxes to the differences in temperature presented in
Sect. 3.2, we make use of the energy balance framework de-
scribed in Heinemann et al. (2009) and used previously to
explore Eocene simulations by Lunt et al. (2012). In this
framework, the zonal mean surface temperature (τ ), plane-
tary albedo (αp), emissivity (ε), incoming TOA solar radia-
tion (S), and meridional heat flux (H ) are related by

S(1−αp)+H = εστ 4, (1)

where σ is the Stefan–Boltzmann constant, and αp, ε, H ,
and S are functions of latitude that can be derived from the
modelled energy fluxes, from either the preindustrial (xP1)
or×N CO2 Eocene (xEN ) simulations. In our case, the solar
constant is the same in the preindustrial and Eocene simula-
tions; thus, by rearranging Eq. (1), we can write τ as a func-
tion of αp, ε, and H . For example, the surface temperature
of the standard Eocene × 3 simulation is τ (αE3

p ,εE3,HE3)
and that of a preindustrial simulation is τ (αP1

p ,ε
P1,H P1). The

contribution of emissivity changes to the Eocene warming
at × 3 relative to the preindustrial simulation, 1τε , is then
given by τ (αP1

p ,ε
E3,H P1)− τ (αP1

p ,ε
P1,H P1), and similarly

for meridional heat flux and planetary albedo:

1τε = τ
(
αP1

p ,ε
E3,H P1

)
− τ

(
αP1

p ,ε
P1,H P1

)
1τH = τ

(
αP1

p ,ε
P1,HE3

)
− τ

(
αP1

p ,ε
P1,H P1

)
1ταp = τ

(
αE3

p ,εP1,H P1
)
− τ

(
αP1

p ,ε
P1,H P1

)
(2)

Heinemann et al. (2009) and Lunt et al. (2012) showed how
this framework could be expanded to also include terms re-
lated to long-wave and short-wave cloud changes by includ-
ing terms derived from the clear-sky fluxes from the model
radiation scheme. Here, we choose instead to partition the
planetary albedo term (1ταp ) into a surface albedo term
(1ταs ) and a non-surface albedo term (1ταns ) as follows:

1ταs = τ
(
αP1

p +
(
αE3

s −α
P1
s

)
,εP1,H P1

)
− τ

(
αP1

p ,ε
P1,H P1

)
1ταns =1ταp −1ταs , (3)

where αs is the surface albedo. The surface albedo changes
are a result of prescribed vegetation and ice sheet albedo
changes as well as snow and sea ice feedbacks. The non-
surface albedo changes are a result of cloud and aerosol
changes or cloud masking effects (see below). Note that due
to the non-linear dependence of albedo and emissivity on the
radiative fluxes, the results are sensitive to the order of zonal
mean, annual mean, and albedo and emissivity operators, but
this has a generally small effect, except in the partitioning of
surface and non-surface albedo in the high latitudes where it
can have an effect of ±3 ◦C (not shown).

The results of this analysis are shown in Fig. 4 for the
models that carried out × 3 simulations (all models except
for INMCM and NorESM). This shows that all models gen-
erally have similar reasons for their response to the Deep-
MIP boundary conditions. In particular, in the equatorial re-
gion (latitudes ±10◦), the temperature response is gener-
ally dominated by emissivity changes; in the subtropics, it
is dominated by emissivity and albedo (specifically, non-
surface albedo) changes. In the Southern Hemisphere high
latitudes, both emissivity and albedo changes contribute to
warming. The change in altitude over Antarctica is likely a
large part of this emissivity contribution. The albedo-induced
change is made up of a large positive surface albedo contri-
bution which is partially cancelled by a negative non-surface
albedo contribution. This partial cancellation is a result of
the very strong surface albedo change over Antarctica. In
the absence of clouds, this surface albedo change on its own
would cause large changes in temperature. However, in re-
ality, some of these changes are masked by clouds and, as
such, do not have as big an effect as would be the case in a
cloud-free state. In the Northern Hemisphere, the signals are
more variable across the ensemble. Most models show simi-
lar behaviour to the Southern Hemisphere, with positive con-
tributions from emissivity and surface albedo and a negative
contribution from non-surface albedo (again resulting from
the cloud masking effect, over the Arctic sea ice). However,
in COSMOS and GFDL, the Arctic response is dominated
by emissivity changes, with relatively little contribution from
albedo.

The global mean warming, × 3 minus preindustrial, is
fairly constant across the ensemble. The greatest warming of
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Figure 4. The results of the energy balance analysis as described in Eqs. (2) and (3), applied to the differences between the DeepMIP × 3
simulations and their associated preindustrial controls. The black dashed line shows the zonal mean surface temperature changes directly
from the general circulation models (GCMs). The black solid line shows the temperature change derived from the radiative fluxes,1τ . Solid
blue, cyan, and green lines show the contributions from planetary albedo (1τε ), emissivity (1τε ), and meridional heat flux (1τε ) respectively
(Eq. 2). The blue dotted and dashed lines show the contribution from surface albedo (1ταs ) and non-surface albedo (1ταns ) respectively
(Eq. 3). The red line shows the sum of the individual terms. For each model, the contribution of each term to the changes in global mean
temperature (GMT) and the polar amplification (AMP; expressed as the difference in warming between the high latitudes, polewards of
±60◦, and the tropics, ±30◦) are quantified in the legend.

11.8 ◦C is observed in CESM, for which 6.1 ◦C comes from
emissivity and 5.3 ◦C comes from albedo (4.9 ◦C from sur-
face albedo and 0.4 ◦C from non-surface albedo). The lowest
warming of 9.6 ◦C is observed in GFDL, for which 6.2 ◦C
comes from emissivity and 2.9 ◦C comes from albedo (3.2 ◦C
from surface albedo and −0.2 ◦C from non-surface albedo).
Therefore, the difference in sensitivity between these two
end-members of the ensemble primarily results from reduced
surface albedo change in GFDL compared with CESM, and
secondarily from negative non-surface albedo changes in
GFDL compared with positive in CESM.

The reasons for the polar amplification are more variable
between the models. For the model with the greatest polar
amplification, CESM (17.4 ◦C), this is made up of 8.0 ◦C
from albedo, 10.4 ◦C from emissivity, and −2.3 ◦C from
meridional heat flux. For the model with the least polar am-
plification, COSMOS (8.7 ◦C), this is made up of 1.1 ◦C from
albedo, 4.5 ◦C from emissivity, and 2.3 ◦C from meridional
heat flux. Other models share relatively similar polar amplifi-
cation (ranging from 11.4 ◦C in IPSL to 13.9 ◦C in MIROC),

but the reasons for this vary between the models; in IPSL
the dominant contribution is from albedo, in GFDL it is from
emissivity with a positive contribution from meridional heat
flux, in MIROC it is also from emissivity but with a negative
contribution from meridional heat flux, and in HadCM3 it is
roughly equal between albedo and emissivity, with a strong
contribution from meridional heat flux.

The above-mentioned differences, × 3 minus preindus-
trial, can be considered as consisting of a component due
to non-CO2 boundary condition changes (× 1 minus prein-
dustrial) and a component due to CO2 change (× 3 minus
× 1). Four of the models (CESM, COSMOS, GFDL, and
HadCM3) also carried out simulations at × 1 which allow
us to diagnose this partitioning. The energy balance analy-
sis for × 1 minus preindustrial and × 3 minus × 1 is shown
in Figs. S5 and S6 (note that due to non-linearities, the sum
of these two partitions does not exactly equal the × 3 mi-
nus preindustrial values shown in Fig. 4). This shows that the
non-CO2 response (Fig. S5) is greatest in the polar regions
of the Southern Hemisphere, where albedo and emissivity
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contribute approximately equally in all models. Elsewhere,
the signal is small; for the global mean, albedo and emissiv-
ity contribute roughly equally, although albedo dominates in
CESM and emissivity dominates in GFDL. For the CO2-only
response (Fig. S6), emissivity changes dominate in all mod-
els on a global scale. As expected, the contribution due to
surface albedo changes is close to zero in all regions except
the high latitudes. All models show polar amplification in
both hemispheres, but the reasons for this vary. CESM polar
amplification is due to both emissivity and albedo changes,
and it is offset by changes in meridional heat flux, whereas
the other models are dominated by emissivity and merid-
ional heat flux changes and offset by albedo changes (due
to strong offsetting by non-surface albedo). The importance
of changes in outgoing long-wave radiation for polar ampli-
fication in response to CO2 forcing is also seen in model sim-
ulations of the modern climate (Pithan and Mauritsen, 2014).

By way of summary, the reasons for the ×3 minus prein-
dustrial difference, for the four models for which we can
carry out a full partitioning, are given in Table 2. This shows
that, averaged across these four models, about 5 ◦C of the
∼ 10 ◦C warming arises from emissivity changes from the
CO2 increase (and associated water vapour and long-wave
cloud feedbacks); about 2 ◦C of the ∼ 10 ◦C warming arises
from albedo changes from the non-CO2 boundary condi-
tions, primarily removal of ice, and changes in vegetation and
aerosols (and associated cloud, snow, and sea ice feedbacks);
about 1.5 ◦C of the ∼ 10 ◦C warming arises from emissiv-
ity changes from the non-CO2 boundary conditions, primar-
ily lower Antarctic altitude (and associated water vapour
changes); and about 1.5 ◦C of the ∼ 10 ◦C warming arises
from albedo changes from the CO2 increase (i.e. cloud, snow,
and sea ice feedbacks). For polar amplification, about 5 ◦C
of the ∼ 12 ◦C warming arises from the emissivity changes
from the non-CO2 boundary conditions, about 4 ◦C of the
∼ 12 ◦C warming arises from the albedo changes from the
non-CO2 boundary conditions, about 2 ◦C of the ∼ 12 ◦C
warming arises from emissivity changes from the CO2 in-
crease, and about 1 ◦C of the ∼ 12 ◦C warming arises from
heat flux changes (made up of a contribution of +2 ◦C from
the CO2 increase and −1 ◦C from the non-CO2 changes).

3.4 Model–data comparison

Here, we present a comparison of the models with proxy data
of Eocene temperature and CO2. After introducing the proxy
datasets, we compare the models to proxy-based global met-
rics and then to specific locations on a point-to-point basis.

3.4.1 Proxy datasets

For point-to-point model–data comparisons, we use the SST
and surface air temperature (SAT) datasets for the EECO
compiled by (Hollis et al., 2019). Following their recom-
mendation, we exclude δ18O-derived SST estimates from re-

crystallized planktonic foraminifera because these estimates
are generally significantly cooler than estimates derived from
the δ18O value of well-preserved foraminifera, foraminiferal
Mg /Ca ratios, and clumped isotope values from larger ben-
thic foraminifera, due to diagenetic effects.

In terms of global metrics, we make use of the global mean
near-surface air temperature (GSAT) estimate for the EECO
from Inglis et al. (2020), which is based on the Hollis et al.
(2019) temperature dataset and also excludes SST estimates
from recrystallized foraminifera. The vertical dimensions of
the grey filled boxes in Fig. 1a show the 33 % to 66 % and
the 10 % to 90 % confidence intervals of this GSAT estimate.
For the global mean SST, we again use the GSAT estimate of
Inglis et al. (2020) but convert this to global mean SST using
a linear function derived from the mean land–sea temperature
contrast in all the model simulations shown in Fig. 1:

SST= 0.82×GSAT+ 6.6 ◦C. (4)

This SST estimate forms the horizontal dimensions of the
grey filled boxes in Fig. 1b.

We make use of SST gradient estimates from
Cramwinckel et al. (2018), Evans et al. (2018), and
Zhu et al. (2019). Cramwinckel et al. (2018) define a
meridional temperature gradient metric as the difference
between the tropical mean SST (derived from TEX86) and
deep-ocean temperatures (derived from δ18O), assuming
that deep-ocean temperatures are an approximation of
high-latitude SSTs. In this way, they reconstruct a metric
at 50 Ma of about 20–22 ◦C (their Fig. 3b). Evans et al.
(2018) employ a similar approach but using tropical SSTs
and deep-ocean temperatures from Mg /Ca between 48 and
56 Ma; they find a reduction in their metric from the modern
to early Eocene of 22 % to 42 %. Given a modern gradient
from HadISST (our Fig. 1b) of about 26 ◦C, this gives an
early Eocene estimate of 17.7 ◦C (20.3 to 15.1 ◦C). Using
a similar approach to Evans et al. (2018), Zhu et al. (2019)
find a reduction in their metric of about 20 % to 45 % (their
Fig. 1b), giving an estimate of 21 to 14 ◦C for the early
Eocene. Given the differences in methodologies for deriving
these estimates, the relatively wide time window of the
“early Eocene” for two of the studies, and the differences
between the proxy metrics and our modelled metric (defined
here as the average SST equatorwards of ±30◦ minus the
average SST polewards of±60◦), we take the outer ranges of
the three studies as our overall proxy estimate, giving a range
from 14 to 22 ◦C. This range in the meridional temperature
gradient estimate forms the vertical edge of the grey filled
boxes in Fig. 1b. However, the use of benthic temperatures to
approximate high-latitude annual mean surface temperature
may result in biases due to the seasonality of deep-water
formation (Evans et al., 2018), and we note that a detailed
assessment of the meridional temperature gradient implied
by proxies, similar to that carried out for global mean
temperature by Inglis et al. (2020), would be beneficial for
future model–data comparisons.
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Table 2. Summary of the contributions to global mean surface warming and polar amplification from preindustrial to × 3. Values are shown
for the four DeepMIP models that carried out simulations of the preindustrial, × 1, and × 3 (CESM, COSMOS, GFDL, and HadCM3).
The values correspond to those shown in Figs. S5 and S6. Note that the sum of these is slightly different from the values in Fig. 4 due to
non-linearities. Polar amplification is defined as the difference in warming between the high latitudes (polewards of ±60◦) and the tropics
(±30◦).

Variable (◦C) CESM COSMOS GFDL HadCM3 Four-model mean

Global mean surface warming 11.5 10.6 9.2 10.7 10.5

Emissivity (× 1−PI) 1.7 1.5 1.9 1.7 1.7
Surface albedo (× 1−PI) 3.8 3.9 2.0 3.3 3.3
Non-surface albedo (× 1−PI) −0.4 −2.4 −0.5 −1.7 −1.3
Emissivity (× 3−× 1) 4.5 5.6 4.3 5.8 5.1
Surface albedo (× 3−× 1) 1.1 0.6 1.2 0.8 0.9
Non-surface albedo (× 3−× 1) 0.8 1.5 0.2 0.8 0.8

Polar amplification 16.3 7.9 11.5 11.9 11.9

Emissivity (× 1−PI) 7.4 3.7 3.5 4.1 4.7
Surface albedo (× 1−PI) 14.6 20.1 8.0 15.8 14.6
Non-surface albedo (× 1−PI) −9.2 −17.0 −3.8 −11.4 −10.3
Meridional heat flux (× 1−PI) −1.9 −1.9 0.1 −0.6 −1.1
Emissivity (× 3−× 1) 3.1 0.8 3.2 0.7 1.9
Surface albedo (× 3−× 1) 7.6 3.2 7.2 4.0 5.5
Non-surface albedo (× 3−× 1) −4.8 −5.2 −8.0 −4.4 −5.6
Meridional heat flux (× 3−× 1) −0.4 4.2 1.3 3.6 2.2

For CO2, Anagnostou et al. (2020) give two estimates of
EECO CO2 based on two different calibrations, resulting in
95 % confidence intervals from 1170 to 1830 ppmv and from
1540 to 2490 ppmv. The uppermost and lowermost bounds of
these two estimates are close to the× 4 (1120 ppmv) and× 9
(2520 ppmv) simulations; as such, these form the horizontal
edges of the light grey box in Fig. 1. A normal distribution
in absolute CO2 would give a corresponding 68 % confidence
interval from 1470 to 2170 ppmv, and this forms the horizon-
tal edges of the light grey box in Fig. 1.

Overall, for the purposes of describing the model–data
consistency, we use “consistent” to describe a model that sits
within the light grey boxes of Fig. 1a and b, and we use “very
consistent” to describe a model that sits within the dark grey
boxes of Fig. 1a and b.

3.4.2 Comparison with global metrics

For the DeepMIP models, only those that carried out simu-
lations at × 4 CO2, × 6 CO2, or × 9 CO2 are consistent with
the CO2 proxies (i.e. CESM, COSMOS, GFDL, INMCM,
and NorESM), and only those that carried out simulations
at × 6 CO2 are very consistent with the CO2 proxies (i.e.
CESM, GFDL, and INMCM). All of these simulations are
also consistent with the GSAT proxies, but only COSMOS
and GFDL at × 4 are very consistent with the GSAT proxies
(inspection of Fig. 1 indicates that CESM would also be very
consistent with the GSAT proxies if there was a simulation at
× 4). No simulations are very consistent with both the CO2

and GSAT proxies. Only CESM at × 6, GFDL at × 4 and
× 6, and NorESM at× 4 are consistent with the CO2, GSAT,
and meridional temperature gradient proxies.

Of the pre-DeepMIP simulations in Fig. 1a and b,
CCSM_H and CCSM_W at × 8 are also consistent with
all the proxy constraints, and CCSM_K is additionally very
consistent with GSAT. However, as discussed in Sect. 1,
CCSM_K includes somewhat arbitrary modifications to
cloud parameters that are designed to enable the model to
better fit the Eocene observations; as such, in contrast to the
DeepMIP simulations, CCSM_K cannot be considered en-
tirely independent of the temperature data.

Some quantitative metrics for the simulations are pre-
sented in Table S2. In this case, the metrics are given for the
set of simulations that were carried out at CO2 concentrations
consistent with the proxies.

3.4.3 Comparison with specific locations

The limited range of CO2 concentrations explored by some
models, coupled with the relatively large uncertainties in
EECO CO2 from proxies, means that a model–data com-
parison of individual model simulations with the site-by-site
proxy data can be misleading. Therefore, we only conduct
a detailed model–data comparison for models that provide
simulations carried out under more than one CO2 concentra-
tion. For these models (CESM, COSMOS, GFDL, HadCM3,
IPSL, and NorESM), we apply a global mean scaling fac-
tor to the simulated SST and GSAT such that the modelled
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global means best fit the global mean proxy data. We then
compare the spatial patterns in the scaled model outputs with
the spatial patterns in the site-by-site proxies. We provide a
quantitative metric for the model–data fit and compare this
with some idealized temperature distributions to put these
metrics in context.

We scale the models by assuming that the spatial pattern
of temperature change scales linearly with global mean tem-
perature change and by interpolating or extrapolating to a
global mean equal to the estimate from Inglis et al. (2020),
i.e. 27 ◦C for near-surface air temperature, or an equivalent
global mean SST given by Eq. (4). This process gives a scal-
ing factor, s, that can be used to create a spatial field of im-
plied temperature, T i , which is consistent with this proxy-
based global mean temperature, 〈T p

〉:

s =
〈T p
〉− 〈

LT 〉

〈HT 〉− 〈LT 〉

T i = s
(HT − LT

)
, (5)

where LT and HT are the spatial fields of the two model sim-
ulations that have global means closest to 〈T p

〉, and 〈.〉 de-
notes a global mean quantity. This also allows us to calculate
an inferred CO2 concentration, COi2:

COi2 =
LCO2

(HCO2
LCO2

)s
, (6)

where HCO2 and LCO2 are the CO2 concentrations that cor-
respond to the two simulations in Eq. (5). For surface air
temperature, this process is equivalent to interpolating or ex-
trapolating the straight lines in Fig. 1a to identify the CO2
concentration that corresponds to 〈T p

〉.
For CESM and GFDL, the scaling is found by interpola-

tion (s < 1.0) because there are simulations that are warmer
than 〈T p

〉. For those models where the scaling extrapo-
lates beyond the model simulations (i.e. s > 1.0; COSMOS,
HadCM3, IPSL, and NorESM), care must be taken due to
the assumption of linearity. For HadCM3, IPSL, and COS-
MOS, this assumption is probably well justified (s = 1.51,
1.37, and 1.05 respectively for the surface air temperature
scaling), but for NorESM this assumption is probably poorly
justified (s = 2.02).

For HadCM3, GFDL, IPSL, CESM, COSMOS, and
NorESM, the inferred CO2 concentrations for the surface
air temperature scaling are 1030, 1050, 1080, 1130, 1140,
and 2270 ppmv respectively. For CESM, COSMOS, and
NorESM, these are consistent with the CO2 proxy estimates
of 1120–2520 ppmv (Sect. 3.4.1); the other models have a
slightly lower inferred CO2 concentrations than the proxies
indicate. All of these inferred CO2 values are below the con-
centration at which the respective models are known to crash
(see Sect. 3.1). When the same method is applied to the Lunt
et al. (2012) simulations, the inferred CO2 are all higher than
the proxy estimates (2640 ppmv for HadCM3L, 3300 ppmv

for CCSM3_H, and 6210 ppmv for CCSM_W). Figure 1 in-
dicates that these relatively cool Lunt et al. (2012) simula-
tions are related to a relatively low climate sensitivity for
CCSM3_H and CCSM3_W and to a relatively low response
to non-CO2 forcing for HadCM3L and CCSM3_W.

The scaled SST anomalies, relative to the zonal mean
of the preindustrial modelled SST, for CESM, COSMOS,
GFDL, HadCM3, IPSL, and NorESM, along with the proxy
SST data from Hollis et al. (2019) (relative to the zonal mean
of preindustrial observations), are shown in Fig. 5. In general,
the models agree reasonably well with the tropical and mid-
latitude SST data, but there is a large model–data inconsis-
tency in the southwest Pacific sites around New Zealand and
south of Australia, where the modelled anomalies are colder
than proxy estimates by 5–10 ◦C. The reader is also referred
to Fig. S7 for the modelled absolute SSTs and absolute SST
proxy data.

The RMS skill score of the scaled absolute simulations,
relative to the SST proxies, σs (◦C), is 7.0 for NorESM, 9.6
for GFDL, 9.7 for CESM, 10.5 for HadCM3, 10.7 for IPSL,
and 12.0 for COSMOS. Note that the NorESM score is not
directly comparable to the others because the NorESM sim-
ulation, and the proxy data it is compared with, are on a pa-
leomagnetic reference frame rather than a mantle reference
frame (Fig. 5f). For comparison, the GFDL skill score is 7.3
when calculated on the paleomagnetic reference frame. Note
that we calculate all RMS scores from a specific point-to-
point comparison of models and data, not from zonal means.

To put these numbers in context, we also calculate the
same skill score for some idealized temperature distributions
(on the mantle reference frame), expressed as anomalies rela-
tive to the zonal mean of the preindustrial observations. This
approach is similar to that used by Hargreaves et al. (2013)
in the context of Quaternary model–data comparisons. Our
idealized temperature distributions are (i) a constant value
of zero (i.e. no change from the zonal mean of the preindus-
trial simulation), (ii) a non-zero constant value (C), and (iii) a
function f (φ)= A+B(1− cos2φ). For the constant value,
C, we choose a value that is equal to an estimate of global
mean SST change from the proxies. This estimate of SST
change is scaled from the proxy-based estimate of GSAT,
〈T p
〉 = 27 ◦C, using the scaling in Eq. (4), minus the prein-

dustrial global mean SST. For the function f (φ), we choose
A and B such that the global mean is equal to C, and the
polar amplification metric, defined as the average SST equa-
torwards of±30◦ minus the average SST polewards of±60◦,
is equal to our central estimate, i.e. 18 ◦C minus the preindus-
trial value (see Sect. 3.4.1).

These idealized functions are shown in Fig. 6g–i as zonal
means, along with the scaled DeepMIP models (Fig. 6a–
f), and are all expressed as anomalies relative to the zonal
mean of the preindustrial simulation. The global anomaly
of zero relative to the zonal mean of the preindustrial sim-
ulation is associated with an RMS skill score σs = 20.1, the
global mean constant temperature anomaly (C) is associated
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Figure 5. Modelled SST anomalies for the Eocene, relative to the zonal mean of the associated preindustrial simulation. The variable plotted
is SSTm

e −SSTm
e in the notation of Lunt et al. (2012). The Eocene simulations have been scaled using a global tuning factor, as described

in the text, so that they best fit the global mean SST data inferred from Inglis et al. (2020) (see Eqs. 5 and 4). As such, only models that
carried out simulations with more then one CO2 concentration are shown: (a) CESM, (b) COSMOS, (c) GFDL, (d) HadCM3, (e) IPSL, and
(f) NorESM. Also shown are the proxy SST estimates from Hollis et al. (2019) for the EECO, excluding those sites that they identified as
being affected by diagenesis.

with σs=11.6, and the f (φ) temperature profile is associ-
ated with σs = 9.0 (σs = 7.5 on the paleomagnetic reference
frame). This means that all of the models apart from COS-
MOS can be considered as having some skill in capturing the
first-order patterns of SST change (because the skill score of
those models is better than that of the global constant), but
only NorESM has skill in capturing the second-order, more
regional temperature patterns (because the skill score of the
other models is worse than that of the f (φ) distribution when
calculated on the appropriate reference frame). However, the
performance of the scaled NorESM simulations should be
viewed with some caution because of its relatively high scal-
ing factor (s, in Eq. 5).

So far, this analysis has focused on SSTs, but we also carry
out a comparison with terrestrial near-surface air temperature
data (SAT), even though it is generally less well constrained
in age than SSTs and, as such, likely represents a wider range
of climate states. The absolute SAT model–data compari-
son for each DeepMIP simulation is shown in Fig. S8. For
those models that carried out more than one CO2 simulation
(CESM, COSMOS, GFDL, HadCM3, IPSL, and NorESM),

Figs. S9 and S10 show the SATs from the scaled models in
comparison with terrestrial proxy data.

These figures show that both models and SAT terrestrial
proxies show a similar amount of polar amplification. In par-
ticular, the southwest Pacific site SATs are better simulated
in the models than the SSTs; the RMS skill score decreases in
the southwest Pacific by 30 % on average for the SATs com-
pared with the SSTs across the ensemble. This implies that
there may be inconsistency between marine and terrestrial
temperatures in either the proxies or models in this region.
This discrepancy could be related to a potential summer bias
in mid- and high-latitude SST proxies (Hollis et al., 2012;
Davies et al., 2019). An alternative hypothesis is that the dis-
crepancy is related to Red Sea-like features of GDGT (glyc-
erol dialkyl glycerol tetraethers) distributions in high SST
samples from the southwest Pacific and Wilkes Land that ap-
pear to amplify proxy SSTs where isoGDGTRS > 30 (Inglis
et al., 2015), which is an idea supported by recent work in the
context of the Cretaceous (Steinig et al., 2020). However, the
discrepancy may also be caused by physical processes that
are not captured by any of the models.

Clim. Past, 17, 203–227, 2021 https://doi.org/10.5194/cp-17-203-2021



D. J. Lunt et al.: DeepMIP model–data comparison 221

Figure 6. (a–d) Zonal mean SST (solid lines) and near-surface air temperature (dashed line) anomalies, relative to the zonal mean of the
associated preindustrial simulation, for the scaled version of the (a) CESM, (b) COSMOS, (c) GFDL, (d) HadCM3, (e) IPSL, and (f) NorESM
models. Also shown are the EECO SSTs and error bars from Hollis et al. (2019), expressed as a difference relative to the zonal mean of the
preindustrial observations. Panels (g)–(i) are the same as panels (a)–(f) but instead of a model we show idealized temperature distributions
of (g) 0, (h) C, and (i) A+B(1− cos2φ). All plots also show the proxy SST estimates from Hollis et al. (2019) for the EECO, excluding
those sites that they identified as being affected by diagenesis (black circles with uncertainty bars). The modelled and idealized SSTs at the
specific location of the proxies (red squares) are also displayed.

4 Conclusions

We have presented an ensemble of model simulations of the
Eocene, carried out in the framework of DeepMIP. The focus
has been on documenting the annual mean modelled tem-
peratures, exploring the reasons for the different responses

in the models, and comparing with proxy data. Compared
with previous model simulations, the results show reduced
spread across the ensemble (except for the INMCM model)
and greater climate sensitivity on average. The contribution
to Eocene warmth from non-CO2 boundary conditions (pa-
leogeography and vegetation and aerosols) is between 3.1 ◦C
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(HadCM3) and 5.1 ◦C (CESM). The reasons for the model
spread is explored using an energy balance framework. This
indicates that the difference between the models with the
greatest and least warming in the Eocene at × 3 CO2 is pri-
marily due to differences in the surface albedo response and
that the difference between the models with the greatest and
least polar amplification in the Eocene is primarily due to
differences in the albedo and emissivity response. Across the
model ensemble, the global mean warming in the Eocene
compared with preindustrial simulations arises mostly from
changes in emissivity due to the elevated CO2 and associ-
ated water vapour and long-wave cloud feedbacks, whereas,
in terms of the meridional temperature gradient, the reduc-
tion in the Eocene is primarily due to emissivity and albedo
changes due to the non-CO2 boundary conditions (i.e. the re-
moval of the Antarctic ice sheet and changes in vegetation).
Due to the limited range of prescribed CO2 in the model sim-
ulations, coupled with uncertainties in proxy reconstructed
CO2, we interpolate and extrapolate between simulations at
multiple CO2 concentrations to infer the concentration that
gives the best fit to previous estimates of the global mean
temperature; we then compare the model-inferred tempera-
tures to the proxy SSTs on a point-to-point basis. This shows
that CESM, GFDL, HadCM3, IPSL, and NorESM all have
“skill” in representing the first-order patterns in the SST
proxies in that they show better agreement with the prox-
ies than a tuned global constant warming. However, they do
not reproduce the exceptional warmth in the southwest Pa-
cific proxy SSTs, although the modelled and proxy SATs are
in better agreement than SSTs in this region, pointing to a
possible inconsistency between the marine and terrestrial pa-
leotemperatures in either the models or the proxies. Despite
the regional limitations in the SST model–proxy consistency,
the scaled CESM, COSMOS, and NorESM models all simu-
late a best fit global mean temperature at CO2 concentrations
that are consistent with the CO2 proxies, without prescribing
changes to model parameters such as those related to clouds.
Furthermore, CESM, GFDL, and NorESM are all consistent
with the global mean temperature, meridional temperature
gradient, and CO2 proxies. Tighter constraints from proxies
on both CO2 and temperature would allow for better discrim-
ination of the DeepMIP models and model simulations. It is
worth noting that CESM and GFDL both implemented mod-
ified aerosols in their Eocene simulations (see Sect. 2.2); the
importance of this remains a topic for further investigation.
Other future work in the framework of DeepMIP will explore
the model simulations and model–data comparisons in more
detail, in particular the response of clouds, the hydrological
cycle, and ocean circulation.

Data availability. The model results, in terms of annual mean
near-surface air temperature, SST, and radiative fluxes, for the
Eocene and preindustrial control simulations, are available in the
Supplement as netCDF files. These are derived from files in version

1.0 of the DeepMIP model database by interpolating to a common
grid (3.75◦ longitude ×2.5◦ latitude) using climate data operators
(CDOs). Bilinear interpolation is used for the near-surface air tem-
perature data, and nearest-neighbour interpolation is used for the
SST data. Access to the full DeepMIP model database can be re-
quested from the corresponding author. The proxy database used
in this study is identical to that used in Inglis et al. (2020) and is
available from the Supplement of that study. This contains the same
data as in Hollis et al. (2019), i.e. version 0.1 of the DeepMIP proxy
database.

Supplement. The supplement related to this article is available
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B. R.: Inter-annual climate variability in Europe during the
Oligocene icehouse, Palaeogeogr., Palaeocl., 475, 140–153,
https://doi.org/10.1016/j.palaeo.2017.03.020, 2017.

Wei, W. and Lohmann, G.: Simulated Atlantic multidecadal os-
cillation during the Holocene, J. Climate, 25, 6989–7002,
https://doi.org/10.1175/JCLI-D-11-00667.1, 2012.

Wei, W., Lohmann, G., and Dima, M.: Distinct modes of inter-
nal variability in the global meridional overturning circulation
associated with the Southern Hemisphere westerly winds, J.
Phys. Oceanogr., 42, 785–801, https://doi.org/10.1175/JPO-D-
11-038.1, 2012.

Winguth, A., Shellito, C., Shields, C., and Winguth, C.: Climate
Response at the Paleocene-Eocene Thermal Maximum to Green-
house Gas Forcing – A Model Study with CCSM3, J. Climate,
23, 2562–2584, 2010.

Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley,
S., Caldwell, P. M., Ceppi, P., Klein, S. A., and Tay-
lor, K. E.: Causes of Higher Climate Sensitivity in
CMIP6 Models, Geophys. Res. Lett., 47, e2019GL085782,
https://doi.org/10.1029/2019GL085782, 2020.

Zhang, X., Lohmann, G., Knorr, G., and Xu, X.: Different ocean
states and transient characteristics in Last Glacial Maximum sim-
ulations and implications for deglaciation, Clim. Past, 9, 2319–
2333, https://doi.org/10.5194/cp-9-2319-2013, 2013.

Zhang, X., Lohmann, G., Knorr, G., and Purcell, C.: Abrupt glacial
climate shifts controlled by ice sheet changes, Nature, 512, 290–
294, https://doi.org/10.1038/nature13592, 2014.

Zhang, X., Knorr, G., Lohmann, G., and Barker, S.: Abrupt
North Atlantic circulation changes in response to gradual CO2
forcing in a glacial climate state, Nat. Geosci., 10, 518–523,
https://doi.org/10.1038/ngeo2974, 2017.

Zhang, Y., Huck, T., Lique, C., Donnadieu, Y., Ladant, J.-B., Ra-
bineau, M., and Aslanian, D.: Early Eocene vigorous ocean over-
turning and its contribution to a warm Southern Ocean, Clim.
Past, 16, 1263–1283, https://doi.org/10.5194/cp-16-1263-2020,
2020.

Zhang, Z. S., Nisancioglu, K., Bentsen, M., Tjiputra, J., Bethke,
I., Yan, Q., Risebrobakken, B., Andersson, C., and Jansen, E.:
Pre-industrial and mid-Pliocene simulations with NorESM-L,
Geosci. Model Dev., 5, 523–533, https://doi.org/10.5194/gmd-5-
523-2012, 2012.

Zhu, J., Liu, Z., Brady, E., Otto-Bliesner, B., Zhang, J., Noone, D.,
Tomas, R., Nusbaumer, J., Wong, T., Jahn, A., and Tabor, C.:
Reduced ENSO variability at the LGM revealed by an isotope-
enabled Earth system model, Geophys. Res. Lett., 44, 6984–
6992, https://doi.org/10.1002/2017GL073406, 2017a.

Zhu, J., Liu, Z., Brady, E. C., Otto-Bliesner, B. L., Marcott, S. A.,
Zhang, J., Wang, X., Nusbaumer, J., Wong, T. E., Jahn, A.,
and Noone, D.: Investigating the direct meltwater effect in ter-
restrial oxygen-isotope paleoclimate records using an isotope-
enabled Earth system model, Geophys. Res. Lett., 44, 12501–
12510, https://doi.org/10.1002/2017GL076253, 2017b.

Zhu, J., Poulsen, C. J., and Tierney, J. E.: Simulation
of Eocene extreme warmth and high climate sensitivity
through cloud feedbacks, Science Advances, 5, eaax1874,
https://doi.org/10.1126/sciadv.aax1874, 2019.

https://doi.org/10.5194/cp-17-203-2021 Clim. Past, 17, 203–227, 2021

https://doi.org/10.1016/j.epsl.2018.06.031
https://doi.org/10.5194/gmd-10-3715-2017
https://doi.org/10.1515/rnam-2018-0032
https://doi.org/10.1016/j.palaeo.2016.07.033
https://doi.org/10.1016/j.palaeo.2017.03.020
https://doi.org/10.1175/JCLI-D-11-00667.1
https://doi.org/10.1175/JPO-D-11-038.1
https://doi.org/10.1175/JPO-D-11-038.1
https://doi.org/10.1029/2019GL085782
https://doi.org/10.5194/cp-9-2319-2013
https://doi.org/10.1038/nature13592
https://doi.org/10.1038/ngeo2974
https://doi.org/10.5194/cp-16-1263-2020
https://doi.org/10.5194/gmd-5-523-2012
https://doi.org/10.5194/gmd-5-523-2012
https://doi.org/10.1002/2017GL073406
https://doi.org/10.1002/2017GL076253
https://doi.org/10.1126/sciadv.aax1874

	Abstract
	Introduction
	DeepMIP model simulations
	Experimental design
	Individual model simulations
	CESM (CESM1.2_CAM5)
	COSMOS (COSMOS-landveg_r2413)
	GFDL (GFDL_CM2.1)
	HadCM3 (HadCM3B_M2.1aN)
	INMCM (INM-CM4-8)
	IPSL (IPSLCM5A2)
	MIROC (MIROC4m)
	NorESM (NorESM1_F)


	Results
	Model spin-up and equilibrium
	Documentation of large-scale features
	Reasons for model spread
	Model–data comparison
	Proxy datasets
	Comparison with global metrics
	Comparison with specific locations


	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

