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Abstract 23 
The combination of Liquid Chromatography and Mass Spectrometry (LC-MS) is 24 

commonly used to determine and characterize biologically active compounds because of its 25 
high resolution and sensitivity. In this work we explore the interpretation of LC-MS data using 26 
multivariate statistical analysis algorithms to extract useful chemical information and 27 
identify clusters of similar samples. Samples of leaves from 19 plants belonging to the 28 
Apiaceae family were analyzed in unified LC conditions by high- and low-resolution mass 29 
spectrometry in a wide range scan mode. LC-MS data preprocessing was performed followed 30 
by statistical analysis using tensor decomposition in the form of Parallel Factor Analysis 31 
(PARAFAC); matrix factorization following tensor unfolding with principal component 32 
analysis (PCA), independent component analysis (ICA), non-negative matrix factorization 33 
(NMF); or unsupervised feature selection (UFS). The optimal number of components for each 34 
of these methods were found and results were compared using four different metrics: silhouette 35 
score, Davies-Bouldin index, computational time, number of noisy components. It was found 36 
that PCA, ICA and UFS give the best results across the majority of the criteria for both low- 37 
and high-resolution data. An algorithm for biomarker signal selection is suggested and 23 38 
potential chemotaxonomic markers were tentatively identified using MS2 data. Dendrograms 39 
constructed by the methods were compared to the molecular phylogenic tree by calculating 40 
pixel-wise mean square error (MSE). Therefore, the suggested approach can support 41 
chemotaxonomic studies and yield valuable chemical information for biomarker discovery. 42 

 43 
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1. Introduction 49 

In recent years many approaches for the investigation of plants’ taxonomy have been 50 
developed. These includes morphological, anatomical and chemotaxonomic classification. 51 
Chemotaxonomy is used for the classification of plants on the basis of their chemical 52 
composition[1]. The main task of this approach is to search for primary and secondary 53 
metabolites and on the basis of their presence or concentration create new classifications and 54 
reveal their relation to the molecular phylogeny classification. In previous works it was shown 55 
that for the Rutaceae family such markers are coumarins[2]. Coumarins are secondary 56 
metabolites which are considered as a chemical defense against predators and their content 57 
depends heavily on the growing conditions. In previous works[3] it was shown that some 58 
coumarins can appear or disappear from the chemical composition depending on the variety of 59 
conditions: geographical origin of the plants; environmental conditions (climate, pollution, 60 
light irradiation, etc); physiological variations (stage of development of the plant organ, plant 61 
part used, etc.); sample storage conditions and many others. Plants from the Apiaceae family 62 
are also rich sources of biologically active compounds such as coumarins and they are useful 63 
as food and flavoring and possess diverse pharmacological activities[4]. For the 64 
chemotaxonomic markers search it is necessary to use highly precise analytical methods as 65 
chromatography, mass spectrometry, nuclear magnetic resonance and complex statistical 66 
algorithms. 67 

Liquid chromatography coupled with mass spectrometry (LC-MS) provides rich 68 
information about biological samples and is widely used in plant extract analysis.  One of the 69 
major difficulties in the LC-MS method is that raw data, which is naturally structured as a 3D 70 
array, is difficult to interpret manually and automated analysis methods are needed to extract 71 
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the most important information. In popular metabolomics approaches, “peak picking” software 72 
(e.g. MZmine, XCMS) and peak alignment algorithms [5,6] are widely used to reduce the 3D 73 
dataset to a set of peaks determined, by some means, to be the most informative. The first 74 
general problem in this approach is that some information will inevitably be lost because many 75 
peaks are discarded. The second problem is that other methods of analysis which may be more 76 
informative have not been fully investigated. They typically involve decompositions of the data 77 
into a set of factors which may be more easily interpretable. 78 

Data decomposition methods typically belong to two classes[7]. In the first, the 3d array 79 
of LC-MS data is treated “as is” and tensor decomposition methods are applied. The most 80 
widely used 3D tensor decompositions are Parallel factor analysis (PARAFAC) and Tucker 81 
decomposition, both of which decompose a tensor into a set of matrices. These methods have 82 
previously been applied to different types of mass spectrometry data [8]. The alternative 83 
approach is to unfold the 3D data into a 2D array by reshaping a tensor of size X×Y×Z into a 84 
X×N matrix (where N = Y×Z) which can then be factorized using a wide range of techniques 85 
for matrix factorization. In LC-MS the dimensions that are combined in reshaping are retention 86 
time and m/z values. Tensor unfolding for LC-MS data is not widely described in the literature, 87 
but it has been successfully used for mass spectrometry imaging (MSI) data[9]. Unfolding data 88 
in this way opens up a much wider range of potential factorization methods, but it has the 89 
disadvantage of combining two orthogonal dimensions, which may remove some of the data’s 90 
structure and information content. 91 

A second choice that must be made is whether subsequent chemometric analysis is 92 
supervised or unsupervised. In general, unsupervised techniques are applied (following any 93 
necessary preprocessing) when there is no or little prior knowledge about samples; or 94 
unobvious patterns are expected to be revealed; or when the goal is to identify which intrinsic 95 
(latent) factors are responsible for the greatest variability in the data. Results of unsupervised 96 
approaches are therefore typically most suitable for the discovery of markers present in 97 
significant concentrations. Lower abundance analytes can most reliably be identified using a 98 
supervised knowledge-based approach or by informed selection of specific areas/windows of 99 
the dataset[10]. A wide range of unsupervised approaches have been considered in the literature 100 
for applications including dimensionality reduction; resolution of samples; biomarker 101 
discovery; outlier identification; interference identification[9]. Among the most common 102 
unsupervised methods applied to mass spectrometry data are principal component analysis 103 
(PCA), independent component analysis (ICA), and non-negative matrix factorization (NMF) 104 
[11]. 105 

There have been only a few attempts to directly compare unsupervised treatment of 106 
mass spectrometry data. Different approaches to chemometric analysis of LC-MS data have 107 
been compared by classification accuracy, computational time and F1 score [12], but this work 108 
used a specific preprocessing protocol in which only the data points with the highest intensity 109 
within each peak were retained. In other work[9] different unsupervised treatment methods 110 
applied to MALDI imaging MS data were compared. It was shown that NMF and ICA 111 
produced components which mapped the spatial distribution of molecules and for which the 112 
associated spectra featured lower noise. 113 

The aim of the present study was to compare the possibilities of different unsupervised 114 
factorization approaches in LC-MS data treatment, and to discover potential chemotaxonomic 115 
markers for 19 plant species from Apiaceae family. Data was acquired from the samples on 116 
two instruments and two types of data were investigated: LC-MS with low resolution MS 117 
(LRMS) and with high resolution MS (HRMS). In both cases raw LC-MS data was recorded 118 
in tensor form with three dimensions corresponding to samples, retention time, and mass to 119 
charge ratio. Different data factorization techniques were applied to the data using two general 120 
approaches: direct decomposition of the 3d tensor, and decomposition of the unfolded tensor 121 
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(Fig. 1). For direct tensor factorization we used non-negative PARAFAC decomposition. On 122 
unfolded tensors, we applied a range of dimensionality reduction and feature selection 123 
methods. For dimensionality reduction PCA, ICA and NMF were used; for feature selection 124 
variance-based feature filtering was employed.  125 

For this research we used a dataset consisting of 57 samples from 19 plants belonging 126 
to the Apiaceae family and representing 7 genuses: Prangos, Ferulago, Cachrys, Bilacunaria, 127 
Diplotaenia, Azilia and Seseli (Table 1). Application of unsupervised methods to such a diverse 128 
dataset can reveal the most variable chemotaxonomic markers of this family. 129 
 130 

2. Experimental 131 

2.1. Instrumentation 132 
The LC-LRMS apparatus consisted of a HPLC Thermo Scientific Dionex Ultimate 133 

3000 (MA, USA) system with a binary analytical pump, an automatic sample injector coupled 134 
on-line with AB Sciex Qtrap 3200 (ON, Canada) mass spectrometer with an electrospray 135 
ionization interface. The column effluent was analyzed by ESI-MS in positive ion mode and 136 
the mass spectra were acquired and processed using the Analyst software (version 1.5) 137 
provided by AB Sciex. For the MS, the following conditions were used: ion spray voltage: 138 
5500V; ion source heater temperature: 350°C; entrance potential: 10 V; declustering potential: 139 
40 V; mass range 100-1200 Da. 140 

The LC-HRMS apparatus consisted of a Thermo Scientific Accela HPLC system (CA, 141 
USA) coupled on-line with Orbitrap Exactive mass spectrometer (Dreieich, Germany). The 142 
column effluent was analyzed by HESI-MS in positive ion mode and the mass spectra were 143 
acquired and processed using the Xcalibur™ Software (version 2.2) provided by Thermo 144 
Scientific™. For the MS, the following conditions were used: spray voltage: 3.90 kV, capillary 145 
temperature: 300 °C, capillary voltage: 50.0 V, tube lens voltage: 100.0 V, skimmer voltage: 146 
20 V, heater temperature: 350 °C, resolution 35 000, mass range 100-1200 Da. 147 

In both LC-LRMS and LC-HRMS experiments the HPLC separation was conducted on 148 
a C18 column (Acclaim RSLC 2.1×150 mm, 2.2 μm) at a flow rate of 0.35 mL/min and oven 149 
temperature 35 °C. Two solvents were used: (A) 0.5% HCOOH aqueous solution and (B) 150 
MeCN. The gradient was as follows: 0 – 3 min 10 % B; 3 – 20 min linear gradient from 10 to 151 
95 % B; 20 – 22 min 95 % B; 22 – 22.2 min linear gradient from 95 to 10 %; 22.2 – 27 min 10 152 
% B.  153 

Biomarker identification was performed on a Bruker Elute LC system coupled on-line 154 
with a Bruker Impact II high-resolution Quadrupole Time-of-Flight Instrument. HPLC 155 

separation was conducted on a C18 column (Intensity Solo 1.8 2.1× 100 mm) at a gradient flow 156 

rate (from 0.200 to 0.480 mL/min). Two solvents were used: (A) 5 mM Ammonium Formate 157 
and 0.01 % FA in MeOH:H2O 1:99 mixture with and (B) 5 mM Ammonium Formate and 0.01 158 
% FA in MeOH. The gradient was as follows: 0 – 0.1 min 4 % B; 0.1 – 1 min linear gradient 159 
from 4 to 18.3 %; 1 – 2.5 min linear gradient from 18.3 to 50 % B; 2.5 – 14 min linear gradient 160 
from 50 to 99.9 % B; 14 – 16 min 99.9 % B; 16 – 16.1 min linear gradient from 99.9 to 4 % B; 161 
16.1 – 20 min 4 % B. 162 

2.2. Materials and reagents 163 
Deionized water was from a Milli-Q system from Millipore (MA, USA); HPLC-grade 164 

acetonitrile was purchased from Panreac (Barcelona, Spain) and >99.8% pure ethanol was from 165 
Sigma-Aldrich (Steinheim, Germany); Formic acid >99.9% purity was purchased from Acros 166 
(Geel, Belgium); MeOH >99.9% purity was purchased from Burdick & Jackson (Seelze, 167 
Germany) and Ammonium Formate ≥99.0% purity was purchased from Sigma-Aldrich 168 
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(Steinheim, Germany). Plant material was collected by botanists from Lomonosov Moscow 169 
State University. 170 

2.3. Sample preparation 171 
Plant material was collected in Iran, Portugal, Kyrgyzstan, and Uzbekistan in 2013 – 172 

2019 and housed in Moscow University Herbarium (MW) or in the private collection of Dmitry 173 
Lyskov (information about herbarium specimens is available at https://plant.depo.msu.ru/). All 174 
plant specimens used for the analysis are listed in Table 1. Material was dried; extracts were 175 
prepared by weighting 0.01 g of a plant sample, adding 1 mL of methanol:water (3:1, v/v) 176 
mixture and extracting in an ultrasonic bath for 30 minutes, all extracts were prepared in three 177 
replicates. Extracts were centrifuged and diluted by a factor of ten with 10% aqueous 178 
acetonitrile. 2 mg/mL solution of eleutheroside B was used as an internal standard (IS) and 20 179 
µL of this solution was added to each sample. For most of the plants, leaf samples were used, 180 
but for some samples leaves were missing and stems were used instead. 181 

2.4. Software and packages 182 
All LC-MS files were converted into mzXML format using MSConvert from 183 

ProteoWizard Tools. Data analysis was performed in Python 3 using the following modules: 184 
pymzML for mzML data files parsing[13]; scipy.signal for signal smoothing; pandas for arrays 185 
pretreatment; tensorly for PARAFAC decomposition; scikit-learn for PCA, ICA, NMF, UFS 186 
algorithms and performance metrics; matplotlib for data visualization, biopython for 187 
hierarchical and molecular phylogenetic trees visualization. Corcondia criteria and explained 188 
variance for PARAFAC models were calculated in MATLAB using the N-way toolbox. For 189 
dendrogram construction unweighted pair group method with arithmetic mean was used to 190 
cluster objects. Minkowski distance was used as a metric to evaluate object similarity. For 191 
phylogenetic tree ‘identity’ model for distance calculation was employed. All files from LC-192 
MS analysis in mzML format and implemented algorithms are available at the github 193 
repository (https://github.com/turovapolina/unsupervised-LC-MS-data-treatment).  194 

 195 

3. Results and discussion 196 

3.1. Data acquisition and preparation 197 
The model dataset consisted of 57 samples which are three replicates of 19 plant species 198 

which represents 7 genera from Apiaceae family. As a preliminary step, four extraction systems 199 
of methanol, water and dichloromethane mixtures were tested to maximize the signal[14]. The 200 
methanol:water (75:25, v/v) systems provided  maximum peak capacity and the highest 201 
intensities in the chromatograms of all samples. Composition of the mobile phase was varied 202 
in a wide range during the gradient program in order to elute both polar and non-polar 203 
compounds and resolve as many distinct peaks as possible. MS data was collected in scan mode 204 
in the range 100–1200 m/z. All samples were analyzed in the same chromatographic conditions 205 
by LC-LRMS and LC-HRMS. 206 

LC-LRMS data treatment. For mass chromatogram smoothing continuous wavelet 207 
transform, Baseline Estimation and Denoising With Sparsity (BEADS) approach and Savitzki-208 
Golay filter were assessed with different parameters[15]. The goal was to choose a smoothing 209 
algorithm and associated parameters which will work successfully, i.e. smooth as much noise 210 
as possible but preserve peak shapes, on all mass chromatograms. In particular, the percentage 211 
of acetonitrile in the mobile phase was found to increase noise, and the smoothing algorithm 212 
should be capable of removing this noise. The optimal method was found to be a Savitzki-213 
Golay filter with window size 13 and polynomic order 1, results of its implementation for both 214 
noisy and informative chromatograms (with or without distinct peaks) are shown in Fig. 2 215 
(A,B). The step between time points varies across samples between 0.02 and 0.04 min and the 216 
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time axis was linearly interpolated with a step size of 0.05 min in order to unify the time axis. 217 
A final time scale with a range from 2 to 22 minutes was chosen in order to disregard unretained 218 
compounds at the beginning of the chromatogram, very noisy signals at high percentages of 219 
acetonitrile and reequilibration time at the end of the chromatogram. For the mass axis 220 
unification, intensities for signals with residual masses in the range from -0,35 to +0,65 were 221 
summed and assigned to a cell with the corresponding integer m/z value. Data from all samples 222 
were combined into one tensor with dimensions 57  380  1200 corresponding to number of 223 
samples, number of retention time points and number of m/z values respectively. 224 

LC-HRMS data treatment. A significant challenge when dealing with HRMS data is 225 
that the instrument is able to separate ion peaks with an m/z difference of 0.00001 which means 226 
that theoretically the spectrum may contain up to 100000*1200 (mass range) components. In 227 
reality, each time point of each sample had about 15000 ion peaks in the spectrum, but only a 228 
small portion of them had significant intensities. Thus, to reduce computational costs only 229 
signals with intensities higher than 5 % of the highest peak in the spectrum were selected 230 
(shown in Fig. 2 (C,D)). After the elimination of weak and noisy signals 40-60 important peaks 231 
were left in each spectrum. A dataframe containing the first timepoint of the first sample was 232 
created and was filled sequentially by all subsequent time points from all samples. When an 233 
m/z was found that had not been seen in previous time points, a new column was created and 234 
filled with zeros for all preceding rows. This procedure constructs a unified mass scale across 235 
all time points and all samples. To assess both environment-dependent and instrument-236 
dependent fluctuations in measured masses and retention times, an internal standard (IS) was 237 
added to each sample. The mean absolute error (MAE) of the IS measured mass (m/z 238 
395.13180) across all samples calculated for inter-day measurements was less than 0.005 Da. 239 
The MAE is greater for bigger masses, therefore it was decided to set the m/z window size 240 
equal to 0.01 Da. At the next step intensities of m/z signals in the dataframe which have mass 241 
differences lower than 0.01 Da were considered to results from for one m/z and summed. Cells 242 
with missing m/z signals were replaced by zero values. Finally, due to low reproducibility of 243 
retention times probably caused by the unstable performance of the LC pump, time periods of 244 
length 0.5 minutes were used instead of a continuous time axis.  Unlike the LRMS dataset 245 
where the m/z scale interval is constant, the size of the final dataframe for HRMS data will 246 
depend on the number of unique m/z values observed in the particular dataset. However, the 247 
approach adopted here can be applied to data produced by any HRMS system. The final array 248 
was reshaped into a tensor with dimensions 51  45  2580 with the same axes as the LRMS 249 
data tensor. 250 

3.2. Chemometric analysis 251 
The obtained tensors were either directly subjected to PARAFAC decomposition or 252 

unfolded into a 2D array. The unfolding procedure takes a tensor of dimensions IJK and 253 
rearranges it in such a way that the number of samples I remains unchanged and two other 254 
dimensions (m/z and retention time (RT)) are combined into a single new dimension with size 255 
JK. Therefore, the new feature space consists of the concatenation of the mass spectra and 256 
retention time pairs for each sample. PCA, ICA, NMF and UFS methods were applied on data 257 
organised by this approach and compared with the direct tensor decomposition. For 258 
PARAFAC, PCA, ICA and NMF a critical parameter is the number of components, which was 259 
chosen based on statistical analysis of each method without using any prior information about 260 
dataset. 261 

For the PARAFAC one- to fifteen-component PARAFAC models with non-negative 262 
constrains were fitted to each dataset; the explained variance, corcondia criteria, error and 263 
number of iterations for all models were compared and finally the optimal number of 264 
components was selected to find the best balance across the criteria as shown in Fig. S1 (A, 265 
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B)[16]. The choice of the number of components was validated by half-split analysis (Fig. S1 266 
C,D). Results of hierarchical clustering analysis following PARAFAC and all other methods 267 
are presented in the Supplementary Information (Fig. S3 – S12). For PCA we selected the 268 
number of components that was sufficient to explain 95% of the variance in the data, which 269 
was 13 components (for LRMS) and 10 components (for HRMS). For the determination of the 270 
number of ICA components, ICA-by-blocks method was used[17]. In Fig. S2 (A,B) signal-271 
correlation plots for LRMS and HRMS datasets are presented. It can be seen that for both 272 
LRMS and HRMS data after extracting more than 4 components, the curves decrease 273 
progressively which means that the correlations between the components of the different blocks 274 
are much lower. Thus, the optimal number of components in those datasets is 4. To identify 275 
the optimal number of components (rank of the matrix factors) for NMF, the residual sum of 276 
squares (RSS) was calculated and its correlation with the number of components was 277 
visualized, as shown in Fig. S2 (C,D). The optimal number was decided using a previously 278 
suggested method[18] of identifying where the graph of RSS against the number of 279 
components shows an inflection point (8 for LRMS and 9 for HRMS). Among different feature 280 
selection methods variance-based UFS was chosen as the most suitable approach. It eliminates 281 
features with variances below a predefined threshold which in this case was the mean of all 282 
variances[19]. Using this threshold 97 % and 99 % of features from LRMS and HRMS datasets 283 
respectively were excluded. 284 

At the next step all five methods in the optimized conditions were applied to the 285 
obtained datasets. 286 

The results of the applied algorithms were compared using multiple criteria: 287 
computational time, number of noisy components, silhouette score, and Davies-Bouldin index. 288 
All results are presented in Table 2.   289 

The Silhouette score was also used to understand how close the sample is to its parent 290 
cluster compared with its neighboring cluster[20]. Silhouette coefficients close to +1 suggest 291 
the sample is near to its true parent but distant from the neighboring clusters. A value of 0 292 
means that the sample is between two adjacent clusters on or very close to the decision 293 
boundary and negative values indicate incorrect cluster assignment for that sample. Values for 294 
all samples are calculated and average among all of them is considered as silhouette score. 295 
PCA showed the best performance with 0.71 and 0.48 scores for LRMS and HRMS data 296 
respectively. 297 

Another metric used for clustering performance evaluation was Davies-Bouldin 298 
index[20]. This criterion is based on an averaged ratio “within-cluster” and “between-cluster” 299 
distances. If two clusters are close together and have a large spread then this ratio will be large, 300 
indicating that clusters are not very distinct. PCA and UFS produced the best results for LRMS 301 
and HRMS respectively.  302 

Computational costs for PCA, ICA, UFS were relatively the same and less than for 303 
NMF and PARAFAC. It was shown that PCA and ICA produced fewer noisy components. 304 

Based on the discussed criteria PCA, ICA and UFS methods demonstrated similar 305 
performance in LRMS and HRMS data treatment. Therefore, the next stage was to compare 306 
them by ability to discover biomarkers and by closeness of their clustering results to biological 307 
molecular phylogenetic tree. However, all of these unsupervised techniques allow the most 308 
variable markers in the composition of investigated samples to be identified. 309 

3.3. Biomarker identification 310 
The final stage of the data analysis was identification of the markers which were the 311 

most important for clustering. In the metabolomic approach each feature ultimately represents 312 
a single compound, because redundancy related to isotopic peaks and adduct ions is removed, 313 
and only one time point of the peak vertex is taken into account for each feature. In our study 314 
extra information about isotopologues and peak shapes is preserved, however the related 315 
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signals from one peak should be regarded as one compound for the purpose of biomarker 316 
discovery.  To extract such signals from LC-LRMS data treated by either PCA or ICA, a 317 
retention time window of 0.4 min was established to group signals with the highest weights in 318 
each component as well as m/z values of signals attributable to one isotopic pattern (A, A+1, 319 
A+2). Each group of signals, therefore, could be regarded as one compound. Although the 320 
number of such components was different for these three methods (see section 3.2), it was 321 
decided to extract 50 compounds for each method by evenly extracting them from all 322 
components. In the same manner signals corresponding to the first 50 most significant 323 
compounds were selected after the UFS procedure. Further, an intersection of all these lists of 324 
signals was obtained. Approximately 50 % of signals from each method’s list were captured in 325 
the intersection list. Among them 23 compounds were interpreted and remaining signals known 326 
to be noisy (from high retention time) were not considered. 327 

For LC-HRMS data same strategy was employed. The results of three methods (PCA, 328 
ICA, and UFS) were intersected and the same potential chemotaxonomic markers were 329 
observed. They correlate with most of the features from the intersection list generated using 330 
LC-LRMS data. 331 

Finally, it was tried to perform dereplication of these compounds based on the literature 332 
data and available databases. Representative samples which contain compounds of interest 333 
were reanalyzed on the qTOF instrument in auto-MS2 mode. The results of the annotation are 334 
presented in Table 3. Spectra for all compounds are presented in Supplementary (Fig. S14 – 335 
S62)  336 

Compound 1 possessed a molecular weight of 328 deduced from the protonated 337 
molecule ([M + H]+) peak at m/z 329.1596 (C16O7H25, eluted at 4.7 min), which produced 338 
predominant fragment ion m/z 167.1061 corresponding to the cleavage of glucose molecule. 339 
The exact position of the substituent could not be assigned and this compound was tentatively 340 
assigned as verbenone glycoside or one of its isomers previously isolated from Prangos species 341 
along with γ-pyrone glucosides[21], which are structurally similar to compound 2. 342 

Compound 2 had a molecular weight 432 deduced from the sodium adduct ([M + Na]+) 343 
signal at m/z 455.1162 and [M + H]+ ion peak at m/z 433.1342 (C18H25O52, eluted at 6.2). An 344 
[M + H]+ precursor ion produced the predominant fragment ion m/z 127.0387, which allowed 345 
to suspect a structure similar to maltol glucoside. The fragment ion at m/z 329.0839 observed 346 
in the ESI/MS2 spectrum of the sodium adduct may be interpreted as a fragment of hydroxy-3-347 
methylglutaric acid (HMG) substituted glucopyranosyl side chain. Thus, compound 2 can be 348 
tentatively identified as previously reported licoagroside B or its isomer[22]. 349 

Compound 3 was detected as the precursor ion [M+H]+ at m/z 425.1451 (C20O10H25, 350 
eluted at 8.0 min). The observed fragment ions at m/z 263 and m/z 245 in its MS2 spectrum 351 
can be produced by loss of sugar moiety with a successive loss of a neutral fragment (H2O). 352 
Presence of the most intensive ion peak at m/z 191 corresponding to the additional loss of C4H6 353 
allowed preliminary identification of this compound as rutarin or its positional isomer. Other 354 
candidates were rejected after manual comparison with the spectra from GNPS library. 355 

Compound 4 showed a protonated molecule ([M+H]+) ion peak at m/z 479.0821 356 
(C21H18O13, eluted at 8.3 min) and a predominant fragment at m/z 303.0501 in its MS2 357 
spectrum, which should be attributed to the mild elimination of a glucuronic acid as a neutral 358 
loss. The ions produced by the m/z 303.0501 precursor are in accordance with typical 359 
fragmentation pattern of quercetin[23]. Therefore, this compound was tentatively identified as 360 
quercetin glucuronide. 361 

Compounds 5 and 6 are a pair of isomers with molecular weight of 217 determined by 362 
the protonated molecule ([M+H]+) peak at m/z 217.0495 (C12H8O4, eluted at 12.3 and 13.1 363 
min). In the ESI/MS2 spectra these precursor ions displayed the ion peak at m/z 202.0261 364 
(C11H5O4) corresponding to demethylation together with a signal at m/z 174 produced via 365 
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additional drop of CO. The ion peaks detected at m/z 189 and 161 resulted from the successive 366 
losses of two CO molecules. Although these compounds could not be distinguished by their 367 
ESI/MS spectra, the comparison of their elution order on a RP-C18 column with reported in 368 
literature[23] allows a tentative identification of compound 5 as xanthotoxin and thus 369 
compound 6 as bergapten. 370 

Compound 7 possessed a molecular weight of 246 deduced from the protonated 371 
molecule ([M+H]+) ion peak at m/z 247.0603 (C13H11O5, eluted at 13.1 min). The molecular 372 
weight of compound 7 is 30 Da larger than xanthotoxin (5), which corresponds to the additional 373 
-OCH3 substituent. A similar fragmentation pattern to other linear furanocoumarins (Table 3) 374 
allows tentative identification of compound 7 as isopimpinellin[24]. 375 

Compound 8 had a molecular weight 260 determined by the protonated molecule 376 
([M+H]+) signal at m/z 261.1123 (C15H16O4, eluted at 13.3 min). Among the observed peaks 377 
of its isomers, this one is the most retained. Moreover, the ion peak corresponding to the loss 378 
of H2O was not observed in its ESI/MS spectra, while the predominant fragment ion was 379 
detected at 189 m/z. Therefore, compound 8 was tentatively characterized as isomeranzin[25]. 380 

Compounds 9 and 10 both had a molecular weight 286 Da determined by the presence 381 
of a protonated molecule peak at m/z 287.0918 (C16H15O5, eluted at 13.4 and 14.1 min). These 382 
two compounds showed the typical fragmentation patterns of monosubstituted 383 
furanocoumarins, with the presence of m/z 203, 175, 159 and 145 in their ESI/MS2 spectra 384 
(Table 3). With respect to the presence of the fragment ion at m/z 269 [M + H - 18]+ in the MS2 385 
spectrum of compound 9, it was tentatively identified as pabulenol, and thus compound 10 386 
would be oxypeucedanin[24]. 387 

Compound 11 was detected by the presence of a the protonated molecule ([M+H]+) 388 
ion peak at m/z 323.0679 (C16H16O5Cl, eluted at 14.6 min) with a specific isotopic distribution 389 
corresponding to a monochlorinated compound. In the MS2 spectrum this precursor produced 390 
the predominant fragment ions corresponding to the loss of HCl and side chain cleavage at m/z 391 
287 and 203, respectively. Other observed fragment ions were the same as for other 392 
monosubstituted fumarocoumarins. Therefore, this compound was tentatively identified as 393 
saxalin[21]. 394 

Compounds 12 and 22 both had a molecular weight 270 Da determined by the 395 
presence of protonated molecule ([M+H]+) signal at m/z 271.0961 (C16H15O4, eluted at 15.8 396 
and 16.8 min) in their ESI/MS spectra. These precursors have shown ion peaks at m/z 203, 397 
175, and 159 common for monosubstituted furanocoumarins (Table 3). However, efforts to 398 
distinguish the paired isomers 12 and 22 by ESI/MS2 analysis were unsuccessful, and these 399 
compounds were differentiated by comparison of their elution order on a RP-C18 column with 400 
reported in literature[24]. Thus, compounds 12 and 22 were tentatively identified as 401 
imperatorin and isoimperatorin, respectively. 402 

Compounds 13 had a molecular weight 316 Da determined by the presence of 403 
protonated molecule ([M+H]+) ion peaks at m/z 317.1384 (C18H21O5, eluted at 16.0 min), it 404 
exhibited the same fragmentation pattern as compounds 14, 17, 18, 20. Thus, compound 13 405 
was tentatively assigned as linear isomer of cnidiadin[26]. It should be noted, that its pyrano- 406 
analogue might also be found in some of the samples at almost the same retention time. 407 

Compounds 16 and 23 were a pair of isomers with molecular weight of 244 determined 408 
by the protonated molecule ([M+H]+) ion peak at m/z 245.1177 (C16H15O4, eluted at 16.5 and 409 
17.2 min), but their ESI/MS fragmentation patterns were quite different. Compound 23 showed 410 
the presence of characteristic fragment ion at m/z 187 [245-C4H10]+, while compound 16 411 
exhibits the predominant ion at m/z 189 [245-C4H8]+, which was probably caused by different 412 
π–π conjugation extensions. Accordingly, compounds 16 and 23 were assigned as osthol[23] 413 
and suberosin[21], which could be also confirmed by their retention in RP HPLC[27]. 414 
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For compounds 14,15,17-21, all showed protonated molecule ([M+H]+) peak at m/z 415 
329,1387 (C19H20O5, eluted between 16.3 and 17.0 min). These isomers may belong to the 416 
classes of furanocoumarins and pyranocoumarins. Their ESI/MS2 spectra demonstrated two 417 
distinguishing patterns. One of them includes predominant ion peaks at m/z 229, 247 and 213, 418 
while the second exhibits the most intensive ion peaks at m/z 229, 187 and 159. It was found 419 
from literature that linear monosubstituted furanocoumarins and pyranocoumarins exhibit the 420 
first fragmentation pattern while the angular ones show predominant ion peak at m/z 187[28]. 421 
Tentative assignments of angular and linear structures could be also confirmed by comparison 422 
of their relative retention time in a RP HPLC column. It is known that angular coumarins are 423 
more strongly retained compared to their linear isomers[29], and angelate isomer is eluted after 424 
its senecioic acid analogue[30]. Moreover, pyranocoumarins tend to be eluted before 425 
furanocoumarins[31]. Therefore compound 14 and 17 were tentatively identified as decursin 426 
and decursinol angelate[32], and thus compounds 18 and 20 would be prantschimgin and 427 
deltoin (syn. sprengelianin)[33]. Similarly, compound 15 was tentatively assigned as 428 
jatamansin, thus compounds 19 and 21 would be libanorin and columbianadin[34]. 429 

Many more chromatographic peaks of structurally similar compounds were observed 430 
in the chromatograms. However, it is nearly impossible to differentiate all of them, because the 431 
corresponding mass spectra are sometimes missing or not well described in the available 432 
literature. Thus, however, the application of the suggested data treatment techniques allowed 433 
identification of the most plausible chemotaxonomic marker candidates. Moreover, these 434 
markers are expected to be significant due to the fact that they were found in the high-ranking 435 
components of all three selected methods. 436 

3.4. Application to chemotaxonomic purposes 437 
Classification of plants on the basis of their secondary metabolites and their 438 

biosynthetic pathways is called chemotaxonomy[1]. The main purposes of chemotaxonomy 439 
are to improve the existing system of plant differentiation and to incorporate the modern 440 
knowledge of the natural relationship of plants. One example of compounds which might be 441 
used as chemotaxonomic markers are coumarins[2,4]. In the work [4] coumarin-containg 442 
species, namely, Angelica Sinensis, Angelica Dahurica, Angelica Decursiva, Peucedanum 443 
Praeruptorium, Peucedanum Pubescens were analyzed by direct injection MS in positive 444 
multiple ion monitoring mode and the results showed that only several sample classes could be 445 
separated from the main cluster in the PCA score plot. The variables responsible for this 446 
classification were structurally described as angular-type pyranocoumarins, linear-type 447 
pyranocoumarins, angular-type furanocoumarins, and ligustilide derivatives. In the present 448 
work coumarins profiles were for the first time compared in the range of genera and species. 449 
The distribution of biomarkers identified in this work is shown in Fig. 3. After careful 450 
consideration of the identified biomarkers, it was concluded that there are no unique 451 
compounds for any of the genera. In order to find out which markers depend on the growing 452 
conditions and what are markers of each genus, a more extensive research with larger number 453 
of biological replicates of each species and more representatives of each genus should be 454 
conducted in future. We also note that for this particular task supervised techniques might show 455 
significantly improved classification performance. 456 

Another way to visualize the results of unsupervised learning is hierarchical tree 457 
construction (Fig. S3-S12). Comparison by closeness of dendrograms created by each method 458 
to the molecular phylogenetic tree (Fig. S13) was done. It should be noted that trees generated 459 
from LC-MS data show differences in chemical composition which is not correlated with plant 460 
molecular phylogenetic analysis results. For the evaluation of these differences, an approach 461 
that involves computing pairwise distances between all data items and showing the distances 462 
in a matrix form was employed[35]. As a quantitative characteristic pixel-wise mean square 463 
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error (MSE) can be calculated by Eq. (1) (where 𝐼௜,௝
ଵ  and 𝐼௜,௝

ଶ  are the i,j elements of the first and 464 
second distance matrix respectively), in the form where instead of pixel values the original 465 
distance values in the matrices are considered. 466 

 467 

𝑀𝑆𝐸 (𝐼ଵ, 𝐼ଶ) =
ଵ

௡
∑ (𝐼௜,௝

ଵ  −  𝐼௜,௝
ଶ )ଶ

௜,௝      (1) 468 

 469 
Errors calculated by this method were compared and the lowest value were obtained by 470 

the UFS method for both LRMS and HRMS data: 0.105 and 0.144 respectively. Although plant 471 
tissue chemical composition is highly variable, it may be beneficial to use the combination of 472 
LC-MS-based methods and unsupervised machine learning algorithms along with molecular 473 
phylogeny data in chemotaxonomic studies. 474 

 475 

4. Conclusions 476 

Two types of data analysis were considered for LC-LRMS and -HRMS data: tensor 477 
decomposition by PARAFAC and decomposition following tensor unfolding into two 478 
dimensions. For unfolded tensors, four approaches to data reduction and factorization were 479 
considered: PCA, ICA, NMF and UFS. Results obtained by these methods from both datasets 480 
were compared by several criteria. Applied to LC-LRMS and LC-HRMS data treated by 481 
suggested approaches, PCA showed the best results according to silhouette coefficient, Davies-482 
Bouldin index, computational time and number of noisy components. However, PCA, ICA and 483 
UFS demonstrated comparable performance and similar lists of biomarkers were revealed from 484 
their results. A list of 23 compounds, most of which belong to the coumarin class were 485 
extracted from the intersection of the results from all employed methods. These compounds 486 
were tentatively identified by comparing their ESI/MS spectra with published data. The 487 
distribution of these biomarkers in different species from the Apiaceae family was shown. The 488 
identified compounds can potentially serve as chemotaxonomic markers because they were 489 
chosen by the algorithms as features with highest dispersion across the samples. 490 

Although the methodology allowed successful separation of each sample with its 491 
replicates from the rest of the dataset, it has demonstrated some limitations in application to 492 
biological classification. It was shown that dendrograms constructed by the employed methods 493 
differ from the molecular phylogenetic tree, which may be caused by changes in chemical 494 
composition of the studied extracts related to different environmental factors. Due to the high 495 
chemical diversity of coumarins and other plant constituents, future studies should use a larger 496 
number of biological replicates for each species. 497 
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 644 
Fig. 1. Data organization and chemometric treatment workflow. 645 
 646 

 647 
Fig. 2. An example of noisy raw LC-LRMS mass chromatogram smoothing by Savitzki-Golay 648 
filter (A). An example of informative raw LC-LRMS mass chromatogram smoothing by 649 
Savitzki-Golay filter (B). A representative raw mass spectrum from LC-HRMS before (C) and 650 
after (D) noise subtraction below the threshold line. 651 
 652 

 653 
Fig. 3. Distribution of revealed biomarkers in studied species. 654 
  655 
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Table 1. List of specimens used in the experiments 656 

# Plant species Part 
Specimen’s 
voucher 

1 Prangos pabularia Leaves MW0858238 
2 Cachrys libanotis Leaves MW0798144 
3 Prangos acaulis Leaves MW0744005 
4 Prangos ferulacea Stems MW0751912 
5 Prangos didyma Stems MW0857912 
6 Ferulago subvelutina Leaves 098-IR-19 
7 Prangos ammophila Leaves MW0857867 
8 Prangos trifida Leaves MW0798580 
9 Ferulago angulata Leaves 085-IR-19 
10 Cachrys sicula Leaves MW0798143 
11 Ferulago contracta Leaves 053-IR-19 
12 Cachrys pungens Leaves MW0784701 
13 Diplotaenia cachrydifolia Leaves 164-IR-19 
14 Ferulago phialocarpa Leaves 169-IR-19 
15 Azilia eryngioides Leaves 167-IR-19 
16 Seseli olivieri Leaves 173-IR-19 
17 Prangos crossoptera Leaves MW0753036 
18 Bilacunaria microcapra Leaves 028-IR-19 
19 Seseli ghafoorianum Leaves 124-IR-19 

 657 
Table 2. Comparison of data treatment techniques. 658 

Method 
Davies-Bouldin 

index 
Silhouette 

score 
Computational 

time, sec 
Noisy 

components 
LRMS data 

PCA 0.33 0.71 4.26 1 
ICA 0.48 0.64 5.69 1 
NMF 0.50 0.59 108.87 3 

PARAFAC 0.43 0.47 140.59 3 
UFS 0.52 0.53 1.26 – 

HRMS data 
PCA 0.83 0.48 2.48 0 
ICA 1.25 0.44 1.80 0 
NMF 1.90 0.25 78.42 1 

PARAFAC 1.05 0.38 122.86 1 
UFS 0.75 0.40 0.26 – 

659 
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Table 3. Chromatographic and mass-spectral data for compounds defined as biomarkers. 
Number RT (min), 

m/z 
 

Components [M+H]+, m/z 
(formula, error 
(ppm)) 

Adduct ions, 
m/z 

Key MS/MS 
fragmentation 

Identity Reference 

1 4.7 
125 
 

LRMS: 
PCA 2, ICA 2, NMF 2, FS 
 
 

329.1595  
(C16H24O7, -0.1) 
 

351.1419 
[M+Na]+ 

329-167 = Glc 
167-125 = C2H2O 

Verbenone 
glycoside 

[21] 

2 6.2 
127 

LRMS: 
PCA 4, ICA 4, NMF 5, FS 
 
HRMS: 
PARAFAC 9 

433.1342  
C18H24O12, -0.4) 

455.1162 
[M+Na]+ 

433-127 = C12H18O9 

127-85 = C2H2O 
455-329 = C6H6O3 

Licoagroside B [22] 

3 8.0 
263 

LRMS: 
PCA 9, ICA 3, NMF 3, 
PARAFAC 9 
FS 
 
HRMS: 
PCA 4, ICA 1, NMF 3, 
PARAFAC 3 

425.1451 
(C20H24O10, -1.9) 

442.1716 
[M+NH4]+ 

 
447.1271 
[M+Na]+ 

263-245 = H2O 
245-191 = C4H6 

Rutarin GNPS 
library 

4 8.3 
303 

LRMS: 
PCA 8, ICA 2, NMF 1 
PARAFAC 9, FS 
 
HRMS: 
PARAFAC 3 

479,0821  
(C21H18O13, -0.3) 

501.0639 
[M+Na]+ 

479-303 = GluA 
303-229 = C2H2O3 
303-153 = C8H6O3 
303-137 = C8H6O4 

Quercetin 
glucuronide 
 
 

[23] 

5 12.3 
217 

LRMS: 
PCA 1, ICA 3, NMF 3, 
PARAFAC 2, FS 
 
HRMS: 

217.0495 
(C12H8O4, 0.1) 

234.0760 
[M+NH4]+ 

217-202 = CH3 
217-189 = CO 
202-174 = CO 
217-161 = 2CO 
161-146 = CH3 

Xanthotoxin 
 

[23] 
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PCA 4, ICA 2, NMF 3, 
PARAFAC 2 

146-118 = CO 

6 13.1 
217 

LRMS: 
PCA 9, ICA 3, NMF 6, 
PARAFAC 2, FS 
 
HRMS: 
PCA 8, ICA 3, NMF 3, 
PARAFAC 1 

217.0495 
(C12H8O4, 0.3) 

234.0760 
[M+NH4]+ 

217-202 = CH3 
202-174 = CO 
217-161 = 2CO 
161-146 = CH3 

146-118 = CO 

Bergapten 
 

[23] 

7 13.1 
247 

LRMS: 
PCA 10, ICA 3, NMF 3, 
PARAFAC 6, FS 
 
HRMS: 
PARAFAC 2 

247.0605  
(C13H10O5, -1.4) 

269.0429 
[M+Na]+ 
 
264.0872 
[M+NH4]+ 

247-232 = CH3 
232-217 = CH3 
217-189 = CO 
189-161 = CO 

Isopimpinellin [23] 

8 13.3 
261 

LRMS: 
PCA 5, ICA 3, NMF 3, 
PARAFAC 6, FS 
 
HRMS: 
PARAFAC 1 

261.1123  
(C15H16O4, -0.5) 

283.0944 
[M+Na]+ 

261-217 = CO2 
261-189 = C4H7O 
189-161 = CO 

Isomeranzin [25] 

9 13.4 
203, 
269 
 

LRMS: 
PCA 5, ICA 3, NMF 6, 
PARAFAC 2, FS 
 
HRMS: 
PCA 1, ICA 4, NMF 1, 
PARAFAC 2 

287.0916  
(C16H14O5, -0.7) 

304.1182 
[M+NH4]+ 

287-203 = C5H9O 
203-175 = CO 
203-159 = CO2 
175-147 = CO 

Pabulenol 
 
 
 

[24] 

10 14.1 
287 
 

LRMS: 
PCA 4, ICA 4, NMF 5, 
PARAFAC 6, FS 
 

287.0918  
(C16H14O5, -1.3) 

309.0739 
[M+Na]+ 

287-203 = C5H9O 
203-159 = CO2 
203-147 = 2CO 
159-131 = CO 

Oxypeucedanin 
 

[24] 
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HRMS: 
PCA 2, ICA 1, NMF 2, 
PARAFAC 8 

11 14.6 
323 
 

LRMS: 
PCA 5, ICA 1, NMF 4, 
PARAFAC 6, FS 
 
HRMS: 
PCA 6, ICA 2, NMF 7, 
PARAFAC 1 

323.0679 
(C16H15ClO5, -0.6) 

345.0501 
[M+Na]+ 

323-287 = HCl 
287-203 = C5H9O 
203-159 = CO2 
203-147 = 2CO 
 

Saxalin 
 

[21] 

12 15.8 
203 

LRMS: 
PCA 4, ICA 4, NMF 5, 
PARAFAC 4, FS 
 
HRMS: 
PARAFAC 7 

271.0961  
(C16H14O4, 1.5) 

288.1224 
[M+NH4]+ 

271-215 = 2CO 
271-203 = C5H8 
203-175 = CO 
203-159 = CO2 
175-147 = CO 
175-131 = CO2 

Imperatorin [24] 

13 15.9 
317 

LRMS: 
PCA 2, ICA 2, NMF 2, 
PARAFAC 4, FS 
 
HRMS: 
PARAFAC 5 

317.1384 
(C18H20O5, -1.1) 

 

339.1208 
[M+Na]+ 

317-247 = С4H6O 
247-229 = H2O 

Cnidiadin 
(linear isomer) 

[26] 

14 16.3 
329 

LRMS: 
PCA 10, ICA 1, NMF 6, 
PARAFAC 8, FS 
 
HRMS: 
PCA 3, ICA 4, NMF 5, 
PARAFAC 5 

- 329.1387 
(C19H20O5, -1.2) 

351.1208 
[M+Na]+ 

329-247 = C5H6O 
247-229 = H2O 

Decursin [32] 

15 16.3 
329 

LRMS: 
PCA 10, ICA 2, NMF 2, 
PARAFAC 8, FS 

329.1387 
(C19H20O5, -1.2) 

351.1207 
[M+Na]+ 

329-229 = C5H8O2 
229-187 = C3H6 

187-159 = CO 

Jatamansin [34] 
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 159-131 = CO 
 

16 16.5 
189 
245 
 

LRMS: 
PCA 5, ICA 3, NMF 3, 
PARAFAC 8, FS 
 
HRMS: 
PCA 8, ICA 3, NMF 3, 
PARAFAC 5 

245.1177 
(C15H16O3, -2.0) 

262.1350 
[M+NH4]+ 
 
267.0990 
[M+Na]+ 

245-189 = C4H8 
189-159 = CH2O 
159-131 = CO 

Osthol [23] 

17 16.6 
329 

LRMS: 
PCA 2, ICA 2, NMF 2, 
PARAFAC 8, FS 
 

329.1387 
(C19H20O5, -1.2) 

351.1211 
[M+Na]+ 

329-247 = C5H6O 
247-229 = H2O 

Decursinol 
Angelate 

[32] 

18 16.7 
329 

LRMS: 
PCA 2, ICA 2, NMF 2, 
PARAFAC 3, FS 
 

329.1387 
(C19H20O5, -1.1) 

351.1209 
[M+Na]+ 

329-247 = C5H6O 
247-229 = H2O 

Prantschimgin [33] 

19 16.7 
329 

LRMS: 
PCA 2, ICA 2, NMF 2, 
PARAFAC 3, FS 
 

329.1385 
(C19H20O5, -0.5) 

351.1206 
[M+Na]+ 

329-229 = C5H8O2 
229-187 = C3H6 

187-159 = CO 
159-131 = CO 

Libanorin [34] 

20 16.8 
329 

LRMS: 
PCA 10, ICA 2, NMF 2, 
PARAFAC 3, FS 
 
HRMS: 
PCA 3, ICA 4, NMF 5, 
PARAFAC 5 

329,1387 
(C19H20O5, -1.1) 

351.1208 
[M+Na]+ 

329-247 = C5H6O 
247-229 = H2O 

Sprengelianin 
(Deltoin) 

[33] 

21 17.0 
329 

LRMS: 
PCA 2, ICA 2, NMF 2, 
PARAFAC 3, FS 
 

329.1386 
(C19H20O5, -0.8) 

351.1204 
[M+Na]+ 

329-229 = C5H8O2 
229-187 = C3H6 

187-159 = CO 
159-131 = CO 

Columbianadin [34] 
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22 16.8 
229 
203 
 

LRMS: 
PCA 10, ICA 4, NMF 5, 
PARAFAC 8, FS 
 
HRMS: 
PARAFAC 7 

271.0961  
(C16H14O4, 1.6) 

293.0782 
[M+Na]+ 

271-215 = 2CO 
271-203 = C5H8 
203-175 = CO 
203-159 = CO2 
175-147 = CO 
175-131 = CO2 
 

Iso-imperatorin [24] 

23 17.2 
245 
 

LRMS: 
PCA 4, ICA 4, NMF 5 
PARAFAC 4, FS 
 
HRMS: 
PARAFAC 5 

245.1172 
(C15H16O3, -0.1) 

267.0996 
[M+Na]+ 

245-215 = C2H6 
245-187 = C4H10 
245-131 = C6H10O2 
 

Suberosin 
 

[21] 

 


