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ABSTRACT Wildfire smoke and other particulate matter can substantially inhibit solar photovoltaic (PV)
generation production. While solar PV facilities may not be located in areas with a high fire risk, smoke
from wildfires can travel hundreds of kilometers impacting a large number of facilities. This paper proposes
a geospatial wildfire PV capacity model to quantify the anticipated temporal reduction in PV capacity due
to wildfire smoke. A case study using data for two time periods from the 2020 California wildfires and
real utility scale solar generation data evidences the model’s high accuracy. Results argue that wildfire
smoke can cause significant temporal solar generation capacity reductions over wide geographic regions.
Application of the proposed model to inform power system resiliency planning is demonstrated for two
use cases: generation scheduling and siting. With meteorological service providers beginning to release
smoke forecasts, our geospatial wildfire PV capacity model enables balancing authorities to make use of
this information to proactively schedule generation to compensate for reductions in PV capacity. The trained
model also produces geospatial derate maps that can enable generation developers to consider historical
capacity derates due to smoke when making siting or planning decisions.

INDEX TERMS Photovoltaic power generation, power system operation, resilience, solar photovoltaic

generation, wildfire smoke effects.

I. INTRODUCTION

Extreme wildfires are becoming an increasing risk to the safe
and reliable operation of electric power systems worldwide.
In the last few years some of the most extreme fire seasons
on record have been seen in Australia, Brazil, Russia, and the
Western United States [1]. While some transmission planning
standards such as NERC TPL 001-5 in the US [2] consider
extreme wildfires to be a high impact low probability (HILP)
event, the need to proactively plan for the effect of extreme
wildfires on modern power systems is growing.

The relationship between climate, anthropogenic effects,
and wildfires remains complex. Some reports [1], [3] show
a decline overall in the number of acres burned each year
globally, but note that the trend varies significantly by
region. Authors in [4] provide analysis highlighting differ-
ences across regions and identified anthropogenic increases
in extreme Fire Weather Index days for 22% of burnable land
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area globally as of 2019 and project this to grow to 33-62%
by the middle of the 21st century. In addition, authors in [5]
found fire weather season length increased by 18.7% from
1979 to 2013. Such work suggests a heightened need for
wildfire planning.

In 2020, the Western United States, experienced one of
the worst wildfire seasons on record, with the state of
California experiencing five of the six largest wildfires in
its recorded history [6]. The largest of these fires spanned
over 1 Million acres (4000 km?) [6] and the smoke from
these fires reached the East Coast of the United States before
entering the jet stream and travelling across the Atlantic
Ocean. This can be seen in Fig. 1 depicting smoke layers
from the United States National Oceanic and Atmospheric
Administration’s (NOAA’s) Hazard Mapping System (HMS)
on September 14th, 2020 [7], [8].

At the same time, 2019 represented record levels of
solar integration across the globe with stable growth
in 2020 despite the Covid-19 pandemic [9]. With balancing
authorities reliant on increasing levels of solar generation to
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FIGURE 1. Smoke from wildfires spans the continental united states on September 14th 2020. Animated version showing entire summer period is

available in the graphical abstract. Smoke layers from the NOAA HMS [7], [8].

serve electricity demand, wildfires present a new widespread
risk to power system security due to the derate to solar
production. This can cause inaccuracies in estimates of solar
PV availability, placing additional strain on a system which
may already be in a state of emergency due to infrastructure
damage. In this paper we investigate the relationship between
effective solar photovoltaic (PV) capacity and wildfire smoke
using aerosol optical density (AOD) to quantify the amount
of smoke present at a specific point in time.

By its very nature, the production of solar PV generation is
directly dependent on meteorological factors such as irradi-
ance, ambient temperature, wind speed, relative humidity and
air mass along with their interaction effects. Authors in [10]
show how incorporating each of these weather variables can
enhance PV forecasts, but state that insolation and tempera-
ture are the most significant factors affecting solar PV gen-
eration. Extensive research has been carried out to determine
the impact that each of these variables have on the overall
performance. A review of studies evaluating the temperature
dependency of PV generation is provided in [11]. Further
assessment of the effects of humidity and wind speed was
conducted in [12] noting that humidity can reduce efficiency
by inhibiting the reception of the direct component of solar
radiation and whereas wind speed can improve efficiency due
to decreased cell temperature.

The significance of these factors varies based on the
climate of the region where the PV generation is installed.
For example, for windy regions, authors in [13] evaluated the
impact of wind speed on PV capacity calculations for a windy
city in Denmark and found that accounting for wind speed
resulted in a 3.5% increase in PV capacity. For a region in the

79842

Northern United States, snow is a significant consideration
and authors in [14] found annual losses ranging from 5-34%
depending on the tilt angle and configuration of the instal-
lation. Standardized reference systems have been developed
to provide a common framework for manufacturers to test
the rated power output [15]. Therefore, when assessing PV
capacity, efforts should be made to control for the climate
variables present in the location of interest when possible to
better identify the effects of an individual variable such as
wildfire smoke.

Reductions in solar PV capacity can be caused by a vari-
ety of additional environmental variables including wildfires,
however, previous research has largely been focused on
clouds, dust and other forms of air pollution. Initial work on
PV clouding effects demonstrated the large and rapid changes
in generation from clouds [16]. More recently, authors in [17]
detail various methods for forecasting solar production and
the challenges induced from clouds. Researchers have contin-
ued to expand upon methods to integrate clouding effects into
PV forecasts using more advanced deep learning methods to
utilize sky imagery [18]. However, wildfires represent a dif-
ferent type of impact as they can be both natural disasters and
anthropogenic (caused by humans) with [19] providing infor-
mation on the cause of wildland fires in the United States.
Furthermore, unlike clouds, the wildfires themselves pose
a threat to the power system which can result in increased
system stress. Hence it is important to consider the increased
stress that wildfire smoke can cause as a result of reduced
generation capacity during such extreme events.

Dust and air pollution can also greatly affect the perfor-
mance of solar PV facilities. This can be observed as winds
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carry dust from duststorms in the African Sahara to Europe
causing temporal PV capacity degradation as described by
authors in [20] and [21]. In [20], authors describe that such
events can occur 5 to 15 times per year for several days and
contributed to forecasting error of up to 5.3 GW when failing
to consider dust. The amount of derate due to dust is assessed
to be between 13 and 40% in [21] with higher reported values
for facilities with parabolic trough configurations. However,
geographically, most of these effects are limited to regions
surrounding large deserts such the Sahara, Middle and East-
ern Asia [22]. Similar to dust, researchers have studied the
effects of air pollution often referred to as haze, identifying
20% capacity reductions in Eastern China [23]. An extensive
field study using empirical data from Delhi and Singapore
was conducted in [24] and extended to 16 cities around the
world. This study found estimated reductions in insolation
ranging from 2-9%. While both dust and air pollution do
affect solar PV production, the impacts can be further com-
pounded by the presence of wildfire smoke.

The temporal effects of wildfire smoke on solar
PV capacity has received limited attention in previous
research. Authors in [25] used a controlled burn in Australia
to take sensor measurements on the impact on solar PV
production for a single site showing a 27% reduction in output
for a 1.56 kW solar PV facility. However, this study was
localized in nature focusing on a single facility and fire.
What remains to be seen, is the relationship between the
magnitude and duration of wildfire induced smoke and the
corresponding derate to solar production.

In initial efforts to answer this question, the United States
Energy Information Administration (EIA) released a news
release [26] highlighting correlation between PM2.5 emis-
sions and wildfires and indicating 30% reductions in solar
performance. However, the magnitude of the derate in
the EIA study was derived from a comparison between
statewide solar generation output between September and
July 2020 which could be impacted by a variety of other
factors such as curtailment and scheduled outages in addition
to wildfire smoke. Furthermore, although the contribution
of wildfires to overall PM2.5 emissions is increasing, other
factors also contribute to PM2.5 [27].

In this work, we provide a framework which identifies the
relationship between wildfire smoke and PV performance.
Our paper provides the following contributions:

« proposal of a geospatial wildfire PV capacity model
reflecting anticipated temporal derates to solar PV
capacity due to wildfire smoke.

« an innovative framework enabling grid operators and
balancing authorities to use this model during a wildfire
to influence scheduling decisions and reserve require-
ments in the form of a geospatial smoke-derate map.

o propose a simplified geospatial nomogram for use in
pre-planning and interconnection feasibility studies by
developers to assess output reductions

The remainder of the paper is structured as follows: Section II
details the methodology; Section III describes the case study
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FIGURE 2. Brief overview of methodology for geospatial wildfire PV
capacity model. Satellite imagery from NOAA GOES-17 satellite [28].

which tests the efficacy of the model using actual data from
recent California wildfires and real utility scale generating
facilities; Section IV discusses the implications and benefits
of this model and means to overcome some of the model limi-
tations; Finally, Section V presents the conclusions, detailing
the significant benefits of the proposed model.

Il. METHODOLOGY

This section aims to analyze the aerosol optical density at
solar PV generating facilities during wildfire periods, and
then study the corresponding solar PV power output charac-
teristics. A visual depiction of the steps in the methodology
can be found in Fig. 2

A. PRESENCE OF AEROSOLS DURING WILDFIRES
NOAA defines aerosol optical density as ‘““a measure of the
extinction of the solar beam by dust and haze. In other words,
particles in the atmosphere (dust, smoke, pollution) can block
sunlight by absorbing or by scattering light. Aerosol optical
density tells us how much direct sunlight is prevented from
reaching the ground by these aerosol particles” [29]. Aerosol
optical density can vary on a scale from —1 to 5 [28] with
0.4 reflecting a hazy day and the average aerosol optical
density over the continental US being 0.1-0.15 [29].
Satellite imagery is emerging as a valuable source for
geospatial data as the resolution and quality of data con-
tinues to improve. In order to use satellite measurements
at a specific location, the measurements must be converted
into the appropriate orthographic plane. These calculations
are relative to the data format produced by the satellite,
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but detailed methodology describing the format of satellite
imagery can be found in [28].

B. SOLAR PV POWER CAPACITY

Solar PV power capability is generally defined as a function
of the physical specifications of a particular generating facil-
ity and the maximum expected solar irradiance on a particular
day. This value varies seasonally and diurnally as a function
of the suns position with respect to the earth. The Global
Horizontal Irradiance (GHI) reflects the overall irradiance
and is a function of Direct Normal Irradiance (DNI), Diffuse
Horizontal Irradiance (DHI) and the solar zenith angle «. GHI
can be calculated as [30]:

GHI = DNI - cos(6) + DHI (1

Furthermore, the Solar PV Power capacity can be impacted
by other meteorological variables as described in [10]. The
combination of physical parameters and meteorological vari-
ables results in a variation in maximum generating capability
for each solar PV generating plant over a time period.

In order to compare performance of solar PV generating
plants of different capacities across different time periods,
a three-stage normalization process is proposed.

1) SEASONAL NORMALIZATION
In addition to the capacity of a PV facility changing from
one plant to another, the effective capacity changes seasonally
throughout the year due to the relative position of the sun.
This means that the maximum expected output will vary as a
function of the day of the year. To make an equivalent com-
parison of effective capacity over an extended time period,
the capacity values should also be seasonally normalized.

One source of data to use to perform seasonal normaliza-
tion is historical operating data for each facility for a period
of several years. However, clean historical data may not be
available for a sufficient period of time to develop a robust
seasonal approximation. As maximum solar PV production
is highly correlated with the clearsky GHI, an empirical
distribution of the clear sky GHI can be used to calculate a
further seasonal adjustment factor to use for normalization.
The factor is calculated as in (2).

Cmax
Ci

where s; is the seasonal adjustment factor at time i; C; is the
clearsky GHI at the location closest to the plant for a specific
hour during the study period; and Cy,y is the maximum
clearsky GHI at that hour for that location across the study
period. The clearsky GHI series from which Cy,,, and C;
are sampled is produced by taking the average value for that
location across the historical years available.

S;i =

@

2) WEATHER NORMALIZATION

The capacity of PV generation facilities is affected by
other meteorological variables in addition to irradiance [31].
In order to minimize the effect of these other variables on
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the capacity fluctuations and focus on the effects resulting
from wildfire smoke, it is critical to normalize for these
variables as well. Two meteorological variables (temperature
and windspeed) are considered in the normalization process
through the calculation of the PV cell temperature. When
the cell temperature exceeds 25 °C, the efficiency of the
generation is reduced by a factor of 0.5% per °C [11], [32].
In order to calculate the cell temperature and account for
variation in ambient temperature, irradiance and windspeed
the Sandia module temperature equations [33] are used as
follows:

T = E[eyH_yZV] + T, 3

where T}, is the back-surface module temperature (°C); E is
the plane-of-array (POA) irradiance (W/m2); y; and y» are
empirically derived constants; 7, is the ambient temperature
(°C); and v is the wind speed (m/s). Once the module tem-
perature is calculated, a further correction must be applied to
obtain the cell temperature as in:

Te=Tn+ £AT @)
E,
where 7 is the cell temperature inside the module (°C); E,
is the reference solar irradiance (1000 W /m2); and AT is the
temperature difference between the cell and the module back
surface at an irradiance level of 1000 W /m?.

3) MIN-MAX NORMALIZATION
The last stage of the normalization process relies on Min-Max
normalization to transform the PV power output to allow
equivalency in comparison across different plants. Min-Max
normalization [34] converts x = x1, x2, ..., X, to a range of
[0,1] via the formula in (5).

xi/ _ Xi — Xmin (5)

Xmax — Xmin

where xlf and x; are the normalized and actual recorded solar
power output at time #; Xp,;; and Xp,,, are the minimum and
maximum power output within the fire study period n. This
technique is highly interpretable as it maintains the original
load shape.

C. WILDFIRE SMOKE PV RELATIONSHIP MODEL

This work proposes a model to characterize the relationship
between aerosol optical density and solar PV generation out-
put using quantile regression. This is the first key contribu-
tion. This model was selected due to the ability to minimize
the effect of outliers and retain high accuracy in projecting the
maximum PV output at high aerosol optical density. Other
more complex deep learning and machine learning based
models were considered but not ultimately selected as such
models may be prone to overfitting due the size of the data
used in this case study. Such models may be beneficial in
the future for specific operating areas with larger amounts
of historical data. The framework presented in this work
is such that as further models are developed, they can be
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readily integrated into the methodology as shown in Fig. 2.
Our proposed model is compared to linear regression and
piecewise linear regression benchmark models to evaluate its
relative accuracy.

Quantile regression (QR) was proposed in [35] and facili-
tates a modeling of the full conditional distribution. QR has
been used to forecast electricity demand [36] and solar irra-
diance [37]. The median quantile can be selected to compare
with other deterministic models. QR for the rth quantile can
be reflected as:

P
Pw(t) = Bo(x)+ Y _ Bu(T)x, +¢ (6)

v=0

where 7 is the quantile level; p represents the number of input
variables; and Py (t) reflects the value of P below which the
proportion of the conditional response population is 7. The
parameters are estimated by minimizing the loss function for
a particular quantile 7 as in:

n
B: = argmin Y _ p(Pw, — x/ Br) (7)
BeR
where p; is the pinball loss function for a quantile t, where
p:(z2) = tzif z > 0and p(z) = (t — 1)zif z < 0.

Piecewise Linear Regression (PLR) uses several discrete
linear segments to describe a one-dimensional (1D) depen-
dent variable. In this case PLR allows for the slope of the
relationship to change at higher densities of wildfire smoke.
The PLR is formulated such that the function is continuous

over the domain [38] and is as follows:

Py (x)
B1 + B2(x — by)
B1+ Ba(x —b1) + B3(x — b2)

by <x<bh
by <x <bs

B1 + Ba(x — b1) + B3(x — b2)
+-- 4+ ,Bcb(x - bcb—l)

j| b1 <x < bcb

®

where Py is the anticipated power output of the PV generat-
ing plant in per unit accounting for wildfire smoke; ¢}, is the
number of knots in the spline; x is the aerosol optical density;
by, by, ..., b, are the location of the knots; and § are the
slope coefficients. The set of equations is then solved for the
unknown S that reduces the sum-of-square of the residuals.
A Linear Regression Model [39] was also developed to
provide a basic benchmark to allow operators to compare the
performance. The suitability of each model is tested using
cross-validation. As the intensity of wildfire smoke is not
evenly distributed across a given fire season, but dependent
on the number of active fires at any given point in time,
this relationship constitutes an unbalanced problem. Hence,
the suitability of each of the proposed models is tested using
stratified k-fold cross validation. Stratified k-fold cross vali-
dation seeks to ensure that the proportion of days with active
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wildfires within each fold is similar to the proportion found
in the original distribution. Within each fold, mean absolute
error (MAE) is computed as the error metric for the determin-
istic forecast.

Ill. THE IMPACT OF WILDFIRE SMOKE ON

SOLAR PV CAPACITY

The efficacy of the methodology presented in Section II is
demonstrated using real solar PV generation data during the
2020 wildfire season in California over two event periods:
Scenario A) a two-week period in September covering the
most significant fires; and Scenario B) an extended period
covering the period from August 1st to September 28th.
Analysis is conducted in python; data analysis is per-
formed using the numpy [40] and pandas [41] packages;
geospatial analysis was conducted using geopandas [42] and
cartopy [43]; and visualization using matplotlib [44]. The
models were specified and fit using statsmodels [45] for
linear and quantile regression and pwlf [38] for the PLR.
For PLR, the number of line segments was specified to be
two, allowing the model to capture an initial rate of change at
lower aerosol optical density and another rate as the aerosol
optical density increases. The pwif library uses the underlying
scipy [46] library to calculate the optimal location of the knots
via differential evolution.

A. CASE STUDY

1) WILDFIRES

The 2020 wildfire season in California contained many large
wildfires with widespread impact concentrated in the months
of August and September. For Scenario A, to match the
geospatial location of the PV facilities which are predomi-
nantly located in Southern California a two-week period from
September 1st to September 14th was selected. This period
covers the start of three major fires: Creek Fire [48] - Largest
single non-complex fire on record [6]; Bobcat Fire [50]; and
the El Dorado Fire [49] with perimeters obtained from [47].
To enhance the robustness of the models developed, evaluate
the sensitivity of such models to additional training data,
and demonstrate the importance of the normalization process,
based on the historical operating data available, a longer
period from August 1st to September 28th (Scenario B) was
also evaluated. Fig. 3 depicts the location of the 2020 wild-
fires in California in relationship to the PV sites selected.

2) SOLAR PV GENERATION

Data for solar PV in the state of California is retrieved
from SCADA for ten PV generation facilities across four
geographic areas. The names of urban regions near each of
the PV facilities are used as labels rather than the specific
location to maintain confidentiality of the individual facili-
ties performance data. Data for each of the PV facilities is
collected for the two week and two month case study periods.
The three-stage normalization process described in Section I1
is performed for each of the ten PV facilities. As the sites are
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2020 Extreme Wildfires
PV Study Areas

@ Ontario

@ San Bernardino
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FIGURE 3. California’s 2020 wildfire season is the worst in recorded
history. Data for fire perimeters is from national interagency fire center
(https://data-nifc.opendata.arcgis.com/) [47].

located in California weather can be especially hot during the
summer months, with ambient temperature exceeding 45 °C.
Weather used for the normalization process comes from the
NASA’s MERRA-2 renalysis [51]. As individual site specific
information is not available, values of —3.47, —.0594 and
3 from [33] are used for y1,y» and AT respectively. Historical
clearsky GHI data for the period of 2005-2019 obtained from
the National Solar Radiation Database is used to calculate
the mean anticipated clearsky GHI for each PV site [52].
For Scenario A, seasonal normalization is performed, but
expected to have more limited impact due to the shortened
period. However, adjustments resulting from this process are
expected to be more significant for Scenario B as the time
period is much longer.

3) SATELLITE IMAGERY

For this work, satellite data is retrieved from NOAA’s geosta-
tionary Earth-observing systems (GOES-17) satellite which
became operational in 2019 [8]. GOES-17 covers the the
full disk with 10 minute refresh rate. A faster refresh rate
of 5 minutes for a 3000 km by 5000 km area covering the
continental United States (CONUS) is also provided and used
in this case study [28].

Two products are used for this work. The first is the aerosol
optical depth. GOES-17 produces aerosol optical density data
at 2 km grid resolution. The exact data retrieved is an image
with pixel values identifying a measure of the extinction due
to atmospheric aerosols at a wavelength of 550 nm for each
specific point in time. This is represented as AODjyp jas,i
where lon is the longitude and lat is the latitude. The second
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is the Cloud and Moisture Imagery Product. This is used to
produce Red-Green-Blue (RGB) images of a particular time
to allow visual inspection of the model results.

GOES aerosol optical density data is only produced when
there is an absence of snow or clouds, for specific solar zenith
angles and levels of surface reflectance. Specific details can
be found in the user manual [28]. This means that the data in
rural or desert areas is more sparse than that for urban or other
areas with high contrast.

B. SMOKE RESULTS IN SUBSTANTIAL REDUCTIONS

IN PV CAPACITY

Visual inspection of the satellite imagery retrieved from
GOES-17 revealed high concentration of smoke visible for
several days during the case study time period. Fig. 4 presents
a timeline of the event horizon with a representative sample of
the satellite imagery. While the visual imagery provide con-
firmation, in order to allow this approach to be implemented
at scale, aerosol optical density is used as a quantification of
the density of aerosols present at a given point in time.

As the aim is to estimate the peak PV capacity for each
site, the daily solar production values between 12pm and 1pm
were extracted for each assessment period. After accounting
for days with incomplete aerosol optical density coverage and
other missing or erroneous data, 114 datapoints remain for the
two-week period and 508 for the two-month period. In order
to validate the statistical assumptions made in the method-
ology, a Spearman rank-order correlation test is performed
to identify the relationship between aerosol optical density
and PV output. The results indicate a statistically significant
correlation of —0.764, and —0.446, between aerosol optical
density and PV for Scenario A and B respectively, indicating
that higher levels of smoke aerosols result in a reduction
in peak solar PV capacity. It can be seen that the strength
of correlation decreases for Scenario B. This is due to the
addition of significant periods with limited wildfire smoke
as most of the fires effecting the selected PV sites occurred
during the period covered by Scenario A. Nonetheless,
the relationship remained significant for both periods. Three
models are evaluated: 1) Quantile regression (QR); 2) Piece-
wise linear regression (PLR); and 3) A linear regression
model (LR).

1) SCENARIO A: SIGNIFICANT WILDFIRE PERIOD

The results can be seen in Fig. 5 when fit for the entire data.
When looking at the overall relationship between aerosol
optical density and normalized PV capacity, there is a gen-
erally linear relationship which explains why the fit for the
models is similar. However, unlike the other models, the PLR
reflects an increasing saturation in smoke effects after an
aerosol optical density of approximately 1.0. Prior to this
value, there is a sharper decline in performance. However,
PLR methods are subject to high volatility when fitting the
location and slope of each segment as will be demonstrated
in Scenario B. Each of the three models handle boundary
conditions in a slightly different manner. At an AOD of 0,
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FIGURE 4. Depiction of the impact of wildfire on PV performance for one of the solar PV site regions during scenario A. satellite imagery from NOAA

GOES-17 satellite [28] and fire start dates from [48]-[50].

the LR model projects full capacity, whereas the PLR and QR
model project a value slightly above 100%. On a perfectly
clear day (aerosol optical density of 0), there should not be
any derate associated with wildfire smoke.

The error for each model is compared both in sample for
the entire data and out of sample using the proposed stratified
cross validation with the proposed QR model showing the
highest accuracy in both cases. The in sample results for
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the MAE error for each model as follows: 1) LR: 5.67%
2) QR: 5.37% and 3) PLR: 5.39%. For the out of sample
cross-validated results, ten folds were developed, with each
fold containing data for nine sites and holding one site out
for testing. Each of the models was then fit on the training
data and the performance evaluated against the test data for
each fold. Although there is some variation across folds,
the QR model showed the highest accuracy overall with a

79847



IEEE Access

D. L. Donaldson et al.: Temporal Solar PV Generation Capacity Reduction

= Scenario A Y
= Scenario B

05 SHNF ~ENERE 00"
0.6 o8 TR, ;

0.4 9

Normalized Solar PV Capacity

0.2

Linear Regression

Piecewise Linear Regression

= Scenario A 1% = Scenario A

= Scenario B = Scenario B

Quantile Regression

0.0 T T T T T
0 1 2 3 4 0 1

T T T T T T
3 4 0 1 2 3 4

Aerosol Optical Density (AOD)

FIGURE 5. Model results.

81 4
B
g I )
£ 61 -
&)
>
9
< 4 I LR
= = Qr
22_ I PLR
0+ - T T - -

1 2 3 4 5 6 7 8 9 10
Fold

FIGURE 6. Model accuracy over the test data from each fold in the
cross-validation for scenario A.

MAE of 5.45% across the folds. The performance for each
of the models can be seen in Fig. 6.

2) SCENARIO B: LONGER DURATION EVALUATION
Although the most significant wildfire smoke events were
observed during the two week period covered by Scenario A,
consideration of a longer duration of operating data pro-
vides a more thorough evaluation of the models performance.
Furthermore, this longer period serves to demonstrate the
significance of normalization when considering capacity and
the robustness of each model.

The in sample results for the MAE error for each model
as follows: 1) LR: 6.14% 2) QR: 5.85% and 3) PLR: 6.08%.
Cross validation was then performed in the same fashion as
Scenario A, and the QR model showed the highest accuracy
overall with a MAE of 5.88% compared to 6.09% for PLR.
This is indicative that the QR model is robust to variations
in the test data. Comparison of the overall models for each
scenario can be seen in Fig. 5.

The first difference observed in the longer case study was
the significant effect on the change in clear sky solar irradi-
ance from August 1st to September 28th. In order to season-
ally normalize the PV data as outlined in (2), 15 years of clear
sky GHI values were obtained from NREL’S National Solar
Radiation Database (NSRDB) over the period of 2005-2019
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for each of the PV locations [52]. Data for 2020 was not yet
available at the time this study was performed. From the start
to the end of the period of time considered in Case Study A
there was a mean reduction of 5% in the CGHI whereas for
Case Study B a mean reduction of 17% was observed. This
demonstrates the significance of seasonal normalization over
longer study periods.

The next difference observed in this case study is the
robustness of the fit produced by each model. When com-
paring the model fit from the two case studies, it can be
seen that the PLR model is unlikely to provide an optimal fit
due to the noise present by additional smoke free days. This
can be seen in Fig. 5. Furthermore, it can be seen that the
PLR model experienced significant volatility from one set of
training data to the next. This indicates that this approach may
be prone to overfit the data. By contrast, QR demonstrates
high accuracy without sacrificing model robustness, with the
fit and corresponding derate remaining stable over both case
studies. Hence, we propose that QR can provide operators
with an accurate method to use in practice that is more robust
to the presence of noise in the training data.

Although we trained this model for two study periods
during California’s 2020 wildfire season, we believe that
the framework is extensible to allow model training for
other regions of the world as the underlying foundation of
the model’s usefulness comes from the ability to translate
historical observations of the relationship between aerosols
and solar PV performance into a practical quantification of
capacity impacts for use by grid operators and planners.

To calculate the corresponding derate factor predicted by
each model, the anticipated output at varying aerosol opti-
cal densities is subtracted from the maximum power output
(100%). These derate factors are shown in Table 1.

C. SOLAR PHOTOVOLTAIC CAPACITY REDUCTION MAPS

The development of a suitable model as described in
Section III enables power system planners, operators and
other major stakeholders such as generator owners or policy
makers to gain insight into the anticipated solar PV capacity
derates one might expect for a given time horizon. We present
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FIGURE 7. Example geospatial smoke derate map for operational use over the period from 12pm to 1pm on three separate days.

TABLE 1. Solar PV derate factors for each model based on scenario B.

PV Derate Factor

AOD Linezlrelciz‘;:sion Linear Regression  Quantile Regression
0.5 11% 11% 9%
1 16% 16% 14%
2.5 32% 30% 29%
4 46% 45% 44%
4.5 37% 50% 49%

two potential use cases for such information demonstrating
the clear benefits such a model can provide.

1) OPERATIONAL GEOSPATIAL SMOKE DERATE MAP
The second contribution of this work is the creation of
geospatial smoke derate maps for use in power system opera-
tions. The primary use case comes in the operational planning
by balancing authorities and utilities which are responsible
for generation scheduling to meet their area demand. Sud-
den unanticipated reductions in solar PV generation capacity
due to wildfire smoke can lead to power system security
problems if there is not sufficient operating reserve margin.
These problems could include generation capacity shortages,
unexpected system dispatches, and load shedding. Further-
more, as wildfires can lead to other associated power system
impacts such as loss of transmission capability, the loss of
additional generation can exacerbate existing problems.
Hence, it is important to accurately anticipate solar gen-
eration capacity during the period of the wildfire. Knowing
how the associated smoke might affect solar facilities over a
large geographic region of the electric grid can aid balanc-
ing authorities in making scheduling and dispatch decisions.
By feeding the trained model laid out in Section III with
aerosol optical density data for a specific point in time across
a particular region, the widespread effects of smoke on an
entire service territory can be obtained. As the underlying
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aerosol data is presented at 2 km resolution, this also allows
an operator to focus in on a smaller geographic region where
a large amount of critical solar PV facilities are located.

2) GEOSPATIAL NOMOGRAM FOR USE IN SOLAR PV SITING
The third contribution of this work is the creation of geospa-
tial nomograms for use in generation siting. The anticipated
output of a solar PV generating facility can be a critical
input into the economic feasibility studies and siting stud-
ies performed by power system planners and generation
owners. Current generation siting studies can rely upon his-
torical typical meteorological year calculations such as those
present in the NSRDB to account for the anticipated historical
performance under “‘typical” weather conditions [52]. Our
model can provide additional potentially useful information
for high fire risk areas through the creation of a wildfire
season geospatial nomogram shown in Fig. 8. This map is
created by taking mean daily aerosol optical density from the
period of 12pm to 1pm over the period from April 30th to
September 28th, 2020. Fig. 8 provides a proof of concept for
this map for a single fire season. This can be used to gain
an understanding of considerations when siting new solar
facilities.

In practice, developers could apply this methodology based
on their particular PV siting needs. A developer may want to
exclude points which are missing data above a certain number
of days over the season. Developers could also apply this
methodology for specific periods where a particular type of
weather condition is present to gain more insight. The specific
choice of duration and fire season used in creation of such a
map is linked to the risk tolerance and goals of a particular
developer. If a developer wanted to create a conservative
estimate of production, a historically bad fire season such as
2020 could be used. To calculate a ““typical’’ derate for a wide
geographic area, this methodology would be applied over the
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FIGURE 8. Modelled average derate of Solar PV capacity over the period
of april 30 - september 28, 2020.

course of 10 historical fire seasons to capture variation in fire
season from one year to the next.

IV. MODEL IMPLICATIONS AND REFLECTION

As it is evident that smoke can have a significant impact on
the performance of PV production, accurate forecasting of the
spread of wildfire smoke will become increasingly important
with the continued decarbonization of the electric grid. To this
aim, NOAA introduced their smoke forecasting system to
provide a daily forecast of the transport and dispersion of
smoke from large wildfires [7]. This modelling uses a variety
of meteorological variables measured at differing pressure
levels but requires at a minimum three-dimensional fields
of the vector wind components and temperature [7] as wind
plays a key role in the transport of smoke. A history of
NOAA’s underlying Hybrid Single-Particle Lagrangian Inte-
grated Trajectory model (HYSPLIT) along with applications
to the atmospheric transport, dispersion and deposition of
pollutants and hazardous materials can be found in [53].
Recently, NOAA has improved its smoke forecasting system
to model transport pathways of smoke plumes [54]. As the
granularity and accuracy of such products improve, it will
enable grid operators to place more confidence in the antici-
pated solar derate.

We believe that the increasing coverage of satellite and
weather station data will serve to address one of the primary
limitations in the current work which is incomplete coverage
of historical aerosol optical density data. Due to the collection
and measurement methods, aerosol optical density data was
unavailable for significant portions of the state as observed by
the gray areas in Fig. 7. One method of addressing these data
gaps might be to use some aerosol optical density approx-
imation or interpolation technique. However, for this work
we did not apply this method in order to avoid introducing
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additional approximation error into the model at this point in
time. Further research will evaluate of the trade-offs between
geospatial interpolation and model accuracy.

As utilities deploy additional weather stations and satel-
lites continue to improve, enhancement of the underlying
data used in the creation of this model will enable more
accurate prediction. For example, the Advanced Baseline
Imager (ABI) present in the GOES-R Series satellites used
in this work, “collects three times more data and provides
four times better resolution and more than five times faster
coverage than previous GOES™ [55]. Hence, we anticipate
that the satellite data available in the future will allow for
more refinements to the model accuracy.

One other implication from the significant periods of wild-
fire smoke is the derate of the solar panels due to soiling.
This is another reason why wildfires pose a threat to solar
PV capacity beyond that of simple clouding. Given the lack
of historical data surrounding when cleaning of the panels
took place, our model does not assume further degradation
of capacity due to soiling. However, when considering the
longer term effects of wildfire smoke, soiling would further
reduce the capacity of the panels until cleaning is performed
as indicated in [56].

V. CONCLUSION

Wildfires pose a significant risk to the resilient operation of
the electric grid. Although PV generation facilities may not
be sited in high fire risk zones, the smoke from wildfires
can travel significant distances and affect large geographic
regions. We propose a geospatial wildfire PV capacity model
reflecting anticipated temporal derates to solar PV perfor-
mance due to wildfire smoke. The model’s high accuracy
is proven using real solar PV operating history and wildfire
data. Our work provides power system planners and operators
with a more complete understanding of the challenge that
wildfire smoke poses as grid operators seek to balance load
and generation.

We demonstrate two practical examples of how this
model can add value to power system operators and gener-
ation developers. The model translates satellite imagery and
forecasts of smoke density from wildfires into reductions in
PV capacity, potentially enhancing grid operator scheduling
decisions and short term forecasts. As meteorological agen-
cies continue to enhance their forecasts of smoke location,
the ability to accurately predict PV capacity during extreme
wildfires will improve. Finally, the model can provide an esti-
mate of the seasonal capacity reductions for a given location
due to smoke, aiding developers in effectively siting new gen-
eration facilities. As solar PV generation levels grow in the
future, the ability to accurately plan for temporal derates due
to wildfire smoke will grow in importance and the proposed
framework provides a foundation for future considerations.
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