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1 Introduction

Many supersymmetric quantum field theories (SQFT) can be realized within string theory,
which provides us with powerful tools to study them in a strongly coupled regime, often
in terms of geometry [1–8]. In this paper, we take yet another look at the ‘geometric
engineering’ of superconformal field theories (SCFT) in space-time dimension d = 4 and
d = 5. Our leitmotiv will be that one can refine our understanding of these systems, in
both 4d and 5d, by considering their relations to each other via toroidal compactification
to 3d [9]. A more detailed description of our geometric approach, together with many
examples, will appear in a forthcoming paper [10].

These theories are partly characterized by their moduli space of vacua, which generally
includes both a Coulomb and a Higgs branch, together with mixed branches. In the case of
5d SCFTs, their moduli spaces can be studied from their geometric realization in M-theory
on a canonical singularity: the crepant (i.e. retaining the Calabi-Yau condition) resolutions
model the Coulomb branch, whereas the Higgs branch corresponds to the deformations of
the singularity. The former has recently been utilized in exploring the classification of
5d SCFTs in [11–28]. On the Higgs branch side, the approach using brane-webs [29] has
been particularly successful [30–38]. In the latter approach, one constructs the so-called
magnetic quiver from a IIB brane web, a 3d N = 4 gauge theory whose Coulomb branch
is conjectured to be the identical to the 5d Higgs branch.

So far, the analysis of the 5d Higgs branch directly from the canonical-singularity point
of view has been lagging behind. This is partly because the low-energy physics arising
from M-theory on the deformed singularity is subject to M2-brane instanton corrections.
In this paper and in [10], we explore the deformation theory of the hypersurface canonical
singularities classified in [39]1 and we discuss the general structure of the Higgs branch for
isolated hypersurface singularities. We concurrently explore the Coulomb branch, which
arises from the crepant resolutions of such singularities. We also determine the higher-form
symmetries of these 5d theories, which provide further information about their spectrum
of defect operators. The exploration of this vast class of models give us a wonderful
playground to test current ideas about 5d SCFTs.

In this paper, we focus on a few interesting points, which deserve particular attention.
First, we will argue that the magnetic quiver of the 5d SCFT is closely related to the 4d
SCFT that arises by geometric engineering in Type IIB string theory on the same singular-
ity. (The 4d geometric engineering in IIB has also studied in a lot detail over the years, see
e.g. [8, 42–47].) This gives us a complementary understanding of magnetic quivers, and of

1See also [40]. For more mathematical background, see [41].
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their generalizations, directly in the geometric-engineering picture. The relation between
the 5d and 4d SCFT goes through dimensional reduction to 3d, thanks to 3d N = 4 mirror
symmetry [48], as first studied in [9]. In the IIB picture, M2-brane instantons become D3-
brane instantons wrapping a 3-cycle times a circle; these correspond to monopole operators
in the 3d N = 4 magnetic-quiver theory, which can be more efficiently resummed [49–52].

Conversely, our analysis of the geometry of canonical hypersurface singularities allows
us to also make statements about 4d SCFTs. For instance, we can study the Higgs branch
of 4d SCFTs by studying the crepant resolutions of canonical singularities, and identify
the additional low-energy degrees of freedom on the 4d Higgs branch (such as free vector
multiplets and irreducibles SCFTs) from the resolution. Similarly, the Coulomb branch of
the 4d SCFT is closely related to the 5d Higgs branch.

There has been a lot of recent progress in studying the 4d N = 2 Coulomb branch —
for a limited list of references see [53–56] — as well as the Higgs branch — see e.g. [57–67]
and much of the SCFT/Vertex operator algebra literature [68], as in e.g. [69–71]. It would
be greatly desirable to better understand how much of these beautiful structures can be
recovered from the geometric-engineering framework.

Let us now outline the logical structure of the paper, and highlight some of the results.

1.1 Setup and summary

Consider a canonical threefold singularity X. An important class of examples consists of the
isolated hypersurface singularities (IHS). An IHS is defined by a single quasi-homogeneous
polynomial F (x) in C4:

X ∼=
{
(x1, x2, x3, x4) ∈ C4 | F (x1, x2, x3, x4) = 0

}
, (1.1)

We require this space to be singular, i.e. ∂xiF = F = 0 at an isolated point, with an
additional condition so that X is canonical, as studied in M-theory e.g. in [72]. This will
provide our main class of examples in this paper.2 The canonical singularity X in M-theory
defines a 5d SCFT, which we denote by T 5d

X :

T 5d
X ←→ M-theory on R1,4 ×X . (1.2)

while the same singularity in Type IIB string theory defines a 4d N = 2 SCFT, T 4d
X :

T 4d
X ←→ Type IIB on R1,3 ×X . (1.3)

These two superconformal field theories, in space-times of different dimensions, are of course
distinct systems, but they are closely related. Consider compactifying the theory T 5d

X on a
circle. We obtain a KK-theory in 4d with 4d N = 2 supersymmetry, denoted by DS1T 5d

X .
By the M-theory/Type IIA duality, this theory is engineered by Type IIA string theory
on R1,3 ×X [1, 73]. If we further consider this theory on an arbitrary space-time manifold
M4, we have

DS1T 5d
X onM4 ←→ Type IIA onM4 ×X . (1.4)

2Another important class of examples, which we will also consider, consists of CY3 toric singularities.
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In particular, we may considerM4 = R1,2×S1
β , corresponding to a toroidal compactification

of T 5d
X on a circle of radius β. This SQFT has 3d N = 4 supersymmetry. Similarly, we

may compactify the 4d SCFT T 4d
X on a circle, to obtain another 3d KK-theory with N = 4

supersymmetry. These two three-dimensional systems are related by T-duality

DT 2T 5d
X ←→ M-theory on R1,2 × T 2 ×X

←→ Type IIA on R1,2 × S1
β ×X

←→ Type IIB on R1,2 × S1
1
β
×X ←→ DS1T 4d

X .

(1.5)

This implies the equivalence of two distinct-looking 3d N = 4 KK-theories. In particular,
the equivalence must hold in the extreme infrared (IR) limit (that is, decoupling all the
KK-modes, by focussing on the low-energy limit at fixed β), which must give us a 3d N = 4
superconformal field theory. This IR SCFT will often have some useful description as the
IR fixed point of an intrinsically 3d N = 4 QFT, for instance as a 3d N = 4 gauge theory.
Such 3d QFT descriptions may be derivable in the string theory engineering (1.5), or it
may be more subtle (for instance requiring further string dualities) — in general, it may
be a ‘non-Lagrangian’ theory, meaning that no useful UV Lagrangian in known in 3d. We
will call these 3d N = 4 SQFTs the ‘electric quiverine’ (EQ) theories of the 5d and 4d
SCFT, respectively, which we denote by

EQ(5)[X]
3d∼= DT 2T 5d

X , EQ(4)[X]
3d∼= DS1T 4d

X . (1.6)

Here, the equivalence relation ‘
3d∼=’ means that the two theories are equivalent as 3d N = 4

QFTs below the scale set by the lightest KK-modes. In many interesting cases, the quiverine
has a description as a 3d N = 4 gauge-theory quiver, while in general it might not be a
quiver, or not have any known Lagrangian description at all.

The T-duality (1.5) realizes 3d N = 4 mirror symmetry [9, 48], although not without
an interesting subtlety. In general, the theories T 5d

X and T 4d
X have a U(1)f symmetry

acting on their Higgs branch (which is generally a subgroup of the full flavor symmetry
G5d
H and G4d

H , respectively). The M-theory and IIB realizations provide background gauge
fields for this U(1)f in the Coulomb-branch phase, coming from the reduction of the 3-
form gauge field C3 on 2-cycles in M-theory, and from the RR field C4 on 3-cycles in IIB,
respectively. Upon toroidal compactification, these background abelian gauge fields may
be effectively gauged in the 3d N = 4 description, depending on whether we are looking at
the far IR limit of DT 2T 5d

X or DS1T 4d
X . Recall also that in 3d one may gauge and ‘ungauge’

any U(1) current at minimal cost, and in a reversible manner — this is known as the ‘S
operation’ [74, 75], — because each gauged U(1) gives rise to a new topological current.
Let us then define the following ‘magnetic quiverine’ (MQ) theories:

MQ(5)[X] ∼= EQ(4)[X]
/
U(1)f , MQ(4)[X] ∼= EQ(5)[X]

/
U(1)f . (1.7)

where the quotient denotes the S-type gauging of the U(1)f flavor symmetry. We then
propose that the electric and magnetic quiverines of T 5d

X and T 4d
X , respectively, are 3d

– 3 –
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Singularity X SCFT T 5d
X SCFT T 4d

X Dimension

Divisor class number ρ(X) ≤ rank(G5d
H ) ≤ rank(G4d

H ) f

Exceptional divisors CB reduced HB r

Kähler cone extended CB HB r + f = d̂H

Strictly normalizable deformations reduced HB CB r̂

Normalizable deformations HB extended CB r̂ + f = dH

Table 1. 5d and 4d SCFTs from a canonical singularity X, at a glance. See section 2 for details.

mirror of each other3

MQ(5) 3d mirror⇐⇒ EQ(5) , MQ(4) 3d mirror⇐⇒ EQ(4) . (1.8)

When it is an ordinary gauge-theory quiver, MQ(5) coincides with the magnetic quiver for
the 5d SCFT T 5d

X as studied e.g. in [27, 31, 33, 76–78]. Similarly, the magnetic quiverine
MQ(4) of T 4d

X is usually known as the ‘3d mirror’ of T 4d
X [43].

The most important aspect of 3d mirror symmetry is that is exchanges the Higgs
branch (HB) and the 3d Coulomb branch (CB). Recall that, while the 5d Coulomb branch
of T 5d

X is a real cone and the 4d Coulomb branch of T 4d
X is a complex (special Kähler)

cone, the CB of a 3d N = 4 SCFT is itself a hyper-Kähler cone. On the other hand, the
Higgs branch is not affected by toroidal compactification, and we then expect:

MH [T 5d
X ] ∼= HB[EQ(5)] ∼= CB[MQ(5)] ,

MH [T 4d
X ] ∼= HB[EQ(4)] ∼= CB[MQ(4)] .

(1.9)

Therefore, the quantum Higgs branches of T 5d
X and T 4d

X can be studied as quantum
Coulomb branches of their magnetic quiverines. This may seem to exchange one hard
problem with another, but it turns out that, by now, 3d N = 4 Coulomb branches are
rather well understood (see e.g. [49–52]). This type of magnetic-quiver construction was
first advocated in [76], and explored in numerous papers in recent years [27, 30–38].

We summarize some of the quantities of interest in table 1, which we will further
explain in the next section. In particular, we denote by r and r̂ the rank of T 5d

X and
T 4d

X , respectively, and by dH and d̂H the quaternionic dimension of their respective Higgs
branches. We also have f the rank of the U(1)f flavor symmetry preserved on the CB,
which is generally a subgroup of the flavor symmetry G5d

H or G4d
H acting on the 5d or 4d

SCFT Higgs branch. We have the key relations:

dH = r̂ + f , r + f = d̂H , (1.10)

whenever X is an isolated hypersurface singularity. (We will also briefly discuss the case
of isolated toric singularities.)

Our analysis also clarifies subtle issues in the engineering of 5d SCFTs from isolated
singularities. For instance, we will discuss the rank-N E8 5d theory in detail, resolving

3Here and in the following, we often keep the dependence on the singularity X implicit, to avoid clutter.
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some interesting puzzle at N ≥ 2. Another interesting piece of information that one can
extract from the geometry is the set of higher-form symmetries of T 5d

X or T 4d
X , following

the approach of [79–81]. In particular, we will compute the one-form symmetry of many
generalized Argyres-Douglas theories T 4d

X directly from the singularity data.4

1.2 Comments on rank-0 theories from singularities

The perspective we just sketched immediately leads to the following observations. First, the
M-theory engineering predicts the existence of an infinite class of rank-zero theories in 5d
— which may or may not be interacting SCFTs. They correspond to terminal singularities
— canonical singularities that do not admit crepant resolutions with exceptional divisors
(so that r = 0). For many of these 5d rank-zero SCFTs T 5d

X , the singularity X engineers
a (generalized) Argyres-Douglas (AD) theory T 4d

X in IIB [42, 83–86]. Embedding the
same terminal singularity in an elliptic Calabi-Yau threefold, one can also construct the 6d
uplift of these 5d rank-zero SCFTs. Their contributions to the 6d gravitational anomaly
in a compact model was studied in [87, 88]. However, it is unclear whether they give rise
to non-trivial rank-0 theories in 6d either.

Similarly, the IIB engineering predicts the existence of infinite families of rank-zero 4d
N = 2 theories, which may or may not be interacting, and correspond to singularities X
whose complex-structure deformation X̂ does not give rise to any dynamical U(1) vector
multiplet in 4d (so that r̂ = 0). This happens, in particular, for all isolated toric singular-
ities; this point was first noted by [46] for toric orbifolds. The same singularities engineer
well-studied (and conventional, higher rank) 5d SCFTs in M-theory.

To determine the properties of these rank-0 theories in 5d and 4d, in particular to
clarify whether these should be viewed as genuine interacting SCFTs, or simply as discrete
gaugings of free hypermultiplets, remains an interesting question. Discrete gauging in
4d was studied e.g. in [89–92]; for discrete gauging in 3d and 6d, see [93–95]. We will
study these theories, mostly in 5d, by determining their magnetic quivers (or quiverines)
according to (1.7), and thereby their Higgs branch. In all rank-zero cases we studied, we
find that the 5d Higgs branch is of the type Hn/Γ, which hints at an interpretation in
terms of discrete gauging. Either way, these theories provide an interesting new toolkit for
constructions of 5d SCFTs in M-theory.

Another point of view is provided by the brane-webs and associated magnetic quivers
and Hasse diagrams for the 5d Higgs branches. It was observed in [33, 36, 37] that some
Hasse diagrams contain rank-0 slices, corresponding to e.g. O(1) theories with N flavors.
Since such theories clearly appear as sub-structures in the Higgs branch of 5d SCFTs, an
understanding of their geometric origin is very well motivated.

An additional tantalizing piece of evidence for the existence of these rank-zero theories
in 5d comes about by looking at higher-rank theories T 5d

X . For instance, we find a large
number of rank-1 theories T 5d

X , from canonical singularities with r = 1, that can be viewed
as an ‘ordinary’ rank-1 ‘coupled’ to a rank-0 SCFT. These new theories differ in their Higgs

4These one-form symmetries were also studied in [82], which appeared on the arXiv at the same time as
the first version of this paper.
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branches and in their global symmetries, in particular in their higher-form symmetries, from
the ‘underlying’ rank-1 and rank-0 theories. We will give one specific example of this in
this paper; many more examples, of essentially any rank, will be discussed in [10].

Our evidence in 4d is somewhat more limited, but points towards the same conclusion,
that these rank-0 4d N = 2 theories, engineered at toric singularities [46], can be free
hypermultiplets or discrete gauging thereof.

This paper is organised as follow. In section 2, we set the stage by reviewing some
basic features of the geometric engineering of 5d and 4d SCFTs from canonical singularities,
and we explore the relation between the two constructions via T-duality. In section 3, we
explore this 5d/4d correspondence in a few examples where both sides are well understood.
In sections 4, we study the 5d theories that correspond to Argyres-Douglas in 4d, and are
generally rank-0 5d theories. Finally, in section 5, we discuss some 4d theories engineered
at toric singularities.

2 5d/4d correspondence via 3d mirror symmetry

In this section, we first review some aspects of the geometric engineering of the 5d SCFT
T 5d

X and of the 4d SCFT T 4d
X from an isolated canonical singularity X. We then discuss

how they are related by 3d mirror symmetry. Finally, we shall briefly explain how to read
off various higher-form symmetries from the geometry. The formalism reviewed here will
be explained in more depth in [10].

2.1 5d SCFTs from M-theory

By now, there is a large amount of evidence for the proposition that the low-energy limit of
M-theory on a singularity X defines for us a five-dimensional SCFT in the transverse direc-
tions, as in (1.2). While the 5d superconformal fixed point is necessarily a strongly-coupled
system [96, 97], it is an otherwise ordinary local unitary QFT.5 A standard approach, util-
ising its M-theory definition, is to deform and/or (crepantly) resolve the singularity X to
obtain a smooth local (that is, non-compact) Calabi-Yau (CY) threefold. Then, standard
methods (chiefly, the supergravity approximation and the study of BPS branes) become
available. The parameter spaces of resolutions and of deformations are identified with the
extended Coulomb branch and with the Higgs branch of the 5d SCFT, respectively

ECB(T 5d
X ) ↔ resolutions (extended Kähler cone): X̃

HB(T 5d
X ) ↔ deformations (complex structure parameters): X̂

(2.1)

The geometric approach to T 5d
X has mostly focussed on its Coulomb branch (CB), whose

low-energy dynamics is well-approximated by 11d supergravity [98]. Any smooth point

5One may think of this system, at least heuristically, as the result of decoupling 5d gravity, in a com-
pactification of M-theory on some Calabi-Yau threefold, by taking some large volume limit. Here, our point
of view is to consider the canonical singularity X irrespective of any embedding in a compact CY3, which
may or may not exist.
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of the (extended) CB is described by a complete crepant resolution π : X̃ → X, which
contains an exceptional locus:

π−1(0) =
r⋃

a=1
Sa , (2.2)

consisting of r exceptional divisors intersecting along curves, assuming r > 0.6 The integer
r, which is independent of the choice of crepant resolution, is called the rank of the 5d SCFT.
The effective field theory on the CB consists of r massless photons (and their superpartners
in 5d N=1 vector multiplets) with an action fully determined by the classical geometry
X̃ [7]. The low-energy BPS excitations are the M2-branes (electrically charged particles)
and M5-branes (magnetically charged strings) wrapping 2- and 4-cycles, respectively, within
the exceptional locus (2.2). We should also note that some of the Kähler parameters
correspond to effective curves which are dual to non-compact divisors. These correspond to
non-dynamical vector multiplets, or, equivalently, to mass terms for flavor symmetries. We
denote by f the rank of the flavor symmetry group from these curves, which is a subgroup
of the actual flavor symmetry group, G5d

H , of T 5d
X (see section 2.4 for more details). The

resolved singularity may also contain 3-cycles, but on the other hand it is always simply
connected [99, 100]. We then have:

dimH1(X̃,R) = 0 , dimH3(X̃,R) = b3 ,

dimH2(X̃,R) = r + f , dimH4(X̃,R) = r .
(2.3)

The exceptional divisors and curves can be collapsed to zero volume by varying the Kähler
parameters, thus recovering the UV SCFT T 5d

X . At that point, the origin of the 5d CB,
mutually non-local particles and strings become massless, which is a strong indicator of
the existence of a gapless phase [83]. The 3-cycles in the crepant resolution X̃ also provide
free hypermultiplets on the five-dimensional CB. This can correspond to rather interesting
physics, as we will see in some examples below, and in [10].

The SCFT T 5d
X may also have a Higgs branch (HB), parameterized by the VEVs of

scalar operators charged under the SU(2)R superconformal R-symmetry. A generic point
on the HB also spontaneously breaks the flavor symmetry group, G5d

H . The HB of any
SQFT is a hyper-Kähler manifold. In any SCFT, it should also be a hyper-Kähler cone.
We denote byMH [T 5d

X ] (orM5d
H ) the HB of T 5d

X , and by dH its quaternionic dimension

dimMH [T 5d
X ] = 1

2dimCMH [T 5d
X ] = dH . (2.4)

Upon deforming the singularity X to a smooth local CY threefold X̂, we obtain a num-
ber of 3-cycles, S3

l , l = 1, · · · , µ, which are topologically three-spheres. The low-energy
hypermultiplets consist of the complex-structure moduli:

tl =
∫
S3
l

Ω3 , (2.5)

6The case r = 0 instead corresponds to ‘small resolutions’, i.e. resolutions whose exceptional loci consist
of curves only. In that case, we have real mass terms but no dynamical CB fields in 5d.
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very schematically, paired with the 5d axions arising from the reduction of the M-theory
3-form gauge field. Not all such hypermultiplets are dynamical, however [72]. The Higgs
branch dimension dH is generally smaller than µ. For X an IHS, one finds that:

dH = r̂ + f , (2.6)

where r̂ is the dimension of the mixed Hodge structure (MHS) group H1,2(X̂) on the
vanishing cohomology of X. Indeed, for this class of singularities, we have [41, 43]:

µ = 2r̂ + f , f = dimH2,2(X̂) , r̂ = dimH1,2(X̂) = dimH2,1(X̂) . (2.7)

The complex structure parameters in H1,2(X̂) corresponds to ‘strictly normalizable’ de-
formations7 of X, while the ‘normalizable deformations’ also include the parameters from
H2,2(X̂).8 Importantly, the integer f defined as in (2.7) coincide with the integer f ap-
pearing in (2.3), as we explain further below.

Unlike the situation for the CB, 11d supergravity is not enough to compute the metric
on the Higgs branch of T 5d

X , due to the presence of M2-brane instantons wrapping the
vanishing 3-cycles [101]. Instead, one must rely on other approaches, using various string-
theory dualities. A particularly fruitful approach, in recent years, has been the study of
(p, q)-brane webs engineering T 5d

X [29], and the related concept of a “magnetic quiver”
whose 3d Coulomb branch is identical to the hyper-Kähler cone of the HB,MH [T 5d

X ], that
we would like to understand [27, 30, 31, 33, 34, 38, 102]. One interesting outcome of the
present work is that it provides a derivation from the geometry of magnetic quivers for the
SCFT T 5d

X defined as in (1.2), at least in a number of cases [10]. We will see some examples
of this in section 3 below.

2.2 4d SCFTs from Type IIB

The low-energy limit of Type IIB string theory on a canonical singularity X defines a 4d
N = 2 SCFT T 4d

X , (1.3), in the transverse directions [8, 42–45, 103–105]. In this context,
the complex structure deformations correspond to the (extended) Coulomb branch of the
SCFT, while the Kähler cone of X underlies the Higgs branch of the theory:

ECB(T 4d
X ) ↔ deformations (complex structure parameters): X̂

HB(T 4d
X ) ↔ resolutions (Kähler parameters): X̃

(2.8)

Here, the beautiful structure of the 4d N = 2 Coulomb branch, which must be a special
Kähler cone, is encoded in the classical geometry of the deformed singularity X. By
contrast, the 4d Higgs branch metric receives quantum corrections from D1- and D3-brane
instantons wrapping the exceptional locus of X̃.

7By which we mean, such that ∆ > 1, with the scaling dimension ∆ defined in (2.13) below; normalizable
deformations have ∆ ≥ 1.

8It may be worth pointing out that the H2,2 MHS group does not correspond to 4-forms (it is not a
Dolbeault cohomology group). For a pedagogical review of MHS in our context, we refer to [10].
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For concreteness, let us focus on the case of quasi-homogeneous isolated hypersurface
singularities (1.1), as first studied in [8]. The 4d SCFT T 4d

X must have a superconformal R-
symmetry U(1)r which is spontaneously broken on the Coulomb branch. This corresponds
to the condition that the defining polynomial F (x) be quasi-homogeneous

F (λq1x1, λ
q2x2, λ

q3x3, λ
q4x4) = λF (x1, x2, x3, x4) , (2.9)

for some scaling weights qi ∈ Q>0. The requirement that the singularity be canonical
translates to the condition ∑4

i=1 qi > 1. The deformed singularity, corresponding to the
CB, takes the form:

X̂ ∼=
{
F̂ (x) ≡ F (x) +

µ∑
l=1

tl x
ml = 0

}
, (2.10)

where xml denote the monomials generating the Milnor ring

M(F ) = C[x1, x2, x3, x4]/(dF ) , (2.11)

and µ is the Milnor number of the singularity, where one has the relation

µ =
4∏
i=1

(q−1
i − 1) . (2.12)

At generic values of the complex-structure parameters tl, the deformed singularity is smooth
and has the homotopy type of a ‘bouquet’ of µ three-spheres. Let us order the deformations
tl according to their weights Q[t] under (2.9). They have conformal dimensions

∆[tl] = Q[tl]∑4
i=1 qi − 1

. (2.13)

One then identifies the deformation parameters with dimensions ∆ > 1 as the CB ‘u-
parameters’ — the VEVs ul ≡ 〈Ol〉 of the CB operators Ol — while the parameters with
∆ < 1 are supersymmetric deformations of the SCFT (that is, deformations of the 4d
theory by the F-terms

∫
d4θOl). We denote by r̂ the number of CB operators — that is,

the rank of the SCFT, whose CB is freely generated. Each independent CB operator is
paired with a corresponding F-term deformation, with

∆[tl] + ∆[tµ−l+1] = 2 , l = 1, · · · r̂ . (2.14)

The deformations with ∆ = 1, on the other hand, are unpaired, and correspond to complex
mass terms, which are VEVs for background vector multiplets for the maximal torus of
the flavor symmetry group, G4d

H , of T 4d
X . Let us also mention that, by using the Shapere-

Tachikawa relations [106], the conformal central charges a and c can be easily computed
from the spectrum (2.13) [43]. See also [54] for some more recent developments.

The Seiberg-Witten geometry [107] of T 4d
X is entirely captured by the local Calabi-Yau

X̂ fibered over the extended Coulomb branch (ECB), corresponding to the ‘normalizable
parameters’ tl such that ∆[tl] ≥ 1. The low-energy physics is therefore determined by an
SL(µ,Z) bundle over the ECB, with the SW periods computed classically as

al =
∫
Al

Ω3 , aD,l =
∫
Bl

Ω3 , l = 1, · · · , r̂ , mα =
∫
L

Ω3 , α = 1, · · · , f , (2.15)
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in some appropriate basis of H3(X̂,Z); the holomorphic 3-form Ω3 of the non-compact
CY threefold X̂ generalizes the SW differential λSW [103]. The non-trivial structure of
the SW fibration can be studied using Picard-Lefschetz theory. In particular, one can
straightforwardly compute the monodromy group of the 4d ECB from the singularity data.
Let us also recall that the Coulomb-branch BPS particles are realized as D3-branes wrapped
over the vanishing 3-cycles [8], and that the Milnor number µ = 2r̂+ f is the dimension of
the electro-magnetic charge lattice, extended with the flavor charges.

2.3 Crepant resolution and anomaly matching on the Higgs branch of T 4d
X

The Higgs branch of T 4d
X is engineered in IIB as a torus fibration over the complexified

Kähler cone of the singularity — see e.g. [108–110]. While the HB metric is strongly
affected by the D-brane instantons, we can nonetheless understand the basic features of
the Higgs phase by studying the topology of a generic crepant resolution, X̃. The number of
hypermultiplets, d̂H , at a generic point on the HB, is given by the number of 2-cycles (2.3),
d̂H = r + f — that is, the number of Kähler parameters. The number of massless vector
multiplets at such a Higgs-branch point, on the other hand, is given by 1

2b3, half the number
of 3-cycles in the crepant resolution (they come in pairs [99]). Finally, there might remain
some terminal singularities XIR on the exceptional locus of the resolution X̃, which cannot
be resolved further. Such singularities are interpreted as ‘irreducible’ SCFTs, which live at
every point on the Higgs branch. (This general structure of the Higgs branch was discussed
from the VOA perspective in [70].) To summarize, we have the following Higgs-branch low-
energy effective theory:

THB[T 4d
X ] ∼= (d̂H hypers)⊕

(1
2b3 vectors

)
⊕T 4d

XIR ↔ (2-cycles)⊕ (3-cycles)⊕XIR ,

(2.16)
with the indicated geometric correspondence. The IR SCFT is a tensor product of distinct
SCFTs whenever there are several distinct residual terminal singularities. We can provide
a strong check of this picture by matching the ’t Hooft anomaly Tr(U(1)r), since U(1)r is
preserved on the Higgs branch. For the SCFT in the UV, the anomaly is simply related to
the conformal anomalies [106]:

Ar[T 4d
X ] = 24(c− a) = nh − nv , (2.17)

where nh = −16a+ 20c and nv = 8a− 4c are the ‘effective’ number of hypermultiplet and
vector multiplets, respectively, at the fixed point. Upon going on the Higgs branch, we
have to match with the anomaly of the IR theory (2.16):

Ar[THB] = d̂H −
1
2b3 +Ar[T 4d

XIR ] . (2.18)

Thus, we must have:
24(c− a) = d̂H −

1
2b3 + 24(cIR − aIR) , (2.19)

where aIR, cIR are the central charges of the IR SCFT T 4d
XIR

. (See [111, 112] for related
discussions.) This anomaly matching condition provides a strong check on the geometric
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engineering picture, since it looks quite miraculous in terms of the geometry, relating the
deformation data (which encodes a − c) to the crepant resolution data. We checked this
relation explicitly in many examples. It would be very interesting to prove it directly from
the geometry. For future reference, let us also define the quantity

∆Ar ≡ 24(c− a)− d̂H = −1
2b3 + 24(cIR − aIR) , (2.20)

which vanishes if the Higgs branch consists of free hypermultiplets only.9

2.4 Flavor symmetries, conifold transitions and boundary five-manifold

For X a hypersurface singularity, we have seen that the integer denoted by f appears in
two distinct ways:

f = ρ(X)
= dimH2,2(X̂) .

(2.21)

On the first line, ρ(X) is the divisor class number — that is, the number of non-compact
divisors, or, equivalently, the number of compact 2-cycles Cα, α = 1, · · · , f , to which they
are dual, in any crepant resolution X̃. They give rise to background vector multiplets
in the Coulomb phase of the 5d SCFT T 5d

X , in the M-theory construction. Since every
conserved current in T 5d

X gives rise to an SU(2)R-preserving massive deformation of the 5d
fixed point [96], we would naively think that all such mass terms should be visible as Kähler
parameters of the resolved singularity. This is however not the case, which is related to the
possible presence of b3 ∈ 2Z 3-cycles in the resolved geometry. We claim that the flavor
rank of T 5d

X is given by:

rank(G5d
H ) = f + nssb , nssb ≤

1
2b3 . (2.22)

Here, the interpretation of the 3-cycles in X̃ is that some operators in T 5d
X have been

given a VEV, landing us in a ‘partial Higgs phase,’ which spontaneously breaks a subgroup
U(1)nssb ⊂ G5d

H of the flavor symmetry of T 5d
X . The number nssb must be computed in a

case-by-case basis, as it depends on the details of the resolution (we will see examples of
this in the next section) — it corresponds to the number of Kähler parameters that can be
gained by geometric transitions on these 3-cycles, which preserve the 5d Coulomb phase.

On the second line of (2.21), f is defined as the number of ‘unpaired’ three-cycles
in any generic deformation of the singularity. These are the compact 3-cycles S3

α ⊂ X̂,
α = 1, · · · , f , dual to non-compact 3-cycles, which give rise to background vector multiplets
in the Coulomb phase of the 4d SCFT T 4d

X , in the IIB construction, and f is then identified
as the rank of the flavor symmetry of T 4d

X . Since there cannot be any 2- and 4-cycles in
the deformation X̂ of an IHS [113], we do not have any mixed Higgs phase on the CB of
T 5d

X , and therefore we expect that

rank(G4d
H ) = f . (2.23)

9The converse is not true, of course, since we can have the coincidence that ∆Ar = 0 because b3 =
48(cIR − aIR). On the other hand, ∆Ar 6= 0 implies that the HB theory includes additional degrees of
freedom besides the hypermultiplets, and ∆Ar non-integer implies that there is some irreducible IR SCFT.
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Note that, even when b3 = 0 and G5d
H and G4d

H have the same rank, the flavor groups
G5d
H and G4d

H themselves, which act as SU(2)R-preserving isometries on the quantum Higgs
branchesMH [T 5d

X ] andMH [T 4d
X ], will in general not be the same.

Geometrically, there are two related ways to understand the ‘coincidence’ (2.21). The
first one is that there exists a geometric transition that shrinks the curve Cα ⊂ X̃ to zero
size, before turning on the complex structure deformation that gives rise to the 3-cycle S3

α,
or vice versa, generalizing the well-studied conifold transition [9, 114]:

Cα ←→ S3
α . (2.24)

Such a transition, in general, has to go through the singularity X at the common origin
the Kähler and complex structure parameter spaces. Physically, in either the 5d or 4d
interpretation, this transition (Cα → S3

α in M-theory, or S3
α → Cα in IIB) corresponds to

sending a mass to zero, upon which some field charged under the flavor symmetry U(1)α
becomes massless, and can be then given a VEV that spontaneously breaks the symmetry.

The second, related explanation is that both the 2-cycles Cα and the 3-cycles S3
α sit in

the image of the embedding map for the boundary into the threefold, namely

Cα ∈ im
[
H2(∂X̃,Z)→ H2(X̃,Z)

]
, S3

α ∈ im
[
H3(∂X̂,Z)→ H3(X̂,Z)

]
. (2.25)

For an isolated singularity, the act of resolving or deforming the singularity does not affect
the boundary at infinity, and we have

∂X̃ ∼= ∂X̂ ∼= L5(X) . (2.26)

Here, L5(X) is the link of the singularity X.10 For quasi-homogeneous isolated hypersurface
singularities, L5(X) is simply-connected [113], so that its homology takes the general form:

H0(L5,Z) = Z , H1(L5,Z) = 0 , H2(L5,Z) = Zf ⊕ h2 ,

H3(L5,Z) = Zf , H4(L5,Z) = 0 , H5(L5,Z) = Z ,
(2.27)

Both f and the finite abelian group h2 can be computed directly from the weights qi [116,
117]. (See [10] for a review of the relevant combinatorial formulas.) We will discuss the
physical meaning of TorH2(L5,Z) = h2 in subsection 2.7.

2.5 Circle reductions and the electric quiverines

In both the M-theory engineering of T 5d
X and the Type IIB engineering of T 4d

X , the extended
Coulomb branch geometry arises semi-classically in string theory. On the one hand, the
ECB of T 5d

X is identified with the extended Kähler cone of the singularity, of real dimension
r+f , parameterizing the crepant resolutions of X (see e.g. [15] for a more detailed review).
On the other hand, the ECB of T 4d

X is identified with the versal family of complex structure
10If the singularity admits a Ricci-flat metric, the five-dimensional link admits a Sasaki-Einstein metric (by

definition). Here, we will not assume this, as there are generally obstructions to the existence of a SE metric
— see [115] for a nice review. The non-existence of SE5 metrics, for many singularities of physical interest for
geometric engineering, raises quite interesting questions, which however go beyond the scope of this paper.
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deformations, with the special-Kähler conical structure arising naturally from the vanishing
3-cycles.

By contrast, the Higgs branch in either case is much harder to study, since it receives
M2- or D-brane instanton corrections. From the assumed superconformal invariance, we
know that it must be a hyper-Kähler cone, and, from the geometric engineering, we know
its quaternionic dimension:

dimMH [T 5d
X ] = dH = r̂ + f , dimMH [T 4d

X ] = d̂H = r + f , (2.28)

in 5d and 4d, respectively. Note that, in this paper, we are always talking about the
‘quantum Higgs branch’ of the SCFT [57], which generally does not have any Lagrangian
description — in particular, the Higgs branch may not be realizable as a hyper-Kähler
quotient. Of course, one could also consider mixed branches, which correspond to partially
resolving then deforming the singularity, or vice versa.

It is clear, from the discussion so far, that the Higgs branch data and the Coulomb
branch data of the 5d and 4d SCFTs are related to each other. In particular, we see
from (2.28) that the quaternionic Higgs branch dimension in 5d, dH , is equal to the complex
dimension of the extended Coulomb branch of T 4d

X . In this subsection and the next, we
spell out this relation in more detail.

Let us first consider compactifying the theory T 4d
X on a finite-size circle. This gives

rise to a three-dimensional N = 4 supersymmetric field theory, whose Coulomb branch is
now hyper-Kähler — each 4d N = 2 abelian vector multiplet gives us a 3d N = 4 vector
multiplet, which contains three real scalars plus a (dual) photon, and the hyper-Kähler
structure is dictated by 3d N = 4 supersymmetry. Note that this happens as soon as we
compactify the theory on S1, at any radius [118, 119]. The 3d N = 4 CB receives quan-
tum corrections which dramatically correct its metric — say, compared to a semi-classical
description for a 4d Lagrangian theory on R3 × S1. In string theory, these corrections
arise from D3-branes instantons wrapping the circle times any vanishing 3-cycle in X̂. Let
DS1T 4d

X denote the KK 3d N = 4 theory obtained by circle compactification. In the far
IR (compared to the KK scale), we obtain a new 3d N = 4 SCFT, which we denote by:

EQ(4)[X]
3d∼= DS1T 4d

X . (2.29)

More precisely, we should think of EQ(4)[X] (also written as EQ(4), with the dependence
on the choice of singularity X implicit) as a three-dimensional SQFT which coincides with
DS1T 4d

X below the KK scale — for T 4d
X given by a superconformal Lagrangian, it would

simply be the dimensionally-reduced Lagrangian theory; for non-Lagrangian theories (the
generic case), we need to work harder. The 3d N = 4 SQFT EQ(4) is called the ‘electric
quiver(ine)’ of the 4d SCFT T 4d

X . Its IR fixed point is the 3d N = 4 SCFT we are inter-
ested in. It has a scale-invariant Coulomb branch, which must be a hyper-Kähler cone of
quaternionic dimension

dim CB[EQ(4)[X]] = r̂ , (2.30)

while its Higgs branch, of dimension d̂H , coincides with the Higgs branch of T 4d
X . Note

that the SU(2)C R-symmetry acting on CB[EQ(4)] arises as an accidental IR symmetry, af-
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ter non-trivial mixing between the U(1)r symmetry of T 4d
X and 3d topological symmetries

that are present along the RG flow [120].
Similarly, we may consider the 5d SCFT T 5d

X on a finite-size torus, which defines for
us a KK field theory denoted by DT 2T 5d

X . This gives us another 3d N = 4 SCFT in the
deep IR, and we denote the intermediate 3d N = 4 SQFT by

EQ(5)[X]
3d∼= DT 2T 5d

X . (2.31)

Since T 5d
X is never given by a superconformal Lagrangian, the ‘electric quiver’ EQ(5) is not

something we can read off easily. (Note, in particular, that this is not the dimensional
reduction of some 5d IR gauge-theory description which may arise on the ECB of the 5d
SCFT.) By definition, the electric quiver of T 5d

X has a Coulomb branch of dimension

dim CB[EQ(5)[X]] = r , (2.32)

while its Higgs branch, of dimension dH , coincides with the Higgs branch of T 5d
X .

As anticipated in the introduction, the T 5d
X on a torus and T 4d

X are related by T-duality
in Type II string theory, as suggested by our construction

DT2T 5d
X ↔ IIA on R3 × S1

β ×X ↔ IIB on R3 × S1
1
β
×X ↔ DS1T 4d

X , (2.33)

and it is known that T-duality realizes 3d N = 4 mirror symmetry as a perturbative string-
theory symmetry [9] (we can keep gs very small in this whole discussion, by taking the M-
theory circle to be small). Thus, we expect the two 3d N = 4 effective descriptions (2.29)
and (2.31) to be related by mirror symmetry. This, however, cannot be exactly true in our
setup, since the dimension of the CB of EQ(4), (2.30), does not match the dimension of the
HB of EQ(5) (dH = r̂ + f) unless f = 0, and vice versa. The discrepancy comes from the
f U(1) vectors in either description (4d in IIB, or 5d in M-theory), which we discussed in
subsection 2.4.

In the following, we give a natural prescription to explicitly relate the SQFT descrip-
tions of the 4d and 5d SCFTs compactified to 3d. A more detailed explanation of our
approach will be given in [10].

2.6 Higgs branches, magnetic quiverines and 3d mirrors

Let us first define the magnetic quiverine of the 4d SCFT T 4d
X as the 3d N = 4 mirror

dual to its electric quiver:11

MQ(4) 3d mirror⇐⇒ EQ(4) . (2.34)

This magnetic quiverine — by the definition, the 3d mirror description of the 3d SCFT
obtained by compactifying the 4d SCFT on a circle — is more often called the 3d mirror of
T 4d

X . In recent years, 3d mirror theories have been obtained for many strongly-coupled the-
ories, in particular for many Argyres-Douglas theories [86, 121–123]. The interesting point
is that MQ(4) may have an explicit Lagrangian description in 3d, even if EQ(4) does not.

11Recall that we use the term ‘quiverine’ for the 3d theories in general, which may not have a description
as a standard quiver gauge theory.
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Similarly, we define the magnetic quiverine of the 5d SCFT T 5d
X as the 3d mirror

MQ(5) 3d mirror⇐⇒ EQ(5) . (2.35)

In the recent literature, the magnetic quiver (MQ) of any SQFT with eight Poincaré su-
percharges, T , has been defined as a useful ‘auxiliary’ construction (generally constructed
from a brane-web diagram), from which the Higgs branch of T can be computed as a 3d
N = 4 Coulomb branch

MH [T ] = CB[MQ] . (2.36)

The geometric-engineering approach gives us a fully geometric realization of this perspec-
tive [31], at least abstractly. Indeed, we really ought to define the magnetic quiver(ine)s
directly from the string ‘compactification’, as follows.

Let us first consider the 5d SCFT T 5d
X on T 2 ∼= S1

M × S1
β , as in (2.31). It is well

appreciated that abelian flavor symmetries in 3d can be gauged and ‘ungauged’ at min-
imal cost [74, 75]. The theory EQ(5) has a U(1)f flavor symmetry,12 which acts on its
Higgs branch as an isometry commuting with the SU(2)R action. We may then gauge this
symmetry, to obtain a new theory, denoted by:

MQ(4) ≡ EQ(5)/U(1)f . (2.37)

This gauging operation takes a theory that depends on background multiplets V(F ) for
U(1)f and gives us another theory with a new topological symmetry U(1)fT (one topological
current for each gauged U(1)) coupled to background vector multiplets V(T ). Schematically,
we have:

SMQ(4) [V(T )] = − log
∫

[DV(F )] exp
(
−SMQ(5) [V(F )]−

i

2π

∫
A(T ) ∧ dA(F ) + · · ·

)
, (2.38)

where A denotes the gauge fields in vector multiplets, and the ellipsis denotes the super-
symmetric completion (including Fayet-Iliopoulos terms). In particular, this so-called ‘S
operation’ sends an SCFT to another SCFT [75]. The operation is reversible; if we now
gauge the new topological symmetries of MQ(4), we obtain the original theory:13

EQ(5) ≡ MQ(4)/U(1)fT . (2.39)

Note also that the gauging operation (2.37) acts on the Higgs branch of the theory as a
hyper-Kähler quotient14

HB[MQ(4)] =MH [T 5d
X ]

///
U(1)f , (2.40)

while it increases the dimension of the Coulomb branch by f (roughly speaking, the ECB
becomes the CB). In particular, we have:

dim HB[MQ(4)] = dH − f = r̂ , dim CB[MQ(4)] = r + f = d̂H . (2.41)

This is perfectly consistent with the 3d mirror symmetry (2.34).
12Which may enhance to a larger, non-abelian flavor symmetry, in which case we are only considering

the maximal torus.
13More precisely, we obtain the original electric quiver theory coupled to vector multiplets of opposite sign.
14This is what we called ‘reduced HB’ in table 1.
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By the same token, we may define the magnetic quiver of the T 5d
X as the gauging of

the electric quiver for T 4d
X :

MQ(5) ≡ EQ(4)/U(1)f . (2.42)

Here, the U(1)f flavor symmetry acts as an isometry of the Higgs branch MH [T 5d
X ], and

we have:
dim HB[MQ(5)] = r , dim CB[MQ(5)] = dH , (2.43)

in agreement with (2.35). These relations are simple tools to study the Higgs branch of
either T 5d

X or T 4d
X . They also relate many previously-known results to each other. In the

following sections, we will demonstrate this in a few concrete examples.

2.7 Higher-form symmetries of SCFTs

The higher-form symmetries [124] of the SCFT T 5d
X or T 4d

X , defined from the singularity X,
can be studied as in [79–81]. Here, we briefly discuss the case of X an isolated hypersurface
singularity, and refer to [10] for a more detailed discussion.

The data of any QFT generally involves a choice of ‘global structure’ — for instance,
for gauge theories, we need to choose a gauge group G, as opposed to only choosing a Lie
algebra Lie(G); this choice translates into distinct spectra of Wilson lines and of (d−3)-
dimensional ’t Hooft operators [125]. In the geometric-engineering picture of the SCFT,
the choice of global structure is related to a choice of consistent boundary conditions for
the torsion fluxes in the non-compact threefold [79, 126].

A time-honored general strategy to study the SCFTs is through the analysis of its
moduli space of vacua, which corresponds to resolving and/or deforming the singularity
X. For instance, one can see the ‘enhanced’ flavor symmetry GH of the fixed point as the
hyper-Kähler isometries of the conical Higgs branch. Similarly, one-form symmetries, or
their magnetic (d−3)-form version for an SCFTd, can be studied on the Coulomb branch,
where they are spontaneously broken [124]. We can also have (d−2)-form symmetries and
their ‘electro-magnetic’ dual 0-form symmetries, which can be spontaneously broken on
the Higgs branch.

In practice, one analyses the q-form symmetries by looking for q-dimensional charged
operators that can obtain VEVs, in either the Higgs phase or the Coulomb phase. These
operators are realized in string-theory as branes wrapping a relative 3-cycle of X̂ which
ends on a torsion 2-cycle of the boundary, ∂X̂. We can then compute the higher-form
symmetry [79–81] of the SCFT from the following relative homology group

Tor
[
im : H3(X̂, ∂X̂,Z)→ H2(X̂,Z)

]
∼= TorH2(L5(X),Z) ≡ h2 . (2.44)

A choice of global structure corresponds to choosing a consistent half-dimensional sub-
lattice of mutually-commuting fluxes. Note that, here, we always have:

h2 ∼= f⊕ f , (2.45)

and that we will choose the simplest sub-lattices (f, 0) ⊂ h2 or (0, f) ⊂ h2, for simplicity,
leaving a systematic analysis of the space of global structures for future work. We then
have the following (non-exhaustive) list of possibilities, also summarized in table 2:
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SCFT[X] ‘electric’ sym. / charged object ‘magnetic’ sym. / charged object

T 5d
X Γ(0)

e / M2-brane Γ(3)
m / M5-brane

T 4d
X Γ(1)

e / D3-brane Γ(1)
m / D3-brane

Table 2. The group f ⊂ H2(L5(X),Z), interpreted as a q-form symmetry group Γ(q).

Three-form/zero-form symmetries of T 5d
X . For the 5d SCFT T 5d

X , the defect
group (2.44) corresponds to either M5-branes or M2-branes wrapping non-compact 3-cycles
ending on a 2-cycle in h2. If we only allow for M5-branes in the spectrum, we have a 5d the-
ory with a 3-form symmetry, while if we only allow M2-branes, we have a 0-form symmetry.
Thus we have:

T 5d
X : Γ(3)

m = f or Γ(0)
e = f , (2.46)

for the ‘magnetic’ or ‘electric’ symmetry, respectively. These defect operators could be
constructed in various ways in the field theory — similar codimension-2 defects in 5d
theories were constructed in [127]. We leave their analysis for future work.

Note that the SCFT T 5d
X arising from an hypersurface singularity does not have any

one-form (or 2-form) symmetry [80, 81], since the boundary L5(X) is simply-connected.
This is contrast with the case of toric singularities, which we will briefly discuss in section 5.

One-form symmetries of T 4d
X . Similarly, in type-IIB string theory, we can wrap D3-

branes on non-compact 3-cycles in X̂. They correspond to line operators probing the
Coulomb phase. We then have the one-form symmetry:

T 4d
X : Γ(1)

m = f or Γ(1)
e = f . (2.47)

If T 4d
X is given by a superconformal Lagrangian, the global structure should simply corre-

spond to the choice of gauge group G— in particular, we will have a one-form symmetry if
a discrete subgroup of the center, f ⊂ Z(G), acts trivially on the matter fields. We will see
examples of this below. For non-Lagrangian theories, on the other hand, such as generalized
Argyres-Douglas (AD) theories, the analysis of the one-form symmetries will necessarily
be more subtle. In fact, the string-theory engineering makes very specific predictions for
the one-form symmetries of some AD theories, as we will discuss in section 4.4 below.

3 5d SCFTs with Lagrangian 4d SCFT counterparts

In this section, we illustrate the general discussion of the previous section with examples,
where both sides of the 5d/4d correspondence have a Lagrangian description. We start by
discussing the E8 rank-one 5d SCFT [5], and its rank-N generalizations [7], which already
brings about interesting subtleties. We furthermore discuss a 5d SCFT, which has an IR
description in terms of a quiver theory, as well as the SCFT associated to G2 + 5F . Each
example illustrates different aspects.
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F r f dH r̂ d̂H ∆Ar b3 f

x2
1 + x3

2 + x6
3 + x6N

4 N 6 12N − 1 12N − 7 N + 6 −N + 1 2N − 2 ZN
x2

1 + x4
2 + x4

3 + x4N
4 N 7 18N − 1 18N − 8 N + 7 −N + 1 2N − 2 ZN

x2
1 + x3

2 + x6
3 + x6N

4 N 8 30N − 1 30N − 9 N + 8 −N + 1 2N − 2 ZN

Table 3. Isolated hypersurface singularities engineering the rank-N En theories, for n = 6, 7, 8.

3.1 The rank-N E8 theory

The famous rank-one En SCFT [5], for n ≤ 8, can be engineered in M-theory on a canonical
singularity, XEn , whose crepant resolution is the canonical line bundle over the del Pezzo
surface dPn ∼= Bln−1P1×P1 [6]. This resolution probes the extended Coulomb branch of the
SCFT T 5d

XEn
, whose low-energy description is equivalent to the extended Coulomb branch

of the 5d N = 1 SU(2) gauge theory with Nf = n− 1 fundamental hypermultipets. These
5d fixed points admit an interesting rank-N generalization, with a gauge-theory phase:

Sp(N) + (n−1)F + AS . (3.1)

For N = 1, this reduces to the Sp(1) ∼= SU(2)+(n− 1)F gauge theory. The Higgs branch
of the UV fixed point is expected to be the moduli space of N En instantons in C2. For
n ≥ 6, these 5d SCFTs can be engineered in M-theory on the following isolated hypersurface
singularities:

XE6 : x3
1 + x3

2 + x3
3 + x3N

4 = 0 ,
XE7 : x2

1 + x4
2 + x4

3 + x4N
4 = 0 ,

XE8 : x2
1 + x3

2 + x6
3 + x6N

4 = 0 ,
(3.2)

up to some interesting subtleties for N > 1, which we will discuss below. For N = 1, in
particular, each of these singularities admits a crepant resolution obtained by blowing up
the origin of C4, x1 = x2 = x3 = x4 = 0, by projective spaces with weights (1, 1, 1, 1),
(2, 1, 1, 1) or (3, 2, 1, 1), respectively. The exceptional divisor is then dPn viewed as a
hypersurface in (weighted) projective space.

Some of the basic properties of the singularities (3.2) are summarized in table 3, note
that b3 and H2(L5,Z) were also computed in [128]. In this section, we focus on the E8 the-
ories, for definiteness. The E6 and E7 families can be treated in exactly the same manner.

3.1.1 Singularity spectrum and 4d superconformal quiver

Consider the singularity XE8

F (x) = x2
1 + x3

2 + x6
3 + x6N

4 = 0 , (q1, q2, q3, q4) =
(1

2 ,
1
3 ,

1
6 ,

1
6N

)
, (3.3)

with the scaling weights qi as indicated. The Milnor ring, M(F ), of the corresponding
isolated singularity, X = {F = 0}, is easily determined. One finds a non-trivial mixed
Hodge structure on the level set of the singularity, with the dimensions (2.7) given by:

f = dimH2,2(X̂) = 8 , r̂ = dimH1,2(X̂) = 30N − 9 , (3.4)
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while the Milnor number is given by µ = 2r̂ + f = 60N − 10. In particular, H2,2(X̂) is
generated by the 8 deformations of X corresponding to the monomial in xm ∈M(F ) with
scaling dimension Q = 1− 1

6N , namely:

x3x
5N−1
4 , x2

3x
4N−1
4 , x3

3x
3N−1
4 , x4

3x
2N−1
4 ,

x2x
4N−1
4 , x2x3x

3N−1
4 , x2x

2
3x

2N−1
4 , x2x

3
3x
N−1
4 .

(3.5)

In the IIB construction, they correspond to mass terms — CB operators of T 4d
X with

scaling dimension ∆ = 1. On general ground, as discussed in the previous section, f is
also the number of ‘unpaired’ 2-cycles in the resolution X̃ of the singularity, so that we
also have f = 8 5d N=1 real mass deformations (sitting in background vector multiplets)
apparent on the ECB of T 5d

X . For N > 1, there is an apparent mismatch with the number
of real masses expected from the gauge-theory description (3.1)

Sp(N) + 7F + AS , (3.6)

from which one would expect 9 mass deformations (7 from the fundamentals, 1 from the
antisymmetric, and 1 gauge coupling). Correspondingly, the 5d global symmetry at the
UV fixed point of (3.6) is expected to be E8 for N = 1, and E8 × SU(2) for N > 1. We
will explain the reason for this discrepancy (when N > 1) in subsection 3.1.2 below.

Let us first consider the 4d SCFT T 4d
X engineered from the singularity (3.3) in IIB.

In this case, as first shown in [103], the 4d SCFT has a Lagrangian description as a
superconformal gauge theory with gauge group:

G =
∏

dk=Dynkin label of Ê8

SU(dkN) , (3.7)

where dk are the Dynkin labels of the affine E8 algebra. This gauge group is coupled to
hypermultiplets in bifundamental representations, giving us the Ê8 gauge-theory quiver
shown in figure 1. This result can be derived from the integer-valued singularity spectrum
{∆}, as in [45]. For instance, for N = 1, we have the following scaling dimensions of CB
operators (∆ ≥ 1):

∆ 1 2 3 4 5 6
# 8 8 6 4 2 1

(3.8)

with their multiplicities indicated on the second line. Since an SU(K) gauge group con-
tributes CB operators of dimension ∆ = {2, 3, · · · ,K}, this spectrum is compatible with:

G = SU(6)× SU(5)× SU(4)2 × SU(3)2 × SU(2)2 , for N = 1. (3.9)

This reasoning generalizes to N > 1, giving us (3.7). There is then a unique way to
couple all these gauge groups together with hypermultiplets to obtain an SCFT [129]. As
a consistency check, we can compute the conformal anomalies of T 4d

X directly from the
singularity spectrum, to obtain:

nh = −16a+ 20c = 120N2 , nv = 8a− 4c = 120N2 − 9 . (3.10)
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3N

4N 2N

Figure 1. 4d SU -type N = 2 gauge-theory quiver for the rank-N E8 theory. The same quiver
graph describes the ‘electric quiver’ EQ(4), seen as a 3d N = 4 theory.

This exactly matches the number of hypermultiplets and vector multiplets, respectively, in
the 4d N = 2 gauge-theory quiver of figure 1.

Since T 4d
X is a Lagrangian theory, its Higgs branch is computed semi-classically, as a

hyper-Kähler quotient
M4d

H
∼= C240N2 ///

G . (3.11)

For N > 1, however, there is an interesting subtlety: a subgroup U(1)N−1 ⊂ G survives as
free vector multiplets at low-energy.15 The Higgs branch quaternionic dimension is then:

d̂H = nh − nv +N − 1 = 8 +N . (3.12)

The U(1)r ’t Hooft anomaly of course match:

24(c− a) = d̂H − (N − 1) . (3.13)

According to the general discussion in section 2.3, we should expect 2(N − 1) 3-cycles in
the resolved geometry X̃. This is indeed the case, as we will see momentarily. The 4d
N = 2 theory of figure 1 also has ZN one-form symmetry, in agreement with the prediction
from the geometry.

3.1.2 Resolutions: 5d Coulomb branch and 4d Higgs branch

From the singular equation (3.3) for X, we can explicitly construct the crepant resolution
π : X̃ → X. Using the notation of [21, 131], the resolution is obtained as a sequence of
weighted blow-ups (taking the proper transform) in the ambient space:

(x(3)
1 , x

(2)
2 , x

(1)
3 , x

(1)
4 ; δ1) ,

(x(3)
1 , x

(2)
2 , x

(1)
3 , δ

(1)
i ; δi+1) , for i = 1, · · · , N − 1 .

(3.14)

15This is rather familiar in a different context: this Ê8 4d N = 2 quiver also arises as the SCFT at
low-energy on the worldvolume of N D3-branes probing the (resolved) orbifold of C2 by the ‘E8’ finite
subgroup of SU(2), Y = C2/ΓE8 [130]. In that language, the Higgs branch of the N = 2 quiver corresponds
to the 8 resolution parameters of the orbifold singularity (the so-called baryonic operators), π : Ỹ → Y , and
to the N positions of the D3-branes on Ỹ (the so-called mesonic operators). The low-energy U(1) vector
multiplets are the degrees of the freedom of the N separated probe D3-branes (modulo the center-of-mass
U(1), which is decoupled).
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The superscripts denote the weights of the blowup, and δi are the sections associated to
the exceptional divisors of the blowup. The fully resolved singularity is completely smooth
can be summarized by the equation:

X̃ : x2
1 + x3

2 + x6
3 + x6N

4

N∏
i=1

δ6N−6i
i = 0 . (3.15)

If N = 1, the single exceptional divisor, S1 ∼= {δ1 = 0}, is a smooth degree-6 hypersurface in
the weighted projective space P3,2,1,1, which exactly has the topology of dP8. This confirms
that the 5d SCFT T 5d

X is the rank-one E8 theory, with the IR gauge-theory description
SU(2)+7F [6].

For N ≥ 2, the triple intersection numbers among the N exceptional divisors Si are:

S3
1 = S3

2 = · · · = S3
N−1 = 0 , S3

N = 1 ,
S2
i · Si−1 = −1 , S2

i−1 · Si = 1 , (i = 2, . . . , N) ,
(3.16)

with all other intersection numbers vanishing. From the Riemann-Roch theorem and the
adjunction formula:

S2
1 · S2 + S1 · S2

2 = 2g(S1 · S2)− 2 , (3.17)

one finds that the intersection curves Si · Si+1 (i = 1, . . . , N − 1) all have genus
g(Si · Si+1) = 1. In fact, the surfaces Si, i < N , are ruled surface over a genus-1 curve,
P1 → Si → T 2, while SN is a dP8 surface. These intersection numbers are exactly the
ones obtained for the gauge theory (3.6) engineered in [7].16 The Hodge diamond of the
surface Sk, for k < N , reads:

hi,j(Sk) =


1 1 0
1 2 1
0 1 1

 , k = 1, · · · , N − 1 . (3.18)

In particular, we find a pair of 3-cycles on each of these surface. Therefore, in total, there
are 2(N − 1) 3-cycles among all the Sk. This agrees with the number of 3-cycles in the
smooth local threefold X̃, which can be computed using the methods of [100]:

b3 = H3(X̃,Z) = 2N − 2 . (3.19)

Note that, on the other hand, the space X̃ is simply connected.
When N ≥ 2, interestingly, one can go through a geometric transition that flops the

genus-1 ruled surfaces Si (i < N) into Hirzebruch surfaces, and blows up the surface
SN (which becomes Bl8F3). (For the case of N = 2, this flop was explicitly constructed
in [16, 21].) After this transition, the (N−1)-intersection curves Si ·Si+1 all become genus-
zero curves. As a consequence, all the 3-cycles disappear and there is one additional 2-
cycle in the flopped geometry, X̃flopped. Alternatively, this geometric transition can also be
understood from the (p, q)-web for the 5d Sp(N) gauge theory, as we discuss in appendix C.

16See equations (8.13)-(8.14) of [7], plugging in g = 0, g′ = 1 and nF = 7.
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Interpretation in T 5d
X : the ‘AS hypermultiplet phase transition.’ The resolved

geometry (3.15) should correspond to a generic point on the extended Coulomb branch of
the 5d SCFT T 5d

XE8
. As already mentioned, from the gauge theory perspective (3.6), one

expects the ECB to be of real dimension N + 9, instead of:

dH = r + f = N + 8 , (3.20)

as dictated by the geometry. Recall that a hypermultiplet in a representation R of the 5d
gauge group G5d contributes to the prepotential as [7]:

FR = − 1
12
∑
ρ∈R
|ρ(ϕ) +mR|3 , (3.21)

where the sum is over all the weights ρ of the representation, ϕ denotes the CB VEVs of
G5d and mR is a real ‘flavor’ mass. For the antisymmetric of Sp(N), we have:

FAS = −N − 1
12 |mAS |3 −

1
12
∑
ρ 6=0
|ρ(ϕ) +mAS |3 . (3.22)

The key point is that the AS of Sp(N), of dimension (2N +1)(N −1), has N −1 vanishing
weights, ρ = (0, · · · , 0). Therefore, at a generic point on the Sp(N) Coulomb branch, we
have N − 1 neutral hypermultiplets of mass mAS . In the limit mAS → 0, these neutral
hypermultiplets can be given a VEV.

This phase transition resolves our puzzle. In M-theory, we interpret the resolved
geometry (3.15) as the Coulomb branch of the SCFT in a ‘partial Higgs phase,’ which can
be described as the Sp(N) gauge theory on its CB with mAS = 0 and non-zero VEVs for
the N − 1 neutral hypermultiplets, as we just discussed. In this phase, the 5d SCFT flavor
symmetry will be:

G5d
H = E8 , (3.23)

for any N , as we will see. The geometric transition mentioned above corresponds to turning
off these VEVs and turning on the mass for the antisymmetric, mAS 6= 0, which corresponds
to the new Kähler parameter for the additional curve in SN ⊂ X̃flopped after the flop. One
could then, in principle, go to the origin of the Kähler cone of this flopped geometry, where
we would expect an SCFT with flavor symmetry E8 × SU(2). For N = 2, this flavor sym-
metry is manifest in the model derived from a non-isolated singularity [21]; however, to our
knowledge the geometry that makes the SU(2) manifest for N > 2 is unknown. It would be
interesting to find such explicit geometries, including as isolated singularities if they exist.

In summary, our puzzle in the counting of the mass parameters of T 5d
X arose as an

order-of-limit issue. If we consider T 5d
X as defined by the canonical singularity (3.3), there

is no issue except that the 5d gauge-theory interpretation (3.1) is partially lost.17 If we
17Note that is not in contradiction with [7], where the prepotential of the Sp(N)+7F +AS gauge theory

was matched to the prepotential computed from the intersection numbers (3.16), because that computation
was not keeping track of the mass parameters. Instead, one should redo these computations while keeping
track of all the non-compact divisors, as done recently in [15, 132] for toric singularities, and in [21] for
elliptic models.
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insist on interpreting this SCFT as a ‘strong-coupling limit’ (i.e. a UV completion) of the
5d N = 1 gauge theory, the correct interpretation is that one needs to first send mAS to
zero, go to the ‘partial Higgs phase’ for the chargeless hypermultiplets, then take a scaling
limit wherein all the remaining N + 8 ECB parameters are sent to zero.

3.1.3 Magnetic quivers and the 5d Higgs branch

The 4d N = 2 quiver of figure 1 can be directly reduced to 3d, since it is a Lagrangian
SCFT. Thus, we see that the ‘electric quiver’ MQ(4) of T 4d

X is just the Ê8 quiver with
SU(N) gauge group, now viewed as a 3d N = 4 gauge theory. This theory (like T 4d

X itself)
has a flavor symmetry U(1)8, which are simply the symmetries rotating the 8 bifundamental
hypermultiplets. Gauging this symmetry according to our general prescription, we obtain
the magnetic quiver of the 5d SCFT

MQ(5)[XE8 ] =
N 2N 3N 4N 5N 6N

3N

4N 2N (3.24)

with the gauge group ∏k U(dkN) modulo the diagonal U(1). The CB of this MQ(5) can be
studied by standard methods. We see, in particular, that its has the expected dimension:

dH = dimM5d
H = r̂ + f = 30N − 1 . (3.25)

Moreover, this MQ(5) implies that T 5d
X has the enhanced flavor symmetry E8; the Cartan

of this E8 is the topological symmetry U(1)8 of the unitary quiver. For N > 1, the
MQ(5) (3.24) is distinct from the one expected from the strong-coupling limit of the 5d
Sp(N) theory, for the reasons explained above. The latter quiver would be:

1 N 2N 3N 4N 5N 6N

3N

4N 2N (3.26)

whose CB gives the (centered) moduli space of N instantons — see e.g. [133]. Note that
the additional U(1) node, which renders the node adjacent to it ‘unbalanced,’ could not
come from some Lagrangian matter in a 4d SCFT, since that would break four-dimensional
conformal invariance.

Finally, let us highlight the fact that we have derived the magnetic quiver (3.24) directly
from the singularity XE8 , without using (p, q)-webs. The same MQ(5) can be obtained from
a standard web construction for the Sp(N) theory in its ‘partial Higgs phase’, as explained
in appendix C.

3.2 Rank-two 5d SCFT with a gauge-theory phase SU(2)0−SU(2)−5F

As another interesting example, consider the canonical singularity:

F (x) = x2
1 + x5

2 + x10
3 + x3x

3
4 = 0 , (q1, q2, q3, q4) =

(1
2 ,

1
5 ,

1
10 ,

3
10

)
. (3.27)
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F r f dH r̂ d̂H ∆Ar b3 f

x2
1 + x5

2 + x10
3 + x3x

3
4 2 8 46 38 10 0 0 0

x2
1 + x5

2 + x5
3 + x5

4 2 0 32 32 2 −6 12 Z6
2

Table 4. The isolated singularities studied in subsections 3.2 and 3.3, respectively.

Its basic properties are summarized on the first line of table 4. As we will show, this
singularity engineers an SCFT T 5d

X which admits a gauge-theory phase:

SU(2)0 − SU(2)− 5F . (3.28)

The enhanced symmetry at the UV fixed point is known to be G5d
H = E8, through other

methods [21, 134, 135]. Let us analyse this model in the language of this paper.

3.2.1 Singularity spectrum and 4d superconformal quiver

The Milnor ring of the singularity (3.27) has µ = 84 generators. Amongst these, there are
exactly eight generators corresponding to 4d N = 2 CB operators with scaling dimension
∆ = 1 (that is, scaling weight Q = 9

10):

x6
3x4 , x

9
3 , x2x

4
3x4 , x2x

7
3 , x

2
2x

2
3x4 , x

2
2x

5
3 , x

3
2x4 , x

3
2x

3
3 . (3.29)

We thus find f = 8, which matches the rank of the flavor symmetry (including the topo-
logical symmetries) of the 5d gauge theory (3.28). In addition, there are r̂ = 38 generators
with ∆ > 1, corresponding to the CB operators of T 4d

X , whose ECB spectrum reads:

∆ 1 2 3 4 5 6 7 8 9 10
# 8 8 7 7 5 4 3 2 1 1

(3.30)

This spectrum is compatible with a 4d gauge group:

G = SU(10)× SU(8)× SU(7)× SU(6)× SU(5)× SU(4)2 × SU(2) . (3.31)

We can also compute the conformal anomalies of T 4d
X or, equivalently, the effective number

of hypermultiplets and vector multiplets:

nh = 312 , nv = 302 . (3.32)

It is then easy to see that the 4d SCFT is the N = 2 superconformal Lagrangian quiver
shown in figure 2, with gauge group (3.31). The 4d Higgs branch then determined semi-
classically. In particular, the four-dimensional HB dimension is:

d̂H = nh − nv = 10 . (3.33)

The 4d N = 2 quiver directly reduces to the electric quiver EQ(4), described by the same
gauge theory with 3d N = 4 vector multiplets. By gauging the U(1)8 flavor symmetry
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5

7 4 1

Figure 2. The N = 2 SCFT T 4d
X for the singularity x2

1 + x5
2 + x10

3 + x3x
3
4 = 0, where each node is

an SU(K) gauge group, with K as indicated.

e7

e8

Figure 3. Hasse diagram for T 5d
X defined by x2

1 +x5
2 +x10

3 +x3x
3
4 = 0, with magnetic quiver (3.34).

rotating the bifundamental hypermultiplets in EQ(4), we obtain the magnetic quiver of the
five-dimensional SCFT, T 5d

X , as a unitary quiver given by

MQ(5) =
2 4 6 8 10

5

7 4 1 . (3.34)

From this magnetic quiver, we can see that the flavor symmetry of T 5d
X enhances to E8 at the

fixed point. This is apparent in the quiver itself, which has balanced nodes in the shape of an
E8 Dynkin diagram, and it can also be seen by using the quiver subtraction technique [30]
to obtain the Hasse diagram of the Higgs branch HB[T 5d

X ], shown in figure 3. In fact, the
magnetic quiver (3.34) exactly corresponds to the next-to-minimal nilpotent orbit of E8,
as studied in [136]. The 5d HB dimension (computed as the dimension of CB[MQ(5)]) also
matches the counting of generators in the Milnor ring, dH = r̂ + f = 46, by construction.

3.2.2 Resolved geometry and 5d Coulomb branch

Given the 4d Higgs branch dimension (3.33), T 5d
X should have rank r = d̂H − f = 2. This

can be seen explicitly, by resolving the singularity (3.27). The resolution sequence is:

(x(2)
1 , x

(1)
2 , x

(1)
3 , x

(1)
4 ; δ1) ,

(x(3)
1 , x

(2)
4 , x

(1)
2 , δ

(1)
1 ; δ2) ,

(3.35)

which gives us a smooth threefold:

X̃ : x2
1 + x5

2δ1 + x10
3 δ

6
1 + x3x

3
4 = 0 . (3.36)
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The exceptional divisors, S1 ∼= {δ1 = 0} and S2 ∼= {δ2 = 0}, are irreducible, thus the
CB dimension of T 5d

X is indeed given by r = 2. We can also compute the following triple
intersection numbers:

S3
1 = 1 , S3

2 = 1 , S2
1 · S2 = 1 , S1 · S2

2 = −1 . (3.37)

The exceptional divisor S1 is a singular surface, however:

δ1 = 0 : x2
1 + x3x

3
4 = 0 . (3.38)

It can be viewed as ruled over a singular cubic curve x2
1+x3

4 = 0, with a cusp at x1 = x4 = 0.
In this case, we can perform a flop by blowing up this singular cubic at the double point
on S2 — see [16, 21] for more details and examples. After the flop, we have the following
intersection numbers:

S
′3
1 = 9 , S

′3
2 = 0 , S

′2
1 · S′2 = −3 , S′1 · S

′2
2 = 1 . (3.39)

Here, S′1 has the topology of P2 and S′2 is a Hirzebruch surface F3 blown up at eight points.
After another flop (blowing up S1 and blowing down S2), the intersection numbers match
the ones for the rank-two gauge theory (3.28) [16, 21].

Note that there is no 3-cycle in the resolved geometry X̃, because the genus-1 curve S1 ·
S2 is a nodal curve and the 1-cycle has collapsed. Hence we have b3 = 0. (The same result
is obtained with the methods of [100].) This model has no higher-form symmetry, either.

3.3 Rank-two 5d SCFT with a gauge-theory phase G2+5F

As our third example, consider the isolated singularity:

F (x) = x2
1 + x5

2 + x5
3 + x5

4 = 0 , (q1, q2, q3, q4) =
(1

2 ,
1
5 ,

1
5 ,

1
5

)
. (3.40)

whose properties are summarized on the last line of table 4. It turns out that it engineers
an SCFT with IR gauge theory descriptions

SU(3) 9
2

+ 5F , Sp(2) + 3F + 2AS , G2 + 5F . (3.41)

The enhanced flavor symmetry at the UV fixed point is G5d
H = Sp(6) [21]. Similarly to

the SU(2) flavor symmetry factor for the rank-N E8 theory of subsection 3.1, this flavor
symmetry turns out to be rather subtle from the point of view of the isolated singularity.
We make some preliminary comments on this issue below, and defer a complete discussion
to future work.

3.3.1 Singularity spectrum and 4d superconformal quiver

There are µ = 64 generators in the Milnor ring of the singularity (3.40). The 4d ECB
spectrum, corresponding to monomials with dimension ∆ ≥ 1, is as follows:

∆ 2 4 6 8 10
# 12 10 6 3 1

(3.42)
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Note that there is mass term (corresponding to ∆ = 1), in this case, and that all the scaling
dimension are even. This gives us:

f = 0 , dH = r̂ = 32 . (3.43)

The spectrum (3.42) and the conformal anomalies:

nh = 232 , nv = 236 , (3.44)

can be matched by a Lagrangian 4d N = 2 SCFT, which takes the form the orthosymplectic
quiver shown in figure 4.18 From the resolution X̃, to be discussed below, we find r = 2
and therefore:

d̂H = nh − nv + 6 = 2 . (3.45)

In particular, there should be 6 massless vector at low energy on the Higgs branch of the
orthosymplectic quiver of figure 4. Note that this identification is not unique, and as will
be discussed in [137], this particular CB spectrum has an alternative quiver realization.

Relatedly, this 4d N = 2 quiver has a Z6
2 one-form symmetry, arising from the fact

that the fundamental of Spin(K) preserves the Z2 center; this matches perfectly with the
geometry of the link, since H2(L5(X),Z) = Z12

2 .
Since f = 0, the orthosymplectic quiver reduced to 3d directly gives us the magnetic

quiver of T 5d
X , namely:

MQ(5) =
Spin(5)

Sp(3)

Spin(11)

Sp(2)

Spin(1)

Sp(4)

Spin(9)

Sp(3)

Spin(7)

Sp(2)

Spin(5)

Sp(1)

Spin(3) (3.46)

Of course, its Coulomb branch dimension matches dH = r̂ = 32, by construction. It
would be very interesting to study the Coulomb branch of (3.46) further, for instance by
computing its Hilbert series.

3.3.2 Resolved geometry and 5d Coulomb branch

Given the singular equation (3.40), we apply the following resolution sequence:

(x(2)
1 , x

(1)
2 , x

(1)
3 , x

(1)
4 ; δ1) ,

(x1, δ1; δ2) ,
(δ1, δ2; δ3) .

(3.47)

The resulting space is smooth

X̃ : x2
1δ2 + (x5

2 + x5
3 + x5

4)δ1 = 0 . (3.48)
18This particular quiver also appeared in [129]. In fact, the general discussion of that paper is very

useful in order to identify the possible N = 2 superconformal Lagrangian (if any) associated to a given
CB spectrum. Note that the rank-K gauge groups Sp(K) and SO(2K + 1) both have CB dimensions
∆ = {2, 4, · · · , 2K}.
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Spin(5)

Sp(3)

Spin(11)

Sp(2)

Spin(1)

Sp(4)

Spin(9)

Sp(3)

Spin(7)

Sp(2)

Spin(5)

Sp(1)

Spin(3)

Figure 4. The 4d N = 2 superconformal quiver for the singularity x2
1 + x5

2 + x5
3 + x5

4 = 0. Here,
the links are hypermultiplets in the ‘bifundamental’ (m,k) of Sp(m)× Spin(k).

As one can check, the set {δ1 = 0} is empty. There are thus only two exceptional divisors
S1 ∼= {δ2 = 0} and S2 ∼= {δ3 = 0}, which are both irreducible. Therefore, the 5d SCFT
T 5d

X has rank r = 2. The triple intersection numbers are:

S3
1 = −40 , S3

2 = 9 , S2
1 · S2 = 25 , S2

2 · S1 = −15 . (3.49)

Using (3.17), we can see that S1 ·S2 is a genus-6 curve. In fact, S1 is ruled over the genus-6
curve S1 · S2. As S2 has the topology of a P2, the S1 · S2 is also exactly the degree-5
curve on P2 with genus g = 6. This makes sense because the curve S1 · S2 has equation
δ2 = δ3 = x5

2+x5
3+x5

4 = 0, which has degree five. The Hodge diamond of S1 takes the form:

hi,j(S1) =


1 6 0
6 2 6
0 6 1

 . (3.50)

Thus, there are 12 3-cycles on S1, which also correspond to 12 3-cycles in the resolved
threefold [100]. These 3-cycles give rise 6 vector multiplets on the Higgs branch of T 4d

X ,
as in (3.45).

Note that, in the M-theory engineering, these 3-cycles must also corresponds to 6
neutral hypermultiplets obtaining a VEV on the Coulomb branch of T 5d

X . Unlike for the
case of the higher-rank E8 theory of section 3.1, it is not immediately clear whether this
‘partial Higgs phase’ can be understood directly from the gauge-theory description (3.41).

To connect this resolved geometry to the 5d gauge theory, we have to go through a
geometric transition: we pinch off six points on the genus-6 curve S1 · S2, and blow up
these six double points on S2. After these flops, the triple intersection numbers of the new
surfaces S′1, S′2 will be

S
′3
1 = 8 , S

′3
2 = 3 , S

′2
1 · S′2 = 1 , S

′2
2 · S′1 = −3 . (3.51)

Hence S′1 is a F3 and S′2 is a dP6. These triple intersection numbers exactly give rise to the
5d SCFT with the IR gauge-theory description (3.41). Before the flop, our resolved geome-
try has f = 0, in agreement with the singularity spectrum. However, after the six blow-ups
of double points, there are six new 2-cycles in the flopped geometry, while all the 3-cycles
have disappeared. These six new Kähler parameters then match the rank of the expected
UV fixed point of the gauge theories (3.41), which has flavor symmetry GF = Sp(6).
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Clearly, a better understanding of this apparent phase transition on the Coulomb
branch of the 5d SCFT T 5d

X is desirable, both in terms of the gauge theory description and
in terms of the local Calabi-Yau.

4 Argyres-Douglas theories and their 5d SCFT counterparts

In the Type IIB setup, the most studied 4d fixed points are the (generalized) Argyres-
Douglas (AD) theories [84] engineered at the hypersurface singularities [8, 42]

F (x1, x2, x3, x4) = gG(x1, x2) + gG′(x3, x4) = 0 , (4.1)

where the two-variable polynomial gG(x, y) defines the ADE singularity

gAk(x, y) = x2 + yk+1 , gDk(x, y) = xk+1 + xy2 ,

gE6(x, y) = x3 + y4 , gE7(x, y) = x3 + xy3 , gE8(x, y) = x3 + y5 .
(4.2)

We will denote these so-called (G,G′) theories [42] by

AD[G,G′] ≡ T 4d
X[G,G′]

. (4.3)

Of course, one can study many other SCFTs in a similar manner, such as, for instance, the
4d SCFTs that arise at exceptional unimodal singularities [138] which are not of the [G,G′]
type [139]. Here, we focus on the class (4.1) for definiteness; see [10] for more examples.

We display a few examples, with their basic properties, in table 5. Note that many
of these canonical singularities do not admit crepant blow ups, so that r = 0.19 From our
general discussion, they must therefore correspond to ‘rank-zero’ 5d SCFTs T 5d

X . We will
see that this is indeed the case, although it is not yet clear whether the rank-zero T 5d

X is a
‘trivial’ theory — in the sense that it could consists of free 5d hypermultiplets ‘in disguise’.

We will also discuss an interesting example with r = 1, corresponding to a singularity
that engineers a non-trivial, higher-rank SCFT both in 4d and 5d.

4.1 4d fixed-points with r = 0 and 3d mirrors

Let us first review some well-known fact about some of these AD theories with r = 0, in
this IIB engineering perspective [8, 42, 43].

The theory AD[A1, A2N−1]. This series includes the free hypermultiplet for N = 1,
since X[A1,A1] is the conifold singularity. We have:

f = 1 , r̂ = N − 1 , d̂H = 1 . (4.4)

The 3d mirror (that is, MQ(4)) is known to be 3d N = 4 SQED[Nf = N ]; equivalently, it
is a U(1)×U(1) quiver with N bifundamentals, modulo the decoupled diagonal U(1) [86]

MQ(4) ∼=
1 1N

(4.5)
19The singularities (4.1) have r = 0 for (G,G′) = (Ak, G′), for any k and any G of type A, D or E.
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[G,G′] F r f dH r̂ d̂H a c ∆Ar µ b3

[A1, A1] x2
1 + x2

2 + x2
3 + x2

4 0 1 1 0 1 1
24

1
12 0 1 0

[A1, A2] x2
1 + x2

2 + x2
3 + x3

4 0 0 1 1 0 43
120

11
30

1
5 2 0

[A1, A3] x2
1 + x2

2 + x2
3 + x4

4 0 1 2 1 1 11
24

1
2 0 3 0

[A1, A4] x2
1 + x2

2 + x2
3 + x5

4 0 0 2 2 0 67
84

17
21

2
7 4 0

[A1, D5] x2
1 + x2

2 + x4
3 + x3x

2
4 0 1 3 2 1 19

20 1 1
5 5 0

[A1, D6] x2
1 + x2

2 + x5
3 + x3x

2
4 0 2 4 2 2 13

12
7
6 0 6 0

[A1, D7] x2
1 + x2

2 + x6
3 + x3x

2
4 0 1 4 3 1 81

56
3
2

2
7 7 0

[A1, D8] x2
1 + x2

2 + x7
3 + x3x

2
4 0 2 5 3 2 19

12
5
3 0 8 0

[A2, A2] x2
1 + x3

2 + x2
3 + x3

4 0 2 3 1 2 7
12

2
3 0 4 0

[A3, A3] x2
1 + x4

2 + x2
3 + x4

4 0 3 6 3 3 15
8 2 0 9 0

[A4, A4] x2
1 + x5

2 + x2
3 + x5

4 0 4 10 6 4 25
6

13
3 0 16 0

[A2, D4] x2
1 + x3

2 + x3
3 + x3x

2
4 0 0 4 4 0 2 2 0 8 0

Table 5. 5d and 4d data for some singularities giving rise to T 4d
X = AD[G,G′]. Here, a and c are

the conformal anomalies of T 4d
X . Note also that [A2, A2] ∼= [A1, D4].

The Higgs branch is
M4d

H
∼= C2/ZN ∼= CB

[
MQ(4)

]
. (4.6)

Of course, for N = 1, we recover the elementary 3d mirror symmetry between a hypermul-
tiplet and SQED[Nf = 1]. The Higgs branch (4.6) corresponds to the small resolution of
the singularity:

x2
1 + x2

2 + x2
3 + x2N

4 = 0 , (4.7)

which leaves us with a smooth local CY threefold with a single Kähler parameter (for
N = 1, this is the resolved conifold).

The theory AD[A1, A2N ]. In this case, one has:

f = 0 , r̂ = N , d̂H = 0 . (4.8)

Therefore the Higgs branch is trivial. The CB spectrum is ∆ = {2N+2+2j
2N+3 }

N
j=1. It has been

proposed that the 3d mirror consist of N free hypermultiplets [140, 141]:

MQ(4) ∼= (hyper)⊗N . (4.9)

From the IIB construction, we see that the HB is empty because the terminal singularity:

x2
1 + x2

2 + x2
3 + x2N+1

4 = 0 (4.10)

does not admit any (small or otherwise) crepant resolution. This is also reflected in the
Tr(U(1)r) anomaly, 24(c− a) = N

2N+3 , which is not integer.
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The theory AD[A1, D2N+2]. In this case, one finds:

f = 2 , r̂ = N , d̂H = 2 . (4.11)

The 3d mirror is given by the following quiver (modulo the diagonal U(1), so the gauge
group is U(1)2):

MQ(4) =
1

1 1N

(4.12)

The Higgs branchM4d
H
∼= CB

[
MQ(4)

]
has quaternionic dimension 2. The flavor symmetry

G4d
H is SU(3) for N = 1 and SU(2)×U(1) for N > 1.

The theory AD[A1, D2N+1]. In this case, one finds:

f = 1 , r̂ = N , d̂H = 1 . (4.13)

This Higgs branch is C2/Z2 for any N . In addition, the low-energy theory on the Higgs
branch also contains the irreducible SCFT AD[A1, A2N−2], which itself has no Higgs branch.
The 3d mirror is expected to consists of a tensor product of SQED[Nf = 2] (whose CB
realizes the C2/Z2 Higgs branch) with (N − 1) free hypermultiplets:

MQ(4) ∼= (hyper)⊗(N−1) ⊗ SQED[Nf = 2] , (4.14)

as argued recently in [141]. The canonical singularity:

x2
1 + x2

2 + x2N+2
3 + x3x

2
4 = 0 (4.15)

admits a small resolution which leaves us with the residual terminal singularity that gives
the IR theory AD[A1, A2N−2].

The theory AD[Ak, Ak]. This family of theories is particularly interesting. We have:

f = k , r̂ = k(k − 1)
2 , d̂H = k . (4.16)

The 3d mirror is the complete graph with k + 1 nodes [86, 142]:

MQ(4)[X[A1,A1]] =
1 1

, MQ(4)[X[A2,A2]] =
1

1 1

MQ(4)[X[A3,A3]] =

1 1

1 1

, etc.,

(4.17)
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modulo the diagonal U(1). Note that AD[A2, A2] ∼= AD[A1, D4]. From the magnetic
quivers, we also learn that the flavor group G4d

H for AD[A1, D4] is SU(3), while the flavor
symmetry for k > 2 is U(1)k. These singularities admit a smooth resolution, with the
exceptional locus consisting of k rational curves, therefore we have a smooth Higgs branch
phase. This family also generalizes to AD[Ak, AkN+N−1], whose 3d mirrors are the same
complete graphs (4.17) but with all links of multiplicity N .

Interestingly, we can also access the ‘electric quiverine’ directly in certain cases, as fol-
lows. The AD[Ak, Ak] theory has k−2 marginal couplings, which can be tuned to reach an
S-duality cusp [143], from which we can read off some useful ‘quasi-Lagrangian’ description.
Such descriptions consist of SU(n) gauge groups coupled together with strongly-coupled
‘matter’ [144, 145], which can be reduced to 3d ‘sequentially’ at weak coupling. As a simple
example, consider AD[A3, A3], which has an S-dual description [146]:

AD[A3, A3] =
D4 SU(2) D4

1

(4.18)

Here, an SU(2) subgroup of theD4 theory (that is, [A1, D4]) is gauged in conformal manner;
indeed, the CB spectrum of [A3, A3] is ∆ = {3

2 ,
3
2 , 2}, and D4 is rank-1 with ∆ = 3

2 . Since
D4 itself flows to the SQED[Nf=3] fixed point in 3d, by weakly gauging the SU(2), one
finds the 3d description:

EQ(4)[X[A3,A3]] = 1
SU(2)

1
1 1

1

(4.19)

This must be a mirror description of the bottom quiver in (4.17), as recently discussed
in [145].

4.2 5d rank-zero fixed points and their magnetic quivers

We would like to understand better the 5d SCFTs T 5d
X arising from these same singularities.

These theories have r = 0 and f mass deformations, corresponding to f small-resolution
Kähler parameters. These mass deformations trigger an RG flow, which ends on the trivial
theory (with f background gauge fields, from M-theory on the 2-cycles of X̃) if the small
resolution X̃ is smooth. However, we might be left with a terminal singularity, such as, for
instance, in (4.10), which would signal that we flowed to a simpler ‘irreducible’ SCFT T 5d

X
without massive deformations. This is the interpretation of the partial resolution of (4.15)
in M-theory, in particular.

The singularity X[A1, A2N−1]. For N = 1, the conifold, we know that T 5d
X is the free

5d hypermultiplet, while T 4d
X is the free 4d hypermultiplet; we have f = 1. The electric

theory for both the 5d and the 4d theory is the free hyper in 3d, while the magnetic quivers
are SQED with one electron:

EQ(5) ∼= EQ(4) ∼= hyper , MQ(5) ∼= MQ(4) ∼= SQED[Nf = 1] . (4.20)
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Of course, the electric and magnetic theories are related by mirror symmetry, and at the
same time the gauging of the U(1) flavor of the electric theory gives the correct result, as
in (2.37) and (2.42).

Next, consider the case N = 2. The magnetic quiver MQ(4) (4.5) is self-mirror in this
case, so that:

EQ(4)[X[A1,A3]] = SQED[Nf = 2] , (4.21)

with the flavor symmetry U(1) ⊂ SU(2)F acting on the two hypermultiplets with charge
±1. Using the gauging prescription (2.42), we get the magnetic quiver of T 5d

X described by
a U(1)×U(1) gauge theory coupled to two hypermultiplets with charges:

MQ(5)[X[A1,A3]] :
H1 H2

U(1)1 1 1
U(1)2 1 −1

(4.22)

This 3d theory obviously has a Higgs branch of dimension zero, while its Coulomb is of
quaternionic dimension 2, which by construction gives us the Higgs branch of T 5d

X . To gain
a better understanding of the structure of the 3d quantum CB, we may compute its Hilbert
series using the monopole formula [49]. One finds:

HSCB[MQ(5)](t) = 1 + 6t2 + t4

(1− t2)4 . (4.23)

This is consistent withMH [T 5d
X ] being a hyper-Kähler cone of dimension dH = 2. From the

plethystic logarithm PL[HS] = 10t2 − 20t4 + · · · , we see that the 5d HB is a non-complete
intersection in C10, and from the small-t expansion HS = 1 + 10t2 + · · · , we find that
the theory has 10 conserved currents [147, 148]. Indeed, this Higgs branch is the minimal
nilpotent orbit of Sp(2), and appears as a Z2 gauging of two hypermultiplets [133]. Thus
we have the flavor group G5d

H = Sp(2). We provide some more details on the Hilbert series
computations in appendix A.

The careful reader20 will have noticed that this larger symmetry group seems in contra-
diction with our general discussion of the global symmetry as seen from the (resolved) ge-
ometry in M-theory. In fact, such unexpected ‘enhanced symmetries’, where even the rank
of G5d

H is larger than expected, can often happen when T 5d
X contains a free-hypermultiplet

sector (modulo discrete gauging), which is the case here. We will discuss this interesting
state of affairs in more detail elsewhere.

The singularity X[A1, A2N ]. Given the 3d mirror MQ(4) and the fact that f = 0, we
would conclude that the rank-zero 5d SCFT T 5d

X[A1,A2N ]
flows to N hypers upon compacti-

fication on a torus.

The singularity X[A1, D4] ∼= X[A2, A2]. This should give an r = 0, dH = 3 5d
theory. The 3d mirror of the MQ(4) (4.12) with N = 1 is simply:

EQ(4)[X[A2,A2]] = SQED[Nf = 3] . (4.24)
20And a thorough anonymous JHEP referee.
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We now gauge the U(1)2 maximal torus of the SU(3) flavor symmetry to obtain the ‘mag-
netic quiver’ theory:

MQ(5)[X[A2,A2]] :

H1 H2 H3

U(1)1 1 1 1
U(1)2 1 −1 0
U(1)3 0 −1 1

(4.25)

with gauge group U(1)3, three hypermultiplets and a zero-dimensional Higgs branch. We
have dH = 3, with the Hilbert Series:

HSCB[MQ(5)](t) = 1− 3t+ 12t2 − 11t3 + 12t5 − 3t+ t6

(1− t)6 (1 + t+ t2)3 = 1 + 9t2 + 30t3 + · · · . (4.26)

The singularity X[Ak, Ak]. The corresponding 5d SCFTs have:

r = 0 , f = k , dH = k(k + 1)
2 . (4.27)

We studied the case k = 2 above, and the cases k > 2 could be studied similarly; this is
left for future work. Here, let us simply mention that, for [A3, A3], we can also directly
obtain a magnetic quiver for T 5d

X by gauging the obvious U(1)3 flavor symmetry in (4.19):

MQ(5)[X[A3,A3]] = 1
SU(2)

11 1

1

(4.28)

This quiver indeed has a trivial Higgs branch, and a Coulomb branch of dimension dH = 6.
An interesting feature of this particular family of singularities is that we also know its

5d BPS quiver — the D-brane quiver for DS1T 5d
X in IIA [149]. It consists of a loop of k+ 1

nodes connected by pairs of bifundamental arrows in both directions with a quartic super-
potential, generalizing the Klebanov-Witten quiver [150] (k = 1) to k > 1 [151]. It would
be very interesting to study the BPS spectrum of DS1T 5d

X for k > 1 along the lines of [149].

4.3 Further examples: higher-rank 5d theories

Let us also mention a couple of other examples with interesting features. The first example
involves a non-trivial choice of global structure, while the second example has non-zero
rank, r > 0, in 5d.

4.3.1 The X[A2,D4] theory

This singularity has r = 0, f = 0 and dH = 4. The singularity can be equivalently written
as:

x2
1 + x3

2 + x3
3 + x3

4 = 0 . (4.29)
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The 4d SCFT has r̂ = 4 with the spectrum ∆ = {2, 4
3 ,

4
3 ,

4
3}— thus, one marginal coupling

— and d̂H = 0. We then propose that this theory can be described as the conformal
gauging of three AD[A1, A3] theories:

AD[A2, D4] =
A3 SU(2) A3

A3

or
A3 SO(3)+ A3

A3

(4.30)

From the geometry, we can compute H2(L5(X[A2,D4],Z) = Z2
2, so that the theory T 4d

X has
either an electric or a magnetic Z2 one-form symmetry; we propose that the charged line
operators are precisely the Wilson or ’t Hooft lines in the gauge-theory description (4.30).
(Note that we can also have SO(3)−, with the discrete θ-angle turned on [125], by choosing
the diagonal lattice in (2.45).21)

Changing the gauge coupling in (4.30) corresponds to deforming the singularity (4.29)
by the monomial x2x3x4. It is tempting to take a singular limit to the singularity x2

1 +
x2x3x4 = 0, which is the toric singularity C3/(Z2×Z2), also known as the 5d T2 model [121].
From the fact that A3 reduces to SQED[Nf = 2] in 3d, we infer:

EQ(4) = MQ(5) = 1
SU(2)

1

1

or 1
SO(3)

1

1

(4.31)

which must also be equal to MQ(5) since f = 0. This agrees with a direct application of
the rules of [78] for computing MQ(5) for the toric singularity. Thus, we propose that the
SCFT T 5d

X related to the [A2, D4] Argyres-Douglas theory in IIB is precisely the 5d T2.
Thus, the mirror of (4.31) should be given by 4 hypermultiplets. In fact, the quiver (4.31)
is essentially ‘ugly’ in the technical sense [147], which implies the presence of free fields
in the IR, up to discrete gauging. By computing the CB Hilbert series for (4.31) (see
appendix A.1), we find the HS ofM5d

H for either choice of the global structure:

HSSU(2) = 1 + 28t2 + 70t4 + 28t6 + t8

(1− t2)8 , HSSO(3) = 1
(1− t)8 , (4.32)

where we indicated the choice of gauge group in (4.31). We see that T 5d
X has a Higgs branch

C8 in the SO(3) gauging case. In the SU(2) gauging case, we obtain the HS of the minimal
nilpotent orbit of Sp(4) [152], consistent with a Z2 gauging of four hypermultiplets.

4.3.2 Example of a rank-one 5d SCFT coupled to a rank-zero theory

Our geometric setup also leads to many more examples of 5d SCFTs with r > 0, which
are, in some sense, obtained by ‘coupling’ the rank-zero theories to higher-rank theories.
While a detailed study of such a ‘coupling’ is beyond the scope of this paper, we present
one such example here. (See [10] for many more examples.)

21This corresponds to lines realized by M2/M5-brane dyonic bound states.
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F r f dH r̂ d̂H ∆Ar b3 f

x3
1 + x3

2 + x3
3 + x5

4 1 0 16 16 1 −1 2 Z5

Table 6. The SCFT data associated to the singularity x3
1 + x3

2 + x3
3 + x5

4 = 0.

This example is a rank-1 5d SCFT coupled to the X[A2,D4] theory mentioned in the
last section. The resulting theory is an apparently new rank-1 SCFT, not part of the En
series discovered by Seiberg [5, 6], and it also provides evidence that the 5d rank-0 SCFT
T 5d

X [A2,D4] is non-trivial as a ‘matter component’. This rank-one SCFT is defined as the
low-energy limit of M-theory at the isolated hypersurface singularity X given by:

F (x) = x3
1 + x3

2 + x3
3 + x5

4 = 0 . (4.33)

The resolution is a weighted blow up with trivial weight (1, 1, 1, 1), which is exactly the
same as for the rank-1 E6 theory:

(x1, x2, x3, x4; δ1) . (4.34)

The resolved equation:
X̃ : x3

1 + x3
2 + x3

3 + x5
4δ

2
1 = 0 , (4.35)

has a terminal singularity of type X[A2,D4] at δ1 = x1 = x2 = x3 = 0:

δ2
1 + x3

1 + x3
2 + x3

3 = 0 . (4.36)

Thus the 5d SCFT T 5d
X on X can be interpreted as a non-trivial ‘coupling’ of a rank-1 E6

theory with the X[A2,D4] theory. Note that, if we interpret the same resolved geometry as
the Higgs branch of the 4d SCFT T 4d

X , the interpretation is rather mundane: we have a
residual 4d SCFT AD[A2, D4] at every point on the one-dimensional Higgs branch of the
larger theory, which happens to be AD[D4, E8]. On the other hand, the most straightfor-
ward interpretation in M-theory is rather more provocative: we have a rank-1 5d SCFT
with an enhanced Coulomb branch (in the sense of [153]) — that is, there are additional
light degrees of freedom at every point on the CB.

From the deformation and resolution of X, we can compute the relevant data of T 5d
X

and T 4d
X , as shown in table 6. As one can see, the flavor rank of T 5d

X is bounded by
rank(G5d

H ) ≤ f + 1
2b3 = 1, and the HB dimension is dH = 16. More interestingly, there

exists a non-trivial 3-form symmetry Γ(3)
m = Z5 (or a 0-form symmetry Z5). These features

are distinct from any known rank-1 En theory, including the E6 theory (which has dH = 11).
Hence, we conjecture that the T 5d

X associated to the singularity (4.33) is a new rank-1 SCFT.

4.4 One-form symmetries of the 4d SCFTs AD[G, G′]

In this subsection, we further illustrate our discussion of higher-form symmetries from
section 2.7, by computing the one-form symmetry f (electric or magnetic) of numerous 4d
SCFTs of type AD[G,G′]. We simply need to compute the torsion subgroup h2 = f ⊕ f ⊂
H2(L5(X),Z).
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For instance, for AD[Ak, Al], we find that this group is always trivial. On the other
hand, for [Ak, Dm], we can have non-trivial torsion:

[Ak, Dm] :

Γ(1) = f D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

A1 0 0 0 0 0 0 0 0 0 0 0 0
A2 Z2 0 0 Z2 0 0 Z2 0 0 Z2 0 0
A3 0 Z2 0 0 0 Z2 0 0 0 Z2 0 0
A4 0 0 Z2

2 0 0 0 0 Z2
2 0 0 0 0

A5 0 0 0 Z2
2 0 0 0 0 0 Z2

2 0 0
A6 0 0 0 0 Z3

2 0 0 0 0 0 0 Z3
2

A7 0 0 0 0 0 Z3
2 0 0 0 0 0 0

A8 Z2 0 0 Z2 0 0 Z4
2 0 0 Z2 0 0

(4.37)

This includes the case [A2, D4] studied above, which has f = Z2. Similarly, for [Dk, Dm],
we find:

[Dk, Dm] :

Γ(1) = f D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

D4 0 0 0 Z2 0 0 0 0 0 Z2 0 0
D5 0 0 0 Z2 0 Z2

2 0 Z2 0 0 0 Z2

D6 0 0 0 0 0 0 0 Z2
2 0 0 0 0

D7 Z2 Z2 0 0 0 Z2 Z2 0 0 Z3
2 0 0

D8 0 0 0 0 0 0 0 0 0 0 0 Z3
2

D9 0 Z2
2 0 Z2 0 0 0 Z2 0 Z2

2 0 Z2

D10 0 0 0 Z2 0 0 0 0 0 Z2 0 0

(4.38)

As a last set of examples, consider the series:

[Ek, Al] :

Γ(1) = f A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

E6 0 0 Z3 0 Z2 0 Z3 0 0 0 0 0 0 0 Z3

E7 0 0 0 0 Z3 0 0 Z3
2 0 0 Z3 0 0 0 0

E8 0 0 0 0 Z5 0 0 0 Z2
3 0 Z5 0 0 Z4

2 0

(4.39)

These one-forms symmetries deserve further study. As a preliminary comment, we note
that they always seem related to the existence of S-duality frames in which we have a
weakly coupled gauge group. For instance, we have:

[A3, E6] : f = Z3 , ∆ =
{5

4 ,
5
4 ,

3
2 ,

3
2 ,

3
2 , 2,

9
4 ,

9
4 , 3

}
,

[A5, E7] : f = Z3 , ∆ =
{5

4 ,
5
4 ,

3
2 ,

3
2 ,

3
2 ,

7
4 , 2, 2,

9
4 ,

9
4 ,

5
2 ,

11
4 , 3, 3,

7
2 ,

15
4 ,

9
2

}
,

[A5, E8] : f = Z5 , ∆ =
{7

6 ,
4
3 ,

4
3 ,

3
2 ,

3
2 ,

5
3 ,

5
3 , 2,

13
6 ,

7
3 ,

7
3 ,

5
2 ,

5
2 , 3,

19
6 ,

10
3 ,

10
3 , 4,

25
6 , 5

}
,
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These Coulomb-branch spectra are compatible with the existence of ‘partially weakly-
coupled description’ with gauge group SU(3), SU(3)×SU(3) and SU(5), respectively. This
would explain the one-form symmetries if we could understand how strongly-coupled sys-
tems are coupled to these gauge groups, and why they preserve the center symmetry.

5 Rank-zero 4d SCFTs from isolated toric singularities

In the previous section, we discussed some isolated singularities that had r = 0, and
therefore correspond to rank-zero 5d SCFTs T 5d

X . Conversely, a rank-zero 4d SCFT T 4d
X

would arise from an isolated singularity such that r̂ = 0, as computed from the geometry.
If we restrict ourselves to isolated hypersurface singularities, there is a unique canonical
singularity that fits the bill

x2
1 + x2

2 + x2
3 + x2

4 = 0 , (5.1)

the conifold singularity, which engineers the free hypermultiplet in Type IIB string theory.
To obtain potentially more interesting rank-zero 4d SCFTs, we need to consider more
general canonical singularities. In that case, we would also need to properly define what
we mean by the quantities f and r̂ geometrically, for the deformed singularity. A natural
conjecture is that there always exists a mixed Hodge structure on the deformation space
of any X, in some appropriate sense, such that:

f = dimH2,2(X̂) , r̂ = dimH1,2(X̂) = dimH2,1(X̂) , (5.2)

generalizing the hypersurface case. This is bound to be somewhat more subtle because, in
general, the space of deformations can have several distinct branches, which can intersect in
a non-trivial manner. In any case, r̂ = 0 would correspond to a threefold whose deformation
parameters all have a scaling dimension ∆ = 1, once we identify the correct U(1)r scaling
action on the coordinate ring of the singularity. In the following, we make some preliminary
comments on the case, when X is a toric singularity.

5.1 Toric singularities and deformations

An isolated toric Calabi-Yau threefold singularity X corresponds to a strictly convex toric
diagram.22 The basic data of any of its crepant resolutions, X̃, is read off from the toric
diagram as:

f = nE − 3 , r = nI , (5.3)

where nE and nI denote the number of external and internal points, respectively, in the
toric diagram of X. Here, f again denotes the number of compact 2-cycles in X̃ dual
to non-compact divisors, and it therefore counts the number of flavor background vector
multiplet on the Coulomb branch of T 5d

X . On the other hand, d̂H = r + f , the dimension
of the Kähler cone, must still be the dimension of the Higgs branch of T 4d

X .
The 5d SCFT T 5d

X from an isolated toric singularity has a 1-form (or a magnetic 2-form)
symmetry [80, 81], which arise from the geometry of the boundary five-manifold L5(X),

22For recent work in the 5d context and a summary of toric geometry see e.g. [15, 27].
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which does not need to be simply-connected (unlike in the hypersurface case). This then
implies that the putative 4d SCFT from IIB on X has a 0-form or 2-form symmetry given
by the same discrete group at the one-form symmetry in 5d, namely TorH1(L5(X),Z).
This torsion group is readily computed from the toric data [80, 81].

The versal space of deformations of any isolated toric singularity has dimension [154]:

d̃H = #(versal deformations) ≤ f . (5.4)

More precisely, there are always exactly f first-order deformations, but obstructions gen-
erally arise at higher order.23 There also exists an explicit algorithm to construct the
deformed coordinate ring, for any deformation [154].

Let us assume that d̂H = f for simplicity. Then, the versal deformation space has
a single branch, which is the case most similar to the hypersurface singularities that we
studied so far. A generic versal deformation of X then leads to a deformed singularity
X̂ with f 3-cycles. All these 3-cycles can undergo geometric transitions to the N ‘flavor’
2-cycles in the (partially) resolved geometry. Thus, even without a detailed analysis of the
U(1)r action on the singularity, we see that all these deformations must correspond to mass
term in the putative 4d SCFT T 4d

X engineered in IIB. Therefore, the 5d/4d correspondence
studied in this paper directly suggests that toric singularities geometrically engineer rank-
zero 4d SCFTs in Type IIB. This was first proposed in [46] for toric orbifolds. Here, we
will present one interesting class of example with d̃H = f = 1, and present evidence that
such theories T 4d

X can be non-trivial, in a limited sense that their Higgs branch can be a
non-trivial hyper-Kähler cone. A more detailed analysis is left for future work.

5.2 The Y N,0 geometry, 5d SU(N)0 and rank-zero 4d SCFTs

Consider the toric diagram, which is a lattice polygon with four vertices at position (0, 0),
(1, 0), (1, N) and (2, N)

...

. (5.5)

Note that we have f = 1 and r = N − 1. This toric singularity is known as the cone over
Y N,0 [155]. It engineers a rank N−1 5d SCFT with a single deformation, which triggers
a flow to the 5d gauge theory SU(N)0. In the limiting case N = 1, we have the conifold
singularity (which can also be viewed as an ‘SU(1)’ theory in 5d [15]), and for N = 2 we
have the complex cone over F0, engineering the rank-one E1 SCFT. The space of versal
deformations (5.5) is one dimensional, giving us a smooth local Calabi-Yau threefold X̃.
For instance, the E1 singularity is a non-complete intersection in C9, which admits single

23Hypersurfaces are ‘too simple’ in that particular regard, since there is no obstruction in that case.
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a consistent deformation to [154]:

x1x3 = (x9−ε)2 , x2x4 = x2
9 , x5x7 = (x9−ε)x9 , x6x8 = (x9−ε)x9 ,

x5x8 = x1x9 , x5x6 = x2(x9−ε) , x6x7 = x3x9 , x7x8 = x4(x9−ε) ,
x1x6 = x5(x9−ε) , x2x8 = x5x9 , x2x7 = x6x9 , x3x5 = x6(x9−ε) ,
x3x8 = x7(x9−ε) , x4x6 = x7x9 , x1x7 = x8(x9−ε) , x4x5 = x8x9 ,

(5.6)

with the isolated singularity at ε = 0.
The Higgs branch of T 5d

X can be studied using the tropical-geometric methods devel-
oped in [78], which are easily specialized to the case of an isolated toric geometry. We
summarize the relevant algorithm in appendix B. For the toric singularity (5.5), one finds
the following magnetic quiver for T 5d

X :

MQ(5) =
1 1N

(5.7)

modulo the overall U(1). Equivalently, MQ(5) = SQED[Nf = N ]. Its Coulomb branch
gives the 5d Higgs branch, which is the AN−1 Kleinian singularity:

M5d
H = CB[MQ(5)] = C2/ZN . (5.8)

The 3d mirror theory is the âN−1 affine quiver:

EQ(5) =

1 1 1 1 1 1

1

· · · (5.9)

This quiver has a gauge group U(1)N/U(1) and a single flavor symmetry, the ‘baryonic
symmetry’ U(1)B, which assigns the same charge, B = b0, to all the hypermultiplets in the
loop. According to our general prescription, to obtain the magnetic quiver of the 4d SCFT
T 4d

X , we should gauge this symmetry:

MQ(4) = EQ(5)/U(1)B . (5.10)

There are two natural choices for the normalization of U(1)B. The CB of (5.7) is described
as T+T− = ΦN , where Φ is the vector multiplet scalar of SQED[Nf = N ], and T± are its
monopole operators [156] of topological charge B = ±1. The topological symmetry is iden-
tified with the baryonic symmetry in the mirror (5.9), whose Higgs branch is described as
B+B− = MN , with B+ = H1 · · ·HN schematically, where Hi, i = 1, · · · , N are the hyper-
multiplets of the circular quiver (5.9). Thus, we have the two possible charge assignments:

(i) B[T±] = ±1 in MQ(5) ↔ B[Hi] = 1
N

in EQ(5) ,

(ii) B[T±] = ±N in MQ(5) ↔ B[Hi] = 1 in EQ(5) .
(5.11)
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The magnetic quiver of the putative 4d SCFT is then given by a U(1)N gauge theory with
N hypermultiplets and the charges:

MQ(4) :

H1 H2 · · · HN−2 HN−1 HN

U(1)1 1 0 · · · 0 0 −1
U(1)2 −1 1 · · · 0 0 0

...
... . . . ...

U(1)N−1 0 0 · · · −1 1 0
U(1)B b0 b0 · · · b0 b0 b0

(5.12)

Here, b0 = B[Hi] in either normalization in (5.11). The mirror of (5.12), which is the
electric quiverine of T 4d

X , is obtained by gauging the topological symmetry of MQ(5). Using
the results of [75], it is easy to see that, depending on the normalization (5.11), we obtain:

(i) EQ(4) = (N hypermultiplets) ,
(ii) EQ(4) = (N hypermultiplets)/ZN .

(5.13)

In the first case, we have N free hypermultiplets, while in the second case we have a ZN
gauge theory of N hypermultiplets. This discrete gauging leads to a non-trivial Higgs
branch chiral ring, as can be ascertained by computing the HB Hilbert series. This is
most easily done by computing the Hilbert series of the CB of MQ(4), as discussed in
appendix A.2. Of course, in the first case, we have the Hilbert series of C2N , while for the
ZN gauge theory we find:

HS(N=2)
M4d

H

= 1 + 6t2 + t4

(1− t2)4 ,

HS(N=3)
M4d

H

= 1− 3t+ 12t2 − 11t3 + 12t4 − 3t5 + t6

(1− t)6(1 + t+ t2)3 ,

HS(N=4)
M4d

H

= 1 + 12t2 + 108t4 + 212t6 + 358t8 + 212t10 + 108t12 + 12t14 + t16

(1− t2)8(1 + t2)4 ,

(5.14)

etc. For N = 2, this corresponds to the minimal nilpotent orbit of Sp(2), while for N > 2
we have a Higgs branch with a U(N) flavor group. From the mirror description (5.13),
we know that these Higgs branches are ZN quotients of C2N preserving the hyper-Kähler
structure — that is, quotients preserving 3d N = 4 supersymmetry. In the N = 2 case,
we also know from the analysis of [111] that the central charges a and c are the same as
for two free hypermultiplets, yet the 4d theory has a non-trivial Higgs-branch chiral ring.

Let us also note that the 5d SCFT T 5d
X has a ZN 1-form symmetry or a 2-form symme-

try, corresponding to having a gauge theory SU(N)0 or PSU(N)0 in the IR description [80].
This choice parallels the choice of global structure of T 4d

X apparent in (5.11), in which case
T 4d

X should have a 0-form symmetry or a 2-form symmetry, respectively. Finally, it would
be tempting to trivially ‘uplift’ the 3d N = 4 theory (5.13) to ‘conclude’ that the 4d N = 2
SCFT T 4d

X consists of N free hypermultiplets, or a discrete gauging thereof (which then
has a two-form symmetry). Of course, this is not guaranteed, since the flow from 4d to 3d
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could wash out some interesting information. It would certainly be interesting to explore
these subtle issues further.
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A Higgs-branch Hilbert series from magnetic quivers

In this appendix, we present some relevant details on some of the Hilbert series computa-
tions mentioned in the main text. For completeness, let us first review some well-known
technology. We would like to consider the Higgs branch in an SCFT with eight super-
charges:

MH = SpecRH . (A.1)

Here, RH denote the HB chiral ring, which is graded by the SU(2)R charge R ∈ 1
2Z, and

the moduli space must be a hyper-Kähler singularity. The Hilbert series of MH is the
formal series over the chiral ring operators weighted by their R-charges:

HSMH
(t) =

∑
O∈RH

t2R[O] . (A.2)

Given the Hilbert series, we have some simple ‘diagnostic tests’ of the structure of the
Higgs branch (see [157] for a nice review):

• The quaternionic dimension ofMH corresponds to the pole at t = 1:

HSMH
∼ 1

(1− t)2dim(MH) . (A.3)

• Expanding around t = 0, the order-t term gives the number nfree of free hypermulti-
plets (C2 factors inMH) while the order-t2 term gives the number ncc of conserved
currents:

HSMH
(t) = 1 + 2nfreet+ ncct

2 + · · · . (A.4)

Each free hypermultiplet corresponds to HSC2 = (1− t)−2, which factorizes from the
full Hilbert series.
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• By taking the plethystic logarithm24 PL(HSMH
(t)), we can find the number of gen-

erators nH of RH (with their R-charges), and the number of relations amongst them.
The PL terminates if and only ifMH is a complete intersection in CnH . In particular,
PL = 2t for a free hypermultiplet.

One can refine this analysis by including fugacities for various flavor symmetries; in this
paper, we only considered the ‘unrefined’ HS, for simplicity.

For 3d N = 4 theories, we can also compute the HS of the Coulomb branch, which
is itself hyper-Kähler, with the CB operators weighted by the SU(2)C R-charge. Indeed,
we would like to understand the 3d N = 4 Coulomb branches of the ‘magnetic quivers’ of
4d or 5d SCFTs. Assuming the magnetic quiver is given by an explicit gauge-theory UV
description in 3d, with gauge group G, its CB Hilbert series is easily computed thanks to
the monopole formula [49]:

HSCB(t) =
∑

m∈Γ/WG

t2R(m)PG(t;m) , PG(t;m) =
rank(G)∏
k=1

1
1− tdk(Gm) , (A.5)

where the sum is over the GNO-quantized magnetic fluxes of G (modulo the Weyl group),
and PG(t;m) denotes the Coulomb-branch index of the gauge group Gm that commutes
with the flux m — that is, dk(Gm) are the dimension of the Casimir invariants of Gm. (For
instance, we have PU(N)(t; 0) = ∏N

k=1(1− tk)−1.) Finally, R(m) is the quantum dimension
of the monopole operator for this magnetic flux [147]:

R(m) = −
∑
α∈∆+

|α(m)|+ 1
2
∑
ρ∈R
|ρ(m)| , (A.6)

where ∆+ is the set of positive roots of g = Lie(G), and the second sum runs over all the
weights of the (generally reducible) representation R of g under which the hypermultiplets
transform. Note that the monopole formulas ‘knows’ about the global structure of G
through the sum over the magnetic flux lattices.25

Let us also note that, for abelian theories with gauge group G = ∏r
k=1 U(1)k, the

monopole formula (A.5) simplifies to:

HSCB(t) = 1
(1− t2)r

∑
m∈Zr

t2R(m) , R(m) =
∑
i

r∑
k=1
|qki mk| , (A.7)

where the sum ∑
i runs over all the hypermultiplets Hi, with electric charges qki .

24Recall the definition of the plethystic exponentional (giving us the ‘multi-particle states’ from the
‘single-particle states’ [158]), and its inverse, the plethystic logarithm (PL). For a single variable t, we have:

PE[f(t)] = exp

(
∞∑
p=1

1
p
f(tp)

)
, PL[g(t)] = exp

(
∞∑
k=1

µ(k)
k

log g(tk)

)
,

assuming f(0) = 0 and g(0) = 1; here, µ(k) is the Möbius function.
25Interestingly, the HS can also be viewed a supersymmetric partition function — under some assump-

tions, it is both a twisted partition function on S2×S1 [159] and a limit of the 3d superconformal index [160].
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A.1 The CB of EQ(4) for AD[A2, D4]

Consider the CB of the 3d quiver of eq. (4.31), with either SU(2) or SO(3) as the central
node. In the SU(2) case, the HS takes the form:

HSMQ(5)[X[A2,D4]](t) =
∑
m∈Z3

1
(1− t2)3

(
t2R(m,0)

1− t4 +
∑
n>0

t2R(m,n)

1− t2

)
(A.8)

with m = (m1,m2,m3) for the three U(1) factors, and n ∈ Z>0 the SU(2) fluxes, and:

R(m, n) = −|2n|+ 1
2

3∑
i=1

(|n + mi|+ | − n + mi|) , (A.9)

we can write this as:

HS(SU(2))
MQ(5)[X[A2,D4]]

(t) = h(t; 0)3

1− t4 +
∞∑
n=1

t−4nh(t; n)3

1− t2 (A.10)

corresponding to the SU(2) gauging of three copies of SQED[Nf=2], whose CB Hilbert
series, with background flux n for the SU(2) flavor group, can be easily computed:

h(t; n) ≡ HSCB[SQED[Nf=2]](t; n) = t2|n|
(
1 + t2 + 2|n|(1− t2)

)
(1− t2)2 . (A.11)

This gives:

HS(SU(2))
MQ(5)[X[A2,D4]]

(t) = 1 + 28t2 + 70t4 + 28t6 + t8

(1− t2)8 . (A.12)

Similarly, the SO(3) gauging corresponds to summing over n ∈ 1
2Z>0 in (A.8), and one

finds:
HS(SO(3))

MQ(5)[X[A2,D4]]
(t) = 1

(1− t)8 . (A.13)

A.2 Gauging the affine âN−1 quiver

Consider the CB Hilbert series of the MQ(4) (5.12). The monopole formula gives:

HS = 1
(1− t)N

∑
mB∈Z

∑
m1∈Z

· · ·
∑

mN−1∈Z
t2R(mB ,m) , (A.14)

with 2R(mB,m) = ∑N−1
i=1 |mi − mi+1 + b0mB|. For b0 = 1

N , we can perform a SL(N,Z)
transformation on the electric charges, so that we have N copies of SQED[Nf = 1], mirror
to N free hypers. In general, we can change basis so that:

HS = 1
(1− t)

∑
mB∈Z

 1
(1− t)N−1

∑
n1∈Z
· · ·

∑
nN∈Z

t2R(mB ,n)

 , (A.15)

with:

2R(mB, n) = |b0NmB −
N−1∑
i=1

ni|+
N−1∑
i=1
|ni| . (A.16)
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We can first fix mB and do the sum over ni in (A.15), which gives the HS of the CB of
the âN−1 quiver, corresponding to the minimal nilpotent orbit of aN−1, in the presence of
background magnetic flux mB. For instance:

N = 2 : HS(mB) = t2b0mB (1 + t2 − 2b0mB(1− t2))
(−1 + t2)2 , (A.17)

N = 3 : HS(mB) = t3b0mB
(
9b20m2

B(1− t2)2 − 9b0mB(1− t4) + 2(1 + 4t2 + t4)
)

2(1− t2)4 ,

etc. Then, summing over mB, with either choice of b0, we obtain the result shown in (5.14).
Note that we can view this CB (for this MQ(4)) as a C2 fibration over the minimal nilpotent
orbit of aN−1 (the CB of the ‘ungauged’ theory, EQ(5)), as this computation makes rather
explicit.

B Magnetic quivers MQ(5) for isolated toric singularities

In this appendix we summarize the construction of the magnetic quiver starting with the
toric diagram [78]. Here we will limit ourselves to the strictly convex toric geometries, as
these are relevant in the context of the 4d SCFTs.

Consider then a strictly convex lattice polygons P in Z2 ⊂ R2, with vertices vi, i =
1, · · · , n. The flavor rank is f = n − 3 and the strict convexity requires that there are no
lattice points along the edges connecting two of the vertices. The proposal in [78] is that
the magnetic quiver is obtained from a Minkowski sum decomposition of the polygon into
convex polygons Pi

P = P1 + · · ·+ Pc , (B.1)

where A + B = {a + b; a ∈ A , b ∈ B} is the Minkowski sum of two convex polygons of
dimension 1 or 2 (i.e. edge segments or 2d polygons). This induces an edge coloring, by
coloring each edge, that arises from Pi into one color. An example is the toric polygon for
the 5d E1 theory, which has an IR description in 5d as SU(2)0

E1 : = +
. (B.2)

The magnetic quiver for these isolated toric models is computed as follows:

1. Determine all distinct Minkowski sum decompositions of P , and associated edge
colorings.

2. Each edge coloring can be extended by adding internal edges, such that the polygon
is covered by polygons that have a single edge color, or by parallelograms, which are
at most bi-colored, with opposite edges of the same color.

3. Each color gets associated a node in the magnetic quiver of multiplicity 1.
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4. The number of edges kc1,c2 between nodes associated to c1 and c2 are determined by
the mixed volume, i.e.

kc1,c2 = Area(Gc1,c2) = area of the c1, c2 bicolored paralellogram . (B.3)

For the E1 there is one Minkowski sum decomposition, shown already above, from
which the magnetic quiver follows to be two vertices and one double-line between them

MQ(E1) =
1 1

(B.4)

We will now focus on examples where the deformation theory is unobstructed, and therefore
the Higgs branch dimension agrees with the flavor rank f . The E3-theory (in 5d the rank
1 theory with SU(2) + 2F IR description) is of this type:

E3 : = + + = +
. (B.5)

This implies the magnetic quiver, which has two components

MQ(E3) = 1 1

1

∪
1 1

. (B.6)

An infinite class of theories is the set of toric singularities with vertices

{(0, 0), (1, 0), (1, N), (2, N)} , (B.7)

i.e.

...

. (B.8)

This toric diagram gives rise to the SCFT with IR description SU(N)0 in M-theory. Here
we will consider it in Type IIB. As the coloring indicates, there is precisely one magnetic
quiver, which has two multiiplicity 1 nodes connected by N edges, i.e. the AN−1 Kleinian
singularity

AN−1 =
1 1N

(B.9)
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C Rank-N E1 magnetic quivers from the (p, q)-webs

In this appendix, we discuss the brane-web construction of the magnetic quiver MQ(5) for
the rank N E-strings, focusing on the AS matter representation. The brane-webs for the
rank N En-strings were determined in [14, 121] and a derivation for their entire decoupling
tree will appear in [161]. Here, our interest is in the AS hypermultiplet phase transition,
that we discussed in section 3.1. To illustrate this point, we simply consider the case with
no fundamental flavor, i.e. the theory with an IR description:

Sp(N) + 1AS . (C.1)

Its UV fixed point is the rank-N E1 theory. We present the generalized toric diagram for
both the theory with the massless and massive anti-symmetric. Consider for instance the
N = 2 E0-theory, which has generalized toric diagram [78]

. (C.2)

In the dual brane-web the white dots indicate that the associated 5-branes dual to the
edge segments adjacent to it end on the same 7-brane — for a review, we refer the reader
to [121]. The magnetic quiver of this theory is readily computed using the methods in [78].
For general N , one finds:

MQ(5) =
1 N N

, (C.3)

This is N times the affine a1 Dynkin diagram, with an additional multiplicity-1 node.
We can mimick the transition described in section 3.1 at the level of the brane web.

This is realized by the model where the 5-branes, which realize the AS, end on one 7-brane,
which effectively corresponds to decoupling of N − 1 5-brane segments in the transverse
direction. For N = 2, for instance, we then obtain:

. (C.4)

Here and for general N , the MQ(5) is then simply N times the affine a1 Dynkin diagram, in
agreement with our discussion in section 3.1: ending N 5-branes on the same 7-brane, and
displacing N − 1 5-brane segments transversely, corresponds to the ‘partial Higgs phase’
on the CB of the 5d gauge theory.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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