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Abstract

For a finite group G, let d(G) denote the minimal number of elements required to generate G. In
this paper, we prove sharp upper bounds on d(H) whenever H is a maximal subgroup of a finite
almost simple group. In particular, we show that d(H) 6 5 and that d(H) > 4 if and only if H
occurs in a known list. This improves a result of Burness, Liebeck and Shalev. The method involves
the theory of crowns in finite groups.

2010 Mathematics Subject Classification: 20F05 (primary); 20D05, 20E28 (secondary)

1. Introduction

For a finite group G, let d(G) denote the minimal number of elements required
to generate G. It is well known that if G is a nonabelian finite simple group, then
d(G) = 2; see [2, 43, 47]. More generally, if G is almost simple with simple socle
G0 (that is, G0 6 G 6 Aut(G0) with G0 a nonabelian finite simple group), then,
by [17], d(G) = max{2, d(G/G0)} 6 3.

In this paper, we consider the corresponding result for maximal subgroups H of
almost simple groups G. In [10], Burness, Liebeck and Shalev prove that like G,
H can be generated by a bounded number of elements. More precisely, they show
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.
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that d(H) 6 6. Furthermore, they prove the sharp upper bounds d(H) 6 4 if G is
simple or if soc(G) is an alternating group, and d(H) 6 3 if soc(G) is a sporadic
group. They also speculate that the bound d(H) 6 4 may hold in the general case.
We use the theory of crowns in finite groups to investigate this problem. We prove
that d(H) 6 5 and that d(H) > 4 if and only if H occurs in a known list (see
Theorem 1(ii)). In particular, we prove that d(H) 6 3 when G is an almost simple
group with socle an exceptional group of Lie type.

Before precisely stating our theorem, we require the following notation and
terminology. Throughout the paper, we will, for the most part, use the notation
from [31] for group names. In particular, Zn denotes a cyclic group of order n,
although we do use n instead when there is no ambiguity. Similarly, we will write
pn in place of (Z p)

n to denote an elementary abelian group of order pn , for a
prime p. We will denote the alternating and symmetric groups by Altn and Symn ,
respectively. The notation Frat(G) will denote the Frattini subgroup of the group
G, while soc(G) denotes the socle of G. We will write Aut(G) and Out(G) for the
automorphism and outer automorphism group of G, respectively. With coreG(M),
we will denote the normal core of M in G.

The statement of our main result (Theorem 1) requires a preliminary discussion
of finite classical groups and their maximal subgroups. Let G be a finite classical
group with natural module V . The main theorem on the subgroup structure of
classical groups is due to Aschbacher. In [1], eight collections of subgroups
of G are defined, labelled Ci for 1 6 i 6 8, and it is shown that if H is
a maximal subgroup of G, then either H is contained in one of these natural
subgroup collections or it belongs to a family of almost simple subgroups that act
irreducibly on V . Sometimes in the literature, S is used to denote this additional
subgroup collection, but, here, we use the definitions from [31], which differ
slightly from [1], and we denote by C9 this class.

We also subdivide each class Ci into types as in [31]. To state our main theorem,
we require a description of the classes C1, C2, C4 and C7 and the types therein. This
will be given in the paragraphs below.

Let G be one of the groups SLn(q), SUn(q), Spn(q) or Ωε
n (q) (ε ∈ {◦,±}). Let

H be a subgroup of G, and let V denote the natural G-module. We say that H
is in class C1 if H = StabG(W ) or H = StabG(W,U ), for nondegenerate, totally
singular or nonsingular subspaces W and U of V, as in [31, Table 4.1.A]. The
types of H are also given in [31, Table 4.1.A]. In particular, we say that a subgroup
H ∈ C1 is parabolic if H contains a G-conjugate of a Borel subgroup of G. In
this case, either H stabilizes a totally singular subspace W ⊂ V of dimension
m 6 n/2 or G = SLn(q) and H stabilizes subspaces W and U with W ⊂ U and
dim W = m 6 n/2, dim U = n − m. Such parabolic subgroups are said to have
type Pm and type Pm,n−m , respectively.
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We say that H is in class C2 if H = StabG({V1, . . . , Vt}), where V = V1⊕· · ·⊕

Vt is a direct sum decomposition of V consisting of subspaces Vi of common
dimension m := n/t . Furthermore, the Vi are either nondegenerate for all i or
totally singular for all i . The types of H are GLm(q) o Symt , GUm(q) o Symt ,
Spm(q) o Symt , Oε

m(q) o Symt , GLn/2(qu).2 and Ωn/2(q)2 (see [31, Table 4.2.A]).
We now describe the classes C4 and C7. For a decomposition n =

∏t
i=1 ni , we

can view the vector space V as a tensor product V = V1⊗· · ·⊗Vt , where dim Vi =

ni . Write G i for the stabilizer in G of the set 0 ⊗ · · · ⊗ Vi ⊗ · · · ⊗ 0 of pure
tensors with the only nonzero element occurring in the i th position. Also, set
K :=

⋂t
i=1 G i .

The group H is in class C4 if H is the stabilizer of a tensor decomposition
V = V1 ⊗ V2 of V with the property that the induced actions of H ∩ G i on Vi

preserves a certain form fi on Vi , given in [31, Table 4.4.A]. In particular, (V1, f1)

and (V2, f2) are not similar; so H = K . The types of H are GLn1(q)⊗ GLn2(q),
GUn1(q)⊗GUn2(q), Spn1

(q)⊗Oε
n2
(q), Spn1

(q)⊗ Spn2
(q) and Ωε1

n1
(q)⊗Ωε2

n2
(q)

(see [31, Table 4.4.A]).
Finally, H is in class C7 if H is the stabilizer of a tensor decomposition V =

V1 ⊗ · · · ⊗ Vt , where the induced action of H ∩ G i on Vi preserves a certain
form fi on Vi , given in [31, Table 4.7.A]. In this case, (V1, f1) is similar to (Vi ,

fi) for each i , K < H , and H/K transitively permutes the set {V1, . . . , Vt}. The
types of H are GLm(q) o Symt , GUm(q) o Symt , Spm(q) o Symt , O±m(q) o Symt and
Om(q) o Symt (see [31, Table 4.7.A]).

The other classes (and their associated types) are defined in [31, Ch. 4] for
1 6 i 6 8 (see [31, Section 4.i] for information about class Ci ).

Finally, if G is an almost simple classical group and H is a maximal subgroup
of G, then H is said to be of class Ci and type T if H ∩ soc(G) lifts to a group of
class Ci and type T in the associated matrix group, as defined above.

Let G be an almost simple classical group with socle G0, and assume that either
G0 = Ln(q) with n > 3 or

G0 = PΩε
n(q), q is odd, ε ∈ {+,−}, the associated quadratic form has square

discriminant and G is contained in PΓOε
n(q). (1.1)

Note that the final condition in (1.1) is vacuously true unless (n, ε) = (8,+).
Write q = p f , with p prime. We now make some remarks about subgroups of
Out(G0) containing G in these cases. Our reference is [31, Ch. 2]. Note first that
we have Out(Ln(q)) = 〈δ, φ, g〉, subject to the relations

δ(n,q−1)
= φ f

= g2
= 1 and δφ = δ p, δg

= δ−1, φg
= φ.
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Also, we have PΓOε
n(q) = 〈r, s, δ, φ, g〉, with r = s if the discriminant of the

associated quadratic form is nonsquare. The relations are

δ2(2,n/2−1)
= φ f

= r 2
= s2
= 1, δφ = δ(−1)(n(p−1)/4)

, r δ = s, sδ = r, φr
= φs

= φ

again by [31, Ch. 2]. Finally, if G0 = PΩ−n (q) with square discriminant, then
Out(G0) = 〈r, s, δ, φ, g〉, subject to the relations

r 2
= s2
= δ2
= φ f

= 1 and δφ = δ, r δ = s, sδ = r, φr
= φs

= φ.

Set D := 〈δ〉 in the case G0 = Ln(q) with n > 3, and D := 〈r, s, δ〉 in the case
at (1.1). Also, set F := 〈φ〉 in each case. For E ∈ {D, F}, we then say that (E)1
holds if (G/ soc(G)) ∩ E has even order and that (E)0 holds otherwise. If we are
in case G0 = Ln(q) and G/G0 projects nontrivially onto Out(G0)/〈D, F〉, then
we will say that (γ ) holds. If we are in the case at (1.1), and (G/G0)∩ D ∼= 22 or
D8, then we will say that (D)2 holds. Finally, we will say that (?) holds if

(a) soc(G) = Ln(q) with n > 3, and (D)1, (F)1 and (γ ) hold or

(b) (1.1) holds, and (D)2 and (F)1 hold.

We remark that d(G/G0) 6 3 with equality if and only if soc(G) ∈ {Ln(q),
PΩ±n (q)} and (?) holds (see Proposition 3.12 and Lemma 6.4).

THEOREM 1. Let G be a finite almost simple group with socle G0, and let H be
a maximal subgroup of G. The following assertions hold:

(i) d(H) 6 5.

(ii) d(H) > 4 if and only if one of the following holds, with H given up to
conjugation in Aut(G0):

(a) The socle of G is an alternating group of degree n; G ∈ {Altn,Symn};
H = (T k .(Out(T )×Symk))∩G is of diagonal type (that is, n = |T |k−1,
where T is nonabelian simple and k > 1); Symk 6 H; d(Aut(T ) ∩
H) = 3. In this case, d(H) = 4.

(b) The socle of G is of classical type, with field of definition Fq and natural
module of dimension n, and (G, H) is one of the pairs listed in Table 1.

In particular, d(H) > 4 if and only if H has an elementary abelian factor
group of order 2d(H).

Note that the conditions listed in the fourth column of Table 1 are in addition
to all the relevant conditions in [9] and [31] that are needed for the existence and
maximality of H in G. We also remark that semicolons in the table mean ‘and’.
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Table 1. The exceptional cases (G, H ) in part (ii) of Theorem 1.

G0 Class Type Conditions d(H)

Ln(q) C1 Pm,n−m m and n − m are even; (?) holds 4
Ln(q) C2 GLm(q) o Symt (?) holds 4
Ln(q) C4 GLn1(q)⊗ GLn2(q) n1 and n2 are even; q is odd;

d(G〈δ〉/〈δ〉) = 2
4

Ln(q) C7 GLm(q) o Symt (?) holds and either t > 2 or t = 2 and
either m 6≡ 2 (mod 4) or q 6≡ 3 (mod
4)

4

PΩ±n (q) C1 Oε1
m (q)⊕ Oε2

n−m(q) q is odd; both Qi have nonsquare
discriminant; (?) holds; (ε1, ε2) 6=

(−,−)

4

PΩ±n (q) C1 Oε1
m (q)⊕ Oε2

n−m(q) q is odd; Q2 has square discriminant;
(D)i and (F) j hold with i + j > 2

2+ i + j

PΩ±n (q) C2 Om(q) o Symt mq is odd; (?) holds and either m > 1
or m = 1 and q ≡ ±1 (mod 8)

4

PΩ+n (q) C4 Oε1
n1
(q)⊗ On2(q) q is odd; n1 is even; n2 is odd; (?)

holds; Q1 has square discriminant if
ε1 = −

4

PΩ+n (q) C4 O±n1
(q)⊗ O±n2

(q) q is odd; each Qi has square
discriminant; (D)0 and (F)i hold

4+ i

PΩ+n (q) C4 O±n1
(q)⊗ O±n2

(q) q is odd; each Qi has square
discriminant; (D)1 and (F)1 hold

4

PΩ+n (q) C4 Oε1
n1
(q)⊗ Oε2

n2
(q) q is odd; εi ∈ {±}; εi = + if D(Qi )

is nonsquare; the Qi have distinct
discriminants; (D)1 holds

4

PΩ+n (q) C4 O+n1
(q)⊗ O−n2

(q) q is odd; each Qi has nonsquare
discriminant; (D)1 and (F)1 hold

4

PΩ+n (q) C4 O+n1
(q)⊗ O+n2

(q) q is odd; each Qi has nonsquare
discriminant; (D)0 and (F)1 hold

4

PΩ+n (q) C4 O+n1
(q)⊗ O+n2

(q) q is odd; each Qi has nonsquare
discriminant; (D)1 and (F)i hold

4+ i

PΩ+n (q) C7 Oε
m(q) o Sym2 (?) holds; m ≡ 0 (mod 4) 4

PΩ+n (q) C7 Oε
m(q) o Sym3 (?) holds and either m 6≡ 2 (mod 4) or

q 6≡ 3ε (mod 4)
4

PΩ+n (q) C7 Oε
m(q) o Symt t > 3; (?) holds 4

As an illustrative example, consider the seventh row of Table 1. Here, G0 =

PΩε
n(q) and H lies in class C1 of type Oε1

m (q) ⊕ Oε2
n−m(q), with ε, ε1, ε2 ∈

{+,−}. Furthermore, H is the stabilizer of a nondegenerate m-space W of type ε1.
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In order for the group H to need at least four generators, a number of conditions
are necessary. First, q must be odd, and Q2 (the quadratic form induced by H on
W⊥) has square discriminant. Also, G must be contained in an Aut(G0)-conjugate
of PΓOε

n(q). Hence, we have that G/G0 is a subgroup of PΓOε
n(q)

x/PΩε
n(q), for

some x ∈ Aut(G0). Note that PΓOε
n(q)

x/PΩε
n(q) ∼= K × Za f , where (K , a) =

(D8, 1), if Q (the quadratic form induced by G0 on V ) has square discriminant,
(K , a) = (22, 1) if Q has nonsquare discriminant and ε = + and (K , a) = (Z2,

2) if Q has nonsquare discriminant and ε = − (see [31, Ch. 2]). Let i denote
the minimal number of generators for the intersection of G/G0 with the normal
factor K of PΓOε

n(q)
x/PΩε

n(q) (so that i ∈ {0, 1, 2}). Similarly, let j denote
the minimal number of generators for the intersection of G/G0 with the Sylow
2-subgroup of the Za f normal factor of PΓOε

n(q)
x/PΩε

n(q) (so that j ∈ {0, 1}).
Then we must have i + j > 2. If all of these conditions are satisfied, then we have
d(H) = 2+ i + j .

Part (ii) of the theorem shows that there exist infinitely many almost simple
groups possessing a maximal subgroup requiring five generators. Thus, part (i) is
best possible. We will also show that there are infinitely many pairs (G, H) with
the property that G is a finite almost simple group; H is a maximal subgroup of
G; d(H) = 3; and H does not have an elementary abelian factor group of order
23. See Example 7.9 for an exposition of an infinite family of such examples. In
particular, part (ii) is also best possible.

The following is an immediate consequence of Theorem 1.

COROLLARY 2. Let G be a finite almost simple group with exceptional socle, and
let H be a maximal subgroup of G. Then d(H) 6 3.

We also mention an application. In [11], a new equivalence relation ≡m among
the elements of a finite group G is defined, where two elements are equivalent if
each can be substituted by the other in any generating set for G. This relation can
be refined to a sequence ≡(r)m of equivalence relations by saying that x ≡(r)m y if
each can be substituted by the other in any r -element generating set. The relations
≡
(r)
m become finer as r increases. The authors of [11] define a new group invariant

ψ(G) to be the value of r at which they stabilize to ≡m. They conjecture that
ψ(G) ∈ {d(G), d(G)+1} and use the main result in [10] to prove that ψ(G) 6 7
for every almost simple group G (see [11, Corollary 2.13]). Using Theorem 1, the
better bound ψ(G) 6 6 can be proved.

COROLLARY 3. Let G be a finite almost simple group. Then ψ(G) 6 6.

The strategy for proving Theorem 1 can be described briefly as follows. By
a result of Dalla Volta and the first author (see Proposition 2.6), d(H) (for any
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finite group H ) can be determined precisely from the non-Frattini chief factors of
H and the induced actions of H on these factors (see Sections 2 and 3 for more
details). To prove Theorem 1, we use detailed information on the structure of the
maximal subgroups of finite almost simple groups to determine the chief factors
of such subgroups and their associated actions. We remark that we only determine
the action of H on a chief factor A of H when it is necessary. For example, if we
are trying to prove that the number of chief factors of size 3 in a class of groups is
at most 2, then a group of shape S.K , where S is a nonabelian simple group and
K has order 6, clearly satisfies this property.

The layout of the paper is as follows: as mentioned above, our approach
uses the theory of crowns in finite groups, which will be described in detail
in Section 2. We will then conclude the section with a restatement of our
theorem in this language (see Theorem 2.7). In Section 3, we prove a series of
lemmas comprising the main tools which we will use to prove the theorem. We
then subdivide our proof according to the classification of finite simple groups,
beginning in Sections 4 and 5 with the proof of the theorem in the cases when
soc(G) is a sporadic or an alternating group. We then move on to the classical
cases not containing a so-called exceptional automorphism in Section 6, before
completing the proof in Section 7, where we consider the almost simple groups
with exceptional socle and the remaining classical cases (which only occur when
soc(G) ∈ {Sp4(2

f ),PΩ+8 (q)}). We conclude the paper with the above-mentioned
examples of almost simple groups containing a maximal subgroup H such that
d(H) = 3, but H does not have an elementary abelian factor group of order 23.

2. Crowns in finite groups

Let G be a nontrivial finite group. In this section, we recall several notions in
the theory of crowns in finite groups, including those of a chief series for G, a
G-group, equivalent G-groups and monolithic primitive groups. We use these to
express d(G) as a function of the chief factors of G.

Recall that a chief series of a finite group G is a normal series

1 = N0 < N1 < · · · < Nn = G

of finite length with the property that for i ∈ {0, . . . , n−1}, Ni+1/Ni is a minimal
normal subgroup of G/Ni . The integer n is called the length of the series and the
factors Ni+1/Ni , where 0 6 i 6 n − 1, are called the chief factors of the series.
A nontrivial finite group G always possesses a chief series. Moreover, two chief
series of G have the same length, and any two chief series of G are the same up to
permutation and isomorphism. Thus, adopting the notation above, we may define
the chief length of G to be n and the chief factors of G to be the groups Ni+1/Ni .
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We can now begin our description of the theory of crowns in finite groups.
The notion of a crown in a finite soluble group was defined by Gaschütz in [24],
before being extended to all finite groups by Dalla Volta and the first author in
[18]. A detailed exposition of the theory is also given in [6, 1.3].

We now require some terminology.

DEFINITION 2.1. A finite group L is called monolithic if L has a unique minimal
normal subgroup A. If, in addition, A is not contained in Frat(L), then L is called
a monolithic primitive group.

Let L be a monolithic primitive group and let A be its unique minimal normal
subgroup. For each positive integer k, let Lk be the k-fold direct product of L . The
crown-based power of L of size k is the subgroup Lk of Lk defined by

Lk = {(l1, . . . , lk) ∈ Lk : l1 ≡ · · · ≡ lk mod A}.

Equivalently, Lk = Ak diag(Lk), where diag(Lk) := {(l, l, . . . , l) : l ∈ L} 6 Lk .
We also define L0 := 1.

If a group G acts on a group A via automorphisms (that is, if there exists a
homomorphism G → Aut(A)), then we say that A is a G-group. If G does not
stabilize any nontrivial proper subgroup of A, then A is called an irreducible G-
group. Two G-groups A and B are said to be G-isomorphic, or A ∼=G B, if there
exists a group isomorphism φ : A → B such that φ(g(a)) = g(φ(a)) for all
a ∈ A, g ∈ G. Following [29], we say that two G-groups A and B are G-
equivalent and we put A ≡G B, if there are isomorphisms φ : A → B and
Φ : A o G → B o G such that the following diagram commutes:

1 −−−−→ A −−−−→ A o G −−−−→ G −−−−→ 1yφ yΦ ∥∥∥
1 −−−−→ B −−−−→ B o G −−−−→ G −−−−→ 1.

Note that two G-isomorphic G-groups are G-equivalent. In the particular case
where A and B are abelian, the converse is true: if A and B are abelian and
G-equivalent, then A and B are also G-isomorphic. It is proved (see, for example,
[29, Proposition 1.4]) that two chief factors A and B of G are G-equivalent if and
only if either they are G-isomorphic or there exists a maximal subgroup M of G
such that G/ coreG(M) has two minimal normal subgroups X and Y that are G-
isomorphic to A and B, respectively. For example, the minimal normal subgroups
of a crown-based power Lk are all Lk-equivalent.

Recall that the Frattini group Frat(G) of a nontrivial finite group G is nilpotent.
The following terminology will be used frequently.
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DEFINITION 2.2. Let G be a nontrivial finite group and let H/K be a chief factor
of G.

(i) We say that H/K is Frattini if H/K 6 Frat(G/K ).

(ii) We say that H/K is complemented if there exists a subgroup U of G such
that U H = G and U ∩ H = K . The group U is said to be a complement of
H/K in G.

Recall that a subgroup H of a group G is said to supplement K 6 G if K H = G.
Since the Frattini subgroup of a finite group G is nilpotent and the only subgroup
supplementing Frat(G) is G itself, the following lemma is immediate.

LEMMA 2.3. Let G be a nontrivial finite group and let A = H/K be a chief
factor of G.

(i) If A is abelian, then A is non-Frattini if and only if A is complemented.

(ii) If A is nonabelian, then A is non-Frattini.

For an irreducible G-group A, we define δG(A) to be the number of non-Frattini
chief factors G-equivalent to A in a chief series for G. Clearly, the number δG(A)
does not depend on the choice of chief series for G. Denote by L A the monolithic
primitive group associated with A. That is,

L A =

{
A o (G/CG(A)) if A is abelian,
G/CG(A) otherwise.

If A is a non-Frattini chief factor of G, then L A is a homomorphic image of G.
More precisely, there exists a normal subgroup N of G such that G/N ∼= L A

and soc(G/N ) ≡G A. Consider now all the normal subgroups N of G with the
property that G/N ∼= L A and soc(G/N ) ≡G A: the intersection RG(A) of all
these subgroups has the property that G/RG(A) is isomorphic to the crown-based
power (L A)δG (A). The socle IG(A)/RG(A) of G/RG(A) is called the A-crown of
G and it is a direct product of δG(A) minimal normal subgroups G-equivalent
to A.

Before proceeding, we briefly illustrate the definitions and terminology
introduced above with an example. Let V be a vector space of dimension n
over a field F of odd prime order p, and let R ∼= Z2 act on V by inverting the
nonzero elements of V . Set G := V o R. Then G has n chief factors which are
G-isomorphic to A := Z p. These chief factors are non-Frattini, noncentral and
G/CG(A) ∼= Z2. The group G also has a central chief factor B ∼= Z2. Hence, we
have δH (A) = n and δH (B) = 1.
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PROPOSITION 2.4. Let G be a nontrivial finite group and let A = H/K be a
non-Frattini chief factor of G. The following assertions hold:

(i) We have IG(A) = HCG(A).

(ii) The group IG(A)/RG(A) is the direct product of δG(A) non-Frattini chief
factors of G that are G-equivalent to A. Moreover, soc(G/RG(A)) =
IG(A)/RG(A).

(iii) The group G/RG(A) is isomorphic to the crown-based power (L A)δG (A) of
L A of size δG(A).

Proof. Part (i) is an easy exercise, while part (ii) follows from [23,
Proposition 2.4]. Finally, part (iii) is [20, Proposition 9].

Next, we provide the key technical tools which will be used to prove Theorem 1.
The first reads as follows.

LEMMA 2.5. Let G be a noncyclic finite group. The following assertions hold.

(i) There exist a monolithic primitive group L and a positive integer k such that
Lk is an image of G and d(G) = d(Lk) > d(Lk−1).

(ii) If L is a monolithic primitive group such that Lk is an image of G for some
positive integer k, then there exists a non-Frattini chief factor A of G such
that L is isomorphic to the monolithic primitive group L A of G associated
with A and k 6 δG(A). Moreover, if d(Lk) = d(G), then d((L A)δG (A)) =

d(G).

Proof. We consider part (i). Let N be a normal subgroup of G maximal with
respect to d(G/N ) = d(G). Then, since G is not cyclic, d(H) < d(G) for any
proper quotient H of G/N . Set K = G/N . Note that K is nontrivial and so K
has a minimal normal subgroup. Moreover, K is not cyclic.

Suppose first that K has a unique minimal normal subgroup M . Note that M is a
chief factor of K and soc(K ) = M . By [37, Theorem 1.1], d(K ) = 2 and K/M is
cyclic. Since d(K ) = d(K/Frat(K )) and d(H) < d(K ) for any proper quotient
H of K , we must have Frat(K ) = 1. In particular, K is a monolithic primitive
group with d(K ) > d(K/soc(K )). Suppose now that K has two distinct minimal
normal subgroups. The argument used in the proof of [18, Theorem 1.4] yields
that there exist a monolithic primitive group L and a positive integer k such that
K ∼= Lk and d(Lk) > d(Lk−1). This proves part (i).

We now consider part (ii). By assumption, there exist a normal subgroup N of
G, a monolithic primitive group L and a positive integer k such that G/N ∼= Lk .
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Let B = soc(L). Then G has a non-Frattini chief factor A isomorphic to B and
the monolithic primitive group L A of G associated with A is isomorphic to L .
Note that a chief series for Lk has k non-Frattini chief factors Lk-equivalent to
B. It follows that a chief series for G has at least k non-Frattini chief factors
G-equivalent to A. In particular, k 6 δG(A). Suppose d(G) = d(Lk). As k 6
δG(A), we have d((L A)δG (A)) > d(G). Proposition 2.4(iii) now yields d(G) =
d((L A)δG (A)), as needed.

We now state and prove the main tool which will be used to prove our theorem.

PROPOSITION 2.6. Let G be a noncyclic finite group. For a non-Frattini chief
factor A of G, let L A be the monolithic primitive group of G associated with A
and let δG(A) be the number of non-Frattini chief factors of G in a chief series
for G which are G-equivalent to A. If A is abelian, define

r(A) = dimEndL A/A(A) A,

s(A) = dimEndL A/A(A) H 1(L A/A, A),

θ(A) =

{
0 if A is central,
1 otherwise,

h(A) = θ(A)+
⌈
δG(A)+ s(A)

r(A)

⌉
.

The following assertions hold:

(i) We have
d(G) = maxA non-Frattini d((L A)δG (A)),

where the maximum is taken over all non-Frattini chief factors A of G.

(ii) Suppose that for every nonabelian chief factor A = Sn of G, we have

δG(A) 6
|A|

2n|Out(S)|
.

Then either d(G) = 2 or there is an abelian non-Frattini chief factor B of G
such that d(G) = d((L B)δG (B)) > 3 and d(L B) > d(L B/soc(L B)).

(iii) Let Φ be the set of abelian non-Frattini chief factors of G. Under the
assumption of (ii), if d(G) > 2, then

d(G) = max
A∈Φ

d((L A)δG (A)) = max
A∈Φ

h(A) 6 max
A∈Φ

δG(A)+ θ(A).

Moreover, if d(G) = d((L A)δG (A)), where A ∼= Z2 is a non-Frattini chief
factor of G, then d(G) = δG(A).
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(iv) Under the assumption of (ii), if maxA∈Φ h(A) 6 3, then d(G) 6 3.

Proof. We first consider part (i). By Lemma 2.5, there exist a monolithic primitive
group L and a positive integer k such that Lk is an image of G and d(G) =
d(Lk) > d(Lk−1). Also there is a non-Frattini chief factor A of G isomorphic
to soc(L) such that the monolithic primitive group L A associated with G is
isomorphic to L . Moreover, d((L A)δG (A)) = d(G). In particular,

d(G) 6 maxA non-Frattini d((L A)δG (A)).

The result now follows from Proposition 2.4(iii). In the remaining part of the
proof, we will implicitly use the following consequence of part (i): there is a
non-Frattini chief factor A of G such that d(G) = d((L A)δG (A)) and d(L A) >

d(L A/soc(L A)).
We now consider part (ii). By Lemma 2.5, there is a non-Frattini chief factor

C of G such that d(G) = d((LC)δG (C)) > d(LC/soc(LC)). Suppose, for a
contradiction, that d(G) > 2 and there is no non-Frattini abelian chief factor B
of G such that d(G) = d((L B)δG (B)) > 3 and d(L B) > d(L B/soc(L B)). Then by
part (i), C must be nonabelian. Write C = Sn , where S is a nonabelian simple
group, set L = LC and recall that soc(L) ∼= C . Since L is a monolithic primitive
group with nonabelian socle, by [19, Corollary 8], there is a function ψL : N→ N
such that for every s > d(L), we have

k 6 ψL(s) if and only if d(Lk) 6 s. (2.1)

Moreover, by [19, Proposition 10], there is an absolute constant γ such that if
s > d(L), then

ψL(s) >
γ |C |s−1

n|Out(S)|
(2.2)

and by [38, Corollary 1.2] and [21, Corollary 1.2], γ > 1/2. We claim that d(L)6
2. Suppose not. Since δG(C) 6 |C |/(2n|Out(S)|), the bounds in (2.1) and (2.2)
imply that d(LδG (C)) 6 d(L) and so d(L) = d(LδG (C)). In particular, d(L) >
d(L/soc(L)). Since L is a monolithic primitive group and L is not cyclic, by
[37, Theorem 1.1], d(L) = max(2, d(L/soc(L))). It follows that d(L) = 2, a
contradiction. Arguing by contradiction, we have established the claim, namely
d(L) 6 2. Since d(L) 6 2 and δG(C) 6 |C |/(2n|Out(S)|), setting s = 2 in (2.1)
and (2.2), we obtain d(LδG (C)) 6 2 and so d(G) 6 2, a contradiction. This final
contradiction establishes part (ii).

We now consider part (iii). Since d(G) > 2, by part (ii), there is an abelian
non-Frattini chief factor B of G such that d(G) = d((L B)δG (B)) and d(L B) >

d(L B/soc(L B)). Since d(L B) > d(L B/soc(L B)), [19, Proposition 6] gives
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d((L B)δG (B)) = h(B). By [2, Theorem A] s(B) < r(B) and so h(B) 6 θ(B) +
δG(B). Finally, if d(G) = d((L A)δG (A)), where A ∼= Z2 is a non-Frattini chief
factor of G, then (L A)δG (A)

∼= Z δG (A)
2 and so d(G) = δG(A). Part (iii) follows.

Finally, part (iv) follows immediately from parts (i), (ii) and (iii).

We can now restate our main theorem in the language of crowns. Note that a
finite group H always has a non-Frattini chief factor. Indeed, a minimal normal
subgroup of H/Frat(H) is always a non-Frattini chief factor of H .

THEOREM 2.7. Let G be a finite almost simple group with socle G0. Fix a
maximal subgroup H of G and a non-Frattini chief factor A of H.

(i) If A is nonabelian, then δH (A) 6 2.

(ii) If A is abelian but noncentral, then δH (A) 6 2.

(iii) If A is central, then δH (A) 6 3, unless |A| = 2 and (G, H) is one of the pairs
described in part (ii) of Theorem 1. In this latter case, δH (A) = 4 if G is as
in part (ii)(a) of Theorem 1. If G is as in part (ii)(b), then δH (A) = d, where
d is as in the last column of Table 1.

We now show that, in fact, Theorem 2.7 implies Theorem 1. Indeed, suppose
that Theorem 2.7 holds, and let H and G be as in the statement of Theorem 1.
By [42, Lemma 2.1], we have |Out(S)| 6 log |S| for every nonabelian finite
simple group S. Hence, the bound |S|n/(2n|Out(S)|) > 2 holds. It then follows
from Proposition 2.6 that d(H) 6 maxA(δH (A) + θ(A)) as A runs over the
abelian non-Frattini chief factors of H . Theorem 1 then follows immediately from
Theorem 2.7 and the definition of θ .

3. Chief factors of finite groups

As shown in the last section, to prove Theorem 1, it will suffice to prove
Theorem 2.7. This will be our aim for the remainder of the paper. In this
section, we prove some technical lemmas which will be crucial in our proof of
Theorem 2.7. The first three are elementary but will be used frequently. Before
we state them, we require a definition.

DEFINITION 3.1. Let G be a finite group.

(a) A subsection of G is a group N/M , where N 6 G and M is normal in N . A
subsection N/M is called a section of G if N and M are both normal in G.
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(b) Let N/M be a section of G, and let A be a non-Frattini chief factor
of G. Then N RG(A)/M RG(A) is a normal subgroup of G/RG(A), so
the intersection of N RG(A)/M RG(A) with the socle soc(G/RG(A)) is
isomorphic to Am , for some m > 0. We define δG,N/M(A) := m. That is,
δG,N/M(A) is the number of non-Frattini chief factors of G which are G-
equivalent to A and appear as a section of N/M .

REMARK 3.2. Let G be a finite group, and let N/M be a section of G. If
δG,N/M(A) > 0 for some chief factor A of G, that is, if A appears as a section
of N/M , then we will write A4 N .

We begin the series of lemmas mentioned above with a result concerning chief
factors in groups with a cyclic normal subgroup: its proof is an easy consequence
of the Jordan–Hölder theorem.

LEMMA 3.3. Let G be a finite group having a cyclic normal subgroup N, say
N = Za for some a ∈ N, and set J = G/N. The following assertions hold:

(i) A chief factor of G is either a section of N or J .

(ii) If J has a cyclic normal subgroup M/N, say M/N = Zb for some b ∈ N,
then a chief factor of G is either a section of N , M/N or G/M.

The next result is a useful reduction lemma.

LEMMA 3.4. Let G be a finite group, and let A be a non-Frattini chief factor of
G. Suppose that 1 = N0 6 N1 6 · · · 6 Nk = G is a normal series for G. Then

(i) δG(A) =
∑k

i=1 δG,Ni /Ni−1(A).

(ii) δG,G/Ni (A) = δG/Ni (A).

(iii) If Ni/Ni−1 is cyclic, then δG,Ni /Ni−1(A) 6 1.

Proof. If N is normal in G and N RG(A)/RG(A) ∼= Am , then the group
soc(G/RG(A)) modulo N RG(A)/RG(A) is clearly isomorphic to AδG (A)−m .
Hence, δG(A) = δG,N (A)+ δG,G/N (A). Part (i) now follows by an easy inductive
argument.

Since Frat(G/Ni) = Frat(G)Ni/Ni , part (ii) follows, and since the non-Frattini
chief factors of a cyclic group are precisely the (cyclic) prime factors of its unique
square-free quotient, part (iii) follows.
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LEMMA 3.5. Let G be a finite perfect group. Then Z(G) 6 Frat(G). In particular,
this holds if G is quasisimple.

Proof. Suppose that z is an element of Z(G) of prime order and that z is not
in Frat(G). Then there exists a maximal subgroup H < G, with z 6∈ H . Hence,
G = H〈z〉. It then follows that H � G. This contradicts G being perfect since
G/H is abelian in this case. The result follows.

We now investigate the case where certain subgroups of wreath products appear
as sections in finite groups. This will be especially useful in our work on the C2

and C7 families in the classical cases. First, we need two definitions.

DEFINITION 3.6. Let Q be a finite abelian group. The subgroup

K :=
{
(x1, . . . , xt) :

∏
i

xi = 1
}

of Q t is called the deleted subgroup of Q t .

REMARK 3.7. If the group Q in Definition 3.6 is elementary abelian of order pa

for a prime p, then K is a module for the group J := Symt , via permutation of
coordinates. It is called the deleted permutation module for J and it has dimension
a(t − 1) over the field Fp. In particular, when Q = Fp, K and W = {( f, . . . ,
f ) | f ∈ Fp} are the unique nontrivial proper J -submodules of Ft

p and K/K ∩W
is called the fully deleted permutation module for J .

Lemma 3.9 requires a careful analysis of the chief factors of certain subgroups
in a wreath product E o J , where E is a finite group, and J := Symt . We will
denote the base group of such a wreath product by B = B(E o J ). We will view B
as the direct product B = E1× · · ·× Et of t copies of E , and for a subgroup L of
E , we will write L i for the corresponding subgroup of Ei . Furthermore, we will
write BL := L1 × · · · × L t . We will frequently use, and make no further mention,
of these conventions.

Before stating Lemma 3.9, we need to introduce some additional terminology.

DEFINITION 3.8. Let E be a finite group, let t > 2 be a positive integer, and
consider the wreath product E o J , where J := Symt . Let B = B(E o J ) be the
base group. We call a subgroup H of E o J extra large if all of the following
conditions are satisfied:

(a) H ∩ J ∈ {Altt ,Symt}.
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(b) H ∩ B contains BF for some normal subgroup F of E such that

(i) E/F has abelian Frattini quotient E/Frat(E)F ;

(ii) Frat(E) ∩ F = Frat(F);

(iii) δE,F(W ) 6 1 for all non-Frattini chief factors W of E .

(c) (H ∩ B)/(H ∩ BFrat(E)F) is the deleted subgroup of (E/Frat(E)F)t .

The normal subgroup F of E above will be called a source of H .

LEMMA 3.9. Let H be an extra large subgroup of a wreath product E o J , where
E is a finite group and J := Symt , with t > 2. Let B = B(E o J ) be the base
group, and let F � E be a source of H. Assume that G is a finite group with a
normal series

1 < H 6 G

such that NG(F1)H = G. Let W be a non-Frattini chief factor of E.

(i) Suppose that W4F is noncentral and that if t = 2, then E/CE(W ) is not an
elementary abelian 2-group. Then BW

∼= W t is a noncentral chief factor of
G contained in H ∩ B.

(ii) Suppose that either W4F is central or that t = 2 and E/CE(W ) is an
elementary abelian 2-group. Let Adiag (respectively Afull) be the diagonal
(respectively fully deleted) permutation modules for J over the field Fp,
where p = |W |.

(a) Assume that p | t . Then Adiag, Afull/Adiag and BW/Afull are chief factors
of G contained in H ∩ B. Furthermore, Adiag is Frattini since it is not
complemented in BW .

(b) Assume that p - t . Then the G-module BW
∼= W t splits into a direct

sum of two G-chief factors: the diagonal subgroup Adiag of BW and the
fully deleted permutation module Afull in BW .

(iii) Suppose that W4E/F.

(a) Assume that p | t . Then Adiag and Afull/Adiag are chief factors of G
contained in H ∩ B. Furthermore, Adiag is Frattini since it is not
complemented in Afull.

(b) Assume that p - t . Then the fully deleted permutation module Afull is a
chief factor of G contained in H ∩ B. In particular, we get one central
G-chief factor and one noncentral G-chief factor of order |W |t−1.
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Finally, the group H ∩ B is normal in G, and the non-Frattini G-chief factors
contained in H ∩ B are a subset of the groups listed in (i), (ii) and (iii) above.

Proof. We prove the claim by induction on |E |. If E = 1, then our statement is
trivially true, so we may assume E 6= 1. Identify E with E1, and for any subgroup
K of E , recall that we write Ki for the corresponding subgroup of Ei and BK for
the group K1×K2×· · ·×K t 6 B. Let πi : B→ Ei be the projection maps. First,
note that the condition NG(F1)H = G implies that H acts transitively on the set
Σ of G-conjugates of F1. Since H ∩ B is precisely the kernel of the action of H
onΣ , and H �G, it follows that H ∩ B�G, as claimed. Note also that H/H ∩ B
is isomorphic to either Altt or Symt .

We now examine the chief factors of G contained in H ∩ B. Suppose first
that F is nontrivial, and let W be a minimal normal subgroup of E contained in
F . The group NG(F1) acts on F1 via automorphisms, and the associated NG(F1)-
conjugates of W are normal subgroups of F contained in soc(F). Let X be the
product of the distinct NG(F1)-conjugates of W in E . Then X , being (equivalent
to) a normal subgroup of NG(F1) > E1, is a normal subgroup of E . Hence, the
condition NG(F1)H = G implies that BX is normal in G.

Suppose first that W 6 Frat(E). Then W 6 Frat(E)∩ F = Frat(F). Moreover,
Frat(F1) char F1, so NG(F1) normalizes Frat(F1). Hence, X 6 Frat(F) as well.
Thus, BX 6 Frat(F)t 6 Frat(BF). Since BF is subnormal in G, it follows that
BX 6 Frat(G). Now, H/BX 6 (E/X) o J , and the series 1 < H/BX 6 G/BX

satisfies the hypothesis of the lemma, with E replaced by E/X and F replaced
by F/X . The result then follows from the inductive hypothesis.

So we may assume that W is not contained in the Frattini subgroup of E . Then
X ∼= W m , where 0 6 m 6 δE,F(W ) = 1. Hence, we must have X = W since X
is nontrivial. In particular, it follows that W1 is normalized by NG(F1) and that
BW = BX is normal in G. We wish to examine the G-chief factors contained in
BW . We distinguish two cases:

(1) W is nonabelian. Then W ∼= T a for some nonabelian simple group T and
some positive integer a. We claim that BW is, in fact, a minimal normal
subgroup of G in this case. To prove this, suppose that K is any nontrivial
normal subgroup of G contained in BW . Then K πi � (H ∩ B)πi = Ei , so K πi

is a normal subgroup of Ei contained in Wi . Since K is nontrivial and H ∩ J
is transitive, it follows that K πi = Wi for all i . Thus, K 6 BW is a subdirect
product of T at . Since K � BW and T is a nonabelian simple group, it follows
that K = BW , so BW is a minimal normal subgroup of G.

(2) W is abelian. Then |W | = pa , for some prime p. For ease of notation,
set Y := BW . Let D ∼= F be the diagonal subgroup of BF , and consider
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the subgroup I := D × (H ∩ J ) 6 (H ∩ B)(H ∩ J ) 6 H . By [31,
Proposition 5.3.4], the (H ∩ J )-module Y ↓H∩J has an (H ∩ J )-series

1 = Y0 < Y1 < Y1 + Y2 6 Y3 = Y, (3.1)

where Y1 is the diagonal subgroup of Y and splits into a direct sum of a copies
of the trivial Fp[H ∩ J ]-module; Y2 splits into a direct sum of a copies of
the (irreducible) fully deleted permutation module for H ∩ J over Fp. Also,
Y = Y3 = Y1 + Y2 if p - t . If p | t , then Y/(Y1 + Y2) is a direct sum of a
copies of the trivial Fp[H ∩ J ]-module. Next, Y ↓D splits as a direct sum

Y = W1 ⊕W2 ⊕ · · · ⊕Wt .

(We caution the reader that although the Wi are completely reducible
by Clifford’s theorem (see [16, Theorem 49.2]), they are not necessarily
irreducible as D-modules.) It follows that Y ↓I has an I -series

1 = A0 < A1 6 A1 + A2 6 A3 = Y, (3.2)

where A1
∼= W1 ⊗ 1 has dimension a and A2

∼= Y2 has dimension a(t − 1).
Furthermore, if p - t , then A1 ∩ A2 is trivial and Y = A1 ⊕ A2. If p | t , then
A1 6 A2 and Y/A2 has dimension a.
Now, if W is central, then a = 1 and, as an H -series, the series in (3.2)
is equivalent to the series in (3.1). Hence, it is, in fact, an irreducible H -
series. This is because H ∩ B is in the kernel of the action of H on Y in this
case, so we can just view Y as a module for H/H ∩ B, which is isomorphic
to either Altt or Symt . The irreducibility of the factors then follows from
[31, Proposition 5.3.4], as above. Since W1 and BW1 are both normalized by
NG(F1), the series (3.2) is also fixed by NG(F1). Hence, (3.2) is a G-series
with irreducible factors since G = H NG(F1).
So we may assume that W is noncentral. If W1 is not in Z(F1), then we may
choose an element x ∈ BF with the property that xπ1 does not centralize A1,
and xπi = 1 for i > 2. If W1 6 Z(F1) and t > 2, then choose e ∈ E such
that e does not centralize W . Then we may choose an element x ∈ H ∩ B
with xπ1 ∈ F1e, xπ2 ∈ F2e−1 and xπi ∈ Fi for i > 2. If W1 6 Z(F1), t = 2,
and there exists e ∈ E such that e2 acts nontrivially on W , then we may
choose an element x ∈ H ∩ B with xπ1 ∈ F1e and xπ2 ∈ F2e−1. Then in each
case, neither A1 nor A2 are 〈x〉-modules, so neither of them are (H ∩ B)-
submodules of Y . Thus, (3.2) implies that in both cases, Y must be irreducible
as an (H ∩ B)(H ∩ J )-module and, hence, irreducible as a G-module.
Finally, if W1 6 Z(F1), t = 2, and E/CE(W ) is an elementary abelian 2-
group, then arguing as in the central case above, it is easy to see that (3.2) is,
in fact, a G-series with irreducible factors.
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Finally, we apply our inductive hypothesis: we have a normal series

1 < H/BW 6 G/BW ,

where H/BW 6 (E/W ) o J , and

NG/BW (F1/W1)H/BW > (NG(F1)BW/BW ) · (H/BW ) = G/BW .

The assumptions of the lemma are now satisfied, with E replaced by E/W and F
replaced by F/W .

This gives us the chief factors of G contained in BF . To find the chief factors
of G contained in H ∩ B/BF , note that H ∩ B/BF is the fully deleted subgroup
of (E/F)t . Let W be a non-Frattini chief factor of E/F . Then W is central since
E/F is abelian. Let Adiag (respectively Afull) be the diagonal (respectively fully
deleted) permutation modules. Then, arguing as in the central case above, we see
that

(a) If p | t , then Adiag and Afull/Adiag are the chief factors of G contained in
H ∩ B/BF . Furthermore, Adiag is Frattini since it is not complemented in
Afull.

(b) If p - t , then the fully deleted permutation module Afull is a chief factor of G
contained in H ∩ B.

Hence, the chief factors of G contained in H ∩ B are a subset of those stated in
parts (i)–(iii) of the lemma.

The following will allow us to apply Lemma 3.9 in our proof of Theorem 2.7
in the classical case.

LEMMA 3.10. Let E := PXm(q) and F := PYm(q), where (X,Y) runs through
the symbols {(GL,SL), (GU,SU), (GSp,Sp), (GOε,Ωε)}. Then

(i) F > E ′;

(ii) Frat(E) ∩ F = Frat(F);

(iii) all chief factors of E contained in F are noncentral;

(iv) δE,F(W ) 6 1 for all non-Frattini chief factors W of E.

Proof. In most cases, the group E is almost simple with socle F and E/F is
abelian. In these cases, therefore, the result is clear. If m = 1, then F = 1,
and again the result is clear. The other possibilities for PYm(q) are listed in [31,
Proposition 2.9.2], and the result can be checked by direct computation in these
cases.
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We conclude this section by recording some important results concerning
the outer automorphism groups of the nonabelian finite simple groups. Recall
that a finite simple group G0 of Lie type occurs as the derived subgroup of
the fixed point group of a simple algebraic group G of adjoint type, defined
over an algebraically closed field of prime characteristic p, under a Steinberg
endomorphism σ , that is, G0 = (Gσ )

′. We use the standard notation G0 = (Gσ )
′
=

G(q), where q = p f for some positive integer f . (We include the possibility
that G(q) is of twisted type.) Also if G0 is of orthogonal type with associated
nondegenerate quadratic form Q and q is odd, we let D(Q) be the discriminant
of Q (see [31, Section 2.5]).

PROPOSITION 3.11 [15, Table 5]. Let G0 be a finite simple group. The outer
automorphism group Out(G0) of G0 is given in Table 2.

The next result follows from [17]. We include a different proof illustrating the
method of crowns.

PROPOSITION 3.12. Let G be a finite almost simple group and let G0 = soc(G).
Then d(G) ∈ {2, 3}. Moreover, d(G) = 3 if and only if G has a central non-
Frattini chief factor A ∼= Z2 with δG(A) = 3. In particular, if d(G) = 3, then
either

(i) G0 = Ln(q), where n > 4 is even and q = p f is odd with f even or

(ii) G0 = PΩ±n (q), where q = p f is odd with f even.

Proof. Since G0 is the only nonabelian chief factor of G, we have δG(G0) = 1. In
particular, 2δG(G0)|Out(G0)| < |G0|, and so Proposition 2.6 implies that d(G) =
2 or

d(G) = maxA∈Φd(L A,δG (A)) = maxA∈Φθ(A)+
⌈
δG(A)+ s(A)

r(A)

⌉
6 maxA∈Φθ(A)+ δG(A),

where Φ, θ, r and s are defined in Proposition 2.6. Suppose that d(G) > 2. Let A
be a non-Frattini abelian chief factor of G. Then A can be viewed as a chief factor
of G/G0 6 Out(G0). Set K = G/G0.

Without loss of generality, suppose d(G) = d(L A,δG (A)). Note that Out(G0) is
not cyclic as otherwise δG(A) = 1, contradicting d(G) > 2.

We claim that Out(G0) is not the semidirect product of two nontrivial cyclic
groups. Suppose otherwise. Say Out(G0) = N H where N G Out(G0), H ∼=
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Table 2. The outer automorphism group of a finite simple group.

G0 Out(G0)

Altn , n > 5
{

Z2

Z2 × Z2

if n 6= 6
if n = 6

Ln(q), n > 2
{
(Z(n,q−1):Z f ) : Z2

Z(2,q−1) × Z f

if n > 3
if n = 2

Un(q), n > 3 Z(n,q+1):Z2 f

PSp2m(q),m > 2


Z2 × Z f

Z f

Z2 f

if q odd
if m > 3 and q even
if m = 2 and q even

Ω2m+1(q), m > 3 and q odd Z2 × Z f

PΩ+8 (q)
{

Sym4 × Z f

Sym3 × Z f

if q odd
if q even

PΩ+2m(q), m > 4


D8 × Z f

Z2 × Z2 × Z f

Z2 × Z f

if q odd and D(Q) square
if q odd and D(Q) nonsquare
if q even

PΩ−2m(q), m > 4


D8 × Z f

Z2 × Z2 f

Z2 f

if q odd and D(Q) square
if q odd and D(Q) nonsquare
if q even

G2(q)
{

Z f

Z f :Z2

if p 6= 3
if p = 3

F4(q)
{

Z f

Z f :Z2

if p 6= 2
if p = 2

E6(q) (Z(3,q−1):Z f ):Z2

E7(q) Z(2,q−1) × Z f

E8(q) Z f
2 B2(q), q = 22m+1,m > 1 Z f
2G2(q), q = 32m+1,m > 1 Z f
2 F4(q), q = 22m+1,m > 1 Z f
2 F4(2)′ Z2
3 D4(q) Z3 f
2 E6(q) Z(3,q+1):Z2 f

M11, M23, M24, J1, J4, Ru, Ly, 1
Co1, Co2, Co3, Fi23, Th, BM, M
M12, M22, J2, J3, HS, Suz, McL, Z2

He, O’N, Fi22, Fi′24, HN

Out(G0)/N , and N ∼= Za , H ∼= Zb for some positive integers a and b greater
than 1. Then K has a cyclic normal subgroup, namely N ∩ K 6 N ∼= Za , and

K/(N ∩ K ) ∼= (N K )/N 6 Out(G0)/N ∼= Zb.
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By Lemma 3.3, either δG(A) = 1 or A is central and δG(A) = 2, contradicting
d(G) > 2.

In the remainder of the proof, we will use Lemma 3.3 implicitly. Suppose that
Out(G0) has shape (Za:Zb):Zc. We can assume that G0 6= E6(q) as otherwise
δG(A) = 1 or A is a central chief factor of G and δG(A) = 2, contradicting
d(G) > 2. Hence, G0 = Ln(q) where n > 3, or G0 = PΩ+2m(q) where m > 4, q
is odd and D(Q) is not a square. If G0 = Ln(q), then Out(G0) = (Z(n,q−1):Z f ):Z2

and we may assume that p is odd, n and f are both even and A ∼= Z2; if not, then
either δG(A) = 1 or A is a central chief factor of G and δG(A) = 2, contradicting
d(G) > 2. Similarly, if G0 = PΩ+2m(q), then Out(G0) = Z2 × Z2 × Z f , f must
be even and A ∼= Z2. The result follows in these cases.

Suppose that G0 = PΩ+8 (q). Note that q is odd as otherwise Out(G0)= Sym3×

Z f and either δG(A) = 1 or A is central and δG(A) = 2, contradicting d(G) > 2.
In particular, Out(G0) = Sym4 × Z f . Also f is even and A ∼= Z2 as otherwise
d(G) = 2, a contradiction. The result follows in this case.

Suppose finally that G0 = PΩ±2m(q) 6= PΩ+8 (q), where m > 4, q is odd and
D(Q) is a square. Then Out(G0) = D8× Z f . Again, f must be even and A ∼= Z2

as otherwise d(G) = 2, a contradiction. Once again, the result follows.

This completes our preparations. We will now prove Theorem 2.7 by
considering each possibility for G0 in turn, using the classification of finite
simple groups.

4. Almost simple groups with sporadic socle

In this section, we prove Theorem 2.7 in the case when soc(G) is a sporadic
simple group. We remark that the bound d(H) 6 3 is proved directly in [10].

We first need a lemma. For a finite group H and an H -module V , we will
write RadH (V ) (or Rad(V ) if H is understood from the context) to denote the
H-radical of V . That is, RadH (V ) denotes the intersection of the maximal H -
submodules of V .

LEMMA 4.1. Let H be a finite group, and let N be an elementary abelian normal
subgroup of H. Then RadH (N ) 6 Frat(H).

Proof. Suppose that M is a maximal subgroup of H not containing R :=
RadH (N ). Then H = RM , so N = RM ∩ N = R(M ∩ N ). This is a
contradiction since R is contained in every maximal submodule of N , so R cannot
be supplemented in N . The claim follows.
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We are now ready to prove Theorem 2.7 for maximal subgroups of almost
simple groups with sporadic socle.

PROPOSITION 4.2. Let G be an almost simple group with sporadic socle G0. Let
H be a maximal subgroup of G, and let A be a non-Frattini chief factor of H.
Then δH (A) 6 3, with equality only if A is central.

Proof. If G0 6∈ {HS,Co1,HN,Fi23,Fi′24,B,M}, then the chief factors of the group
H can be determined by using Magma [7] together with information from the Web
Atlas [53]. We now deal with the remaining cases.

Suppose first that G0 = Co1. Then G = G0, and G has 22 conjugacy classes
of maximal subgroups. In most cases, the required bounds on δH (A) follow
immediately by inspection. The cases where the bounds are not immediate are
when H has one of the following shapes:

22+12
:(Alt8 × Sym3), 24+12.(Sym3 × 3.Sym6),

36
:(2.M12), 31+4

:(2.PSp4(3).2), 33+4
:(2.(Sym4 × Sym4)).

In these cases, we need more specific arguments. In particular, in what follows,
we view the double cover 2.G as a subgroup of GL24(2) and use the analysis in
[48].

Suppose first that H has shape 22+12
:(Alt8×Sym3). Then, viewing 2.G as a

subgroup of GL24(2), we have that 2.H preserves a decomposition of the natural
module (F2)

24 into a direct sum of three subspaces of dimension 8. With this
action, we have that 2.H 6 R o Sym3 where R has shape 21+6

+
.O+6 (2), by [48].

Let E denote the extraspecial normal subgroup 21+6
+

of R. Then the intersection
of 2.H with the natural copy of E3 in R3 is the set of elements (g1, g2, g3) ∈ E3

with the property that g1g2g3 is in the diagonal subgroup of Z(E)3. In particular,
it has order 23+12 and is a subdirect product in E3. Since 2.H ∩ R3 modulo this
normal 2-subgroup is the diagonal subgroup of O+6 (2) acted upon trivially by
Sym3, we have that the three central normal factors of 23+12 are Frattini, while
the 212 on top is a completely reducible (2.H ∩ R3)-module with two irreducible
summands each of order 26. Since these factors are clearly conjugate under the
action of Sym3, we deduce that H has non-Frattini chief factors 212, Alt8, Alt3

and Sym3 /Alt3. Whence, δH (A) = 1.
Suppose next that H has shape 24+12.(Sym3×3.Sym6). Then 2.H preserves a

decomposition of the natural module (F2)
24 into a direct sum of six subspaces of

dimension 4, and 2.H 6 R oSym6 where R has shape 21+4
+
.(Sym3×3). Defining E

as the 21+4
+

normal subgroup of R, we have that 2.H intersects E6 in a subgroup of
order 25+12. As before, the 25 at the bottom of this normal subgroup is contained
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in the Frattini subgroup of 2.H . Furthermore, the group (2.H ∩ R6)/(2.H ∩ E6)

is a subdirect product of (Sym3×3)6. This group Sym3×3 acts on E/Z(E) ∼=
24 completely reducibly, with E/Z(E) decomposing as a direct sum of two
submodules of dimension 2. It follows that (2.H∩R6)/(2.H∩E6) acts completely
reducibly on E6/Z(E)6, with E6/Z(E)6 decomposing as a direct sum of two 12-
dimensional submodules. Since 2.H/(2.H ∩ R6) ∼= Sym6, we then have that as
a 2.H -module, E6/Z(E)6 is a direct sum of two submodules of dimension 12. It
follows that (2.H ∩ E6)/(2.H ∩ Z(E)6) ∼= 212 is irreducible as a 2.H -module.
It follows that the non-Frattini chief factors of H are 212, 3 (the 3 in 3.Sym6 is
Frattini; see [48]), 2 (with multiplicity 2) and Alt6. Hence, δH (A) 6 2.

Using [48] and the embedding 2.G → GL24(2) again, we can argue in a
similar way in the remaining cases. For example, suppose that H has shape
33+4
:(2.(Sym4×Sym4)). Then 2.H preserves a decomposition of (F2)

24 into a
direct sum of eight three-dimensional submodules. This time, the stabilizer of
a three-dimensional submodule induces 31+2.GL2(3), where the GL2(3) acts
naturally on the quotient of the normal extraspecial 3-subgroup of order 31+2

by its centre. We again deduce that the normal subgroup of order 33 in H is
Frattini. Furthermore, it is shown in [48] that the 34 on top of O3(H) splits as
a direct sum of two irreducible H -modules of dimension 2. Also, H/O3(H) ∼=
2.(Sym4×Sym4) is a central product in GL2(3) × GL2(3). Hence, the Frattini
chief factors of H are 32 (of multiplicity at most 2), 22 (of multiplicity 2), 3 (of
multiplicity 2) and 2 (of multiplicity 2). Hence, δH (A) 6 2. (Note that we do not
need to check whether or not the two chief factors of order 32 are Frattini or not.)

Next, suppose that G = Fi23. The maximal subgroups of G are determined in
[32]. The group G has 14 conjugacy classes of maximal subgroups. If

H 6∈ {31+8.21+6.31+2.2.Sym4, [3
10
].(L3(3)× 2), 26+8.(Alt7 × Sym3)},

then the result follows by using Magma, together with the information in the Web
Atlas [53]. We now deal with the outstanding cases. Suppose first that H has
shape 31+8.21+6.31+2.2Sym4. The central subgroups in the extraspecial sections
31+8, 21+6 and 31+2 are Frattini, so we just need to determine the action of H on the
elementary abelian factors of these sections by their central subgroup. Information
on the structure of H is given in [50, Section 1.2], and from this, we deduce that
H/31+8 acts faithfully on the 38. The group H/31+8 preserves a decomposition
of the 38 into a direct sum of four subspaces, each of dimension 2. Furthermore,
the stabilizer of one of these subspaces induces either SL2(3) or GL2(3) on the
subspace, and H/31+8 induces Alt4 on the set of subspaces. It follows that H
acts irreducibly on the 38. One can also see from [50, Section 1.2] that the action
of H on the 26 is irreducible (it is, in fact, a tensor product of a fully deleted
permutation module for Sym4 with the natural module for Z3 6 GL2(2)). Finally,
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2 Sym4
∼= GL2(3) acts naturally on the 32 in 31+2

:2 Sym4, so we deduce that the
non-Frattini chief factors of H are 38, 26, 32, 22, 3, 2 (the centre of 2 Sym4

∼=

GL2(3) is Frattini). Hence, δH (A) = 1 for all A.
Suppose next that H has shape 33.37.(L3(3) × 2). The 33 normal subgroup

U on the bottom is (up to conjugation in G) contained in the 31+8 extraspecial
subgroup E of G from the previous paragraph. Furthermore, U contains Z(E)
and is acted upon irreducibly by H (see [51, Proposition 4.2]). Now, as argued
in [50, Page 81], the group L3(3) ∼= SL3(3) acts on the elementary abelian group
F := E/U as a direct sum of two copies of the natural module of dimension 3.
Furthermore, it follows immediately from [51, Appendix B] that the group Z2 on
top acts by permuting the two L3(3)-summands in F . We deduce that H has chief
factors 33, 36, 3, L3(3), 2, and, hence, δH (A) = 1.

Finally, assume that H has shape 26+8.(Alt7×Sym3). By [22], H has a
subgroup of index 3 of shape 27+4.(24.Alt7) 6 211.M23, where the group 24.Alt7

on top is a maximal subgroup of M23. The 211 on the bottom is an irreducible
M23-module, and we can use the information in [53] to deduce that 211 has three
composition factors as an Alt7-module, of dimensions 1, 6 and 4. Since the 24 in
24.Alt7 < M23 is also irreducible as an Alt7-module, we deduce that δH (A) 6 2.

Next, assume that G ∈ {Fi′24,Fi24}. The conjugacy classes of maximal
subgroups of G are determined in [36], and the required bounds on δH (A) are
immediate in most cases. However, the 2-local and 3-local maximal subgroups
of G need special attention and we use information on their structure given in
[50] to obtain the required bounds on δH (A). For example, suppose that G = Fi′24
and that H has shape 21+12

+
.3.U4(2):2. Then the normal extraspecial 2-group E

of order 21+12 contains a Frattini chief factor Z(E) of H of order 2 and a chief
factor E/Z(E) of order 212. This is clear from [50, Section 3]. Indeed, viewing
E/Z(E) as a six-dimensional space over F4, the group 3.U4(2) embeds as an
irreducible subgroup of GL6(4). The 2 on the top acts on E/Z(E) and 3.U4(2)
as a field automorphism of F4, and this implies that E/Z(E) is irreducible as a
module over F2, as claimed. We deduce that H has non-Frattini chief factors of
order 212, 3, U4(2) and 2, and hence δH (A) 6 2.

As another example, let us take H to have shape 32.34.38.(Alt5×2 Alt4):2. The
induced actions of H/O3(H) ∼= (Alt5×2 Alt4):2 (which is a subdirect product
of Sym5×GL2(3)) on the elementary abelian factor groups 32, 34 and 38 can be
deduced from [50, Section 2]. In particular, we get that the 34 is the fully deleted
permutation module for Sym5 over F3, while the 38 is a tensor product of the fully
deleted permutation module for Sym5 and the natural module for 2 Alt4

∼= SL2(3).
In particular, the 38 is an irreducible H -module. The 32 normal subgroup is also
an irreducible H -module, and we deduce that H has (possible) non-Frattini chief
factors 32, 34, 38, Alt5, 22, 3, 2. Whence, δH (A) = 1.
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Next, suppose that G ∈ {HN,HN :2}. The maximal subgroups of G are
determined in [44]. Again, the required bounds on δH (A) follow immediately
in most cases, though there are some local maximal subgroups for which more
care is needed. In these cases, the structure of H is given in [44, Section 3], and
the bounds can then be deduced. For example, if G = HN :2 and H has shape
23.22.26.(Sym3×L3(2)), then the 23 normal subgroup is contained in Sym12 6 G
and acts regularly on eight letters and trivially on the remaining four letters.
Thus, the normalizer of 23 in Sym12 has shape 23.L3(2) × Sym4. It follows
that the 23 and 22 factors are irreducible as H -modules, with induced actions
L3(2) and Sym3

∼= GL2(2), respectively. Finally, the 26 factor is a quotient of
the extraspecial subgroup 21+8

+
of HN and splits as a direct sum of two three-

dimensional submodules, with induced action Sym4 6 O+4 (4). The other cases
are easier and they are handled in the same way, using [44, Section 3] as above.

Finally, we deal with the cases G ∈ {BM,M}. Since 2.BM 6 M, the bounds
on δH (A) in the case G = BM will quickly follow from our work in the case
G = M. We will make some further remarks about this once we have dealt with
the G = M case.

So assume that G = M. At this stage, 44 conjugacy classes of maximal
subgroups H of G have been identified, namely the 43 in [53] and the one
with representative L2(41) (see [45]). Moreover, any further, if any, maximal
subgroup of G is almost simple with socle L2(13), U3(4), U3(8) or 2 B2(8). By
Proposition 3.12, the required bounds on δH (A) follow when H is almost simple.
Also, for 37 of the 43 representatives H in [53], the information in [53], together
with [7], allow us to determine the action of H on each of its chief factors,
and hence the required bounds on δH (A). The remaining representatives are the
following:

(1) 2.BM (2) 21+24.Co1

(3) 210+16.Ω+10(2) (4) 23+6+12+18.(L3(2)× 3 Sym6)

(5) 25+10+20.(Sym3×L5(2)).

In the first case, H is quasisimple, so δH (A) = 1 by Lemma 3.5. In case (2),
the group Co1 acts (irreducibly) on the Frattini quotient of 21+24

+
as it acts on the

Leech lattice modulo 2 (see [41, Section 2]). In particular, H has non-Frattini
chief factors 224 and Co1, and the result follows. In case (3), the normal 210

subgroup is acted upon irreducibly by H , while the normal 216 section has a K -
composition series consisting of two nonisomorphic K -modules of dimension 8,
for a subgroup K < H . This follows from [41, Corollary 5.5 and Lemma 5.6].
The required bounds on δH (A) are then immediate.

Suppose now that we are in case (4). By [41, Lemmas 4.2 and 4.8], the 23 and
26 normal sections in H are irreducible H -modules. To determine the actions of
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H on the remaining two sections, we view the normal subgroup E ∼= 23 as a
subgroup in the extraspecial subgroup Q ∼= 21+24

+
6 G. The normalizer of Q in G

has shape Q.Co1. Let E0 be a two-dimensional subspace of E containing Z(Q).
Then by [41, Section 2 and Lemma 4.5], the centralizer of E0 in N := NG(Q)
has shape 22.T .(T ∗ × T ∗) : M24, where T ∼= 211 denotes the Todd module for
M24 and T ∗ denotes its dual (see [27] for another proof of this fact). By [41,
Lemma 4.8], C := CN (E) 6 CN (E0) reduces to the group K := 26

:3 Sym6 6 M24

modulo O2(CN (E0)). One can now check, using [7, 53], that the action of K on
the Todd module for M24 (referred to as the Golay cocode in [53]) has composition
factors A1, A6 and A4 of dimensions 1, 6 and 4, respectively. Its radical quotient
T/RadK (T ) is irreducible of dimension 4. The dual modules A∗1 = A1, A∗6 6= A6

and A∗4 6= A4 to these modules then give the composition factors in the dual to the
Todd module for M24 (referred to as the Golay code in [53]). We also have that
T ∗/RadK (T ∗) is irreducible, this time with dimension 1. Thus, C/23 has shape
A6.A4.(A∗4.A

∗

6.2 × A∗4.A
∗

6.2).2
6
:3 Sym6, and the non-Frattini chief factors within

are A4, 2, 2, using Lemma 4.1. The final action we need to check is the action
of the 3 Sym6 on the 26 normal subgroup of the top group. Using Magma [7], we
quickly see that the action is irreducible. The bound δH (A) 6 3 is now immediate.

Finally, assume that we are in case (5), and denote by E5 the normal subgroup of
H of order 25. By [41, Lemma 5.10], E5 is contained in precisely three conjugates
of the normal 210 subgroup from case (3). Let B1 and B2 be two such conjugates,
and let R = B1 B2. Then R is elementary abelian of order 215, B3 6 R and
B1 ∩ B2 = E5, by [41, Lemma 6.11]. Hence, R � H = NG(E5). We are now
ready to determine the H -chief factors contained in R. First, [41, Lemma 4.2]
implies that E5 is a chief factor of H , with H/CH (E5) ∼= L5(2). Next, R/E5

contains a two-dimensional subspace W which is acted upon as a fully deleted
permutation module by NH (W )/CH (W ) ∼= Sym3. Also, K := NNG (B1)(E5)

induces the maximal parabolic subgroup 210.L5(2) 6 Ω+10(2) on B1, by [41, Proof
of Lemma 6.11]. It follows from this and [41, Lemma 6.9] that R/E5

∼= 210 has
two K -composition factors, each of dimension 5. It follows immediately that
R/E5 is irreducible as an H -module. Thus, all that remains is to determine the
H -chief factors in O2(H)/R ∼= 220. First, as mentioned above, K = NNG (B1)(E5)

induces the maximal parabolic subgroup 210.L5(2) 6 Ω+10(2) on B1, and hence
on NNG (B1)(E5)/B1

∼= 216. Thus, we need to determine the composition factors
for the restriction of the irreducible 16-dimensional representation U for Ω+10(2)
over F2 to the subgroup 210.Ω+5 (2). By [41, Lemma 6.4], the group Ω+10(2)
has two orbits in its action on the nonzero elements of U , of sizes 2295 and
63240. Furthermore, [41, Lemma 6.9] implies that U has a five-dimensional K -
submodule. By constructing the transitive permutation representations of Ω+10(2)
of degrees 2295 and 63240 and the induced action of the group K < Ω+10(2)
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in these representations, we quickly deduce that the only possibility is that K has
orbits of sizes 31, 1024, 1240, 3720, 27 776 and 31 744 and U has K -composition
factors of dimensions 5, 10 and 1. Furthermore, U and O2(K ) are nonisomorphic
as K -modules, and O2(K ) is irreducible (one can see this by computing the orbits
of K in its action on the nonidentity elements of O2(K )). Thus, we have that the
220 section in H is either irreducible or consists of two nonisomorphic H -chief
factors, each of order 210. Thus, an H -chief factor of order 25 occurs at most once
in O2(H), while there is at most one pair of H -equivalent chief factors of order
210. Since H/O2(H) ∼= Sym3×L5(2), we deduce that δH (A) 6 2 in all cases, and
this gives us what we need.

This completes the analysis for the case G = M. If G = BM, then the work
above suffices to yield the result for most maximal subgroups H of G for which
the information in the Web Atlas is insufficient to prove the required bounds on
δH (A). For example, suppose that H has shape [235

].(Sym5×L3(2)). Then 2.H is
a subgroup of the maximal subgroup L of M of shape 23+6+12+18.(L3(2)×3 Sym6).
We have already seen above that the group L3(2) acts on the 23 normal subgroup
at the bottom of L irreducibly, and this is the same action as the L3(2) section of
H on the 23 there. Now, as above, it is convenient to view the normal subgroup
2.(O2(H).Sym5) of 2.H as a subgroup of

22.T .(T ∗ × T ∗).M24,

where T denotes the Todd module for M24 and T ∗ denotes its dual. Viewing
R := 26.Sym5 as a subgroup of M24, we can use Magma to determine the actions
of R on T and T ∗. We find that for any R-submodule S of T or T ∗, the R-radical
quotient S/RadR(S) of S is irreducible of dimension either 1 or 4. Furthermore,
the radical quotient of the 26 section in R is irreducible of dimension 4. Using
Lemma 4.1, we deduce that there are at most four non-Frattini H -chief factors
contained in O2(H), and at most three of these have dimension 1. Hence,
δH (Z2) 6 3. Moreover, if more than two chief factors of order 24 occur, then
at most two of them, say A1 and A2, are isomorphic to A, and the others are
isomorphic to the dual A∗. The other cases are entirely similar.

5. Almost simple groups with alternating socle

In this section, we prove the following.

PROPOSITION 5.1. Suppose that G0 6 G 6 Aut(G0), where G0 = Altn is an
alternating group of degree n > 5. Let H be a maximal subgroup of G and let A
be a non-Frattini chief factor of H.

(i) If A is nonabelian, then δH (A) = 1.
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(ii) If A is abelian but noncentral, then δH (A) 6 2.

(iii) If A is central, then δH (A) 6 4. Moreover, if δH (A) ∈ {3, 4}, then |A| = 2.
Finally, δH (A) = 4 if and only if G ∈ {Altn,Symn}, H = (T k .(Out(T ) ×
Symk)) ∩ G is of diagonal type (that is, n = |T |k−1 where T is nonabelian
simple and k > 1), Symk 6 H, |A| = 2, A is a section of Out(T ) × Symk
and δOut(T )∩(H/T k )(A) = 3.

We remark that the bound d(H) 6 4, with equality if and only if we are in the
exceptional case in part (iii) above, is proved in [10, Proposition 4.2].

Recall that if n 6= 6, then G = Altn or G = Symn , whereas if n = 6, then
G ∈ {Alt6,Sym6,M10,PGL2(9),PΓ L2(9)}.

We first treat the case where G is neither an alternating group nor a symmetric
group. In particular, n = 6 and G ∈ {M10,PGL2(9),PΓ L2(9)}. We use Magma
to check our calculations.

LEMMA 5.2. Suppose that G ∈ {M10,PGL2(9),PΓ L2(9)}. Let H be a maximal
subgroup of G and let A be a non-Frattini chief factor of H. Then δH (A) 6 3,
with δH (A) 6 1 if A is nonabelian. Moreover, δH (A) = 3 only if |A| = 2.

We can now suppose that G = Altn or G = Symn , where n > 5. We recall the
O’Nan–Scott theorem which describes the maximal subgroups of G.

THEOREM 5.3 [3, Appendix]. Let G = Altn or G = Symn , where n > 5. Let H
be a maximal subgroup of G. One of the following assertions holds:

(i) H is intransitive: H = (Symk × Symn−k) ∩ G where 1 6 k < n/2.

(ii) H is affine: H = AGLd(p) ∩ G where n = pd , p is prime and d > 1.

(iii) H is imprimitive or of wreath type: H = (Symk o Symt) ∩ G where n = kt
or n = k t for some t > 1.

(iv) H is of diagonal type: H = (T k .(Out(T ) × Symk)) ∩ G where T is
nonabelian simple and n = |T |k−1 for some k > 1.

(v) H is almost simple.

We can now finish the proof of Proposition 5.1. We remark that the proof here
is similar to the proof of [10, Proposition 4.2].

Proof of Proposition 5.1. By Proposition 3.12, if H is almost simple, then
δH (A) 6 3 with equality only if A ∼= Z2 is central. We therefore assume in the
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remainder that H is not almost simple. Suppose first that G = Symn . Suppose
H is intransitive. The chief factors of H are then Altk , Altn−k , Z2 and Z2. In
particular, either A is a nonabelian and δH (A) = 1 or A ∼= Z2 is a central chief
factor of H satisfying δH (A) 6 2.

Suppose now that H is affine. Then H = V :GLd(p), where V = Z d
p is an

elementary abelian p-group and is the unique minimal normal subgroup of H .
Moreover, H = V .Za.Ld(p).Zb, with a = (d, p − 1) and b = p − 1. Since a
chief factor of H that is a section of Za is Frattini, it follows from Lemma 3.10
that δH (A) = 1.

Suppose that G is imprimitive or of wreath type. In the following, when we
write H := N1.N2 · · · Nt−1.Nt = H, we mean that H has normal series with
factors N1, . . . , Nt . Then by Lemma 3.9,

H =
{

Altt
k .2.2

t−2.2.Altt .2 if t is even
Altt

k .2.2
t−1.Altt .2 if t is odd. (5.1)

Moreover, if t is even, then the first Z2 chief factor of H in (5.1) is Frattini.
Suppose t 6= 4 and k 6= 4. By Lemma 3.9, we see that (5.1) is a chief series for

H . In particular, δH (A) 6 2, and if δH (A) = 2, then A ∼= Z2 is central.
Suppose t = 4 and k 6= 4. By Lemma 3.9, (5.1) can be refined to the following

series for H , in which all the factors are chief factors:

Alt4
k .2.2

2.2.22.3.2.

Now H has two chief factors A1 and A2 with A1
∼= A2

∼= Z2 × Z2. However, A1

and A2 are not H -isomorphic and so they are not H -equivalent. It follows that
δH (A) 6 2, and if δH (A) = 2, then A ∼= Z2 is central.

Suppose t 6= 4 and k = 4. By Lemma 3.9, a chief series of H is

H =
{

22t .3t .2.2t−2.2.Altt .2 if t is even
22t .3t .2.2t−1.Altt .2 if t is odd.

Again δH (A) 6 2, and if δH (A) = 2, then A ∼= Z2 is central.
Finally, if t = k = 4, then a chief series of H is given by

H = 28.34.2.22.2.22.3.2.

Again, since the first Z2 chief factor of H is Frattini and the two Z2 × Z2 chief
factors of H are not H -equivalent, it follows that δH (A) 6 2, with equality only
if A ∼= Z2 is central.

Suppose next that H is of diagonal type so that H = T k .(Out(T ) × Symk),
where n = |T |k−1. Since T k is a chief factor of H and δH (T k) = 1, we can
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restrict our analysis to the non-Frattini chief factors A of H which appear as
sections of Out(T ) × Symk . It follows from Proposition 3.12 that δH (A) 6 4.
Moreover, if δH (A) > 3, then A ∼= Z2 is central, and δH (A) = 4 if and only
if δOut(T )(A) = 3. (Note that if k ∈ {3, 4}, then H can have three chief factors
A1, A2 and B isomorphic to Z3. However, if this is the case, then A1 and A2

appear as sections of Out(T ) > (Z3 × Z3) : 2, whereas B appears as a section
of Symk which has a single Z3 composition factor. In particular, for i ∈ {1, 2},
Ai and B have nonisomorphic centralizers and so are not H -isomorphic. Hence,
δH (Z3) 6 2.)

Suppose finally that G = Altn . Note that H is a subgroup of index at most 2 in
a subgroup of Symn that is of intransitive, affine, imprimitive, wreath, diagonal or
almost simple type as in (i)–(v) of Theorem 5.3. If H is not of diagonal type, then
a similar argument to the one given in the case where G = Symn yields the result.
Assume that H is of diagonal type. There are two cases to consider, respectively,
as H is a subgroup of T k .(Out(T ) × Symk) of index 1 or 2. In the former case,
as before, we get δH (A) 6 4. Moreover, if δH (A) > 3, then A ∼= Z2 is central,
and δH (A) = 4 if and only if δOut(T )(A) = 3. We therefore assume that H is a
subgroup of T k .(Out(T )× Symk) of index 2. Note that T k is the unique minimal
normal subgroup of H . Let D = {(t1, . . . , tk) : t1 ∈ T, t1 = · · · = tk}

∼= T be
the diagonal subgroup of T k . Then Symn is the symmetric group on the set Ω of
cosets of D in T k . Also σ ∈ Symk acts on Ω by sending a coset D(t1, . . . , tk) to
D(tσ(1), . . . , tσ(k)).

Suppose that k > 3. A transposition τ of Symk then fixes |T |k−2 points of Ω . It
follows that, seen as an element of Symn , τ is a product of

n − |T |k−2

2
=
|T |k−2(|T | − 1)

2

disjoint 2-cycles. In particular, a transposition of Symk is an even permutation
of Symn and Symk 6 Altn . Therefore, H = T k .(L × Symk), where L is a
subgroup of Out(T ) of index 2. It follows from Proposition 3.12 that δH (A) 6 4.
Moreover, if δH (A) > 3, then A ∼= Z2 is central, and δH (A) = 4 if and only if
δOut(T )∩(H/T k )(A) = 3.

Suppose finally that k = 2. The transposition τ = (1, 2) ∈ Symk fixes a coset
D(t1, t2) if and only if t1 = t t2 for some t ∈ T of order dividing 2. In particular,
τ fixes i2(T ) + 1 points of Ω , where i2(T ) is the number of involutions of T . It
follows that, seen as an element of Symn , τ is a product of

N = (|T | − i2(T )− 1)/2

2-cycles.
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If N is odd, then τ 6∈ H , H = T .Out(T ) and so, by Proposition 3.12, δH (A)6 3
with equality only if A ∼= Z2 is central and δOut(T )(A) = 3. If N is even, then
H = T .(L × Z2), where L is a subgroup of Out(T ) of index 2. It follows from
Proposition 3.12 that δH (A) 6 4. Moreover, if δH (A) > 3, then A ∼= Z2 is central,
and δH (A) = 4 if and only if δOut(T )∩(H/T k )(A) = 3.

6. Almost simple groups with classical socle

In this section, we prove Theorem 1 for maximal subgroups of classical groups.
We begin by fixing some notation which will be retained for the remainder of
the section. First, fix a vector space V of dimension n over a field F. Also, let
κ : V l

→ F be a map, where either l = 1 and κ is a nondegenerate quadratic form
on V (we will call this case O) or l = 2 and κ is either the zero form (case L), a
nondegenerate unitary form (case U), or a nondegenerate symplectic form (case
S) on V .

Now define I (V, κ) 6 GL(V ) to be the group of κ-isometries of V , define
S(V, κ) := I (V, κ) ∩ SL(V ) to be the group of special κ-isometries of V , define
∆(V, κ) to be the group of κ-similarities on V and define Γ (V, κ) to be the group
of κ-semisimilarities of V . Also, define Ω(V, κ) to be the kernel of the spinor
norm on S(V, κ) in case O and defineΩ(V, κ) := S(V, κ) otherwise. Finally, we
define another group Σ as follows: in case L, the group S(V ) = S(V, κ) has an
automorphism ι which is defined by fixing a basis for V and then composing the
inverse and transpose antiautomorphisms of the group S(V ) viewed as a matrix
group over the field F with respect to this basis. Set Σ(V, κ) := Γ (V, κ)〈ι〉 in
this case, and Σ(V, κ) := Γ (V, κ) otherwise. We then have a normal series

Ω(V, κ) 6 S(V, κ) 6 I (V, κ) 6 ∆(V, κ) 6 Γ (V, κ) 6 Σ(V, κ). (6.1)

Each group in (6.1) also normalizes the group of scalars of I (V, κ), which we call
Z . Writing bars to denote reduction modulo Z , we then get another normal series

Ω(V, κ) 6 S(V, κ) 6 I (V, κ) 6 ∆(V, κ) 6 Γ (V, κ) 6 Σ(V, κ). (6.2)

Finally, fix a prime p and a power q := p f of p. We will assume throughout that
the field F is the field F := Fqu of qu elements, where u := 2 if we are in case U,
and u := 1 otherwise.

Now, let X be one of the symbols {Ω, S, I,∆, Γ,Σ}. If two forms κ and κ ′ are
similar, then X (V, κ) ∼= X (V, κ ′). Thus, since there is a unique similarity class
of symplectic forms and a unique similarity class of unitary forms over F, we can
omit reference to the specific form κ and speak of the symplectic and the unitary
X -group X (V ) = X (V, κ). When we are in case O with n even, there are two
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similarity classes of quadratic forms on V , which we will refer to as case O+ and
case O−. (These cases are distinguished according to whether the Witt index of
κ is 0 or 1, respectively.) When we are in case O with n odd, there is a unique
similarity class of quadratic forms on V , and we will refer to this as case O◦. In
general, when the similarity class of the form under consideration is understood,
we will write X (V ) in place of X (V, κ). We will also write either X (V ) or PX(V )
in place of X (V, κ) (it will be convenient to retain both pieces of notation for the
reduction of X (A) modulo scalars). We will also omit reference to the vector
space V when V is understood. The groups X = X (V ) and X = X (V ) = PX(V )
are called the classical groups.

Apart from a few cases, the group Ω is simple. The following is [31,
Theorem 2.1.3].

THEOREM 6.1. Suppose that n = dimF(V ) is at least 2, 3, 4 and 7 in cases L, U,
S and O, respectively. Then the group Ω is simple, except for L2(2), L2(3), U3(2)
and PSp4(2).

We also record the following information about Aut(Ω). See [31, Theorem
2.1.4] and the discussion following.

THEOREM 6.2 [31, Theorem 2.1.4 and the discussion following]. Assume thatΩ
is simple.

(i) If Ω 6= Sp4(q) with q even, and Ω 6= PΩ+8 (q), then Σ = Aut(Ω).

(ii) When Ω = PΩ+8 (q), we have [Aut(Ω) : Σ] = 3.

(iii) When Ω = Sp4(q) with q even, we have [Aut(Ω) : Σ] = 2.

REMARK 6.3. In (ii) and (iii) of Theorem 6.2, an element of Aut(Ω)\Σ is said
to be an exceptional automorphism of Ω .

The proof of the following is an easy consequence of the analysis of the
structure of outer automorphism groups of classical simple groups in [31, Ch. 2].

LEMMA 6.4. Let Ω , H and A be as above. Assume that we are in case T, where
T ∈ {L,U,S,Oε

}.

(i) If A is nonabelian, or if dimEndH (A) V > 1, then δH (A) = δHΩ (A).

(ii) If A is abelian but noncentral, then δH (A) 6 δHΩ (A) + fT(A), where
fT(A) = 0 if T ∈ {S,Oε

} and fT(A) ∈ {0, 1} if T ∈ {L,U}.
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(iii) If A is central then δH (A) 6 δHΩ (A) + 2, unless |A| = 2 and H/HΩ has
an elementary abelian factor group of order 23, in which case δH (A) =
δHΩ (A)+ 3.

Proof. Note first that H/HΩ is isomorphic to a subgroup of the soluble group
Out(Ω). Part (i) then immediately follows.

We now prove (ii) and (iii). By Lemma 3.4 parts (i) and (ii), we have

δH (A) = δHΩ (A)+ δH/HΩ
(A).

Suppose first that Ω = PΩ+8 (q) so that Out(Ω) ∼= Z f × Syme for some f > 1,
where e = 3 if q is even and e = 4 if q is odd. Then δH/HΩ

(A) 6 3 if A is
central, with equality if and only if f is even, q is odd, the image of H/HΩ in
Syme is either a Klein 4-group or D8 and the abelianization of H/HΩ has an
elementary factor group of order 23. If A is noncentral and non-Frattini, then we
must have that |A| = 3 or |A| = 22 (coming from the Klein 4-subgroup of Sym4)
and δH/HΩ

(A) 6 1.
Thus, we may assume that Ω 6= PΩ+8 (q). Then Out(Ω) has shape (D.F).E ,

where D, F and E are cyclic groups and Out(Ω)/D is abelian. Furthermore, at
most two of D, F and E have order greater than 2. Part (iii) then also follows.

Finally, we prove (ii). Since Out(Ω)/Frat(Out(Ω)) is abelian in cases S and
Oε ((n, ε) 6= (8,+)), part (ii) follows immediately in these cases. So we may
assume that we are in cases L or U. Since A is noncentral, we must have |A| > 2
and n > 3. Also, Out(Ω)/D is abelian. Thus, we must have that all noncentral
chief factors of H/HΩ occur as sections of D. Since D is cyclic, it follows from
Lemma 3.4 part (iii) that δH/HΩ

(A) 6 1. This completes the proof.

We now proceed to the proof of Theorem 2.7 in the classical cases. Throughout,
let G0 = Ω be a simple classical group as above and let G be group with G0 6
G 6 Aut(G0). For a subgroup K ofΣ and a symbol X ∈ {Ω, S, I,∆, Γ,Σ}, we
will write K X (respectively K X ) to denote the group K ∩ X (respectively K ∩ X ).

Throughout, we will write Ĝ for the unique subgroup of Σ containing Z such
that Ĝ = G. Note that all maximal subgroups of G can be lifted to maximal
subgroups of Ĝ. Thus, fixing a maximal subgroup H of Ĝ and a non-Frattini
chief factor A of H , we need to prove that

(1) δH (A) 6 2 if A is nonabelian.

(2) δH (A) 6 2 if A is abelian but noncentral.

(3) δH (A) 6 3 if A is central, unless |A| = 2 and (G, H) is one of the pairs in
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part (ii)(b) of Theorem 1. In this latter case, we have δH (A) = d , where d is
as in the last column of Table 1.

Now, we have normal series

HΩ 6 HS 6 HI 6 H∆ 6 HΓ 6 HΣ.a = H (6.3)
HΩ 6 HS 6 HI 6 H∆ 6 HΓ 6 HAut(G0)

= H . (6.4)

Recall that for a group G and a section N/M of G, we write δG,N/M(A) for the
number of non-Frattini chief factors of G which are G-equivalent to A and appear
as a section of N/M . Using (6.3) and (6.4), we have

δH (A) = δH ,HΩ
(A)+ δH ,HS/HΩ

(A)+ δH ,HI /HS
(A)+ δH ,H∆/HI

(A)+ δH ,HΓ /H∆
(A)

+ δH ,H/HΓ
(A) (6.5)

by Lemma 3.4 part (i).
To prove Theorem 2.7 in the classical cases, our strategy will be to analyse the

structure of H using [9] and part (I) of the main theorem in [31]. We will then
apply the expression for δH (A) in (6.5).

It will be convenient to postpone the casesΩ ∈ {Sp4(2
f ),PΩ+8 (q)} and G 66 Γ

until Section 7. Thus, for the remainder of this section, we assume that

if Ω 6∈ {Sp4(2
f ),PΩ+8 (q)} then G 6 Γ .

Then by the main theorem of [1], either

(1) H is almost simple or

(2) H lies in one of eight natural classes Ci of subgroups of G.

This was proved, and the eight classes Ci , for 1 6 i 6 8, were defined in [1].
In this paper, we use the definitions of Ci from [31]. If H is almost simple, then
Theorem 2.7 follows immediately from Proposition 3.12, so we will assume that
H lies in one of the classes Ci for 1 6 i 6 8.

We subdivide our proof accordingly. Our first two propositions concern C1. We
remark that nonparabolic members of C1 are referred to as subsystem subgroups
in [26, Section 2.6], which we reference in the following proof.

PROPOSITION 6.5. Suppose that H lies in class C1 and that H is nonparabolic.
Then Theorem 2.7 holds.

Proof. Suppose first that we are in case O± with q and n even and H of type
Spn−2(q) (see [31, Table 4.1.A]). Then HΩ is nonabelian simple and H/HΩ is
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soluble, so δH (A) = 1 if A is nonabelian, by Lemma 6.4 part (i). Also, if A is
abelian, then δH (A) = δH ,H/HΩ

(A) = fO±(A) in the language of Lemma 6.4, and
the result follows.

So we may assume that we are not in case O± with H of type Spn−2(q).
Then H stabilizes a direct sum decomposition V = V1 ⊕ V2, where each Vi is
nondegenerate if we are not in case L. Let κi = κ ↓Vi , where κ is the defining form
on V . Then, if we are not in case O, we have n1 := dim V1 6= n2 := dim V2. If
we are in case O, then κi is a nondegenerate quadratic form of Witt index εi ∈ {0,
±1} on Vi , and (n1, ε1) 6= (n2, ε2). Write NX (V1, V2) for the full stabilizer of
V1⊕V2 in X , as X ranges over the symbolsΩ , S, I and∆. Then we have NΩ(V1,

V2) = HΩ 6 HI 6 NI (V1, V2).
Let Ii denote the group of κi -isometries of Vi . Similarly, define Ωi and ∆i .

By [31, Lemma 4.1.1], we have NI (V1, V2) = I1 × I2, and Ω1 × Ω2 6 NΩ(V1,

V2) = HΩ . Then L := Ω1 × Ω2 is characteristic in HI , so L is normal in H .
Hence, we have a normal series

1 < L 6 H . (6.6)

Thus, by Lemma 3.4 parts (i) and (ii), we have

δH (A) = δH ,L(A)+ δH/L(A). (6.7)

We now proceed to bound each of the quantities on the right-hand side of (6.7).
We first consider the group L ∼= Ω1 ◦Ω2. By [31, Lemma 4.1.1], each factor Ωi

is normal in H and HI induces diagonal automorphisms on each Ωi (in fact, it
induces the full group of diagonal automorphisms onΩi ). Furthermore, it is clear
that a field automorphism of G0 acts as a field automorphism on each factor Ωi

in L .
Now, assume that a central chief factor of H appears in one of the groups Ωi .

The possibilities for the nonsimple groups appearing as a factor Ωi are listed in
[31, Proposition 2.9.2]. It is quickly checked that either Ωi = Sp4(2) for some i
or a nontrivial field or diagonal automorphism of such a group acts nontrivially
on all central chief factors appearing in Ωi . For example, if Ωi = PΩ+4 (3), then
Ω1 has a central chief factor B of order 32, but any nontrivial outer automorphism
of G0 acts nontrivially on B. If q = 3, then any nontrivial diagonal automorphism
permutes these two chief factors of order 3 transitively. Whence, a central chief
factor of H appearing in one of the groups Ωi implies that either H/HΩ

∼=

G/G0 6 Out(G0) intersects both the group of diagonal and field automorphisms
of G0 trivially or q = 2 and |G/G0| 6 2. Thus, |H/HΩ | 6 2, with equality
possible only in case L or case S with q even. Since Ωi is either simple or is one
of the groups appearing in [31, Proposition 2.9.2] (each of which has δΩi

(B) 6 2
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for all non-Frattini chief factors B, with equality possible only if B is central and
Ωi ∈ {U3(2),PΩ+4 (3)}), we deduce that either δH (A) 6 3 (respectively 1) if A is
central (respectively noncentral) or all non-Frattini chief factors of H contained
in L are noncentral (only one of the exceptional groups Ωi ∈ {U3(2),PΩ+4 (3)}
can occur, and in that case, G/G0 must be trivial by the arguments above). Thus,
for the remainder of the proof, we may assume the following.

All non-Frattini chief factors of H contained in L are noncentral. (6.8)

Now, if Ω1 and Ω2 are nonabelian simple, then δH ,L(A) 6 1 if A is nonabelian
sinceΩ1 andΩ2 have distinct centralizers in H . Also, δH ,L(A) = 0 if A is abelian
by Lemma 3.5. Next, assume that Ω1 is nonsimple. Then the possibilities for Ω1

are listed in [31, Proposition 2.9.2]. We can then see that δΩ1
(A) 6 1 since we are

assuming that A is noncentral. It follows that

δH ,L(A) 6 1 (6.9)

with equality only if A is noncentral.
Next, we consider the group Y := HI/L . If n1 = 1 in case O, then H is almost

simple with socleΩ2 by [31, Proposition 4.1.6]. The required bounds then follow
immediately from Lemma 6.4. So we may assume that ni > 1 if we are in case
O. Then by [31, Lemma 4.1.1], we have that Y is a subdirect product of the group
(I1/Ω1)× (I2/Ω2).

Now, by checking the nonsimple groupsΩi appearing in [31, Proposition 2.9.2],
we can see that no chief factor of Ii can appear in both Ii/Ωi and Ωi . Thus,
since H/HI 6 Aut(G0)/I is abelian, we deduce from (6.9) and Lemma 3.4
that δH (A) = δH ,HI

(A) 6 2 if A is noncentral. Since Ω1 and Ω2 have distinct
centralizers in H in the case when one of them is nonabelian simple, we also have
that δH (A) 6 1 if A is nonabelian.

Thus, we may assume for the remainder of the proof that A is central. In
particular,

δH (A) = δH/L(A), (6.10)

by (6.8).
Suppose first that we are not in case O so that∆ = I . If we are in case S or case

U, then H/HI is cyclic. If |A| is odd, then |A| is prime (since A is central) and the
|A|-part of H/HI is cyclic. The result then follows immediately from Lemma 3.4
and (6.10) since HI/L is metacyclic. So we may assume that we are in case L and
that |A| = 2. Then from the embedding of the group H into GLn(q), we can see
that Y1 := Y ∩(HΩ/L) is a subgroup of {(α, α−1) : α ∈ F×q } 6 F×q ×F×q . Now, if ni

is odd, then |Ii/Ωi | is odd, so the bound δH/L(A)6 3 follows as above. So we may
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assume further that each ni is even. Then |Y1| is even, by [31, Proposition 4.1.4].
It is now clear that if G/G0 = H/HΩ intersects I/Ω in a group of even order,
then the H -module Y/(Y 2 Frat(Y )) has order 22 (this is because the 2-part of Y
is clearly noncyclic in this case). In fact, from the relations on Out(G0) given
in Section 1, we have that Y/(Y 2 Frat(Y )) is a trivial H -module (recall that the
field automorphisms on G0 induce field automorphisms on eachΩi ). The module
Y/(Y 2 Frat(Y )) is also non-Frattini in the associated quotient H/L . One can see
this by observing that each generator reduces modulo HΩ to an element of an
irredundant generating set for G/G0 (again, see the generators and relations for
Out(G0) in Section 1). Whence, we get

δH (A) = δH/L(A) = 1+ c + e + h,

where c := 1 if the intersection of G/G0 with I/Ω has even order, and
c := 0 otherwise; e := 1 if the intersection of G/G0 with the group of field
automorphisms of G0 has even order, and e := 0 otherwise; and h := 1 if G
contains a graph automorphism of G0, and h := 0 otherwise. This gives us what
we need.

Finally, assume that we are in case O. The bound δH (A) 6 3 clearly holds
in this case if |A| is odd, so we will assume for the remainder of the proof that
|A| = 2. Then arguing as in the paragraph above, we get that

δH (A) = δH (Y )+ d(K ), (6.11)

where K := (G/G0) ∩ (Aut(G0)/I ). This reduces our problem to examining the
group Y . We do this using [31, Proposition 4.1.6].

First, if both n1 and n2 are odd, or if q is even, then Y 6 Z2 × Z2 and K
is cyclic, so the bound δH (A) 6 3 follows from (6.11). So we may assume that
n2 is even and that q is odd. If n1 is odd, then n is odd and Y is isomorphic to
a subgroup of Z2 × 22. Also, Y1 6 Y has shape diag(Z2 × Z2).2 6 Z2 × 22

by [31, proof of Proposition 4.1.6]. If G/G0 intersects ∆/Ω nontrivially, then
H∆/(CH (Ω2)Ω2) ∼= D8, so one of the Z2 factors in the group Y is Frattini. Thus,
δH (Y ) 6 2. Otherwise, G/G0 contains no diagonal automorphisms, so Y = Y1

and we also get δY (A) = 2. Either way, we get δH (A) 6 3 by (6.11).
Thus, we may assume q is odd and both n1 and n2 are even. Let sεi := 2 if

εi = + and sεi := 1 otherwise. If the discriminants of both κi are nonsquare,
then κ has square discriminant (recall that q is odd). Also, |HΩ/L| = 2, by [31,
Proposition 4.1.6]. We then get that H∆/L is isomorphic to a subgroup of a group
of shape 2sε1 × 2sε2 , with |HΩ/L| = 2 and H∆/HΩ is precisely the intersection of
G/G0 with ∆/Ω 6 D8. We then immediately deduce from Lemma 3.4 that

δH (A) = δH/L(A) = δH ,H∆/L(A)+ δ|G/G0∩Γ /∆|,2 6 4,
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with equality if and only if (G/G0) ∩ (Γ/∆) is even and G/G0 intersects the
group of diagonal automorphisms on G0 in an elementary abelian subgroup of
order 22, which is true if and only if (6.8) holds. Note that (6.8) can hold only if
q is odd and the εi are not both −, since the intersection of the group of diagonal
automorphisms of G0 with G/G0 has order at most 2 in these cases. This gives
the first C1 case in Table 1 for case O.

Assume next that the discriminant of κ2 is a square. Then H∆/HΩ is isomorphic
to a subgroup of a group of shape D8× D8, and HΩ/L 6 22

× 22 6 H∆ has order
4, by [31, Proposition 4.1.6]. If the discriminant of κ is a nonsquare, then the
discriminant of κ1 is a nonsquare and we have HI 6 2sε1 × 22 and H∆/L is an
elementary abelian 2-group. Hence,

δH (A) = δH ,H/L(A) = δH ,H∆/L(Y ) = δH ,HΩ/L(A)+ δH ,H∆/HΩ
(A)+ δH/H∆

(A)
= 2+ d(G/G0).

If the discriminant of κ is a square, then either (G/G0) ∩ (∆/Ω) equals D8 and
we get δH ,H∆/L(A) = 3 (precisely one of the Z2-factors in HΩ/L becomes Frattini
in this case) or (G/G0)∩ (∆/Ω) does not equal D8. In this latter case, we get that
H∆/L 6 22

×22 is elementary abelian, so as above, we get δH (A) = 2+d(G/G0).
These cases combine to give the second C1 case in Table 1 for case O, and this
completes the proof.

PROPOSITION 6.6. Suppose that H ∈ C1 is a parabolic subgroup. Then
Theorem 2.7 holds.

Proof. In this case, either

(i) H stabilizes a totally singular subspace W ⊂ V of dimension m 6 n/2 or

(ii) we are in case L, G contains a graph or graph–field automorphism and H
stabilizes subspaces W < U with dim W = m < n/2, and dim U = n − m.

We will say that H is of type Pm in case (i) and that H is of type Pm,n−m in case
(ii).

Suppose first that we are in case (i), and write NX (W ) for the full stabilizer
of W in X , as X ranges over the symbols Ω , S, I and ∆. Similarly, define the
centralizers CX (W ) 6 NX (W ). Hence, we have NΩ(W ) = HΩ 6 HI 6 NI (W ).

By [31, Lemmas 4.1.12 and 4.1.13], there exist subspaces U and Y of V , with
Y totally singular, such that V = (W ⊕ Y ) ⊥ U (U = 0 in case L) and NI (W ) =

C o L , where

C := C I (W )∩C I (W⊥/W )∩C I (V/W⊥) and L := NI (W )∩NI (Y )∩NI (U ).
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Moreover, dim Y = m unless we are in case L, in which case dim Y = n − m.
The group C is called the unipotent radical of H , while L is called a Levi
subgroup of H . It is an easy exercise to show that C is a nilpotent characteristic
subgroup of HΩ , that C/C ′ is an elementary abelian p-group and that C is
contained in NΩ(W ). In particular, C ′ 6 Frat(C). Furthermore, by [5, Theorem 2],
the L-module C/C ′ is either irreducible or has composition length 2, with
nonisomorphic L-composition factors. It follows from Clifford’s theorem that
C/C ′ is an Fp[H ]-module, with composition length at most 2, and if it has
composition length 2, then the factors are nonisomorphic.

We now consider the structure of L . Let I (U ) denote the group of κ-isometries
of the (n−2m)-dimensional vector space U . Similarly, defineΩ(U ). Now, recall
that u := 2 if we are in case U, and u := 1 otherwise. Then in cases U, S and
O, we have, by [31, Lemma 4.1.12], that L ∼= GLm(qu) × I (U ). In case L, we
have, by [31, Lemma 4.1.1], that L ∼= GLm(q)×GLn−m(q). Let M := SLm(q)×
SLn−m(q) � L in case L, and let M be the normal subgroup SLm(qu) × Ω(U )
of L otherwise. Then M 6 NΩ(W ) 6 LΩ 6 HΩ . Furthermore, since C o M is
characteristic in C o L � H , it is normal in H . Hence, C o M is normal in H .
Thus, we have a normal series

1 < C 6 C o M 6 C o LΩ = HΩ 6 H (6.12)

for H . Thus, by Lemma 3.4, we have

δH (A) = δH ,C(A)+ δH ,M(A)+ δH ,LΩ/M(A)+ δH ,H/HΩ
(A). (6.13)

As in the proof of Proposition 6.5, we now proceed to bound each of the quantities
on the right-hand side of (6.13).

First, as remarked above, the Fp[H ]-module C/C ′ is either irreducible or has
composition length 2, with nonisomorphic H -composition factors. In particular,
δH ,C(A) 6 1, and δH ,C(A) = 0 if A is not a p-group.

Now, from (6.12), H/C has a normal series identical to the normal series in
(6.6) in the proof of Proposition 6.5. From this proof, one quickly sees that no
chief factor of H/C can have dimension greater than 2. Thus, by the paragraph
above, we have δH (A) = 1 if A is contained in C . Also, for any non-Frattini chief
factor A 6= C/C ′ of H , we have δH (A) = δH/C(A).

If H is of type Pm , then the arguments in cases U and S are almost identical
to the arguments in the proofs of these cases in Proposition 6.5. That is, we get
δH (A) = δH/C(A) 6 2 (respectively 3) if A is noncentral (respectively central).
If H is of type Pm in case L, then H , and hence G, cannot contain an element
of Aut(G0) − Γ since such an element interchanges the maximal subgroups Pm

and Pn−m ofΩ . Thus, we also have δH (A) = δH/C(A) 6 2 (respectively 3) if A is
noncentral (respectively central) in this case.
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So we may assume that we are either in case L with H of type Pm,n−m or we
are in case O. Suppose first that we are in case L with H of type Pm,n−m . We now
argue exactly as in the L case of Proposition 6.5. The only slight difference is that
the group Y := HΩ/L is a subgroup of {(α, β, α−1, β−1) :α, β ∈ F×q } 6 F×q × F×q .
We then get that Y = HΩ/L has even order if and only if q is odd and both m
and n − m are even. It then follows that if G/G0 = H/HΩ intersects I/Ω in
a group of even order, then the H -module Y/(Y 2 Frat(Y )) has order 22 (this is
again because the 2-part of Y is noncyclic in this case). The relations on Out(G0)

given in Section 1 then imply that Y/(Y 2 Frat(Y )) is a trivial H -module (since the
field automorphisms on G0 induce field automorphisms on eachΩi ). The module
Y/(Y 2 Frat(Y )) is also non-Frattini in the associated quotient H/L as before, and,
hence, we get

δH (A) = δH/L(A) = 1+ c + e + h,

where c := 1 if the intersection of G/G0 with I/Ω has even order, and
c := 0 otherwise; e := 1 if the intersection of G/G0 with the group of field
automorphisms of G0 has even order, and e := 0 otherwise; and h := 1 if G
contains a graph automorphism of G0, and h := 0 otherwise. This gives us the
second C1 case in Table 1 for groups in case L.

So assume that we are in case O. By [31, Lemma 4.1.12 and its proof], we
have HΩ = K × Ω(U ), where either K is a subgroup of GLm(q) containing
SLm(q) or K is a subgroup of PGLm(q) containing Lm(q). Also, all non-Frattini
chief factors of H/HΩ are central, by Lemma 6.4. Since the groups K and Ω(U )
are normal and have distinct centralizers in H , we deduce that if A is noncentral,
then δH (A) = δΩ(U )(A) or δH (A) = δK (A). By examining the non-almost-simple
groups which can occur in HΩ (from [31, Proposition 2.9.2]), we can see that
δE(B) 6 1 for all non-Frattini chief factors B of E , for each E ∈ {K ,Ω(U )}.
Hence, we have δH (A) 6 1 if A is noncentral, and this gives us what we need. In
fact, since H/HΩ 6 D8 × Z f , we can also deduce that δH (A) 6 2 if A is central
and has odd order.

So to complete the proof, we may assume that |A| = 2. Since a field
automorphism of G0 also acts as a field automorphism on each central factor of
HΩ , we deduce (arguing as in the proof of Proposition 6.5) that either G contains
no field automorphisms or any non-Frattini chief factor of H contained in HΩ is
noncentral. Suppose first that G contains no field automorphisms. Then H/HΩ

is isomorphic to a subgroup of D8, and so has at most two non-Frattini chief
factors G-equivalent to A. By the argument in the paragraph above, we also have
δΩ(U )(A) 6 2, with equality if and only if n−m = 4,Ω(U ) ∼= Ω+4 (3), and G/G0

is trivial. However, in this case, we get δH/C(A) 6 3 using Lemma 3.4 (with the
additional Z2-factor possibly coming from K ). Thus, we may assume that all chief
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factors of H contained in HΩ are noncentral. Then δH (A) = δH/HΩ
(A) 6 3, by

Lemmas 3.4 and 6.4.
Thus, we have δH (A) 6 3 in case O and any type, and this completes the

proof.

PROPOSITION 6.7. Suppose that H lies in class C2. Then Theorem 2.7 holds.

Proof. In this case, H is the stabilizer in G of a subspace decomposition

V = V1 ⊕ V2 ⊕ · · · ⊕ Vt

satisfying the conditions in [31, Table 4.2.A]. In particular, Vi is either a
nondegenerate m-space for all i or a totally singular m-space for all i (the
dimension m is fixed). Write D := {V1, . . . , Vt}, and let Ii denote the group of κ-
isometries of Vi . Similarly, defineΩi and∆i . Also, write XD for the full stabilizer
of D in X , as X ranges over the symbolsΩ , S, I , ∆, Γ andΣ . Denote the kernel
of the action of XD on D by X(D) � XD and the induced action of XD on D by
XD. In particular, XD ∼= XD/X(D) 6 Symt .

Since Ω 6 G, we have ΩD 6 GD = H . Hence, ΩD = HΩ 6 H∆ 6 ∆D, and
we have a normal series

1 < HΩ(D)
6 HΩ 6 H . (6.14)

Thus, by Lemma 3.4, we have

δH (A) = δH ,HΩ(D)

(A)+ δH ,H
ΩD
(A)+ δH ,H/HΩ

(A). (6.15)

Now, the members of C2 are distinguished into types in [31, Table 4.2.A], and
we divide our proof accordingly.

Suppose first that H is of type GLm(q) oSymt , GUm(q) oSymt , Spm(q) oSymt or
Oε

m(q) o Symt . Then the spaces Vi are mutually isometric. Moreover, [31, Lemma
4.2.8 part (iii)] implies that

HΩ = ΩD = Ω(D) JΩ 6 ∆1 o Symt ,

where JΩ = Symt , apart from case O with m = 1 and q ≡ ±3 (mod 8) (see [31,
Proposition 4.2.15]). In this case, JΩ = Altt . Either way, we have

(a) ∆1/Ω1 has abelian Frattini quotient;

(b) Ω(D) > Ω t
1; and

(c) HΩ(D)
/Ω t

1 is the deleted subgroup of (∆1/Ω1)
t .
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Finally, since NH (∆1) is precisely the stabilizer in H of V1, [31, Lemma 4.2.1]
implies that H = NH (∆1)HΩ .

Thus, we can use Lemma 3.9, together with Lemma 3.10, to find the chief
factors of H contained in HΩ(D)

. Indeed, note that the outer automorphism
group T induced by the action of NH (PΩ1) on PΩ1 is isomorphic to the outer
automorphism group induced by H onΩ . Hence, by Lemma 3.9, apart from case
O with q odd, there is, for each prime r , at most one non-Frattini chief factor of
H contained in HΩ(D)

/PΩ t
1 (which, if it exists, is noncentral): in the case r | t and

t > 2, there is one non-Frattini chief factor of order r t−2; in the case r - t , there is
one of order r t−1; while if t = r = 2, there are no non-Frattini chief factors of H
contained in HΩ(D)

/PΩ t
1.

Next, assume that we are in case O, with q odd. If H∆/HΩ
∼= D8, then T

permutes the two chief factors of order 2 of HI/HΩ . Otherwise, T fixes them.
Hence, if H∆/HΩ < D8, then there are two non-Frattini chief factors of H
contained in HΩ(D)

/PΩ t
1 if t > 2, and none if t = 2: in the case t > 2 is even,

both have order 2t−2. If t > 2 is odd, both have order 2t−1. If H∆/HΩ
∼= D8, then

there is one non-Frattini chief factor of H contained in HΩ(D)
/PΩ t

1 if t > 2 and
none if t = 2: in the case t > 2 is even, the chief factor has order 22(t−2). If t > 2
is odd, it has order 22(t−1). In any case, HΩ(D)

/PΩ t
1 comprises either one or two

noncentral non-Frattini chief factors of H .
Next, we consider the non-Frattini chief factors of H contained in PΩ t

1. If
PΩ1 is simple, then PΩ t

1 is a nonabelian chief factor of H , by Lemma 3.9. If
PΩ1 = Sp4(2), then PΩ t

1 comprises three non-Frattini chief factors of H : the
nonabelian Altt

6; a noncentral abelian factor of order 2t−(2,t); a central factor of
order 2, again by Lemma 3.9. Finally, if PΩ1 is nonsimple, then PΩ1 is listed in
[31, Proposition 2.9.2]. In particular, by Lemma 3.10, we have δP∆1,PΩ1(B) 6 1
for any non-Frattini chief factor B of P∆1, with equality if and only if W is
noncentral and contained in P∆1. It follows, again using Lemma 3.9, that for
each non-Frattini chief factor W of P∆1 contained in PΩ1, we get a unique non-
Frattini chief factor, H -equivalent to W t , contained in PΩ t

1. This is noncentral,
again by Lemma 3.9.

In summary, we have δH ,HΩ(D)

(A) 6 1, with equality possible only if either A
is noncentral or |A| = 2 and PΩ1 = Sp4(2).

Thus, we have determined the quantity δH ,HΩ(D)

(A). We now determine the

other quantities in the bound (6.15). Note that H/H
ΩD
∼= J.(H/HΩ), and

J = Symt , unless we are in case O with m = 1 and q ≡±3 (mod 8), in which case
J = Altt . Suppose that we are not in this latter case. Then the Frattini subgroup
of H/H

ΩD is contained in the centralizer of the Altt normal subgroup since
Out(Altt) is elementary abelian of order 1, 2 or 22. In particular, the H -chief factor
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Z2 in J = Symt is non-Frattini in H . Thus, we conclude that δH ,H
ΩD
(A) 6 1, with

equality if and only if either

(a) |A| = 2 (so that A is central) and we are not in case O with m = 1 and
q ≡ ±3 (mod 8);

(b) V ∼= Altt and t 6= 2 ,4; or

(c) t = 4 and |A| ∈ {3, 4}.

Finally, using Lemma 6.4, we see that δH ,H/HΩ
(A) 6 3, with equality if and only

if |A| = 2 and (?) holds (see Page 3 for the definition of (?)).
Next, assume that m = n/2 and that H is of type GLn/2(qu).2. Then HI has

shape GLn/2(qu).2 by [31, Corollary 4.2.2 part (ii) and Lemma 4.2.3]. Here,
HI/GLn/2(qu) = HD

I
∼= Sym2 is the induced action of HI on D. If n = 4 and

qu 6 3, then G has no maximal subgroups in class C2 of this form, using the tables
in [9, Ch. 8]. So assume that SLn/2(qu) is perfect. Then Z 6 Frat(SLn/2(qu))

(recall that Z is the scalar subgroup of I ). Hence, since HI/SLn/2(qu) is cyclic,
we have δHI

(A) 6 1. Since H/HI is abelian metacyclic, it follows that δH (A) 6 3,
with equality possible only if A is central.

Finally, assume that m = n/2 and that H is of type On/2(q)2 so that we are
in case O± with mq odd. By [31, proof of Proposition 4.2.16], we have HI =

HΩ
∼= SOm(q)×SOm(q) =Ωm(q).2×Ωm(q).2, and soc (HI )

∼=Ωm(q)×Ωm(q).
Furthermore, [31, Lemma 4.2.2(i)] implies that there exists an element σ of H∆

such that V σ
1 = V2. Hence, σ interchanges the two copies of SOm(q) in HI , from

which it follows that H∆/ soc (HI ) is isomorphic to a subgroup of D8. Since
H/H∆ is cyclic, we deduce that δH (A) = 1 if A is nonabelian; δH (A) 6 3 if
A is central; and δH (A) 6 2 if A is abelian but noncentral.

It now follows that δH (A) 6 1 (respectively 2) if A is nonabelian (respectively
noncentral). If A is central, then δH (A) 6 4, with equality if and only if |A| = 2,
(?) holds and either

(1) case L holds or

(2) case O± holds and either m > 1 or m = 1 and q ≡ ±1 (mod 8).

This completes the proof.

PROPOSITION 6.8. Suppose that H lies in C3. Then Theorem 2.7 holds.

Proof. This case is easier to handle than the previous ones. Suppose first that HΩ

has a characteristic quasisimple subgroup L with CH (L) = Z(L). Then since it
follows that L � H , we have, by Lemma 3.5, that Z(L) 6 Frat(L) 6 Frat(H).
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Thus, H/Z(L) is isomorphic to a subgroup of Aut(L/Z(L)) containing L/Z(L).
In particular, δH (A) 6 1 (respectively 2, 3) if A is nonabelian (respectively
noncentral, central) for any non-Frattini chief factor of H , by Proposition 3.12.

So we may assume that HΩ does not have a characteristic quasisimple subgroup
L with CH (L) = Z(L). Then, by [31, Section 4.3], we must be in case L or
U, with H of type GLε1(q

n). Then HΓ 6 Γ L1(qun), which is metacyclic. Since
|H/HΓ | 6 2, the result now follows immediately from Lemma 3.4.

PROPOSITION 6.9. Suppose that H lies in class C4. Then Theorem 2.7 holds.

Proof. Here, H stabilizes a tensor product decomposition V = V1 ⊗ V2, and
κ = κ1 ⊗ κ2, where κi is either the zero form, a unitary form, a symplectic form
or a symmetric form on Vi (see [31, Table 4.4.A]). Also, (V1, κ1) is not similar
to (V2, κ2). Let Ii denote the group of isometries of (Vi , κi), and, similarly, define
Ωi , Si and ∆i and the projective equivalents PIi , PΩ i , PSi and P∆i . Also, write
ni := dimF Vi so that n = n1n2. We have NI (V1 ⊗ V2) ∼= (PI1×PI2)〈z〉, where
z ∈ NS(V1 ⊗ V2) and z2

∈ PI1×PI2 (see [31, Lemma 4.4.5]).
Suppose first that we are not in case O, and let L := PΩ1×PΩ2 6 HΩ . Since

the spaces (V1, κ1) and (V2, κ2) are nonisometric, the groups PΩ i are normal in
H . Hence, a chief factor A of H contained in L must be contained in one of the
PΩ i . Also, the only nonsimple groups PΩ i which can occur are Sp4(2),L2(2),
L2(3),U2(2),U2(3),U3(2),PSp2(3),Ω3(3),PΩ+4 (3), by [31, Proposition 4.4.9].
Arguing as in the proof of Proposition 6.7, we can use the tables in [9, Ch. 8] to
show that at most one of these groups can occur.

Next, we consider the quotient H/L . By [31, Lemma 4.4.3], H∆ induces
diagonal automorphisms on PΩ i , for each i . It is also clear that any field
automorphism of G0 induces a field automorphism on each PΩ i . Hence, H/L 6
(Γ1/PΩ1×Γ2/PΩ2).R, where |R| 6 2 with equality if and only if we are in
case L and G contains a graph automorphism of G0. Now, let us consider the
intersection of H/L with the group Γ1/PΩ1×Γ2/PΩ2. Call this intersection Y ,
and suppose first that we are not in case O. Then the group Γi/PΩ i has shape
Di .Fi , where Di is cyclic of order dividing (ni , qu

− 1) (we remind the reader
that the integer u is defined immediately after (6.2) on Page 26) and Fi is cyclic
of order dividing u f . Furthermore, by the arguments above, Y/Y ∩ (D1 × D2) is
cyclic of order e, where e is the order of the intersection of G/G0 with the group
of field automorphisms of G0.

Suppose that we are in case U or S. Then from the arguments in the above
paragraph, we immediately get δH ,H/L(A) 6 3, with equality possible only if
e > 1 and A is central. Since L is a direct product L = PΩ1×PΩ2, where at least
one of the groups is a nonabelian simple group, the result follows immediately
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unless one of the PΩ i , say PΩ1, is nonsimple. So assume that PΩ1 is nonsimple.
The possibilities for PΩ1 are listed above, and we have δPΩ1(B) 6 2 for all chief
factors B of PΩ1, with equality if and only if |B| = q , B is central and PΩ1 =

U3(2) in case U, or PΩ1 = PΩ+4 (3) in case O. However, in these cases, the two
central chief factors in question are fused by any noninner automorphism of PΩ1.
Thus, either δPΩ1(B) 6 1 or δPΩ1(B) = 2 and e = 1. Thus, either way, we have
δH (A) 6 3. This gives us what we need unless A is noncentral, so assume that
this is the case. If A is nonabelian, then we clearly have δH (A) = 1, so assume
also that A is abelian. However, a quick computation with the possibilities for I1

listed above shows that δPI1(B) = 1 for all noncentral chief factors B of PI1. Since
HI is a subdirect product in I1.a × I2.a, where a 6 2, and H/HI is abelian, the
bound δH (A) 6 2 follows.

Thus, we may assume that we are in case L or case O. Suppose first that
we are in case L. Then by arguing as in the above paragraph, we get that
if PΩ1 is nonsimple, then δH (A) 6 3 (respectively 2, 1) if A is central
(respectively noncentral, nonabelian). So we may assume that both PΩ1 and
PΩ2 are nonabelian simple groups. The bound δH (A) 6 1 if A is nonabelian
then follows immediately since PΩ1 and PΩ2 have distinct centralizers. So we
may assume that A is abelian. Then δH (A) = δH/L(A), by Lemma 3.4. We now
consider the structure of the group H/L . First, H/HI is abelian, and as shown in
the paragraph above, HI is a subgroup of a group of shape D1 × D2, where Di is
cyclic of order (ni , q−1). By Lemma 3.4, we then have δH/L(A) = δH ,HI /L(A)+
δH/HI

(A). Since H/HI is abelian, the bound δH (A) 6 2 (respectively 3) now
follows immediately if A is noncentral (respectively A central with |A| 6= 2).

So we may assume that |A| = 2. As shown in the fourth paragraph above,
Y := (H/L) ∩ Γ is a subgroup of a group of shape D1.F1 × D2.F2, where Di

and Fi are cyclic of order dividing (ni , q − 1) and f , respectively. Also, setting
YD := Y ∩ (D1 × D2), we have that Y/YD is cyclic of order e, isomorphic to the
group of field automorphisms in G. Next, [31, Proposition 4.4.10] implies that the
subgroup C := HΩ/L of Y ∩ (D1 × D2) has order

d :=
(q − 1, n1)(q − 1, n2) hcf(q − 1, n1, n2)

(q − 1, n)
.

Furthermore, C contains C1×C2, where Ci is the unique subgroup of Di of order
(q − 1, n1, n2). This is because if (c1, c2) ∈ C 6 D1 × D2, with ci ∈ Di , then
cn2

1 cn1
2 = 1, by [31, (4.4.9)]. Now, if either n1 or n2 is odd, or if q is even, then d is

odd and we get δH (A)= δH/HΩ
(A)6 3, using Lemma 6.4. So we may assume that

n1 and n2 are even, and that q is odd. Then YD = HI/L is a subgroup of D1× D2

containing a subgroup C1 × C2 with |Ci | even. Hence, YD/(Frat(YD)Y 2
D) is an
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H -module of order 22. In fact, using the relations on Out(G0) from [31, Section 2],
we see that this is a trivial (H/HΩ)-module. Since δH/HI

(A) = δ2,(e,2) + i , where
i := 1 if G contains a graph automorphism, and i := 0 otherwise, we deduce
from Lemma 3.4 that δH (A) 6 4, with equality if and only if n1 and n2 are even,
q is odd and G contains both a field automorphism of even order and a graph
automorphism.

Finally, assume that we are in case O. Suppose first that H has type Oε1
n1
(q) ⊗

Oε2
n2
(q)with q odd, ni > 3 and (n1, ε1) 6= (n2, ε2). Write Qi for the quadratic form

associated with κi .
Now, similar to case L, we have that H∆/L is a subgroup of (P∆1 /PΩ1) ×

(P∆2 /PΩ2), while H/H∆ is cyclic of order e | f . Thus, all non-Frattini chief
factors of H/L are central. Since we also have δPΩ i (B) 6 2 for all non-Frattini
chief factors B of PΩ i , we have that δH (A) = δH ,L(A) 6 2 if A is noncentral.
It is also clear that δH (A) = 1 if A is nonabelian. So we may assume that A
is central. Since all central chief factors in the possible nonsimple groups PΩ i

are acted upon nontrivially by noninner automorphisms, we quickly reduce to the
case where δH (A) = δH/L(A).

We now consider the structure of H/L . If n is odd, then H/L has shape R1.R2.e,
where |Ri | 6 2 and e | f , by [31, Proposition 4.4.18]. The result then follows
immediately from Lemma 3.4. So we may assume that n is even. Clearly, we may
also assume that |A| = 2. Now, as above, we have that H∆/L is a subgroup of
(P∆1 /PΩ1)× (P∆2 /PΩ2), while H/H∆ is cyclic of order e | f .

We now determine the shape of the group HΩ/L 6 (P∆1 /PΩ1)×(P∆2 /PΩ2).
We define sεi := 1 if εi = + and sεi := 0 otherwise. Then by [31, Lemma 4.4.13],
HΩ/L 6 (P∆1 /PΩ1)× (P∆2 /PΩ2) has shape:

(1) 1× Z2 if n2 is odd;

(2) 22
× 22 if (n1, n2) is even and both Qi have discriminants that are square;

(3) 2 × 2(2,i+2) if (n1, n2) is even, Q1 has square discriminant and Q2 has
nonsquare discriminant with Witt index i ∈ {0, 1};

(4) (2sε1 × 2sε2 ).2 (a subdirect product of 21+sε1 × 21+sε2 ) if (n1, n2) is even and
both discriminants are nonsquare.

Since P∆2 /PΩ2 = Z2 in case (1), we have that δH (A) = 1 + δH/HΩ
(A) 6 4,

with equality if and only if G/G0 intersects ∆/Ω in a noncyclic group and e
is even. Note, in particular, that these conditions can only hold if (?) holds (see
Page 3 for the definition of (?)) and either H is of type O+n1

(q)⊗On2(q) or of type
O−n1

(q)⊗ On2(q) with Q1 having square discriminant.
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This leaves us to deal with cases (2)–(4). If we are in case (2), then HI = HΩ

by [31, Lemma 4.4.13 (ii)(b)]. Thus, if H∆ = HI , then δH (A) = 4 + δ2,(2,e). If
H∆ > HI , then H∆/HΩ is a proper subdirect product of D8 × D8 containing
22
× 22. It follows easily that the intersection of each factor with the centre of

the relevant copy of D8 is Frattini. Hence, we get δH (A) = 3 + δ2,(2,e). If we
are in case (3), then HS = HI , again by [31, Lemma 4.4.13 (ii)(b)]. We then get
that δH (A) = 2+ δ2,(2,i+2) + δ2,(2,e) (respectively δH (A) = 1+ δ2,(2,i+2) + δ2,(2,e))
if G/G0 intersects ∆/Ω nontrivially (respectively trivially). Finally, if case (4)
holds, then arguing as above, we get δH (A) = 2+ sε1 + sε2 + δ2,(2,e) (respectively
δH (A) = 1+ sε1 + sε2 + δ2,(2,e)) if G/G0 intersects∆/Ω nontrivially (respectively
trivially).

The argument is entirely similar when we are in case O+ with H of type
Spn1

(q)⊗Spn2
(q). In fact, we get δH (A) 6 2 for all A in this case. This completes

the proof.

PROPOSITION 6.10. Suppose that H lies in class C5. Then Theorem 2.7 holds.

Proof. In this case, H stabilizes a form κ1 on a vector space V1 of dimension
n over a subfield F1 of F of prime index r . Let I1 be the group of isometries
of (V1, κ1). Also define Ω1, ∆1, PΩ1 and P∆1 in the usual way. Then HΓ 6
NΓ (V1) ∼= P∆1 o〈φr 〉, where φr is a generator for Gal(F : F1). It follows that the
centralizer in H of Ω1 is contained in 〈φr 〉 and, hence, that H/HΩ is isomorphic
to a subgroup of Out(PΩ1).r , where the extension is a cyclic extension of the
associated group of field automorphisms ofΩ1. Thus, H/HΩ is an extension of at
most three cyclic groups and has at most one noncentral chief factor. The bound
δH (A) 6 1 (respectively 2, 3) now follows immediately if PΩ ′1 is nonabelian
simple and A is nonabelian (respectively noncentral, central). Otherwise, the list
of possibilities for PΩ ′1 is in [31, Proposition 2.9.2], and the desired bound follows
quickly by direct computation.

PROPOSITION 6.11. Suppose that H lies in class C6. Then Theorem 2.7 holds.

Proof. Here, n = rm for a prime r , and the group H∆ is a subgroup of N∆(R) for
an extraspecial r -group R 6 Γ (see [31, Definition, Page 150]). By [31, (4.6.1)
and Table 4.6.A], the group N∆(R) has shape R.C , where R ∼= r 2m and either
C ∼= Sp2m(r) or r = 2 and C ∼= O±2m(2). Also, C acts naturally on R. Furthermore,
R is contained in HΩ , and HΩ/R acts irreducibly on R. Since HΩ is normal in
R.C , it follows that H∆ has shape R.C1, where C1 is a subgroup of C containing
a (nontrivial) normal irreducible subgroup of C .

Suppose first that n > 4. Then C/Z(C) is almost simple, and C ′ is quasisimple.
Furthermore, C/C ′ is cyclic. It follows that δH ,H∆

(A) 6 1 (recall that the centre
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of a quasisimple group is Frattini; see Lemma 3.5). Since H/H∆ is abelian of
rank at most 2, it follows that δH (A) 6 1 (respectively 2, 3) if A is nonabelian
(respectively noncentral, central) for any non-Frattini chief factor of H , which
gives us what we need.

Next, assume that n = 3 so that (r,m) = (3, 1). Then H∆ has shape 32.C1,
where C1 ∈ {Q8,Sp2(3)} (see [31, Proof of Proposition 4.6.4]). It follows that
δH ,H∆

(A) 6 1, and the required bounds follow as in the previous paragraph. The
case n = 2 is similar.

PROPOSITION 6.12. Suppose that H lies in class C7. Then Theorem 2.7 holds.

Proof. Here, HΓ is a subgroup of the stabilizer in Γ of a tensor decomposition

V = V1 ⊗ V2 ⊗ · · · ⊗ Vt ,

where κ = κ1 ⊗ · · · ⊗ κt for appropriate forms κi on Vi (see [31, Table
4.7.A]). Furthermore, the spaces (Vi , κi) are isometric, so they all have a common
dimension m. In particular, n = m t . Write Ii for the group of isometries of (Vi , κi).
Similarly, define Ωi and ∆i and the projective equivalents PΩ i , P∆i and PIi .

Let D = {V1, . . . , Vt}, and write ΓD for the full (setwise) stabilizer in Γ of D.
Also, for any subgroup K of ΓD, write K(D) for the kernel of the action of K on
D. Also, write KD

= K/K(D) 6 Symt for the induced action of K on D. We then
have a normal series

1 6 H∆(D) 6 H∆ 6 H .

Thus, we have

δH (A) = δH ,HΩ(D)
(A)+ δH ,HΩ/H

Ω(D)

(A)+ δH/HΩ
(A) (6.16)

using Lemma 3.4. Now, since G contains Ω , H∆ contains the full setwise
stabilizer ΩD of D in Ω . By [31, (4.7.1) and (4.7.2)], we have

∆D = ∆(D) J ∼= P∆1 oSymt (6.17)

(with the product action), where ∆(D) ∼= (P∆1)
t and J ∼= Symt . Furthermore, by

[31, (4.7.8)], the intersection JΩ is either Altt or Symt .
Now, the group HΩ(D)

is contained in P∆t
1 and contains the subgroup PΩ t

1. Also,
NH (P∆1) = StabH (V1).

Assume first that H
D

is transitive. Then H = NH (P∆1)H∆. The other
hypotheses required in Lemma 3.9 follow from Lemma 3.10 in this case.

Thus, we may apply Lemma 3.9 to find the chief factors of H contained
in HΩ(D)

. In fact, the argument here is exactly the same as in the proof of
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Proposition 6.7: we have δH ,HΩ(D)

(A) 6 1, with equality possible only if either
A is noncentral or |A| = 2 and PΩ1 = Sp4(2).

Thus, we have determined the quantity δH ,HΩ(D)

(A). We now determine the

other quantities in the bound (6.16). As shown above, H/H
ΩD
∼= JΩ .(H/HΩ),

and JΩ = Symt unless one of the following holds (see [31, Section 4.7]):

(1) case L, t = 2, m ≡ 2 (mod 4) and q ≡ −1 (mod 4);

(2) case U, t = 2, m ≡ 2 (mod 4) and q ≡ 1 (mod 4);

(3) case O+, t = 2, m ≡ 2 (mod 4); or

(4) case O+, H of type Oε
m(q) o Symt , ε ∈ {±}, t = 3, m ≡ 2 (mod 4) and

q ≡ 3ε (mod 4).

Now, arguing as in the proof of Proposition 6.7, we have that the Z2 chief factor
of H/H

ΩD is non-Frattini (and central). Thus, we conclude that δH ,H
ΩD
(A) 6 1,

with equality if and only if

(a) |A| = 2 (so that A is central) and we are not in cases (1)–(4) above; or

(b) A ∼= Altt and t 6= 2, 4;

(c) t = 4 and |A| ∈ {3, 4}.

Finally, by applying Lemma 6.4, we deduce that δH ,H/HΩ
(A) 6 3, with equality

if and only if |A| = 2 and (?) holds (see Page 3 for the definition of (?)).
Assume next that H

D
is intransitive. Then t = 2 and H

D
= 1. Since∆ induces

Sym2 on D, we must have that H∆ 6 H∆(D). Arguing in a similar way to the two
previous paragraphs, it then follows that H has shape (PΩ1×PΩ2).C.R, where
C is either cyclic (if we are not in case O) or isomorphic to a subgroup of D8.
The group R is cyclic in case O, and a direct product of (possibly trivial) cyclic
groups otherwise. The bound δH (A) 6 3, with equality possible only if |A| = 2,
now follows as above. Furthermore, δH (A) 6 1 (respectively 2) if A is nonabelian
(respectively noncentral).

It now follows that δH (A) 6 1 (respectively 2) if A is nonabelian (respectively
noncentral). If A is central, then δH (A) 6 4, with equality if and only if |A| = 2,
(?) holds and either

(i) case L holds and we are not in case 1 above or

(ii) case O± holds and we are not in cases (3)–(4) above.

This completes the proof.
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PROPOSITION 6.13. Suppose that H lies in class C8. Then Theorem 2.7 holds.

Proof. The argument here is almost identical to the argument used to prove
Proposition 6.10: we repeat the details here for the reader’s benefit. The group
HΓ here is a classical group itself of dimension n over F: we write κ1 for the
associated unitary, symplectic or quadratic form. See [31, Table 4.8.A] for the
precise possibilities for HΓ .

Let I1 be the group of isometries of (V, κ1), and similarly define Ω1 and
the projective groups PI1 and PΩ1. The group PΩ1 is normal in H by
[31, Proof of Proposition 4.8.2]. Furthermore, Ω1 is absolutely irreducible
by [31, Proposition 2.10.6]. Hence, CH (Ω1) = F∗. It follows that CHI

(PΩ1)

is trivial and, hence, that HI/PΩ1 6 Out(PΩ1). If PΩ1
∼= Sp4(2), then

H 6 Aut(Alt6) = Alt6 .22 and δH (A) 6 2.
Now, assume that PΩ1 is a nonabelian simple group. Then HΓ /HI induces a

field automorphism on PΩ1, so HΓ is almost simple, isomorphic to a subgroup of
Γ1. It follows that either H is almost simple or of the form H = K × Z2, where
K 6 Γ1 is almost simple. The required bounds δH (A) 6 1 (respectively 2, 3) if A
is nonabelian (respectively noncentral, central) follow from Proposition 3.12.

Finally, if PΩ1 is not a nonabelian simple group, then we can deduce the
possibilities for H from [31, Proposition 2.9.2]. The required bounds follow easily
by direct computation in each case.

7. The exceptional and remaining classical cases

In this final section, we deal with the cases where the socle G0 of G is either
an exceptional simple group or in {Sp4(2

f ),PΩ+8 (q)}. Furthermore, in the cases
when G0 ∈ {Sp4(2

f ),PΩ+8 (q)}, we may (and will) assume that G 66 Γ , where
Γ is as defined in Section 6. We begin by fixing some notation. Let G be a
simple algebraic group of adjoint type over an algebraically closed field F of
characteristic p > 0, and let σ be a Steinberg endomorphism of G. Denote
the (finite) fixed point subgroup of G under σ by Gσ . In this section, we will
assume that G0 := (Gσ )

′ is either an exceptional finite simple group or isomorphic
to Sp4(q) or PΩ+8 (q). Let Φ be a root system for G, and let Π := {α1, . . . ,

αr } be a set of fundamental roots, where r denotes the Lie rank of G. We
label the fundamental roots, and the corresponding Dynkin diagram for G, as
in Bourbaki [8].

By [26, Theorem 2.2.3], we may assume that σ has the form σ = gρφq , where
gρ is a (possibly trivial) graph automorphism of G induced by a bijection ρ of Π
and φq is a Frobenius endomorphism of G. In this case, we write G0 =

dG(q2u+1),
where d is the order of the automorphism gρ , u is defined to be 1 if G = B2, F4



A. Lucchini, C. Marion and G. Tracey 52

or G2 and G0 is twisted (that is, gρ is nontrivial) and u := 0 otherwise. We also
write τ for the linear map induced on the Euclidean space RΦ by the bijection ρ
above. Also, we fix a σ -invariant maximal torus T ∼= Fr in G.

Throughout, we will write H0 := H ∩G0. Also, for a subgroup X of G, we will
write Xσ for the group X ∩Gσ . Finally, we will write I = Inndiag(G0) = Gσ for
the group of inner diagonal automorphisms of G0.

We begin with the classical cases which were omitted in Section 6.

PROPOSITION 7.1. Suppose that G0 ∈ {Sp4(2
f ),PΩ+8 (q)} and that G 66 Γ . Then

Theorem 2.7 holds.

Proof. Let g ∈ G be an exceptional automorphism of G0, in the language of
Remark 6.3. Then g reduces to a graph automorphism gρ modulo field and
inner diagonal automorphisms. The automorphism gρ has order |ρ| = 2 if
G0 = Sp4(2

f ) and order |ρ| = 3 if G = PΩ+8 (q) (in the latter case, g is said
to be a triality automorphism). Adopting the notation above, we note first that by
[26, Theorem 2.5.1], g acts on the maximal torus T ∼= (F×)r as an element of
Aut(F×) o Symr , projecting on to a |ρ|-cycle in Symr . Furthermore, gρ acts on the
root subgroups Uα (α ∈ Φ) in the obvious way, by sending Uα to Uαρ .

Suppose first that G0 = Sp4(q), where q = 2 f . Here, |gρ | = 2. The maximal
subgroups of G were determined by Aschbacher [1], and most are groups which
have already been dealt with in Section 6. The ones we have not dealt with
are those for which H0 is not maximal in G0. In these cases, G contains an
exceptional automorphism g as in the first paragraph above. By [1, Theorem 14.2],
the possibilities for H0 are as follows:

(i) H0 has shape C o (q − 1)2, where C is a 2-group and C/C ′ ∼= (Fq)
2;

(ii) H0 has shape (Ωε
2 (q)

2.2).2; or

(iii) H0 has shape Ω−2 (q
2)2.2.

In the first case, H0/C ′ ∼= (Fq o F×q )2 is a direct product of affine groups, and g
switches the two factors (see the first paragraph above). It follows that C/C ′ is
irreducible as an F2[H ]-module. Hence, C/C ′ is the unique non-Frattini chief
factor of H contained in C . Furthermore, the non-Frattini chief factors of H
contained in H0/C can be described as follows: let l be a prime divisor of q − 1
(in particular, l is odd). If g2 acts irreducibly on the natural (Zl)

2 factor of (F×q )2,
then (Zl)

2 is the unique non-Frattini l-chief factor of H contained in the section
(F×q )2. If g2 does not act irreducibly, then the (Zl)

2 comprises two non-Frattini
chief factors of H : one is trivial of order l, while the other is the deleted subgroup
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of (Zl)
2 (nontrivial). Thus, since H/H0 is cyclic, we deduce that δH (A) 6 2 in all

cases.
In case (ii), the 2 on top of H0 acts by switching the two factors of Ωε

2 (q)
2.

Arguing in a similar way to the previous paragraph, we see that the non-Frattini
chief factors of H contained in Ωε

2 (q)
2 have orders 2, and either l or l2, for each

prime l dividing q − ε. Since H/H0 is cyclic, we deduce that δH (A) 6 2.
In case (iii), we have H0

∼= D2(q2+1).2, and the non-Frattini chief factors of H
contained in H0 have orders 2 (with multiplicity 2) and l, for each prime l dividing
q2
+ 1. Hence, δH (A) 6 3, with equality possible only if |A| = 2.
Finally, assume that G0 = PΩ+8 (q). The maximal subgroups of G were

determined by Kleidman [30], and as above, the only ones we have not dealt with
are those for which H0 is not maximal in G0. Using [30, Table III], the possible
groups are as follows:

(iv) H0 has shape C o L , where C is a p-group, C/C ′ ∼= (Fq)
6 and L is a

subdirect product of GL2(q)× (q − 1)× (q − 1);

(v) H0 has shape (1/(2, q − 1)GLε3(q) × (q − ε)/(2, q − 1)).22, where
1/(2, q − 1)GLε3(q) is the unique subgroup of GLε3(q) of index (2, q − 1)
containing SLε3(q);

(vi) H0
∼= G2(q);

(vii) H0 has shape (D2(q2+1)/(2,q−1) × D2(q2+1)/(2,q−1)).22; or

(viii) q is odd and H0 has shape (26.23).L3(2).

Suppose first that we are in case (iv), and writeΠ = {α1, α2, α3, α4} so thatΠ is
a set of fundamental roots for G as outlined in the notation introduced preceding
the proposition. Using [26, Sections 1.13 and 1.14], we can see that C is generated
by the root subgroups Uα, where α =

∑4
i=1 ciαi with c1 + c3 + c4 = 1. In turn, it

is easy to see that

C = C ′〈Uα1,Uα1+α2〉 + C ′〈Uα3,Uα3+α2〉 + C ′〈Uα4,Uα4+α2〉.

The triality automorphism then acts as a 3-cycle on the set {Uα1,Uα3,Uα4}

(see the first paragraph of the proof above). Since GL2(q) acts naturally on
the two-dimensional subspace C ′〈Uα1,Uα1+α2〉/C ′ (see [30, Section 4.1.4]), we
deduce that H acts irreducibly on C/C ′. We also have that L has structure
SL2(q).(C1 × C2 × C3), where the Ci are cyclic groups of order dividing q − 1,
permuted transitively by the triality automorphism in H . Suppose q > 3. Then
it follows as in the Sp4(q) case above that the non-Frattini chief factors of H
contained in H0 form a subset of {q6,L2(q), l, l2, 3 : l | q − 1, l prime, l 6= 3}.
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Furthermore, δH,H0(A) = 1 in each case. Since H/H0 6 Sym4×Z f , we have
δH,H/H0(A) 6 2, with equality possible only if A is central. The required bounds
now follow immediately from Lemma 3.4. If q 6 3, then the result can be quickly
checked using Magma.

Suppose next that case (v) holds. If q = 2, then the result is easily checked, so
assume that q > 2. Then using [26, Section 1.13], we see that H0/H ′0 is conjugate
to a subquotient of the torus T in G. Since T itself is acted upon via permutation
of coordinates by a triality automorphism (see the first paragraph of the proof),
we can use similar arguments to the Sp4(q) case above to determine the non-
Frattini chief factors of H contained in H0. We have that δH,H0(A) = 1 for any
non-Frattini chief factor of H contained in H0. Since H/H0 6 Sym4×Z f , the
result now follows as in the previous paragraph.

Next, suppose that case (vi) holds. That is, H0
∼= G2(q). Then H ′0 is simple of

index 1 or 2 in H0. If the index is 1, then H/H ′0 6 Aut(G) 6 Z f × Sym4 and the
required bounds follow. If the index is 2 then q = 2 and H/H ′0 6 2.Sym4, and
the required bounds again follow.

The argument in case (vii) is similar to case (v). Let N := D2(q2+1)/(2,q−1) ×

D2(q2+1)/(2,q−1). Then we have that N = C2.22 with C cyclic, and the section C2

is conjugate to a section of the torus T . The 22 on top of N also satisfies this
property if p 6= 2. Thus, arguing as in the previous cases, we have δH,N (A) 6 2,
with equality possible only if p = 2 and |A| = 2. By using [30, Proposition 3.3.1
and its proof] again, we also have that if P is a Sylow 2-subgroup of H/N , then
P 6 Out(L2(q2))×Out(L2(q2)). Thus, P is abelian, and it follows that H/N is a
subgroup of A4× Z f if p is odd or A3× Z f if p = 2 (containing a triality in either
case). Thus, we have that δH,N (A) 6 2 with equality possible only if |A| = p = 2,
while δH,H/N (A) 6 2, with equality possible only if A is central and |A| = 3. This
gives us what we need.

Finally, suppose that we are in case (viii) so that q is odd. Our reference here is
[30, Proposition 3.4.1]. We have that H0 = NG0(P), where P 6 G0 is elementary
abelian of order 8. Furthermore, H0 can be realized as a subgroup of PΩ+8 (3).
By using Magma, we can see that H0 has three chief factors of order 23, two
of which are not G-equivalent (since they do not centralize each other). Since
H/H0 6 Sym4×Z f , the result now follows as above.

For the remainder of the paper, we may therefore assume that G0 is an
exceptional simple group. By [35, Theorem 2], the possibilities for H are as
follows.

THEOREM 7.2. Let G be a finite almost simple group having as socle G0 an
exceptional simple group. If H is a maximal subgroup of G, then one of the
following holds:
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(i) H is a maximal parabolic subgroup of G.

(ii) H is almost simple.

(iii) H = NG(D) is the normalizer of a connected reductive σ -stable subgroup
D of G of maximal rank.

(iv) H = NG(E), where E is an elementary abelian group.

(v) F∗(H) is as in [35, Table III].

(vi) H is the centralizer of a graph, field or graph–field automorphism of G0 of
prime order.

(vii) G0 = E8(q) and F∗(H) ∈ {Alt5×Alt6,Alt5×L2(q)}.

If H is as in Theorem 7.2(ii), then the bounds in the conclusion of Theorem 2.7
follow immediately from Proposition 3.12. If H is as in case (vii), then H/F∗(H)
is cyclic by [35, Theorem 2], so δH (A) 6 1 for all chief factors A of H . Thus, we
need only address cases (i), (iii), (iv), (v) and (vi).

We begin with the case where H is as in Theorem 7.2(i).

PROPOSITION 7.3. Let G be an almost simple group with exceptional socle G0

and let H be a maximal parabolic subgroup of G. Then Theorem 2.7 holds.

Proof. Fix a non-Frattini chief factor A of H . Since H is maximal, H is one of
the following types:

(a) H0 = Pi is the parabolic subgroup obtained by deleting node i from the
Dynkin diagram for G;

(b) G0 is either of type F4 with p = 2; type B2 with p = 2; type G2 with p =
3; or type E6, and G is either twisted or G is untwisted and G contains a
graph or graph–field automorphism. Then H0 = Pi j is the parabolic subgroup
obtained by deleting nodes i and j from the Dynkin diagram for G, where τ
acts on the Dynkin diagram by interchanging nodes i and j ; or

(c) G0 =
3 D4(q) and H0 = Pi jk is the parabolic subgroup obtained by deleting

nodes i , j and k from the Dynkin diagram for G. The isometry τ acts as a
3-cycle on the set {i, j, k}.

As in the proof of Proposition 6.6, we have H0 = C o L , where C is the
unipotent radical of H0 and L is a Levi subgroup. Since C is characteristic in
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H0 � H , both C and C ′ are normal subgroups of H . Thus, we have a normal
series

1 6 C ′ 6 C 6 C o L = H0 6 H. (7.1)

Our strategy will be to investigate the structure of the factors in this series and
then apply Lemma 3.4. Note that the group C is a p-group, so C ′ 6 Frat(C) 6
Frat(H).

We first consider the structure of C . Assume that we are in case (a) so that
H0 = Pi . Here, the group C/C ′ is an irreducible module for L over the field Fq of
definition for G0, by [5, Theorem 2(a)]. Hence, the group C/C ′ is a chief factor
of H , of p-power order.

Assume now that we are in case (b). Then it follows from [5] that C/C ′ is either
irreducible as an L-module or has two nonisomorphic irreducible composition
factors. In the latter case, we have a series 1 6 C ′ < C1 < C for C , where each
term is normalized by L . Moreover, C1/C ′ and C/C1 are nonisomorphic as L-
modules, and hence nonisomorphic as H0 = C o L modules. Since C/C ′ is an
H -module and H0 � H , it follows from Clifford’s theorem that either 1 6 C ′ <
C1 < C is also an H -series (in which case, C1/C ′ and C/C1 are irreducible H -
modules) or C/C ′ is irreducible. Either way, we conclude that

1 6 C ′ 6 C1 6 C 6 C o L = H0 6 H (7.2)

is a normal series for H , with C ′ 6 Frat(H), C1/C ′ a chief factor of H and C/C1

either trivial or a chief factor of H which is not H -equivalent to C1/C ′.
Next, assume that we are in case (c) so that G0 =

3 D4(q) and H0 = P134. In
this case, C/C ′ is an irreducible H0-module of dimension 6 over Fq . Thus, C/C ′

is an H -chief factor of order q6.
We now consider the structure of L . Set J := {1, . . . , r} − {i} if H0 = Pi ,

J := {1, . . . , r} − {i, j} if H0 = Pi j and J := {1, . . . , r} − {i, j, k} if H0 = Pi jk .
By [26, Theorem 2.6.5], we have L = T M , where T is a maximal torus in G0.
Furthermore, M = O p′(G), M = M1 ◦ · · · ◦ Mt is a central product of finite
groups of Lie type in characteristic p, and the elements of T induce diagonal
automorphisms on the components Mi of M . By inspecting the Dynkin diagram
of G in each case, one can see that the groups Mi/Z(Mi) are either pairwise
nonisomorphic or two of them are isomorphic to L2(q2u+1). Furthermore, either
Mi/Z(Mi) is simple or q 6 3 and Mi/Z(Mi) ∼= L2(q). For each i , define L i to
be the product of those M j with M j H -conjugate to Mi . Then L i is either a finite
group of Lie type or isomorphic to a central product of Mi and M g

i , where g ∈ H
and Mi/Z(Mi) ∼= L2(q). Since MC/C � H/C , each group L i C/C is, in fact,
normal in H/C . Since the distinct factors L i C/C of MC/C ∼= M have pairwise
distinct centralizers in MC/C , and hence in H/C , it follows that if A is a chief
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factor of H/C contained in MC/C , then A is contained in L i C/C for some i ,
and δH,MC/C(A) = δL i (A). Since δX (A) = 1 for all chief factors A of X for X in
{SL2(2),SL2(3)}, we deduce that if L i C/C = Mi C/C , then δH,MC/C(A) 6 1 for
all chief factors A of H contained in L i C/C . Furthermore, equality holds only if
A is noncentral or if Mi/Z(Mi) = L2(2) and |A| = 2. If L i/Z(L i) ∼= L2(q)2, then
since the two factors are permuted transitively by H , we again get δH,MC/C(A)6 1
for all non-Frattini chief factors A of H contained in L i C/C (the chief factors in
Z(L i) are Frattini).

We now consider H/MC . Using the definition of M from [26, Theorem 2.6.5],
we see that a field automorphism of G0 acts as a field automorphism on each
component Mi of M . Similarly, if H contains a graph automorphism g, then that
graph automorphism must either centralize or act as a graph automorphism on
Mi if L i = Mi . If L i 6= Mi , then g must swap the two components of L i . Since
T induces diagonal automorphisms on Mi , we conclude that if L i = Mi , then
H/(MC) ∼= K .R, where K is a metacyclic subgroup of Out(Mi/Z(Mi)), and
|R| 6 2. Otherwise, H/(MC) ∼= K 〈g〉, where K = K1 K g

1 with K1 a metacyclic
subgroup of Out(Mi/Z(Mi)).

Next, we consider the chief factors of H contained in the p-group C . The
dimensions over Fp of the composition factors of the Fp[H ]-module C/C ′ are
greater than 2 by [5, Theorem 2]. In particular, δH,C/C ′(A) 6 1, and δH,C(A) = 0
if either A is not a p-group or A is a p-group with dimFp(A) 6 2.

We are now ready to complete the proof of the proposition. By the arguments
above, we have that H has shape C.M.K .R, where C , M , K and R are as above.
If A is contained in C , then A is either Frattini or A is contained in C/C ′. In the
latter case, since none of the groups M , K or R have chief factors of dimension
larger than 1, we have δH (A) = 1 by the previous paragraph. Suppose next that
A is contained in M . Then we have δH,MC/C(A) = 1. If A is nonabelian, then
δH (A) = 1 since H/MC is soluble. If A is abelian and non-Frattini, then we must
have q 6 3 and L i/Z(L i) ∼= L2(q)s for some i and some s 6 2. In this case, since
T induces diagonal automorphisms on Mi/Z(Mi), we have H/(C L̂ i)6 GL2(q)×
Z2 if s = 1 and H/(C L̂ i) 6 GL2(q) o Z2 if s = 2, where L̂ i denotes the product
of all components of M not equal to Mi . We then get δH (A) = δH/(C L̂ i )

(A) 6 2,
which gives us what we need. Finally, suppose that A is in K .R but not in C.M .
Then since K is metacyclic, we have δH (A) 6 3, with equality possible only if
|A| = 2. This completes the proof.

Next, we consider the case where H is as in Theorem 7.2(iii).

PROPOSITION 7.4. Let G be an almost simple group with exceptional socle G0

and let H be a maximal subgroup of G as in Theorem 7.2(iii), where D is not a
torus. Then Theorem 2.7 holds.
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Proof. Fix a non-Frattini chief factor A of H . Here, the group D is defined as
follows: let ∆ be a closed subset of Φ maximal with the property that ∆ is a
root system, and the set of rays through elements of ∆ is τ -invariant (see [26,
Definition 2.3.1]). Then define

D∆ := 〈Ûα : α ∈ ∆〉,

where Ûα denotes the root subgroups in G with respect to a maximal torus T = T∆
in G. Recall that W is the Weyl group of G. Let W (∆) be the Weyl group of D∆,
and let StabW (∆) denote the stabilizer of ∆ in W so that StabW (∆) normalizes
W (∆). For any w ∈ StabW (∆), define a subgroup of G as follows. Choose n ∈
NG(T ) mapping to w ∈ W ∼= NG(T )/T , and choose x ∈ G such that σ = (σn)x

(see, for example, [26, Theorem 2.1.2(f)]). Then set

D∆,w := Dx
∆T x .

The group D is defined to be one of the D∆,w as above.
Now, retaining the notation above, set M := Dx

∆ and S := T x . Also,
set W∆ := StabW (∆)/W (∆). Then Dσ = Mσ Sσ , and NI (D) = NI (Dσ ) =

Dσ .CW∆
(W (∆)w) = (Mσ Sσ ).W∆, by [26, Proposition 2.6.2]. In particular, since

StabW (∆) 6 W acts faithfully on the maximal torus S 6 D, we have that
W∆ acts faithfully on D. Hence, CW∆

(W (∆)w) acts faithfully on S, and since
NI (Dσ )/Dσ

∼= NG(D)/D = W∆, it follows that C I (Dσ ) 6 Dσ .
The structure of N := NI (D) is given in [34, Table 5.1]. Note that NI ′(D) 6

HI := H ∩ I 6 N , and N/NI ′(D) is cyclic of order dividing |I/I ′|, the group of
diagonal automorphisms of G0. Thus,

H ∩ N � N and N/H ∩ N has order dividing |I/I ′|. (7.3)

We now proceed to examine each of the cases in [34, Table 5.1]. Recall that we
are trying to prove that

δH (A) 6 3 if A is abelian, and δH (A) 6 2 if A is nonabelian. (7.4)

Using the bound δH (A) 6 δH,HI (A) + δH/HI (A) and appealing to Table 2 for the
chief factors of H/HI , the result is clear in most cases. For example, consider
G0 =

3 D4(q). One of the two possibilities for HI in [34, Table 5.1] has shape
K .a, where a divides (2, q − 1), and K has shape Z .(L2(q) ◦L2(q3)), where Z is
Frattini in K (and hence Frattini in H , since K is subnormal in H ). We then get
δH (A) 6 2 for any A since H/HI is cyclic (see Table 2). This approach works in
almost all cases, except for the following:

(a) G0 = E ε
6(q) and N = E .Sym3, where E = J ◦ R, with J ∼= Ω+8 (q) and

R = (q − ε)2.
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(b) G0 = E ε
6(q) and N = J.Sym3, where J = e.(Lε3(q)×Lε3(q)×Lε3(q)).e

2 and
e := (3, q + ε).

(c) G0 = E7(q) and N = (J1 ◦ J2).d3.Sym3, where J1 = SL2(q)3, J2 = Ω
+

8 (q)
and d := (2, q − 1).

(d) G0 = E7(q) and N = J.L3(2), where J = d3.L2(q)7.d4 and d := (2, q − 1).

(e) G0 = E8(q) and N = J.(Sym3×2), where J = d2.PΩ+8 (q)
2.d2 and d := (2,

q − 1).

(f) G0 = E8(q) and N = J.GL2(3), where J = e2.Lε3(q)
4.e2 and e := (3, q−ε).

(g) G0 = E8(q) and N = J.AGL3(2), where J = d4.L2(q)8.d4 and d := (2,
q − 1).

In the notation introduced in the first paragraph above, we are defining E :=
Dσ , J := Mσ and R := Sσ . Also, W∆ is Sym3, Sym3, Sym3, L3(2), Sym3×2,
GL2(3) and AGL3(2) in these cases, respectively. By the arguments above, we
have CG(E) 6 E .

We now deal with these outstanding cases. Suppose first that G0 = E ε
6(q) so

that H/HI is a subgroup of Z f × Z2 (see Table 2) and that N = E .Sym3, where
E = J ◦R, with J ∼=Ω+8 (q) and R = (q−ε)2. Since there is a unique non-Frattini
chief factor in J , which is nonabelian, and this is the only nonabelian chief factor
of H , we have δH (A) = 1 if A is nonabelian, and δH (A) = δH/J (A) otherwise.

So we need to consider the chief factors in the soluble group H/J . We first
determine the action of N on R. Without loss of generality, we will take Φ to be
as in [8, Page 260], with set of fundamental rootsΠ := {α1, . . . , α6}. The longest
root α0 is defined by α0 := α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6. From this, we may
form the extended Dynkin diagram of type E6 with vertices Π̃ := {−α0, α1, . . . ,

α6}. Denote by X = X (T ) the set of rational characters of T .
Now, without loss of generality, we can take ∆ to be the D4-subsystem of E6

with fundamental roots ΠD = {α2, α3, α4, α5}. Let X D be the subspace of X ⊗Q
generated by ∆. Also, let V := X ⊗ Q/X D. Then {α1, α6} reduces, modulo X D,
to a basis for V . Using Magma, one can see that StabW (∆) ∩ StabW (Π̃) contains
an element a whose induced action on Π̃ is (α2, α3, α5)(α1, α6,−α0). Similarly,
StabW (∆) contains an element b which acts on ∆ as (α3, α5) (but this element
does not stabilize Π̃ ). Furthermore, αb

1 = α6 modulo X D. Since α0 = α1 + α6

modulo X D, it follows that the induced action of W∆ on A is

W V
∆ =

〈[
−1 −1
1 0

]
,

[
0 1
1 0

]〉
∼= Sym3. (7.5)
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Now, recall that the action of σ on X (T ) commutes with the action of W on X (T ).
By [12, Proposition 7 and the discussion following], V/(σ − 1)V is isomorphic
as a W∆-group to Sσ = R. Hence, since R ∼= (q − ε)2, we may write

V/(σ − 1)V = 〈χ〉 × 〈Σ〉 ∼= (q − ε)2.

We have χ a
= χ−1Σ−1 and χ b

= Σ by (7.5). In particular, it follows that for any
prime p1 dividing q − 1, W∆ = 〈a, b〉 ∼= Sym3 acts irreducibly on

Yp1 := [Sσ/O p1(Sσ )]/[Frat(Sσ/O p1(Sσ ))] ∼= p2
1.

Furthermore, Y2.〈a〉 ∼= Alt4 and Y2.〈b〉 ∼= D8.
With the information deduced above, we can now determine the required upper

bounds on δH (A), for each non-Frattini chief factor A of H . We have a normal
series

1 < J 6 H ∩ Dσ 6 H ∩ N 6 H 6 (H ∩ N ).〈φ〉.〈g〉,

where φ represents a field automorphism of G0 and g is a graph automorphism.
The field and graph automorphisms normalize Dσ , by [34, Lemma 1.3].

As mentioned at the beginning of our analysis of this case, we need only
consider the H -chief factors contained in H ∩ Dσ/Mσ 6 Sσ/Z . Indeed, by the
arguments in the paragraph above, they can be completely determined by the
group H ∩ N/H ∩ Dσ . Since N/Dσ

∼= W∆
∼= Sym3 (see [34]) and |N/H ∩ N |

divides 3 by (7.3), this group has order 2 or 6. If it has order 2, then H ∩ N acts
on Sσ by switching the cyclic factors, so we get at most two chief factors of order
l for each prime l dividing q − ε, except that one of these is Frattini in the case
l = 2. Otherwise, we get at most one non-Frattini H -chief factor in Sσ/Z for each
prime dividing q − ε. All of this information follows from the arguments above.

Since σ and φ commute, it now follows that δH (A) 6 3 for all A, with equality
possible only if |A| = 2. This gives us what we need.

We now consider the cases (b)–(g). In each case, we have Sσ = 1 and D′σ =
M ′σ = J ′ is a central product J1◦J2 of normal subgroups Ji of N , where Ji is either
trivial or a central product M1◦M2◦· · ·◦Ml , where the Mi are pairwise isomorphic,
are normalized by Dσ and each Mi is either quasisimple or in {SL2(2),SL2(3)}.
By [26, Proposition 2.6.2c], Dσ/D′σ induces diagonal automorphisms on each
Mi . Also, since C I (Dσ ) 6 Dσ , we have that N/D′σ 6 Out(D′σ ). The result now
follows easily. For example, suppose that we are in case (b) above. Then G0 =

E ε
6(q) and N = J.Sym3, where J = e.(L3(q)× L3(q)× L3(q)).e2, and e := (3,

q + ε). We have Out(J ′) ∼= Out(L3(q)) o Sym3. Hence, since the e2 on top of J
induces diagonal automorphisms of L3(q), we have N/J 6 Z3 o Sym3. In fact, if
e > 1, then it follows from Lemma 3.9 that N/J = Y o Sym3, where Y is the
fully deleted permutation module of Sym3. Since HI/J has index at most 3 in
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N/J , we deduce that if e > 1, then the e2 on the top of J either consists of two
noncentral chief factors if |HI/J | = 2 or one noncentral chief factor otherwise.
Furthermore, at least two of the factors in the section L3(q)3 are conjugate in H .
Hence, δH (A) = 1 if A is nonabelian. Since H/HI is abelian, we also deduce that
δH (A) 6 2 for any noncentral non-Frattini chief factor of A. Finally, Z(J ) ∼= Z3

is Frattini and H/HI is metacyclic, so we have δH (A) 6 3 if A is abelian (with
equality possible only if |A| = 2 and f is even).

As another example, consider case (g) so that G0 = E8(q) and N = J.AGL3(2),
where J = d4.L2(q)8.d4, and d := (2, q − 1). As above, we have that Z(J ) = d4

is Frattini in J , and hence Frattini in H . Also, the d4 on top of J induces
diagonal automorphisms in the factors of the section of L2(q)8. Furthermore, since
N/J ′ 6 Out(J ′) and HI/J ′ ∼= d4.AGL3(2), we deduce that HI/J ∼= AGL3(2)
and HI/J ′ 6 Z2.Z3 o GL3(2). Also, the intersection of HI/J ′ with the base
group of this wreath product has order d4.32. This is because the only quotient
AGL3(2)/K of the affine group with soluble K and an embedding AGL3(2)/K →
Sym8 is the group GL3(2) acting on the nonzero vectors of its natural module. We
can now determine δH (A) for each chief factor A of H . We have

H = d4
· L2(q)8 · d4

· 32
· GL3(2) · Z ,

where Z 6 Z f . The d4 at the bottom is Frattini. If L2(q) is simple, then the section
L2(q)8 is a chief factor since GL3(2) permutes the copies transitively. If q 6 3,
then one can find the non-Frattini chief factors of H contained in L2(q)8 by direct
computation. If q = 2, they have orders 38, 2; while if q = 3, they have orders
216, 37, 3.

Next, one can also quickly check in Magma (using the PermutationModule
function) that the submodules of the (indecomposable) GL3(2)-permutation
module 28 have dimensions 0, 1, 4, 7 and 8. Whence, if d > 1, then the 24 on top
of J is an H -module of composition length 2, consisting of a (necessarily Frattini)
submodule of dimension 1 and a noncentral chief factor of dimension 3. The 32

is also a noncentral chief factor of H , and GL3(2) is a nonabelian chief factor.
Finally, Z is a central factor. The required bounds now follow in each case.

PROPOSITION 7.5. Let G be an almost simple group with exceptional socle G0

and let H be a maximal subgroup of G as in Theorem 7.2(iii), where D is a torus.
Then Theorem 2.7 holds.

Proof. Fix a non-Frattini chief factor A of H . Here we have H = NG(Tσ ), where
T is a σ -stable maximal torus in G. Furthermore, the groups Tσ and NGσ

(Tσ )/Tσ
are given in [34, Table 5.2]. The latter is, in fact, a subgroup C of the Weyl group
W of G (see [26, Theorem 2.3.4]), and our strategy will be to determine the action
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of C on the abelian group Tσ : from this, we can completely determine the non-
Frattini chief factors of NGσ

(Tσ ). We will frequently use the fact that

H ∩ I > NG0(Tσ ) = NGσ
(Tσ )Tσ (7.6)

to deduce facts about the non-Frattini H -chief factors contained in H ∩ I .
The abelian group Tσ is the direct product of its l-parts (for l prime), so

the non-Frattini chief factors will be determined by the Fl[C]-modules Ml :=

(Tσ )l/Frat((Tσ )l). If l does not divide |C |, then Ml lifts to a Q[C]-module Ml ,
and the dimensions of the composition factors of Ml are the same as those for
Ml . In the finitely many cases, where l divides |C |, we can use Magma to find
the composition factors of Ml as a Fl[C]-module (see Remark 7.6). Apart from
two cases, we find that Ml is irreducible as an Fl[C]-module, and hence as an
Fl[H ]-module, by (7.6). In most cases, dim Ml is large, so one can immediately
deduce that δH (Ml) = 1 for all l. In general, we can quickly deduce from Table 2
and [34, Table 5.2] that δH (Ml) 6 2 if |Ml | > 2 and δH (Ml) 6 3 if |Ml | = 2. The
remaining chief factors of H are all contained in C and H/H0, and we can deduce
the bound for δH (A) immediately from Table 2 and [34, Table 5.2] again.

This leaves us with the cases mentioned above where Ml is reducible as an
Fl[C]-module. By the arguments above, we may assume that Ml is reducible as
an H -module as well. These cases are as follows:

(i) G0 = E ε
6(q), 3 divides q − ε, Tσ = (q − ε)6 and l = 3. In this case, Ml

has two C-composition factors Al and Bl of dimensions 1 and 5, respectively.
Since Ml is also reducible as an H -module, we deduce from (7.6) that Al

and Bl are also H -composition factors. Since C = W (E6) = S.2, where S
is nonabelian simple and H/H0 has at most two non-Frattini chief factors of
order 3, at least one of which must be central, the required bound follows for
A = Bl . Clearly, δH (Al) = 1, and so we have what we need.

(ii) G0 = E7(q), q is odd, Tσ = (q − ε)7 with ε = ± and l = 2. Here Ml has
two C-composition factors of dimensions 1 and 6, and the argument follows
as above.

REMARK 7.6. We remark that the subgroup C from the proof of Proposition 7.5
is the centralizer of σw, where w is an element in the Weyl group of G.
We now briefly describe how to use Magma to compute the composition
factors of the group Tσ as in the proof above. First, use the Magma function
WeylGroup to compute W . Then we convert W to a matrix group over Q
by using ReflectionGroup (W). One can then compute the possibilities
for C , before converting C to a matrix group over Fl (if l divides |C |) using
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the function sub<GL(r,l)|Generators(C)>. We then use the function
CompositionFactors(GModule(C)) to compute the composition factors
of the natural C-module, where F := Fl or F := Q according to whether l divides
|C | or not, respectively. For example, if G = E6(q), l = 3 and Tσ has Cartan
diagram of type 3A2 (see [34, Table 5.2]), then C is the centralizer of the seventh
representative in the list of conjugacy classes of W stored in Magma, and our code
reads as follows:
G:= GroupOfLieType("E6", RationalField());
W:=WeylGroup(G);
R:=ReflectionGroup(W);CC:=ConjugacyClasses(R);
C:=Centraliser(R,CC[7][3]);h:=Generators(C);
C1:=sub<GL(6,3)|h>;;V:=GModule(C1);
CompositionSeries(V);

PROPOSITION 7.7. Let G be an almost simple group with exceptional socle G0

and let H be a maximal subgroup of G as in Theorem 7.2(iv) or (v) above. Then
Theorem 2.7 holds.

Proof. Fix a non-Frattini chief factor A of H . The structure of the group NGσ
(H)

is given in [35, Table III] in case (v), and the bounds on δH (A) follow easily in
every case.

So assume that we are in case (iv). Then H normalizes an elementary abelian
subgroup E of Gσ , and the structure of NGσ

(E) is given by [13, Theorem 1 part
(II)]. In particular, NGσ

(E)/CGσ
(E) acts irreducibly on E , so δH,E(E) = 1.

Suppose first that G = E8 (so that I 6 G), and H ∩ I = NGσ
(E) =

25+10.SL5(2). In this case, E = 25, NGσ
(E)/CGσ

(E) acts naturally on E , and
CGσ

(E) is special of order 215. Since SL5(2) is simple and I/H ∩ I is cyclic, we
must have that H ∩ I = NGσ

(E) = 25+10.SL5(2). In particular, Z(CGσ
(E)) = E ,

from which it follows that δH,CGσ (E)(E) = 1. From the proof of [13, Theorem 1
part (II)], we can see that CGσ

(E)/E = U ⊕U ′ ∼= 25
⊕ 25 as an SL5(2)-module,

with the SL5(2) acting naturally on each of U , U ′. Clearly, we have δH (A) 6 2
for A ∈ {E,U,U ′}. Finally, since Out(G0) is cyclic, we have δH (A) 6 1 for any
other chief factor A of H .

The same strategy as above works in the case G = E6 and NGσ
(E) =

33+3.SL3(3), except that in this case, we have H ∩ I = NGσ
(E) since NGσ

(E)
is perfect and NGσ

(E)/H ∩ I is cyclic.
Next, assume that G = E7 (so that |I : H ∩ I | 6 2), and H ∩ I 6 NGσ

(E) =
(22
×Inndiag(PΩ+8 (q))).Sym3. Here, the Sym3 on top acts naturally as GL2(2) on

E = 22, and H∩ I/E 6 Aut(PΩ+8 (q)). Hence, we have H∩ I = NGσ
(E) = (22

×

Inndiag(PΩ+8 (q))).Sym3 or H ∩ I = NGσ
(E) = (22

× Inndiag(PΩ+8 (q))).Alt3.
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Either way, we have δH (E) = 2. Furthermore, since Out(G0) = Z(2,q−1)× Z f , we
have δH (Z2) 6 3, δH (PΩ+8 (q)) = 1 and δH (Z3) 6 2 if the action on Z3 is trivial,
and δH (Z3) = 1 otherwise.

The remaining cases are easier and follow from the same arguments as above;
in every case, we have NGσ

(E) = pn.S, with S 6 GLn(p) simple and irreducible.
We then use Table 2 to bound the contribution of the outer automorphism group
to δH (A) in each case, and this completes the proof.

PROPOSITION 7.8. Let G be an almost simple group with exceptional socle G0

and let H be a maximal subgroup of G as in Theorem 7.2(vi). Then Theorem 2.7
holds.

Proof. If p = 2, then the structure of H0 is given in [4, Section 19], while if
p > 2, the structure of H0 is given in [25, Section 7] and [13, Proposition 2.7].
In particular, F∗(H0) is quasisimple. Furthermore, it is clear in each case that
an element of H − F∗(H0) either acts trivially on F∗(H0) or induces an outer
automorphism of H0.

In particular, H/F∗(H0) has shape D.E .F , where D, E and F are (possibly
trivial) cyclic groups. Furthermore, using Table 2, we can see that at least one
pair of groups from {D, E, F} has coprime orders. Whence, δH (A) 6 1 if A is
nonabelian, and δH (A) 6 3 otherwise.

We conclude the paper by showing that there exist infinitely many pairs (G, H)
where G is almost simple, H is a maximal subgroup of G, d(H) = 3 and H does
not have an elementary abelian quotient of order l3, for any prime l. Thus, our
theorem is ‘best possible’.

EXAMPLE 7.9. Let p be a prime such that p ≡−1 (mod 3) and let n = 2m with m
odd and 3 dividing m, and set G to be the subgroup of Aut(Ln(p2)) generated by
inner, diagonal and field automorphisms. Let H be a maximal parabolic subgroup
of G in class C1, of type Pm . Let C be the unipotent radical of H , and let
L/C ′ be a complement in H/C ′ for C/C ′ so that H = C L (such a complement
exists since C/C ′ is a non-Frattini minimal normal subgroup of H in this case).
Then L/C ′ contains a characteristic subgroup M/C ′ which is a central product
M/C ′ ∼= Ω1 ◦Ω2 of almost simple groupsΩi , withΩi

∼= Lm(p2) for i = 1, 2. Let
L I (respectively HI ) be the intersection of L (respectively H ) with PGLn(p2) 6
Aut(Ln(p2)). By [31, Lemma 4.1.1], we have L I/M ∼= I1/Ω1 × I2/Ω2, where
Ii
∼= PGLm(p2) for each i . Whence, HI/C M ∼= C L I/C M ∼= L I/M is isomorphic

to E1 × E2, where E1
∼= E2

∼= Zd1 , with d1 := (m, p2
− 1). In particular, it

follows that H/C M ∼= (Zd1 × Zd1).Z2, where the Z2 on top is the group of field
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automorphisms of soc(G). By definition of the subgroup H , we have that Z2 acts
on eachΩi as a field automorphism. Thus, a generator x of Z2 acts on a generator
yi of Ei by yx

i = y p
i . In particular, since 3 divides d1 and p ≡ −1 (mod 3), we

deduce that H has a factor group H/R ∼= 32
:2, where the 2 acts by inverting the

nonzero elements in the 32. Hence, d(H/R) = 3. We have d(H) 6 3 by the main
theorem. However, since L is a central product of two quasisimple groups and d1

and p are odd, we have δH (Z2) = δH/C L I (Z2) = 1.

Acknowledgements

We would like to express our deep gratitude to the anonymous referee who
reviewed our paper. Their time, effort and diligence, together with their excellent
comments and suggestions, have improved this paper immeasurably. Research
partially supported by MIUR-Italy via PRIN Group theory and applications.
The second author was supported by CMUP (UID/MAT/00144/2019) under
FCT research grant IF/00636/2015. The third author was supported by EPSRC
standard grant EP/P02310X/1.

Conflict of Interest: The authors certify that they have no affiliations with
or involvement in any organization or entity with any financial or non-financial
interest in the subject matter or materials discussed in this manuscript.

References

[1] M. Aschbacher, ‘On the maximal subgroups of the finite classical groups’, Invent. Math. 76
(1984), 469–514.

[2] M. Aschbacher and R. Guralnick, ‘Some applications of the first cohomology group’,
J. Algebra 90 (1984), 446–460.

[3] M. Aschbacher and L. Scott, ‘Maximal subgroups of finite groups’, J. Algebra 92 (1985),
44–80.

[4] M. Aschbacher and G. M. Seitz, ‘Involutions in Chevalley groups over fields of even order’,
Nagoya Math. J. 63 (1976), 1–91.

[5] H. Azad, M. Barry and G. Seitz, ‘On the structure of parabolic subgroups’, Comm. Algebra
18(2) (1990), 551–562.

[6] A. Ballester-Bolinches and L. M. Ezquerro, Classes of Finite Groups, Mathematics and Its
Applications (Springer), 584 (Springer, Dordrecht, 2006).

[7] W. Bosma, J. Cannon and C. Playoust, ‘The Magma algebra system. I. The user language’,
J. Symbolic Comput. 24 (1997), 235–265.
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