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Abstract

This paper discusses upper bounds on the minimal number of elements d(G) required to generate

a transitive permutation group G, in terms of its degree n, and its order |G|. In particular, we

reduce a conjecture of L. Pyber on the number of subgroups of the symmetric group Sym(n). We

also prove that our bounds are best possible.

1 Introduction

A well-developed branch of finite group theory studies properties of certain classes of permutation

groups as functions of their degree. The purpose of this paper is to study the minimal generation of

transitive permutation groups.

For a group G, let d(G) denote the minimal number of elements required to generate G. In [21],

[7], [26] and [28], it is shown that d(G) = O(n/
√
log n) whenever G is a transitive permutation group

of degree n ≥ 2 (here, and throughout this paper, “ log ” means log to the base 2). A beautifully

constructed family of examples due to L. Kovács and M. Newman shows that this bound is ‘asymp-

totically best possible’ (see Example 6.10), thereby ending the hope that a bound of d(G) = O(log n)

could be proved.

The constants involved in these theorems, however, were never estimated. We prove:

Theorem 1.1. Let G be a transitive permutation group of degree n ≥ 2. Then

(1) d(G) ≤
⌊

cn√
logn

⌋
,where c := 1512660

√
log (21915)/(21915) = 0.920581 . . ., and;

(2) d(G) ≤
⌊

c1n√
logn

⌋
, where c1 :=

√
3/2 = 0.866025 . . ., unless each of the following conditions hold:

(i) n = 2kv, where v = 5 and 17 ≤ k ≤ 26, or v = 15 and 15 ≤ k ≤ 35, and;

(ii) G contains no soluble transitive subgroups.

In fact, we prove a slightly stronger version of Theorem 1.1, which is given as Theorem 5.3. The

following corollary is immediate.
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Corollary 1.2. Let G be a transitive permutation group of degree n, containing a soluble transitive

subgroup. Then

d(G) ≤
⌊

c1n√
log n

⌋
,

where c1 =
√
3/2.

As shown in [21], apart from the choice of constants, the bounds in our results are of the right

order. Moreover, the infimum of the set of constants c satisfying d(G) ≤ cn/
√
log n, for all soluble

transitive permutation groups G of degree n ≥ 2, is the constant c1 in Theorem 6.2, since d(G) = 4

when n = 8 and G ∼= D8 ◦ D8. We conjecture that the best ‘asymptotic’ bound, that is, the best

possible upper bound when one is permitted to exclude finitely many cases, is

d(G) ≤
⌊

c̃n√
log n

⌋
,

where c̃ is some constant satisfying

b/2 ≤ c̃ < b :=
√

2/π

(see Example 6.10 for more details).

The constant b, and the function n/
√
log n, enter our work by means of the following combinatorial

result. For a partially ordered set P , w(P ) denotes the width of P , that is w(P ) denotes the size of

the largest antichain in P .

Theorem 1.3. Suppose that a partially ordered set P , of cardinality s ≥ 2, is a cartesian product of

the chains P1, P2, . . ., Pt, where each Pi has cardinality ki. Let K :=
∑t

i=1 ki. Then

w(P ) ≤
⌊

s

2K

(
K

⌊K/2⌋

)⌋
≤

⌊
bs√
K

⌋
≤

⌊
bs√
log s

⌋
,

where b =
√

2/π. Furthermore, if each chain has the same cardinality p, then w(P ) ≤ ⌊bpt/
√

t(p− 1)⌋.

We remark that an asymptotic version of this bound is proved in [7, Theorem 1.4].

To state the key application of Theorem 1.3, we require two definitions.

Definition 1.4. For a positive integer s with prime factorisation s = pr11 pr22 . . . prtt , set

ω(s) :=
∑

ri, ω1(s) :=
∑

ripi, K(s) := ω1(s)− ω(s) =
∑

ri(pi − 1) and

ω̃(s) =
s

2K(s)

(
K(s)⌊
K(s)
2

⌋
)
.

For a prime p, write sp for the p-part of s.

Definition 1.5. Let s be a positive integer, and let p be prime. We define sp to be the p-part of s,

lpp (s) = max{sq : q prime}, and

E(s, p) := min





 bs√
(p− 1) logp sp

 ,
s

lpp (s/sp)



 and Esol(s, p) := min {ω̃(s), sp}

where we take
⌊
bs/

√
(p− 1) logp sp

⌋
to be ∞ if sp = 1.
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The mentioned application can now be given as follows.

Theorem 1.6. Let G be a finite group, let F be a field of characteristic p > 0, let H be a subgroup

of G, and let V be an F[H]-module, of dimension a. Let S be the group induced by G on the set of

(right) cosets of H. Define E′ to be Esol if S contains a soluble transitive subgroup, and E′ := E

otherwise. Let M be a submodule of the induced module V ↑GH . Then dG(M) ≤ aE′(s, p).

Here, dG(M) denotes the minimal number of elements required to generate M as a G-module. We

actually prove slightly stronger results than Theorem 1.6 - see Theorem 4.13 and Theorem 4.24.

Our next main result is motivated by a conjecture of L. Pyber, which states that: The number

of subgroups |Sub(Sym(n))| of Sym(n) is precisely 2(
1
16

+o(1))n2
[35]. For m ∈ N, let Subm(Sym(n))

denote the set of subgroups H of Sym(n) with the property that all H-orbits are of length at most

m. J.C. Schlage-Puchta (private correspondence) has proven that if the quantity

f(n) := max{d(G) log |G|/n2 : G ≤ Sym(n) transitive}

approaches 0 as n tends to ∞, then there exists an absolute constant c such that the number of

subgroups of Sym(n) is at most 2o(n
2) Subc(Sym(n)). This reduces Pyber’s conjecture to counting the

number of subgroups that have all orbit lengths bounded above by c.

Motivated by this, we prove the following.

Theorem 1.7. There exists an absolute constant C such that

d(G) ≤
⌊

Cn2

log |G|√log n

⌋

whenever G is a transitive permutation group of degree n ≥ 2.

In particular, the discussed reduction of Pyber’s conjecture follows. We remark that the bound in

Theorem 1.7 is ‘asymptotically best possible’. See Example 6.10 for more details.

Finally, we also discuss minimally transitive permutation groups. A transitive permutation group

G is said to beminimally transitive if every proper subgroup of G is intransitive. Since every transitive

group contains a minimally transitive subgroup, these groups arise naturally in reduction arguments.

Minimally transitive groups also have applications in Combinatorics (for counting vertex transitive

graphs; for example, see [3]), and in the theory of BFC-groups (see [31] and [37]). In this paper, we

use them to study minimal generator numbers in modules for permutation groups. Thus, some

information on their structure is desirable. Our main result is as follows.

Theorem 1.8. Let G be a minimally transitive permutation group of degree n = 2m3. Then one of

the following holds:

(i) G is soluble, or:

(ii) G has a unique nonabelian chief factor, which is a direct product of copies of L2(p), where p is

a Mersenne prime.

A minimally transitive group of prime power degree is a p-group (see Lemma 3.1), so is in particular

soluble; the motivation behind Theorem 1.8 is to study how far away from being soluble a minimally

3



transitive group of degree n := 2m3 is. It would be interesting to study the same question for

minimally transitive groups of degree n := pmq, for arbitrary primes p and q. For an analysis of the

case n = pq, for distinct primes p and q, see [40], [23] and [13].

For information about minimal generator numbers in minimally transitive groups, see [38].

The layout of the paper is as follows: In Section 2, we discuss preliminary results in Permutation

Group Theory and Representation Theory. In Section 3 we discuss minimally transitive groups and

prove Theorem 1.8. Section 4 is the critical step of the paper: there, we prove upper bounds on the

minimal number of elements dG(M) required to generate a submodule M of an induced module V ↑GH
for a finite group G, and a subgroup H ≤ G. These bounds are derived in terms of dimV , |G : H|,
and some additional data when either the field involved is finite, or when G is insoluble. In particular,

we prove Theorem 1.6. We also prove Theorem 1.3 in Section 4. In Section 5, we prove a stronger

version of Theorem 5.3, while in Section 6 we prove Theorem 1.7.

Our proofs are theoretical, although we do use MAGMA [5] for computations of generator numbers

and composition factors for some groups of small order. In particular, we compute the maximum values

of d(G) as G runs over the transitive groups of degree n, for 2 ≤ n ≤ 32.

Notation: The following is a table of constants which will be used throughout the paper.

b
√

2/π = 0.797885 . . .

b1
√
2b = 1.12838 . . .

c1
√
3/2 = 0.866025 . . .

c 1512660
√

log (21915)/(21915) = 0.920581 . . .

c0 log9 48 + (1/3) log9 24 = 2.24399 . . .

c′ ln 2/1.25506 = 0.552282 . . .

We will adopt the ATLAS [11] notation for group names, although we will usually write Sym(n) and

Alt(n) for the symmetric and alternating groups of degree n. Furthermore, these groups, and their

subgroups, act naturally on the set {1, . . . , n}; we will make no further mention of this.

The centre of a group G will be written as Z(G), the Frattini subgroup as Φ(G), and the Fitting

subgroup as F (G). The letters G, H, K and L will usually be used for groups, while U , V and W will

usually be modules. The letter M will usually denote a submodule. Finally, group homomorphisms

will be written on the right.

We finish by recording a definition which will be used throughout the paper.

Definition 1.9. Let G be a group.

(a) Write a(G) to denote the composition length of G.

(b) Let aab(G) and anonab(G) denote the number of abelian and non-abelian composition factors of

G, respectively.

(c) Let cnonab(G) denote the number of non-abelian chief factors of G.

The author is hugely indebted to his supervisor Professor Derek Holt for many useful discussions

and suggestions; without them, this paper would not be possible. He would also like to thank both

Dr. Tim Burness and the referee for many useful comments and suggestions. Finally, he would also

like to thank the Engineering and Physical Sciences Research Council for their financial support.
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2 Preliminaries

2.1 Permutation groups

We begin with some notation. Suppose that G is a group acting on a set Ω, via the homomorphism

θ : G → Sym(Ω). When there is no ambiguity, we will abbreviate ωgθ to ωg, for g ∈ G, ω ∈ Ω. We

will also write

GΩ := Gθ, and KerG(Ω) := Ker(θ)

to denote the image and kernel of θ, respectively. The orbit ωGθ of ω ∈ Ω under the action of G will

be abbreviated to ωG, while the stabiliser will be written as StabG(ω). If Ω is finite of cardinality n,

we have

(Sym(Ω),Ω) ∼= (Sym(n), {1, . . . , n}).

Thus, in this case, we will usually write Sym(Ω) = Sym(n) = Sn, and say that a subgroup G ≤
Sym(Ω) is a permutation group of degree n. If, for 1 = 1, 2, Gi is a group acting on the set Ωi, we

will write (G1,Ω1) ∼= (G,Ω2) if (G1,Ω1) ∼= (G,Ω2) are permutation isomorphic.

Let ωG
i , i ∈ I, denote the orbits in Ω under the action of G (the set I is an index set). The groups

GωG
i are called the transitive constituents of G on Ω.

Definition 2.1. Let Gi, i ∈ I, be a set of groups. A subgroup G of the direct product
∏

i Gi is called

a subdirect product of the Gi if πi|G : G → Gi is surjective for each projection map πi :
∏

i Gi → Gi.

We note the following easily proved proposition, which will be used frequently.

Proposition 2.2 ([8], Theorem 1.1). Let the group G act on the finite set Ω. Then GΩ is isomorphic

to a subdirect product of its transitive constituents.

2.2 Wreath products

Let R be a finite group, let S be a permutation group of degree s, and consider the wreath product

R ≀ S, as constructed in [8]. Let B be the base group of R ≀ S, so that B is isomorphic to the direct

product of s copies of R. Thus, for a subgroup L of R, B contains the direct product of s copies of

L: we will denote this direct product by BL (so that B1 = 1 and BR = B).

Now, for each 1 ≤ i ≤ s, set

R(i) := {(g1, . . . , gs) ∈ B : gj = 1 for all j 6= i}EB.

Then R(i)
∼= R, and B =

∏
1≤i≤sR(i). Furthermore, NR≀S(R(i)) ∼= R(i) × (R ≀ StabS(i)). Hence, we

may define the projection maps

ρi : NR≀S(R(γ)) → R(i). (2.1)

We also define π : R ≀ S → S to be the quotient map by B. This allows us to define a special class of

subgroups of R ≀ S.

Definition 2.3. A subgroup G of R ≀ S is called large if
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(a) Gρi = R(i) for all i in 1 ≤ i ≤ s, and;

(b) Gπ = S.

Remark 2.4. Suppose, in addition, that R is a permutation group of degree r > 1. If s > 1 and G is

a large subgroup of R ≀S, then G is a transitive, and imprimitive, permutation group of degree rs, with

a system of s blocks, each of cardinality r. (G acts on the cartesian product {1, . . . , r}× {1, . . . , s} in

this case.

In fact, it turns out that all imprimitive permutation groups arise as a large subgroup of a certain

wreath product.

Theorem 2.5 ([39], Theorem 3.3). Let G be an imprimitive permutation group on a set Ω1, and

let ∆ be a block for G. Also, let Γ := ∆G be the set of G-translates of ∆, and set Ω2 := ∆×Γ. Denote

by R and S the permutation groups StabG(∆)∆, and G∆G
, on ∆ and Γ respectively. Then

(i) G ∼= GΩ2 is isomorphic to a large subgroup of R ≀ S, and;

(ii) (G,Ω1) and (G,Ω2) are permutation isomorphic.

If G is an imprimitive permutation group, and the block ∆ as in Theorem 2.5 is assumed to be

a minimal block for G, then the group R = StabG(∆)∆ is primitive. When Ω is finite we can iterate

this process, and deduce the following.

Corollary 2.6. Let G be a transitive permutation group on a finite set Ω. Then there exist primitive

permutation groups R1, R2, . . ., Rt such that G is a subgroup of R1 ≀R2 ≀ . . . ≀Rt.

Remark 2.7. The wreath product construction is associative, in the sense that R ≀(S ≀T ) ∼= (R ≀S) ≀T ,
so the iterated wreath product in Corollary 2.6 is well-defined.

Definition 2.8. The tuple (R1, R2, . . . , Rt), where the Ri are as in Corollary 2.6, is called a tuple of

primitive components for G on Ω.

We caution the reader that a tuple of primitive components for an imprimitive permutation group

G on a set Ω is not necessarily unique - see [8, Page 13] for an example.

We close this subsection with an easy lemma concerning the alternating group Alt(d).

Lemma 2.9. Let D ∼= Alt(d) be the alternating group of degree d ≥ 5, and let p be prime. Then D

contains a soluble subgroup E with at most two orbits, such that each orbit has p′-length.

Proof. Assume first that p = 2. Then since n is either odd, or a sum of two odd numbers, we can

take E := 〈x1x2〉, where x1 is a cycle of odd length, either x2 = 1 or x2 is a cycle of odd length, and

d is the sum of the orders (i.e. lengths) of x1 and x2.

So assume that p > 2, and write d = tp + k, where 0 ≤ k ≤ p − 1. If k 6= p − 1, then take E1

to be a soluble transitive subgroup of Alt(tp− 1), and take E2 to be a soluble transitive subgroup of

Alt(k + 1). If k = p− 1, then take E1 to be a soluble transitive subgroup of Alt(tp+ 1), and take E2

to be a soluble transitive subgroup of Alt(k − 1) (note that k − 1 > 0 since p > 2). Finally, taking

E := E1 ×E2 ≤ D give us what we need, and proves the claim.
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2.3 Asymptotic results for permutation groups

We will frequently use a result on composition length, due to Pyber. First, define the constant

c0 := log9 48 + (1/3) log9 24 = 2.24399 . . . (2.2)

The result of Pyber can now be given as follows. It is stated slightly different to how it is stated

in [34].

Theorem 2.10 ([34], Theorem 2.10). Let R be a primitive permutation group of degree r ≥ 2.

Then aab(R) ≤ (1 + c0) log r − (1/3) log 24, and anonab(R) ≤ log r.

We shall also require the following theorem of D. Holt and C. Roney-Dougal on generator numbers

in primitive groups.

Theorem 2.11 ([19], Theorem 1.1). Let H be a subnormal subgroup of a primitive permutation

group of degree r. Then d(H) ≤ ⌊log r⌋, except that d(H) = 2 when m = 3 and H ∼= Sym(3).

We deduce the following easy consequence.

Corollary 2.12. Let G be an imprimitive permutation group of degree n, and suppose that G has a

minimal block ∆ of cardinality r ≥ 4. Let S denote the induced action of G on the set of distinct

G-translates of ∆. Then d(G) ≤ s⌊log r⌋+ d(S), where s := n/r.

Proof. Let R be the induced action of the block stabiliser StabG(∆) on ∆, and let K := KerG(Ω) be

the kernel of the action of G on the set Ω of distinct G-translates of ∆. Then K∆ ER, and hence, by

Theorem 2.11, each normal subgroup of K∆ can be generated by ⌊log r⌋ elements.

Since K EG, we have

(K,∆) ∼= (K,∆g) (2.3)

for all g ∈ G. Also, since R is primitive, K∆ ER is either trivial or transitive. If K∆ is trivial, then

K is trivial by 2.3, and hence d(G) = d(G/K) = d(S). So assume that K∆ is transitive. Then K is

an iterated subdirect product of s copies of K∆, by Proposition 2.2. Hence, d(K) ≤ s⌊log r⌋ by the

previous paragraph. Since G/K ∼= S, the claim follows.

2.4 Some results from Representation Theory

We now record two lemmas which will be key in the proof of Proposition 4.9. The first has a stronger

version which is stated in [19, Lemma 2.13], but we only require the following.

Lemma 2.13 ([19], Lemma 2.13). Let G ≤ GLn(F) be finite, let V = F
n be the natural module,

and assume that G acts irreducibly on V . Suppose that

1. V ↓L is homogeneous for each normal subgroup L of G; and

2. G has no non-trivial abelian quotients.

7



Then G is isomorphic to a subgroup of GLn/f (K) for some divisor f of n, and some extension field K

of F of degree f . Furthermore, if W denotes the natural module for GLn/f (K), then G acts irreducibly

on W and

(i) W ↓L is homogeneous for each normal subgroup L of G;

(ii) Z(G) is cyclic; and

(iii) Each abelian characteristic subgroup of G is contained in Z(GLn/f (K)).

Lemma 2.14. Let G ≤ GLn(F) be finite, let V be the natural module, and assume that V is irreducible.

Suppose that 1 6= E E LEG, and that V ↓L is homogeneous. Suppose that K ⊇ F is a splitting field

for all subgroups of L, and assume that the resulting extension K/F is normal. Then V K ↓E is a

non-trivial completely reducible K[E]-module.

Proof. Since L is homogeneous, V ↓L∼= eU , for some irreducible F[L]-module U and some positive

integer e. Since G is faithful on V and L 6= 1, L is faithful on U . Moreover, UK is completely

reducible, and each of its irreducible constituents are algebraically conjugate, by [12, Theorem 70.15].

It follows that L is faithful on V K ↓L, and hence V K ↓E is non-trivial. Also, since E E L, and

V K ↓E∼= V K ↓L↓E ,

it follows from Clifford’s Theorem (see [12, Theorem 49.7]) that V K ↓E is completely reducible. This

completes the proof.

Remark 2.15. Let K be a splitting field for the finite group G, containing the field F. Then every

field E containing K is also a splitting field for G (for example, see [20, Corollary 9.8]). Thus, one can

always find a splitting field E for G such that E/F is a normal extension (for instance, by taking E to

be the normal closure of K/F).

2.5 Number Theory: The prime counting function

We close this section with a brief discussion of large prime power divisors of positive integers.

Definition 2.16. For a positive integer s and a prime p, write sp for the p-part of n. Also, define

lpp s = maxp prime sp to be the the largest prime power divisor of s.

Fix s ≥ 2, and let k = lpp s. By writing the prime factorization of s as s = kpr22 . . . prtt , one

immediately sees that s ≤ kδ(k), where δ(k) denotes the number of primes less than or equal to k.

Hence, log s ≤ δ(k) log k. Also, it is proved in [36, Corollary 1] that

δ(k) < 1.25506k/ ln k

for k ≥ 2. Define the constant c′ by

c′ := ln 2/1.25506 (2.4)

We deduce the following.
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Lemma 2.17. Let s be a positive integer. Then

lpp s ≥ (ln 2/1.25506) log s = c′ log s.

3 Minimally transitive groups of degree 2m3

We begin our work towards the proof of Theorem 5.3 with a discussion of minimally transitive permu-

tation groups. As mentioned in Section 1, we use these groups to study minimal generator numbers in

modules for permutation groups. Specifically, if H ≤ G are finite groups, V is a G-module, and G̃ is

a subgroup of G acting transitively on the set H\G of right cosets of H in G, then V ↑GH∼= V ↑G̃G̃∩H ,

by Mackey’s Theorem (see [16, Proposition 6.20]). Thus, when studying induced modules, one may

often reduce to the case where G acts minimally transitively on H\G.

Note also that the bounds we obtain in Theorem 4.24 and its corollaries are strong enough to

prove Theorem 5.3 in most cases. Due to the nature of the bounds however, this is not the case when

|G : H| has the form 2m3. Thus, we have to work harder, and try to obtain some information about

the structure of the minimally transitive groups of degree 2m3. Recall from Section 1 that our main

result is as follows.

Theorem 1.8. Let G be a minimally transitive permutation group of degree n = 2m3. Then one of

the following holds:

(i) G is soluble; or

(ii) G has a unique nonabelian chief factor, which is a direct product of copies of L2(p), where p is

a Mersenne prime.

We begin preparations towards the proof of Theorem 1.8 with some easy observations on minimally

transitive groups.

Lemma 3.1. Let G be a transitive subgroup of Sn, let A be a point stabiliser in G, let 1 6= L be a

normal subgroup of G, and let Ω = {∆1, . . . ,∆χ} be the set of L-orbits. Then

(i) Either L is transitive, or Ω forms a system of blocks for G. In particular, the size of an L-orbit

divides n.

(ii) (L,∆1) is permutation isomorphic to (L,∆j), for all j.

(iii) |Ω| = |G : AL|.

(iv) G is minimally transitive if and only if the only subgroup X ≤ G satisfying AX = G is X = G.

(v) If G is minimally transitive, then GΩ is minimally transitively.

(vi) If n = pa for a prime p and G is minimally transitive, then G is a p-group.

Proof. Parts (i), (ii) and (iii) are clear. Also, a subgroup X of G is transitive if and only if AX = G.

Hence, Part (iv) follows.

Part (v) is proved in [13, Theorem 2.4]. Finally, Part (vi) follows since a Sylow p-subgroup of a

transitive group of degree pa acts transitively.
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3.1 Subgroups of index 2m3 in direct products of nonabelian simple groups

In [24, Corollary 6], information is given regarding the prime divisors of indices of subgroups of simple

groups. We utilise this work in the following proposition.

Proposition 3.2. Let T be a nonabelian finite simple group, and suppose that T has a proper subgroup

X of index n = 2i3j , with 0 ≤ j ≤ 1. Then one of the following holds:

(i) T = M12 and X is contained in one of the two T -conjugacy classes of copies of M11 in M12.

(ii) T = M11 or M24, and X is T -conjugate to L2(11) or M23, respectively.

(iii) T = Ar, r = 2i3j , and either X is T -conjugate to Ar−1, or r = 6 and X is T -conjugate to L2(5).

(iv) T = L2(p) where p is a prime of the form p = 2f13f2 − 1 with f2 ≤ 1, and X is a subgroup of

index either 1 or 3 in a T -conjugate of the maximal subgroup M = Cp ⋊ C(p−1)/2 < L2(p).

Proof. For a finite set F , let π(F ) denote the set of prime divisors of |F |. Thus, we have π(X) ⊆ π(T ),

since X ≤ T . We wish to reduce to the case π(X) = π(T ) and then use [24, Corollary 6]. However,

we first need to deal with some cases which are not covered by this approach. First, the classification

of the maximal subgroups of the simple classical groups of dimension up to 12 implies that T is not

L2(8), L3(3), U3(3), Sp4(8), U4(2) or U5(2) (see [6, Tables 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.10, 8.11, 8.14,

8.20 and 8.21]).

Assume next that T ∼= L2(p), for some prime p of the form p = 2f13f2 − 1, with f2 ≥ 0. Also, let

M be a maximal subgroup of T containing X. Then, since |T : M | divides |T : X| = 2i3j with j ≤ 1,

we must have M = Cp ⋊ C(p−1)/2, and f2 ≤ 1 (see [6, Table 8.1]). Set l := 1 if f2 = 0, and l := 3 if

f2 = 1. Since (p + 1)/l is the highest power of 2 dividing |T |, and |T : X| = 2i3j with j ≤ 1, either

X = M ; or f2 = 0 and |M : X| = 3. This is the situation described in (iv).

Next, assume that T is one of the Mathieu groups M11 or M12. Using the ATLAS [11], we find

that the only possibilities for X are T = M11 and X is T -conjugate to L2(11) ≤ M11 (of index 12);

or T = M12 and X is a member of one of the two T -conjugacy classes of M11 ≤ M12 (of index 12).

Finally, assume that T is not one of the groups considered above, and let Π be the set of primes for

T given in the statement of [24, Corollary 6]. Then π(|T : X|) ⊆ {2, 3}, and q ≥ 5 for each q ∈ Π (the

cases where Π contains 2 or 3 have been dealt with in the preceding paragraphs - see [24, Corollary

6]). Thus, we must have Π ⊆ π(X). Hence [24, Corollary 6] gives π(X) = π(T ) and the possibilities

for T and X are as follows (see [24, Table 10.7]).

(1) T = Ar, Ak EX ≤ Sk ×Sr−k, and k is greater than or equal to the largest prime p with p ≤ r (in

particular, k ≥ 5, since T is simple). Then |Ar : Ar ∩ (Sk × Sr−k)| =
(r
k

)
divides |T : X| = 2i3j .

But a well-known theorem of Sylvester and Schur (see [17]) states that either
(r
k

)
= 1 or

(r
k

)
has

a prime divisor exceeding min {k, r − k}. Thus, since k ≥ 5 we must have k = r− 2 or k = r− 1.

Since r ≥ 5, k = r − 1 is the only option and hence X = Ar−1, which gives us what we need.

(2) T = A6, X = L2(5). This, together with (1) above, gives precisely the situation described in (iii).

(3) T = PSp2m(q) (m, q even) or PΩ2m+1(q) (m even, q odd), and Ω−
2m(q) E X. Then X ≤

NT (Ω
−
2m(q)), so |T : NT (Ω

−
2m(q))| divides |T : X| = 2i3j . But
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|NT (Ω
−
2m(q)) : Ω−

2m(q)| = 2, by [22, Proposition 4.8.6] for T = PSp2m(q) and [22, Proposition

4.1.6] for T = PΩ2m+1(q). Hence, |T : Ω−
2m(q)| divides 2i+13j . Also, for each of the two choices

of T we get |T : Ω−
2m(q)| = qm(qm − 1). But qm(qm − 1) cannot be of the form 2f or 2f3, since

m > 1 and (m, q) 6= (2, 2) (as T is simple). Therefore, we have a contradiction.

(4) T = PΩ+
2m(q) (m even, q odd) and Ω2m−1(q) E X. As above, X ≤ NT (Ω2m−1(q)), and we use

[22, Proposition 4.1.6 Part (i)] to conclude that |NT (Ω2m−1(q)) : Ω2m−1(q)| = 2. It follows that
1
2q

m−1(qm − 1) = |T : Ω2m−1(q)| divides 2i+13j . This again gives a contradiction, since m ≥ 4.

(5) T = PSp4(q) and PSp2(q
2) E X. Then X ≤ NT (PSp2(q

2)), and [22, Proposition 4.3.10] gives

|NT (PSp2(q
2)) : PSp2(q

2)| = 2. It follows that q2(q2 − 1) = |T : PSp2(q
2)| divides 2i+13j . Again,

this is impossible.

(6) In each of the remaining cases (see [22, Table 10.7]), we are given a pair (T , Y ), where T is L2(8),

L3(3), L6(2), U3(3), U3(5), U4(3), U6(2), PSp4(7), PSp4(8), PSp6(2), PΩ+
8 (2), G2(3),

2F4(2)
′,

M24, HS, McL, Co2 or Co3, and Y is a subgroup of T containing X. Apart from when T = M24,

we find that |T : Y | does not divide 2i3j , so we get a contradiction in each case. When T = M24,

the only possibility is when X is T -conjugate to M23 ≤ M24 (of index 24).

This completes the proof.

Our main tool in proving Theorem 1.8 is the Frattini argument. The result is well-known, but we

couldn’t find a reference so we include a proof here.

Lemma 3.3. Let G be a group, and let L be a normal subgroup of G. Suppose that H is a subgroup

of L with the property that H and Hα are L-conjugate for each α ∈ Aut(L). Then G = NG(H)L.

Proof. Let g ∈ G. Then conjugation by g induces an automorphism of L, so Hg = H l for some l ∈ L,

by hypothesis. Hence, gl−1 ∈ NG(H), so g ∈ NG(H)L, and this completes the proof.

With the Frattini argument in mind, the next corollary will be crucial.

Lemma 3.4. Let T be a nonabelian finite simple group, and suppose that T has a proper subgroup X

of index r := 2i3j , with 0 ≤ j ≤ 1. Assume also that if T ∼= L2(p), with p a Mersenne prime, then

j = 0. Denote by Γ the set of right cosets of X in T . Then there exists a proper subgroup H of T

with the following properties:

(i) H and Hα are conjugate in T for each automorphism α ∈ Aut(T ); and

(ii) NT (H)Γ is transitive.

Proof. By Proposition 3.2, the possibilities for the pair (T,X) (up to conjugation in T ) are as follows:

1. (T,X) = (Ar, Ar−1), with r = 2i3j for some j ≤ 1, or (T,X) = (A6, L2(5)). Since T is

nonabelian simple, r ≥ 6, so r is even. If r is a power of 2, let H be a Sylow 2-subgroup of T .

Then HΓ itself is transitive, and properties (i) and (ii) are clearly satisfied.

Otherwise, let H = 〈(1, 2, 3), (4, 5, 6), . . . , (r − 1, r − 2, r)〉. Then NT (H)Γ is transitive. Thus,

(ii) is satisfied. Property (i) is also easily seen to be satisfied (this includes the case r = 6, when

Out (A6) has order 4).
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2. (T,X) = (M11, L2(11)): Let H be a Sylow 3-subgroup of T . Then NT (H) ∼= M9 : 2 (see page

18 of the ATLAS of finite groups [11]) acts transitively on the cosets of X. Since Aut(M11) =

Inn(M11), (i) and (ii) are satisfied.

3. T = M12 and X is T -conjugate to one of the two copies of M11 in M12; or T = M24 and X is

T -conjugate M23: In each case, let H be a subgroup of T generated by a fixed point free element

of order 3. When T = M12, NT (H) ∼= A4 × S3 (see [11, page 18]) is a maximal subgroup of T ,

and acts transitively on the cosets of X (for each copy of M11). Also, the unique non-identity

outer automorphism of M12 fixes the set of T -conjugates of H, so both (i) and (ii) are satisfied.

When T = M24, NT (H) has order 1008, and acts transitively on the cosets of X (using MAGMA

[5], for example). Also, Out (T ) is trivial. Thus, (i) and (ii) are again satisfied.

4. T = L2(p), with p = 2f13f2−1 ≥ 7, f2 ≤ 1 andX = Cp⋊C(p−1)/2. Then |T : X| = p+1 = 2f13f2 .

Assume first that p ≥ 7, and let H be a dihedral group of order p + 1 contained in T . Since T

has a unique conjugacy class of maximal subgroups of dihedral groups of order p+1, (i) follows.

Furthermore, |T : H| and |T : X| are coprime, so (ii) is also satisfied.

This just leaves the case p = 5, but in this case T = A5 and X is T -conjugate to D10 so taking

H = A4 gives us what we need.

Lemma 3.5. Let p ≥ 7 be a Mersenne prime, and let L = T1 × T2 × . . .× Te, where each Ti
∼= L2(p).

Also, let A be a subgroup of L such that |L : A| = 2a3, for some a, and |Ti : Ti ∩A| ∈ {p+1, 3(p+1)}
for all i, with |Ti : Ti ∩A| = 3(p + 1) for at least one i. Then

(i) |L : A| = 3(p + 1)e.

(ii) Let P be a Sylow p-subgroup of L. Then NL(P ) is soluble, and has precisely 2e orbits on the set

∆ of (right) cosets of A in L, with
(e
k

)
orbits of size 3pk, for each k, 0 ≤ k ≤ e.

Proof. We first prove Part (i) by induction on e, with the case e = 1 being trivial. So assume that

e > 1, and fix k in the range 1 ≤ k ≤ e with |Tk : Tk ∩ A| = 3(p + 1). Also, fix i 6= k, and set

T̂i := T1 × . . . × Ti−1 × Ti+1 × . . .× Te and Âi = A ∩ T̂i. Then

|Tj : Tj ∩ Âi| = |Tj : Tj ∩ T̂i ∩A| = |Tj : Tj ∩A| ∈ {3(p + 1), p + 1}

for each j 6= i. In particular, |Tk : Tk ∩ Âi| = 3(p + 1). Also, |T̂i : Âi| = |T̂iA : A| divides |L : A|, and
is divisible by |Tk : Tk ∩ Âi| = |TkÂi : Âi| = 3(p + 1), so |T̂i : Âi| = 2bi3, for some bi ≤ a. Hence, the

inductive hypothesis implies that |T̂i : Âi| = 3(p+ 1)e−1.

Assume that the claim in Part (i) does not hold. Then since (p + 1)e is the highest power of 2

dividing |L|, we must have |L : T̂iA| = |L : A|/|T̂i : Âi| < p + 1. Hence, if ρi : L → Ti denotes

projection onto Ti, then |Ti : ρi(A)| = |ρi(L) : ρi(T̂iA)| = |L : T̂iA| < p + 1. But, as can be readily

checked using [6, Tables 8.1 and 8.2], no maximal subgroup of L2(p) can have index a power of 2 and

strictly less than p + 1. Thus, we must have T̂iA = L, so A projects onto Ti. But then A ∩ Ti is a
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normal subgroup of Ti, so A∩Ti = 1 or Ti. This contradicts |Ti : A∩Ti| ∈ {p+1, 3(p+1)}, and Part

(i) follows.

Finally, we prove (ii). Let N := NL(P ). By Proposition 3.2 Part (iii), each Tj ∩A is contained in

a maximal subgroup Mj := Cp⋊C(p−1)/2 of Tj, and |Tj : Tj ∩A| ∈ {p+1, 3(p+1)}. Thus, Tj ∩A has

a normal Sylow p-subgroup Pj
∼= Cp. Let P̃ := P1 × . . . × Pe, so that P̃ is a Sylow p-subgroup of L.

Since P and P̃ are conjugate in L, we may assume, for the purposes of proving Part (ii), that P̃ = P .

Since Mj = NTj
(Pj) is soluble, N = M1 × . . .×Me is soluble. Also, P EA since P is a characteristic

subgroup of (T1 ∩A)× . . .× (Te ∩A)EA, so A ≤ N .

Suppose first that e = 1. Then |L : A| = 3(p + 1), so A has index 3 in N , since |L : N | =
|L : M1| = p + 1. Let x ∈ L\N , and let Γ ⊂ ∆ be the N -orbit corresponding to Ax. Then

|Γ| = |N : N ∩Ax| = |L:N∩Ax|
|L:N | . Since |L : N | = p + 1 is a power of 2 and |L : N ∩ Ax| is divisible by

|L : Ax| = 3(p + 1), it follows that 3 divides |Γ|. Also, as mentioned above, Ax and N have unique

Sylow p-subgroups P x and P , respectively. Since x does not normalise P , we have P x 6= P , so p, and

hence 3p, divides |N : N ∩Ax| = |Γ|. Since |N : A| = 3 and |L : A| = 3(p+1), it follows that |Γ| = 3p,

which proves the claim in the case e = 1.

We now consider the general case. Fix 1 ≤ i ≤ e, and xi ∈ Ti\Mi. Suppose first that |Ti : Ti∩A| =
3(p+1). From the previous paragraph, we see that Mi has precisely two orbits on the cosets of Ti∩A

in Ti, of size 3 and 3p, represented by A and Axi respectively. Next, assume that |Ti : Ti∩A| = p+1.

Then Mi = Ti ∩ A. Moreover, arguing as in the previous paragraph, p divides |Mi : Mi ∩ Axi |, from
which it follows that Mi again has two orbits on the cosets of A∩Ti in Ti, of size 1 and p, represented

by A and Axi respectively.

Let B := (T1∩A)×. . .×(Te∩A)EA. It is clear, from the previous paragraph, thatN = M1×. . .×Me

has 2e orbits on the cosets of B in L, represented by Bt1t2 . . . te, where ti ∈ {1, xi}, for 1 ≤ i ≤ e.

Also, the orbit represented by the coset Bt1t2 . . . te has cardinality 3dpk, where k is the number of

subscripts i with ti 6= 1, and d is the number of subscripts i with

|Ti : Ti ∩A| = 3(p + 1). (3.1)

Since B ≤ A, N has at most 2e orbits in ∆. Suppose there exist ti, t̃i ∈ {1, xi} for 1 ≤ i ≤ e,

and n = n1n2 . . . ne ∈ N (with ni ∈ Mi), such that At1t2 . . . te = A(t̃1t̃2 . . . t̃e)(n1n2 . . . ne). Then

ti = ait̃ini, where a1a2 . . . ae ∈ A. Since A ≤ N , it follows that ti = 1 if and only if t̃i = 1.

Hence, t1t2 . . . te = t̃1t̃2 . . . t̃e. Thus, N has precisely 2e orbits in ∆, represented by At1 . . . te, where

ti ∈ {1, xi}. Since the size of the N -orbit corresponding to At1t2 . . . te is

|N : N ∩At1t2...te | = |N : N ∩Bt1t2...te |
|N ∩At1t2...te : N ∩Bt1t2...te | ≥

|N : N ∩Bt1t2...te |
|At1t2...te : Bt1t2...te | ,

and |At1t2...te : Bt1t2...te | = |A : B| = |N : B|/|N : A| = 3d−1, it now follows from (4.2.1) that

|N : N ∩At1t2...te | = |N : N ∩Bt1t2...te |
3d−1

= 3pk

where k is the number of subscripts i such that ti 6= 1. This proves (ii).
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3.2 The proof of Theorem 1.8

First, we fix some notation which will be retained for the remainder of this section: Let G be a

minimally transitive permutation group of degree 2m3; let A be the stabiliser in G of a point δ; let L

be a minimal normal subgroup of G; let Ω be the set of L-orbits; let K := Ker(GΩ) be the kernel of

the action of G on Ω; and finally, let ∆ be the L-orbit containing δ.

Remark 3.6. GΩ acts minimally transitively on Ω, by Lemma 3.1 Part (v). Note also that, if |G : AL|
is a power of 2, then GΩ is a 2-group by Lemma 3.1 Part (vi).

We require the following easy proposition.

Proposition 3.7. There exists a subgroup E of G such that G = EL and E ∩K is soluble.

Proof. Consider the (set-wise) stabiliser StabG(∆) of ∆ in G. Since L acts transitively on ∆, we have

LA = StabG(∆). Let E be a subgroup of G minimal with the property that EK = G. Then E ∩K

is contained in the Frattini subgroup of E, and hence is soluble. Finally, G = EK ≤ E StabG(∆) =

ELA, so G = ELA. Thus, EL = G by minimal transitivity, as needed.

Corollary 3.8. If L is abelian, then the set of nonabelian chief factors of G equals the set of nonabelian

chief factors of GΩ. If L is nonabelian and |Ω| = |G : LA| is a power of 2, then L is the unique

nonabelian chief factor of G.

Proof. Let E be as in Proposition 3.7, and assume that either L is abelian or L is nonabelian and

|Ω| = |G : LA| is a power of 2. For a finite group X write NCF(X) for the set of nonabelian chief

factors of X. We need to prove that NCF(G) = NCF(GΩ) if L is abelian, and NCF(G) = {L}
otherwise. Note that if |Ω| is a power of 2 then GΩ is soluble, by Remark 3.6.

Since EΩ is transitive, the minimal transitivity of GΩ implies that GΩ = EΩ ∼= E/E ∩K. Since

E ∩ K is soluble, it follows that NCF(GΩ) = NCF(E). By hypothesis, either L is abelian, or L is

nonabelian and EΩ, and hence E, is soluble. Since G = EL, the claim follows, in either case.

Proposition 3.9. Suppose that L = T1 × . . . × Tf , where each Ti is isomorphic to a nonabelian

simple group T . Without loss of generality, assume that KerL(∆) = Te+1 × . . . × Tf , so that L∆ =

T∆
1 × . . .× T∆

e . Then

(i) T ∼= L2(p) for some Mersenne prime p,

(ii) |Ti : Ti ∩A| ∈ {p+ 1, 3(p + 1)} for each 1 ≤ i ≤ e, and;

(iii) There exists at least one i in the range 1 ≤ i ≤ e such that |Ti : Ti ∩A| = 3(p + 1).

Proof. Suppose that the proposition is false, and set Xi := Ti ∩A. Note that |Ti : Xi| divides 2m3 for

each i, by Lemma 3.1 Part (i). Hence, Proposition 3.2 implies that one of the following must hold:

(a) T 6∼= L2(p), for any Mersenne prime p. Then by Proposition 3.2, either Ti
∼= M12 and each Xi is

contained in one of the two conjugacy classes of M11 in M12; or (Ti,Xi) = (Ar, Ar−1), (A6, L2(5)),

(M11, L2(11)), (M24,M23), or (L2(p), Cp ⋊ C p−1
2
) where p is a prime of the form p = 2f13 − 1.

Here, the group Xi is given up to conjugacy in Ti.
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(b) T ∼= L2(p) for some Mersenne prime p. In this case, Proposition 3.2 implies that |Ti : Xi| = p+1

for all i. In particular, Xi is Ti-conjugate to the maximal subgroup Mi := Cp ⋊ C p−1
2

of Ti. (We

remark that it is here where we use the assumption that the proposition is false. Specifically,

since |Ti : Xi| divides 2m3 for each i, Proposition 3.2 implies that Xi is Ti-conjugate to either Mi,

or an index 3 subgroup of Mi. Hence |Ti : Xi| ∈ {p + 1, 3(p + 1)} for each i. Thus, Part (iii) of

the proposition must fail, forcing |Ti : Xi| to be p+1, and hence for Xi to be Ti-conjugate to Mi,

for each i.)

Fix 1 ≤ i ≤ e, and write T = Ti. Note that T∆ is isomorphic to T . Set Γ := δT ⊂ ∆, and set

X := T ∩ A. Then the pair (T,X) satisfies the hypothesis of Lemma 3.4. Thus, we conclude that T

contains a proper subgroup H such that

(i) H and Hα are conjugate in T for each automorphism α ∈ Aut(T ); and

(ii) NT (H)Γ is transitive.

Fix a T -orbit Γ′ in ∆. We claim that NT (H)Γ
′

is transitive. By Lemma 3.1 Part (ii), TΓ′

is

permutation isomorphic to TΓ. Hence, by (ii) above, there exists an automorphism α of T such that

NT (H)α = NT (H
α) acts transitively on Γ′. Since H is T -conjugate to Hα, it follows that NT (H) is

T -conjugate to NT (H)α. Thus, NT (H) acts transitively on Γ′, as claimed.

Since Ti
∼= Tj for all i, j, we can choose the subgroup Hj < Tj corresponding to H, and the

subgroup Nj < Tj corresponding to NT (H), for each 1 ≤ j ≤ f . Furthermore, each group Xi is

determined up to conjugacy in Ti by (a) and (b) above. Hence, by the previous paragraph

Nj acts transitively on each Tj-orbit in ∆ whenever 1 ≤ j ≤ e. (3.2)

Set H̃ = H1 ×H2 × . . . ×Hf < L, and N := N1 × N2 × . . . × Nf . Now, note that N ≤ NL(H̃).

Thus, N∆
1 ×N∆

2 × . . .×N∆
e = N∆ ≤ NL(H̃)∆.

We will now prove that N∆ is transitive. Indeed, let ǫ ∈ ∆, and let x ∈ L such that δx = ǫ. Write

x = t1t2 . . . te, with tj ∈ Tj . By (ii) above, N1 acts transitively on δT1 . Hence, there exists n1 ∈ N1

such that δt1 = δn1 . We now inductively define the permutations n2, . . ., ne by choosing nj ∈ Nj such

that (δn1···nj−1)nj = δn1···nj−1tj (this is possible since Nj acts transitively on (δn1...nj−1)Tj , by (4.3.1)).

Then

ǫ = δt1t2···te = (δt1)t2···te = δn1t2···te = (δn1t2)t3···te

= δn1n2t3···te = (δn1n2t3)t4···te = · · · = δn1n2···ne

Thus

N∆ is transitive, as claimed. (3.3)

Finally, let α ∈ Aut (L) ∼= Aut (T ) ≀Sym(f). Then there exists τ ∈ Sym(f) and αi ∈ Aut (T ) such
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that

H̃α = Hα1
1τ ×Hα2

2τ × . . . ×H
αf

fτ

= H
α
1τ

−1

1 ×H
α
2τ

−1

2 × . . . ×H
α
fτ

−1

f

By (i) above, there exists, for each 1 ≤ i ≤ f , an element ti ∈ Ti such that H
α
iτ

−1

i = Hti
i . Hence

H̃α = Ht1
1 ×Ht2

2 × . . .×H
tf
f = H̃t1t2...tf .

Thus, H̃ and H̃α are conjugate in L for all α ∈ Aut (L). Lemma 3.3 then implies that G =

NG(H̃)L. Thus, NG(H̃) acts transitively on the set Ω of L-orbits. But NG(H̃) also acts transitively on

the fixed L-orbit ∆, by (4.3.2). Hence, NG(H̃) is a transitive subgroup of G. By minimal transitivity

of G, it follows that NG(H̃) = G, so H̃ is normal in G. But this is a contradiction, since 1 < H̃ < L

and L is a minimal normal subgroup of G. The proof is complete.

Property (iii) of Proposition 3.9 immediately implies the following.

Corollary 3.10. Suppose that L is isomorphic to a direct product of copies of L2(p), where p is a

Mersenne prime. Then |∆| is divisible by 3.

Finally, we are ready to prove Theorem 1.8.

Proof of Theorem 1.8. Assume that G is a counterexample to the theorem of minimal degree. Note

that |Ω| = |G : LA| divides |G : A| = 2m3, and is less than 2m3. Furthermore, a minimally transitive

group of 2-power degree is soluble by Remark 3.6. Hence, the minimality of G as a counterexample

implies that GΩ = G/K satisfies either (i) or (ii) in the statement of the theorem.

If L is abelian, then Corollary 3.8 implies that the set of nonabelian chief factors of G equals the

set of nonabelian chief factors of GΩ. Thus, the result follow from the inductive hypothesis in this

case. So we may assume that L = T1×T2× . . .×Tf , where each Ti is isomorphic to a nonabelian finite

simple group T . Furthermore, Proposition 3.9 then implies that T ∼= L2(p), where p is a Mersenne

prime. Also, 3 divides |∆| by Corollary 3.10. But then |Ω| = |G : LA| is a power of 2, so L is the

unique nonabelian chief factor of G by Corollary 3.8. This contradiction completes the proof.

We also deduce two corollaries which will be vital in our application of Theorem 4.24 (see Section

4.3.2).

Corollary 3.11. Assume that G is insoluble, and let p := 2a − 1 be a Mersenne prime such that G

has a unique nonabelian chief factor isomorphic to a direct product of f copies of L2(p). Then there

exists a triple of integers (e, t1, t), with e ≥ 1, and t ≥ t1 ≥ 0, such that

(i) m = ea+ t, and;

(ii) For some soluble subgroup N of G, N has 2e+t1 orbits, with
(e
k

)
2t1 of them of length 3pk× 2t−t1 ,

for each k, 0 ≤ k ≤ e.
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Proof. Let E be as in Proposition 3.7, so that G = EL, and E ∩K is soluble. We prove the claim by

induction on m. Suppose first that L is abelian. Then since EL = G and E ∩K is soluble, GΩ = EΩ

is insoluble. Hence |Ω| = 2m̃3 and |∆| = 2m−m̃, for some m̃ with 1 ≤ m̃ < m, by Lemma 3.1 Parts (i)

and (vi). The inductive hypothesis then implies that there exists a triple (ẽ, t̃1, t̃) such that

1. m̃ = ẽa+ t̃, and;

2. For some soluble subgroup Ñ of EΩ, Ñ has 2ẽ+t̃1 orbits, with
(ẽ
k

)
2t̃1 of them of length 3pk×2t̃−t̃1 ,

for each k, 0 ≤ k ≤ ẽ.

Set e := ẽ, t := m− m̃+ t̃, and t1 := t̃1, so that m = ea+ t, which is what we need for (i). Also, let

Y ≤ E such that Y Ω = Ñ , and set N := LY . Then N is soluble, since the groups Y Ω, Y ∩K and L

are soluble. Moreover, N acts transitively on each L-orbit, since L ≤ N . Since each L-orbit has size

2m−m̃, it follows that N has 2e+t1 orbits, with
(e
k

)
× 2t1 of them of length 3pk2t̃−t̃1+m−m̃ = 3pk2t−t1 .

This gives us what we need.

So assume that L = T1×T2× . . .×Tf , where each Ti
∼= L2(p). By Proposition 3.2 Part (iii), Ti∩A

is contained in the maximal subgroup Mi
∼= Cp ⋊ C(p−1)/2 of Ti, and |Ti : Ti ∩ A| ∈ {p + 1, 3(p + 1)}

for all i. Furthermore, Proposition 3.9 implies that there exists at least one subscript i such that

|Ti : Ti ∩A| = 3(p+ 1). Lemma 3.5 now implies that |∆| = |L : L ∩A| = 3(p+ 1)e = 2ea3, where e is

the number of direct factors of L acting non-trivially on ∆. It also follows that |Ω| = 2m−ea.

By relabeling the Ti if necessary, we may write L∆ = T∆
1 × T∆

2 × . . . × T∆
e . Let P be a Sylow p-

subgroup of L, and let N := NL(P ). By Lemma 3.5 Part (ii), N is soluble, and NL(P )∆ = NL∆(P∆)

has 2e orbits on ∆, with
(e
k

)
of size 3pk, for each 0 ≤ k ≤ e. Since the action of L on each L-orbit is

permutation isomorphic to the action of L on ∆, it follows that N := NL(P ) has 2e orbits on each

L-orbit, with
(
e
k

)
of size 3pk, for each 0 ≤ k ≤ e. Also, N acts trivially on the set Ω of L-orbits, so N

has 2e+m−ea orbits in total, with 2m−ea
(e
k

)
of them of size 3pk, for each 0 ≤ k ≤ e. Setting t := m−ea

and t1 := t now gives us what we need, and completes the proof.

Corollary 3.12. Let S be a transitive permutation group of degree s := 2m3, and assume that S

contains no soluble transitive subgroups. Then there exists a Mersenne prime p := 2a − 1 and a triple

of integers (e, t1, t), with e ≥ 1, and t ≥ t1 ≥ 0, such that

(i) m = ea+ t, and;

(ii) For some soluble subgroup N of S, N has 2e+t1 orbits, with
(e
k

)
2t1 of them of length 3pk × 2t−t1 ,

for each k, 0 ≤ k ≤ e.

Proof. Let G be a minimally transitive subgroup of S. Then G is insoluble, so Corollary 3.11 applies,

and the result follows.

4 Generating submodules of induced modules for finite groups

The purpose of this paper is to study upper bounds for the function d on the class of finite transitive

permutation groups. As can be seen from Section 1, this essentially amounts to deriving upper bounds

on d(G) for subgroups G of wreath products R ≀S. Our main strategy for doing this will be to reduce
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modulo the base group B of R ≀ S and use induction to bound d(G/G ∩ B). In this way, all that

remains is to investigate the contribution of G ∩ B to d(G): The purpose of this section is to carry

out such an investigation.

As we will show in Lemma 5.8, the group G ∩ B is built, as a normal subgroup of G, from

submodules of induced modules for G, and nonabelian chief factors of G. Thus, the main aim of the

section will be to derive upper bounds for generator numbers in submodules of induced modules. The

strategy to do this will be to first view soluble groups as certain partially ordered sets: We prove

some properties of these partially ordered sets in Section 4.1. Our main results are Theorem 4.13 and

Theorem 4.24, which are proved in Sections 4.3.1 and 4.3.2 respectively. We remark that Theorem

4.13 improves [7, Theorem 1.5], while Theorem 4.24 improves [28, Lemma 4].

4.1 Partially ordered sets

Let P = (P,4) be a finite partially ordered set, and let w(P ) denote the width of P . That is, w(P ) is

the maximum cardinality of an antichain in P . Suppose now that, with respect to 4, P is a cartesian

product of chains, and write P = P1 × P2 × . . .× Pt, where each Pi is a chain of cardinality ki. Then

P is poset-isomorphic to the set of divisors of the positive integer m = pk1−1
1 pk2−1

2 . . . pkt−1
t , where p1,

p2, . . ., pt are distinct primes. We make this identification without further comment.

Next, recall that each divisor d of m can be written uniquely in the form d = pr11 pr22 . . . prtt , where

0 ≤ ri ≤ ki − 1, for each i, 1 ≤ i ≤ t. In this case, the rank of d is defined as r(d) =
∑t

i=1 ri. For

0 ≤ k ≤ K :=
∑t

i=1(ki−1), let Rk denote the set of elements of P of rank k; clearly Rk is an antichain

in P . In fact, it is proved in [14] that w(P ) = max |Rk|. This maximal rank set occurs at k = ⌊K/2⌋,
and hence, by [2, Theorem 2], we have

w(P ) ≤
⌊

s

2K

(
K

⌊K/2⌋

)⌋

where s := |P | = ∏t
i=1 ki (note that equality holds when t is even and each ki is 2, so this upper

bound is best possible). Stated more concisely, we have

Lemma 4.1. Suppose that a partially ordered set P , of cardinality s ≥ 2, is a cartesian product of

the chains P1, P2, . . ., Pt, where each Pi has cardinality ki. Then

w(P ) ≤
⌊

s

2K

(
K

⌊K/2⌋

)⌋
,

where K :=
∑t

i=1(ki − 1).

We now define a constant b,

b :=

√
2

π
.

Proposition 4.2. Let K be a positive integer. Then

(
K

⌊K/2⌋

)
≤ b2K√

K
. (4.1)
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Proof. 1 First consider the case where K = 2t (t ∈ N), and note that

2t

[(
2t

t

)
1

4t

]2
=

1

2

(
3

2

3

4

)(
5

4

5

6

)
. . .

(
2t− 1

2t− 2

2t− 1

2t

)
=

1

2

t∏

j=2

(
1 +

1

4j(j − 1)

)

By Wallis’ Formula, the expression in the middle converges to 2/π. Hence, since the expression on

the right is increasing, we have 2t
[(2t

t

)
1
4t

]2 ≤ 2/π, that is,
(2t
t

)
≤ b4t/

√
2t, as claimed. If K is odd,

we have
(

K
⌊K/2⌋

)
= 1

2

(
K+1

⌊(K+1)/2⌋
)
, and the bound in (4.2) follows from the even case above.

Proof of Theorem 1.3. By Lemma 4.1 and Proposition 4.2, we have

w(P ) ≤ s

2K

(
K

⌊K/2⌋

)
≤ s

2K

(
b2K√
K

)
=

bs√
K

If each ki = p, then K = t(p−1), and the second part of the claim follows. Since K =
∑t

i=1(ki−1) ≥
∑t

i=1 log ki = log s, the first part also follows, and the proof is complete.

4.2 Preliminary results on induced modules for finite groups

4.2.1 Composition factors in induced modules

Let F be a field, let G be a finite group, and let V be a module for G over F. Let

0 = N0 < N1 < . . . < Na = V

be a G-composition series for V , and say that a factor Ni/Ni−1 is complemented if there exists a

submodule Si of V containing Ni−1 such that V/Ni−1 = Ni/Ni−1 ⊕ Si/Ni−1. Also, for an irreducible

F[G]-module W , write tW (V ) for the number of complemented composition factors of V isomorphic

to W .

Now, fix an irreducible F[G]-module W with tW (V ) ≥ 1. Then there exists a submodule M of V

with the property that V/M is G-isomorphic to W : Define RW (V ) to be the intersection of all such

M . In particular, RW (V ) contains the radical Rad(V ) of V .

Lemma 4.3. V/RW (V ) ∼= W⊕tW (V ).

Proof. Let t := tW (V ), and write R := RW (V ) = M1 ∩M2 ∩ . . . ∩Me, where V/Mi is isomorphic to

W . Then

V/R ≤ (V/M1)⊕ (V/M2)⊕ . . .⊕ (V/Me)

and hence V/R is a direct sum of k copies of W , where k ≤ e. Since tW (V ) = tW (V/R), we have

t = k, and this completes the proof.

Lemma 4.4. Suppose that V = U ↑GH , for a subgroup H of G and an H-module U , and suppose that

W is a 1-dimensional F[G]-module. Then tW (V ) ≤ dimU .

1The idea for this bound arose from a discussion at the url
http://math.stackexchange.com/questions/58560/elementary-central-binomial-coefficient-estimates.
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Proof. Let R = RW (V ) and t = tW (V ). Writing bars to denote reduction modulo R, we have

V = N1 ⊕N2 ⊕ . . .⊕Nt

where each Ni is isomorphic to W . In particular, if we write

V/Rad(V ) =
∑

X an irreducible F[G]-module

XfX(V ),

then we have t ≤ fW (V ). Moreover, since dimW = 1, we have

fW (V ) = dimHomF[G](V,W ) = dimHomF[H](U,W ↓H) = fW↓H (U) ≤ dimU

where the second equality above follows from Frobenius Reciprosity (see [4, Proposition 3.3.1]). This

completes the proof.

We will need an easy consequence of Lemma 4.4. To state it, we first require two definitions and

a remark.

Definition 4.5. Let G be a non-trivial finite group, and F a field. A projective representation of G

of dimension m over F is a homomorphism ρ : G → PGLm(F). Define

RF(G) := min {m : G has a non-trivial representation of dimension m over F} ; and

RF(G) := min {m : G has a non-trivial projective representation of dimension m over F} .

Also define

R(G) := min
{
RF(G) : F a field

}

Definition 4.6. Let G be a finite group, let F be a field, and let V be an F[G]-module. Define dG(V )

to be the minimal number of elements required to generate V as an F[G]-module.

Remark 4.7. Let G, F and V be as in Definition 4.6, and let t be the number of complemented

G-composition factors of V . We claim that dG(V ) ≤ t. Note first that t is precisely the number of

irreducible constituents of V/Rad(V ). In particular, it follows that dG(V/Rad(V )) ≤ t: let v1, . . .,

vt ∈ V such that V/Rad(V ) is generated, as a G-module, by {Rad(V ) + v1, . . . ,Rad(V ) + vt}. Let

M be the G-submodule of V generated by {v1, . . . , vt}. Then V = M + Rad(V ). Since Rad(V ) is

contained in every maximal submodule of V , it follows that V = M , and hence dG(V ) ≤ t, as claimed.

The corollary of Lemma 4.4 can now be stated as follows.

Corollary 4.8. Let G be a finite group, let H be a subgroup of G, and let U be an H-module, over a

field F. Let V := U ↑GH . Then

dG(V ) ≤ dimU |G : H| − dimU

RF(G)
+ dimU.
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Proof. Write t for the number of complemented G-composition factors of V which are not isomorphic

to the trivial G-module 1G. By Remark 4.7, we have

dG(V ) ≤ t1G(V ) + t.

Since dimV = dimU |G : H|, we have

t ≤ dimU |G : H| − dimU

RF(G)
.

The result now follows immediately from Lemma 4.4.

4.2.2 Induced modules for Frattini extensions of nonabelian simple groups

In this subsection, we make some observations on modules for Frattini extensions of nonabelian simple

groups. That is, modules for groups G with G/Φ(G) a non-abelian simple group.

The main result of this section reads as follows.

Proposition 4.9. Let G be a finite group with a normal subgroup N ≤ Φ(G) such that G/N ∼= T ,

where T is a non-abelian finite simple group. Also, let W be a nontrivial irreducible G-module, over

an arbitrary field F. Then

(i) Each proper normal subgroup of G is contained in N . In particular, N = Φ(G).

(ii) KerG(W ), the kernel of the action of G on W , is contained in N .

(iii) n := dimW ≥ R(T ).

Proof. Part (i) follows since N ≤ Φ(G) and G/N is simple. Part (ii) now follows from Part (i) since

W is non-trivial.

We will now prove (iii). By (ii), we may assume that G is faithful on W . In particular, we may

view G as a subgroup of GLn(F). Let L be a normal subgroup of G, and assume that W ↓L is non-

homogeneous. If K is the kernel of the action of G on the homogeneous components of W ↓L, then
K is a proper normal subgroup of G, so K ≤ N by Part (i). Thus, HN < G for some stabiliser H of

a homogeneous component. Hence, |G : H| ≥ |G : HN | = |G/N : HN/N | ≥ RF(T ), since any proper

subgroup E of T gives rise to a nontrivial permutation representation for T of dimension |T : E| over
F (a non-trivial projective representation of dimension |T : E| is then achieved by reducing modulo

scalars). Thus, the number of homogeneous components is at least RF(T ), and the result follows.

So we may assume that W ↓L is homogeneous for each normal subgroup L of G. Hence, by

Lemma 2.13, we may assume that Z(G) is cyclic and that each abelian characteristic subgroup of G

is contained in Z(GLn(F)).

Let L be the generalised Fitting subgroup of G, and extend the field F so that F is a splitting field

for each subgroup of L, and so that the resulting field extension is normal (see Remark 2.15).

We distinguish two cases.

1. L is soluble. In this case, since L > Z(G), Or(G) must be non-central, for some prime r, and

Or(G)CG(Or(G)) ≥ L. Also, since Or(G) is non-central, we have Or(G), CG(Or(G)) ≤ N by
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Part (i). Thus, since N ≤ Φ(G) ≤ L, it follows that N = L = Or(G)CG(Or(G)). Hence, by [29,

Lemma 1.7], there exists a positive integer m such that

(1) Or(G) is a central product of its intersection with Z := Z(G) and an extraspecial group E

of order r1+2m;

(2) Z(E) coincides with the subgroup of Z of order r (recall that Z is cyclic);

(3) EZ/Z is a completely reducible Fr[G]-module under conjugation; and

(4) CG/Z(EZ/Z) = Or(G)CG(Or(G))/Z.

It follows from (4) that T ∼= G/N = G/Or(G)CG(Or(G)) is a non-trivial completely reducible

subgroup of GL2m(r). It then follows that

RFr(T ) ≤ 2m. (4.2)

Next, by Lemma 2.14, W ↓E is completely reducible and its irreducible constituents are non-

trivial. Let U be such a constituent. Since F is a splitting field for E, U is absolutely irreducible.

Hence, dimU ≥ rm, by [18, Theorem 5.5]. Thus, by (4.2), we have

R(T ) ≤ RFr(T ) ≤ 2m ≤ rm ≤ dimU ≤ dimW,

which gives us what we need.

2. L is insoluble. By [19, Lemma 2.14], L contains a normal subgroup X of G of the form X =

S1 ◦ . . . ◦ St, where each Si is isomorphic to a quasisimple group S. But since N ≤ Φ(G), N is

nilpotent. Also, G/N is simple, so we must have G = X and G is quasisimple. In particular,

N = Z ≤ Z(GLn(F)). Hence, T ∼= G/Z ≤ PGLn(F) and dimW ≥ RF(T ) ≥ R(T ), as required.

This completes the proof.

4.3 Induced modules for finite groups

We begin with some terminology.

Definition 4.10. Let M be a group, acted on by another group G. A G-subgroup of M is a subgroup

of M which is stabilised by G. We say that M is generated as a G-group by X ⊂ M , and write

M = 〈X〉G, if no proper G-subgroup of M contains X. We will write dG(M) for the cardinality of

the smallest subset X of M satisfying 〈X〉G = M . Finally, write M∗ := M\{1}.

Note that the definition of dG(M) is consistent with the notation introduced in Definition 4.6 in

the case where M is a G-module.

Definition 4.11. Let G be a group, acting on a set Ω. Write χ(G,Ω) for the number of orbits of G

on Ω.

The purpose of this section is to derive upper bounds for dG(M) when M is a submodule of

an induced module for G. To this end, we introduce some notation which will be retained for the

remainder of the section:
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• Let G be a finite group.

• Fix a subgroup H of G of index s ≥ 2.

• Fix a subgroup H1 of H of index d ≥ 1.

• Let U be a module for H1 of dimension a, over a field F.

• Let K := coreG(H), and fix a subgroup K ′ of K.

• Set V := U ↑HH1
and W := V ↑GH to be the induced modules. Note also that V ↑GH∼= U ↑GH1

.

• Denote the set of right cosets of H in G [respectively H1 in H] by Ω [resp. Ω1].

• Define

m := m(K ′) = min{χ(QΩ1 ,Ω1) : Q ≤ K ′ and QV is semisimple}.

We do not exclude the case d = 1, that is, H = H1.

4.3.1 Induced modules: The soluble case

This section is essentially an analogue of [7, Section 5]. We first recall the constant b,

b :=

√
2

π
.

We also recall, from Section 1, the following definition.

Definition 4.12. For a positive integer s with prime factorisation s = pr11 pr22 . . . prtt , set ω(s) :=
∑

ri,

ω1(s) :=
∑

ripi, K(s) := ω1(s)− ω(s) =
∑

ri(pi − 1) and

ω̃(s) =
s

2K(s)

(
K(s)⌊
K(s)
2

⌋
)
.

The main result of this section reads as follows.

Theorem 4.13. Suppose that GΩ contains a soluble transitive subgroup, and let M be a submodule

of W . Also, denote by χ = χ(K,V ∗) the number of orbits of K on the non-zero elements of V . Then

dG(M) ≤ min

{
ad− am

RF(K ′)
+ am,χ

}
ω̃(s) ≤ min

{
ad− am

RF(K ′)
+ am,χ

}⌊
bs√
log s

⌋

where b :=
√

2/π. Furthermore, if s = pt, with p prime, then

dG(M) ≤ min

{
ad− am

RF(K ′)
+ am,χ

}⌊
bpt√

t(p− 1)

⌋
.

Remark 4.14. If K has infinitely many orbits on the non-zero elements of V , then we assume, in

Theorem 4.13, and whenever it is used in the remainder of the paper, that

min

{
ad− am

RF(K ′)
+ am,χ

}
=

ad− am

RF(K ′)
+ am.
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We begin our work towards the proof of Theorem 4.13 by first collecting a series of lemmas from

[7, Section 5].

Lemma 4.15 ([7], Lemma 5.1). Suppose that GΩ contains a soluble transitive subgroup. Then there

is a right transversal T to H in G, with a partial order 4 and a full order 6, satisfying the following

properties:

(i) Whenever t1, t2, t3 ∈ T with t1 < t2 4 t3, we have t4 < t3, where t4 is the unique element of T
such that t1t

−1
2 t3 ∈ Ht4.

(ii) With respect to this partial order, T is a cartesian product of k chains, of length p1, p2, . . ., pk,

where k = ω(s), and p1, p2, . . ., pk denote the (not necessarily distinct) prime divisors of s.

Proof. Let F be a subgroup of G such that FΩ is soluble and transitive. By [7, Lemma 5.1], there

exists a right transversal T for F ∩H in F such that the image T Ω has a partial order 4′ and a full

order 6′ satisfying

(a) Whenever t1, t2, t3 ∈ T with t1
Ω<′t2Ω4′t3Ω, we have t4

Ω<′t3Ω, where t4 is the unique element of

T such that (t1t
−1
2 t3)

Ω ∈ (F ∩H)Ωt4
Ω.

(b) With respect to this partial order, T Ω is a cartesian product of k chains, of length p1, p2, . . ., pk,

where k = ω(|F : F ∩ H|) = ω(|G : H|) = ω(s), and p1, p2, . . ., pk denote the (not necessarily

distinct) prime divisors of s.

For t1, t2 ∈ T , say now that t1 4 t2 if t1
Ω4′t2Ω, and t1 6 t2 if t1

Ω6′t2Ω. Since FΩ acts transitively

on the set of cosets of H in G, T is a right transversal for H in G. By definition, (a) and (b) above

imply that (i) and (ii) hold for this choice of 4 and 6. This gives us what we need.

For the remainder of Section 4.3 assume that GΩ contains a soluble transitive subgroup, and fix

T to be a right transversal for H in G as exhibited in Lemma 4.15. Then we may write the induced

module W = V ↑GH as W =
⊕

t∈T V ⊗ t, where the action of G is given by

(v ⊗ t)ht
′

= vh1 ⊗ t1,

where tht′ = h1t1, h, h1 ∈ H, t, t′, t1 ∈ T . Thus, each element w in W may be written as

w =
∑

t∈T v(w, t) ⊗ t, with uniquely determined coefficients v(w, t) in V .

Definition 4.16 ([7], Section 5). Let w ∈ W be non-zero. The height of w, written τ(w), is the

largest element of the set {t ∈ T : v(w, t) 6= 0}, with respect to the full order 6. Also, we define

µ(w) := v(w, τ(w)). Thus, µ(w) is non-zero, and v(w, t) = 0 whenever t > τ(w). The element

µ(w)⊗ τ(w) is called the leading summand of w.

Remark 4.17. In the language of Definition 4.16, Lemma 4.15 Part (i) states that if the height of

w is t2, and if t2 4 t3, then the height of wt−1
2 t3 is t3. Further, the leading summand of wt−1

2 t3 is

µ(w)⊗ t3.

The formulation in Remark 4.17 leads to an important technical point.
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Proposition 4.18. Let M be a submodule of W . Then M has a generating set X with the following

property: No subset Y of X, whose image τ(Y ) in T is a chain with respect to the partial order 4,

can have more than

min

{
ad− am

RF(K ′)
+ am,χ

}

elements, where χ = χ(K,V ∗) denotes the number of orbits of K on the nonzero elements of V .

Before proving Proposition 4.18, we need a preliminary lemma.

Lemma 4.19. A K ′-composition series for V contains at most am factors isomorphic to the trivial

module.

Proof. Let Q ≤ K ′ such that QV is semisimple and χ(QΩ1 ,Ω1) = m. By Mackey’s Theorem,

V ↓Q=
(
U ↑HH1

)
↓Q∼=

m⊕

i=1

Uxi
, (4.3)

where Uxi
:= (U ⊗xi) ↑QQ∩Hxi

1

, dimUxi
= dimU = a, for each i, and

∑
j |Q : Q∩Hxi

1 | = |H : H1| = d.

Since QV is semisimple, the number of Q-composition factors of Uxi
= (U ⊗xi) ↑QQ∩Hxi

1

isomorphic to

the trivial module 1Q is precisely

dimHomF[Q]((U ⊗ xi) ↑QQ∩Hxi
1

, 1Q) = dimHom
F[Q∩Hxi

1 ]((U ⊗ xi), 1Q∩Hxi
1
),

applying Frobenius Reciprosity. This is at most dim(U ⊗ xi) = dimU = a. The result now follows

immediately from (4.3.1).

Proof of Proposition 4.18. Set e := ad−am
RF(K ′)+am, and let X be a finite generating set for M , consisting

of non-zero elements. Suppose that Y := {w0, w1, . . . , we} is a subset of X whose image under τ forms

a chain in T : Say τ(w0) 4 τ(w1) 4 . . . 4 τ(we).

Consider now the vectors µ(w0), µ(w1), . . ., µ(we): For 1 ≤ i ≤ e+1 let Wi denote the K
′-module

generated by µ(w0), . . ., µ(wi−1), and consider the series of K ′-modules

0 =: W0 ≤ W1 ≤ . . . ≤ We+1 (4.4)

Suppose thatWi < Wi+1 for all i. Then the series (4.4) can be extended to give aK ′-composition series

for V . Thus, Lemma 4.19 implies that at most am of the factors Wi+1/Wi are trivial. Furthermore,

the rest have dimension at least RF(K
′). It follows that dimWe+1 =

∑e+1
i=1 dimWi/Wi−1 ≥ am+(e+

1− am)RF(K
′) > ad, which is a contradiction, since dimV = ad.

Thus, we must have µ(wi) ∈ Wi for some i. In this case,

µ(wi) =

i−1∑

j=0

∑

k∈K ′

λj,kµ(wj)
k,

for some scalars λj,k. Moreover, the element

x :=
i−1∑

j=0

∑

k∈K ′

λj,kw
kτ(wj )τ(wj)−1τ(wi)
j
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of M has the same leading summand as wi, by Lemma 4.15 Part (i) (see also Remark 4.17). Hence,

either x = wi and wi may be removed from X, or wi may be replaced in X by the element wi − x,

which has height strictly preceding wi in the full order 6. In this way, the resulting (modified) set X

still generates M . This procedure can only be carried out a finite number of times, and when it can

no longer be repeated, the (modified) generating set can have no more than e elements.

If χ ≥ e, then we are done, so assume that χ < e. Let v and w be elements of X whose images

τ(v) and τ(w) are comparable (with respect to 4) in T : Say τ(v) 4 τ(w). Suppose that µ(w) and

µ(v) lie in the same K-orbit of V , and let g ∈ K such that µ(w)g = µ(v). Since K is normal in

G, the leading summand of wg is µ(v) ⊗ τ(w). Thus, by replacing w with wg, we may assume that

µ(v) = µ(w). Then, using Lemma 4.15 Part (i) again, we see that vτ(v)
−1τ(w) has the same leading

summand as w. Write vτ(v)
−1τ(w) = x+ µ(v)⊗ τ(w), and w = y + µ(v)⊗ τ(w), for x, y ∈ V , and let

u = y − x. Then, we see that, as in the proof of [7, Lemma 5.2], either u = 0, and w = vτ(v)
−1τ(w)

may be omitted from X, or u 6= 0, and w = u + vτ(v)
−1τ(w) may be replaced in X by the element

u, which has height strictly preceding τ(w) in the full order 6. This way, the resulting set obtained

from X still generates M . The procedure outlined above can only be carried out a finite number of

times, and when it can no longer be repeated, the (modified) generating set can contain no more than

χ elements. This completes the proof.

Before proving Theorem 4.13, we note the following easy consequence of Dilworth’s Theorem ([15,

Theorem 1.1]):

Lemma 4.20. If a partially ordered set P has no chain of cardinality greater than k, and no antichain

of cardinality greater than l, then P cannot have cardinality greater than kl.

Proof of Theorem 4.13. Let T be a right transversal for H in G with full and partial orders 6 and 4,

as in Lemma 4.15. Now define a partial order on the elements of W as follows: First, for each t ∈ T ,

choose a full order on the elements of W of height t. Now, for w1 and w2 in W , say that w1 < w2 if

τ(w1) is less than τ(w2) in (T ,4), or if τ(w1) = τ(w2) but w1 precedes w2 in the full order chosen for

elements of height τ(w1).

Then τ : W → T is a poset homomorphism which takes incomparable elements to incomparable

elements, so no antichain of its domain can have cardinality greater than ω̃(s), by Lemmas 4.1 and

4.15 Part (ii). Let X be a generating set for M with the properties guaranteed by Proposition 4.18.

Then no chain in X can have more than min{ad−am
RF(K ′) + am,χ} elements. Lemma 4.20 then implies

that

|X| ≤ min

{
ad− am

RF(K ′)
+ am,χ

}
ω̃(s) ≤ min

{
ad− am

RF(K ′)
+ am,χ

}⌊
bs√
log s

⌋
,

where the second inequality follows from Theorem 1.3. If s = pt for p prime, then

|X| ≤ min

{
ad− am

RF(K ′)
+ am,χ

}⌊
bpt√

t(p− 1)

⌋
,

again by Lemma 4.20 and Theorem 1.3. This completes the proof.
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4.3.2 Induced modules for finite groups: The general case

In this section, we prove a weaker form of Theorem 4.13 for general finite groups (i.e. those G for which

GΩ does not necessarily contain a soluble transitive subgroup). We retain the notation introduced at

the beginning of Section 4.3.

We begin with a definition. Recall the definitions of ω̃(s), sp, and lpp (s) from Definitions 1.4 and

1.5.

Definition 4.21. For a prime p, set

E(s, p) := min





 bs√
(p− 1) logp sp

 ,
s

lpp (s/sp)



 and Esol(s, p) := min {ω̃(s), sp}

where we take
⌊
bs/

√
(p− 1) logp sp

⌋
to be ∞ if sp = 1.

Proposition 4.22. Let p be prime. Then Esol(s, p) ≤ E(s, p).

Proof. By Theorem 1.3 we have ω̃(s) ≤
⌊

bs√
(p−1) logp sp

⌋
. Also, it is clear that sp ≤ s

lpp (s/sp)
. The

result follows.

Remark 4.23. For any finite group G and any G-module M , dG(M) is bounded above by χ(G,M∗).

For the remainder of this section, we will make a further assumption: that the field F has charac-

teristic p > 0. We are now ready to state and prove the main result of this section.

Theorem 4.24. For a prime q 6= p, let Pq be a Sylow q-subgroup of G. Also, let P ′ be a maximal

p′-subgroup of G. Let M be a submodule of the induced module W = V ↑GH .

(i) If G is soluble, then

dG(M) ≤ min

{
ad− aχ(P ′ ∩K,Ω1)

RF(P ′ ∩K)
+ aχ(P ′ ∩K,Ω1), χ(P

′ ∩K,V ∗)

}
sp.

(ii) Let N be a subgroup of G such that NΩ is soluble, and let si, 1 ≤ i ≤ t, be the sizes of the orbits

of N on Ω. Then

(a) We have

dG(M) ≤min

{
ad− aχ(N ∩ P ′ ∩K,Ω1)

RF(N ∩ P ′ ∩K)
+ aχ(N ∩ P ′ ∩K,Ω1),

χ(N ∩ P ′ ∩K,V ∗)

}
×

t∑

i=1

ω̃(si).

(b) If N is soluble, and P ′
N is a p-complement in N , then

dG(M) ≤min

{
ad− aχ(P ′

N ∩K,Ω1)

RF(P ′
N ∩K)

+ aχ(P ′
N ∩K,Ω1),

χ(P ′
N ∩K,V ∗)

}
×

t∑

i=1

Esol(si, p).
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(iii) dG(M) ≤ min
{

ad−aχ(Pq∩K,Ω1)
RF(Pq∩K) + aχ(Pq ∩K,Ω1), χ(Pq ∩K,V ∗)

}
s/sq.

(iv) Assume that sp > 1. Then

dG(M) ≤ min

{
ad− am

RF(K ′)
+ am,χ(K,V ∗)

}⌊
bs√
log sp

⌋
.

Proof. The proof is based on the idea of Lucchini et al. used in the proof of [28, Lemma 4]. Let Q be

a subgroup of G, and choose a full set {x1, x2, . . . , xt} of representatives for the (H,Q)-double cosets

in G. Also, for 1 ≤ i ≤ t, put si := |Q : Q∩Hxi| (note that, by Hxi , we mean, as usual, the conjugate

subgroup x−1
i Hxi). By Mackey’s Theorem we have

W ↓Q= (V ↑GH) ↓Q=
t⊕

i=1

Vxi
(4.5)

where Vxi
∼= (V ⊗ xi) ↑QQ∩Hxi . Comparing dimensions of the left and right hand side of (4.5) above,

we get

ads = dimW =
t∑

i=1

ad|Q : Q ∩Hxi | = ad
t∑

i=1

si

so that
∑t

i=1 si = s. Clearly, the si represent the sizes of the orbits of Q on the right cosets of H in

G.

Next, for 1 ≤ i ≤ t, set Vi := Vx1 ⊕ Vx2 ⊕ . . . ⊕ Vxi
. Then, we have a chain 0 = V0 ≤ V1 ≤ . . . ≤

Vt = W of Q-submodules of W . This allows us to define the chain of Q-modules 0 = M0 ≤ M1 ≤
. . . ≤ Mt = M , where Mi := M ∩ Vi. Furthermore, in this case, the quotient Mi/Mi−1 is (isomorphic

to) a Q-submodule of Vxi
. Hence

dG(M) ≤ dQ(M) ≤
t∑

i=1

dQ(Mi/Mi−1). (4.6)

Note that V ⊗ xi is isomorphic to an induced module (U ⊗ xi) ↑H
xi

H
xi
1

. Hence, Mackey’s Theorem

implies that (V ⊗ xi) ↓Q∩K is isomorphic to a direct sum

(V ⊗ xi) ↓Q∩K∼=
⊕

j

Uxi,j
, (4.7)

where Uxi,j
∼= (U ⊗ xi,j) ↑Q∩K

Q∩K∩Hxi,j
1

is an induced module for Q ∩K, and
∑

j |Q ∩K : Q ∩K ∩H1
xi,j | = |Hxi : Hxi

1 | = d.
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Suppose that (|Q|, p) = 1. Then each Vxi
is a semisimple F[Q]-module, so

dQ(Mi/Mi−1) ≤ dQ(Vxi
)

≤ dQ∩Hxi (V ⊗ xi)

≤ dQ∩K(V ⊗ xi)

≤
∑

j

dQ∩K(Uxi,j
)

≤
∑

j

min

{
a|Q ∩K : Q ∩K ∩H

xi,j

1 | − a

RF(Q ∩K)
+ a, χ(Q ∩K,

[Uxi,j
]∗)

}

≤ min




∑

j

a|Q ∩K : Q ∩K ∩H
xi,j

1 | − a

RF(Q ∩K)
+ a,

∑

j

χ(Q ∩K,

[Uxi,j
)]∗)

}

= min

{
ad− aχ(Q ∩K,Ω1)

RF(Q ∩K)
+ aχ(Q ∩K,Ω1), χ(Q ∩K,V ∗)

}

The fourth inequality above follows from (4.7), while the fifth follows from Corollary 4.8 and Remark

4.23. Thus

dG(M) ≤ min

{
ad− aχ(Q ∩K,Ω1)

RF(Q ∩K)
+ aχ(Q ∩K,Ω1), χ(Q ∩K,V ∗)

}
t (4.8)

by (4.6).

Write sp := pβ and sq := qα. Also, write s = pβqαk and |H| = pδqγl, where |H|p = pδ, |H|q = qγ .

We are now ready to prove the theorem.

(i) Suppose that G is soluble, and take Q := P ′ to be a p-complement in G. Then |Q| = qα+γkl.

Hence, si = |Q : Q ∩Hxi | ≥ qαk = s/sp. Part (i) now follows from (4.8), since s =
∑t

i=1 si ≥
ts/sp.

(ii) Take Q := N . By Theorem 4.13, we have

dQ(Mi/Mi−1) ≤min

{
ad− aχ(Q ∩ P ′ ∩K,Ω1)

RF(Q ∩ P ′ ∩K)
+ aχ(Q ∩ P ′ ∩K,Ω1),

χ(Q ∩ P ′ ∩K,V ∗)

}
ω̃(si).

Part (a) of (ii) now follows from (4.6). Next, assume that N is soluble, with a p-complement

P ′
N . Then

dQ(Mi/Mi−1) ≤min

{
ad− aχ(Q ∩ P ′ ∩K,Ω1)

RF(Q ∩ P ′ ∩K)
+ aχ(Q ∩ P ′ ∩K,Ω1),

χ(Q ∩ P ′ ∩K,V ∗)

}
(si)p
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by Part (i). Also, P ′
N = N ∩P ′ for some maximal p′-subgroup P ′ of G, so Part (b) follows from

(4.6) by combining the above with Part (ii)(a).

(iii) In the general case, take Q := Pq. Then |Q| = qα+γ , so si = |Q : Q ∩ Hxi | ≥ qα. Also,

s =
∑t

i=1 si ≥ tqα = tsq. Part (iii) then follows from (4.8).

(iv) Here, we have β > 0 since sp > 0. Let P be a Sylow p-subgroup of G, and set Q = KP . Then

si = |Q : Q ∩ Hxi | = |QHxi |/|Hxi | ≥ |PHxi |/|Hxi | = |P : P ∩ Hxi | ≥ pβ, for each i. Since

K ≤ coreQ(Q ∩Hxi), we have χ(coreQ (Q ∩Hxi), (V ⊗ xi)
∗) ≤ χ(K,V ∗) =: χ for each i. Then

(4.6) and Theorem 4.13 give

dG(M) ≤
t∑

i=1

min

{
ad− am

RF(K ′)
+ am,χ

}⌊
bsi√
log si

⌋

≤
t∑

i=1

min

{
ad− am

RF(K ′)
+ am,χ

}⌊
bsi√
β

⌋

≤ min

{
ad− am

RF(K ′)
+ am,χ

}⌊
t∑

i=1

bsi√
β

⌋

= min

{
ad− am

RF(K ′)
+ am,χ

}⌊
bs√
β

⌋

This proves (iv).

Since ad−f
e + f ≤ ad for positive integers e and f , the following corollary is immediate.

Corollary 4.25. Let M be a submodule of W . Also, let q, Pq and P ′ be as in Theorem 4.24. Then

(i) If G is soluble, then dG(M) ≤ min {ad, χ(P ′ ∩K,V ∗)} sp.

(ii) Let N be a subgroup of G such that NΩ is soluble, and let si, 1 ≤ i ≤ t, be the sizes of the orbits

of N on Ω. Then

(a) We have dG(M) ≤ min {ad, χ(N ∩ P ′ ∩K,V ∗)}∑t
i=1 ω̃(si).

(b) If N is soluble, and P ′
N is a p-complement in N , then

dG(M) ≤ min
{
ad, χ(P ′

N ∩K,V ∗)
} t∑

i=1

Esol(si, p).

(iii) dG(M) ≤ min {ad, χ(Pq ∩K,V ∗)} s/sq.

(iv) dG(M) ≤ min {ad, χ(K,V ∗)}
⌊

bs√
log sp

⌋
.

We also record the following, which is an immediate consequence of Corollary 4.25. Note that

Theorem 1.6

Corollary 4.26. Define E′ to be Esol if GΩ contains a soluble transitive subgroup, and E′ := E

otherwise. Let M be a submodule of W . Then dG(M) ≤ adE′(s, p).
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Note that Theorem 1.6 follows from Corollary 4.26. Using the definition of E(s, p), and Lemma

2.17, we also deduce the following.

Corollary 4.27. Let M be a submodule of W , and fix 0 < α < 1.

(i) If sp ≥ sα, then dG(M) ≤ adE(s, p) ≤ ad

⌊
bs
√

1
α√

log s

⌋
;

(ii) If sp ≤ sα, then dG(M) ≤ adE(s, p) ≤ ad

⌊
1

1−α
s

c′ log s

⌋
;

(iii) We have

dG(M) ≤ adE(s, p) ≤





⌊
2ads
c′ log s

⌋
, if 2 ≤ s ≤ 1260,

⌊
adbs

√
2√

log s

⌋
, if s ≥ 1261.

Proof. Part (i) follows immediately from the definition of E(s, p), while Part (ii) follows from the

definition and Lemma 2.17. Finally, set α := 1/2. Then

2ads

c′ log s
≤ adbs

√
2√

log s

for s ≥ 1261, so Part (iii) also follows.

The following is also immediate, from Part (ii) of Theorem 4.24.

Corollary 4.28. Let M be a submodule of W . If G contains a soluble subgroup N , acting transitively

on Ω, then

dG(M) ≤min

{
ad− aχ(P ′

N ∩K,Ω1)

RF(P ′
N ∩K)

+ aχ(P ′
N ∩K,Ω1), χ(P

′
N ∩K,V ∗)

}

× E(s, p)

where P ′
N is a p-complement in N .

4.4 An application to induced modules for bottom heavy groups

The proofs of the main results of this paper will usually only require the bounds on dG(M) from

Corollary 4.25. For a specific case of the proof of Theorem 1.7 however, we will need the stronger

bounds provided by Theorem 4.24. This case is the ‘bottom heavy case’, which we will now define.

Throughout, we retain the notation introduced at the beginning of Section 4.3. In particular, H is a

subgroup of G of index of index s ≥ 2, H1 is a subgroup of H of index d ≥ 1, Ω is the set of right

cosets of H in G, Ω1 is the set of right cosets of H1 in H, and K := KerG(Ω). Note that we also

continue to assume that the field F has characteristic p > 0.

Definition 4.29. Assume that KΩ1 , viewed as a subgroup of Sym(d), contains Alt(d). Then we say

that the triple (G,H,H1) is bottom heavy.

Before stating the main result of this section, we introduce Vinogradov notation: we will write

A ≪ B
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to mean A = O(B). The main result can now be stated as follows.

Proposition 4.30. Assume that d ≥ 5 and that (G,H,H1) is bottom heavy. Let M be a submodule

of W . Then

(i) dG(M) ≤ 2as, and;

(ii) If sp > 1, then dG(M) ≪ as√
log sp

.

Before proving Proposition 4.30, we require the following:

Proposition 4.31. Assume that (G,H,H1) is bottom heavy and that d ≥ 5. Choose K ′ to be a

subgroup of K minimal with the property that K ′Ω1 ∼= Alt(d). Then a K ′-composition series for

V ↓K ′ has at most 2a factors isomorphic to the trivial K ′-module.

Proof. By the minimality of K ′, we have C := coreH(H1) ∩K ′ ≤ Φ(K ′), and hence C is soluble. Let

E be a subgroup of K ′ containing C such that E/C is soluble and, viewed as a subgroup of Sym(d),

has at most two orbits, such that each orbit is of p′-length (such a subgroup exists by Lemma 2.9).

Then E is soluble, so we may choose a p-complement F in E. Then F/F ∩ C also has at most two

orbits (and each F -orbit has p′-length).

Next, consider the F -module X := V ↓F∼= U ↑HH1
↓F . Since F ≤ K ′, it suffices to prove that X

has at most 2a trivial composition factors. To see this, note that since F has at most two orbits on

Ω1 (i.e. the cosets of H1 in H), represented by x1 and x2, say, Mackey’s Theorem yields

X ∼= X1 ⊕X2 or X ∼= X1

where Xi
∼= (U ⊗ xi) ↑FF∩Hxi

1

. Now, since F has p′-order, Xi is a semisimple F -module. Hence, the

number of trivial factors in an F -composition series for Xi is precisely the number of trivial summands

of Xi, which is

dimHomF[F ](Xi, 1F ),

where 1F denotes the trivial F -module. By Frobenius Reciprosity, this is equal to

dimHom
F[F∩Hxi

1 ](U ↓F∩Hxi
1
, 1F∩Hxi

1
) ≤ dimU = a.

The claim follows.

Proof of Proposition 4.30. Choose K ′ to be a subgroup of K minimal with the property that K ′Ω1 ∼=
Alt(d). Then

coreH(H1) ∩K ′ ≤ Φ(K ′). (4.9)

Hence, since

Alt(d) ∼= K ′Ω ∼= K ′/coreH(H1) ∩K ′,

Proposition 4.9 applies: RF(K
′) ≥ R(Alt(d)). Note also that m ≤ 2 by Lemma 2.9. Since d ≪

R(Alt(d)) (see [22, Proposition 5.3.7]), Part (ii) now follows from Theorem 4.24 Part (iv).
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We now prove (i). It follows from Lemma 2.9 that K ′ has a subgroup N such that NΩ1 is soluble

and has at most 2 orbits. Furthermore, each orbit has p′-length. Also, N is soluble, by (4.9).

We now want to apply Corollary 4.25 Part (ii)(b), with (G,H,H1, V,Ω) replaced by (H,H1,H1, U,Ω1)

(also, (a, s, d) is replaced by (a, d, 1)): let di, for i ≤ 2, denote the lengths of the NΩ1 orbits. Then

Esol(di, p) ≤ (di)p = 1,

so Esol(di, p) = 1. Hence for each H-submodule M ′ of the induced module V = U ↑HH1
, we have

dH(M ′) ≤ a
t∑

i=1

Esol(di, p) ≤ 2a.

Since M is a submodule of

U ↑GH1
∼= V ↑GH∼=

s∑

i=1

V ⊗ ti

where each V ⊗ ti is isomorphic, as an H-module, to V , the result now follows.

5 Minimal generation of transitive permutation groups

In this section, we restate and prove the first main result of this paper, which is stated as Theorem

1.1 in Section 1. The theorem follows in the primitive case from Theorem 2.11, so this section deals

predominantly with the case when G ≤ Sym(n) is imprimitive. In this case, G is a large subgroup

of a wreath product R ≀ S, where R is primitive of degree r ≥ 2, S is transitive of degree s ≥ 2, and

n = rs. Due to the nature of our bounds, the most difficult cases to deal with are when R = Sym(2)

or R = Sym(4), i.e. when G has a minimal block of cardinality either 2 or 4. (Essentially, this is

because Sym(2) and Sym(4) have large composition lengths relative to their degree.) We deal with

the Sym(4) case in Corollary 5.11; the idea being that we can use the transitive action of the Sylow

3-subgroup in Sym(4) on the non-identity elements of the Klein 4-group V E Sym(4) to reduce the

contribution of V to our bounds (this is the primary reason we include the invariant χ in our bounds

in Section 4).

However, no such option is available to us when R ∼= Sym(2), since Sym(2) is abelian. If G has

another minimal block, of cardinality larger than 2, then we can avoid the problem by using this block

instead. However, we cannot do this if all minimal blocks for G have cardinality 2, so assume that

this is the case. Then, as we will prove in Section 5.2 below, we have d(G) ≤ E(s, 2) + d(S). Now,

since we just need to bound d(S), we apply the same methods to the transitive group S ≤ Sym(s).

Apart from finitely many cases, our methods yield the upper bound we want: the only problems

occur when we “repeatedly get” blocks of cardinality 2. This is encapsulated in the following non-

standard definition.

Definition 5.1. Let G be a transitive permutation group, and let

X := (R1, R2, . . . , Rt)

33



be a tuple of primitive components for G, where each Ri has degree ri ≥ 2. Define

blX,2(G) := min {i : ri 6= 2} − 1, and

bl2(G) := min {blX,2(G) : X a tuple of primitive components for G} .

We call bl2(G) the 2-block number of G.

Alternatively, the 2-block number of a transitive permutation group G can be defined inductively

as follows: if G is primitive, or if G is imprimitive with a minimal block of cardinality greater than

2, then set bl2(G) := 0. Otherwise, G is imprimitive and all minimal blocks for G have cardinality 2.

Let ∆ be such a minimal block, and let Γ := {∆g : g ∈ G} be the set of G-translates of ∆. Also, let

K := KerG(Γ). Then define bl2(G) := 1 + bl2(G/K).

For example, a transitive 2-group G of degree 2k will have bl2(G) = k. In other words, any tuple

of primitive components for G will consist entirely of Sym(2)s. This is because for any prime p, any

minimal block of any transitive p-group has cardinality p.

Remark 5.2. If bl2(G) ≥ 1, then G has a block of size 2bl2(G), by Remark 2.4.

We can now restate Theorem 1.1 more precisely as follows.

Theorem 5.3. Let G be a transitive permutation group of degree n ≥ 2. Then

(1) d(G) ≤
⌊

cn√
logn

⌋
,where c := 1512660

√
log (21915)/(21915) = 0.920581 . . ..

(2) d(G) ≤
⌊

c1n√
logn

⌋
, where c1 :=

√
3/2 = 0.866025 . . ., unless each of the following conditions hold:

(i) n = 2kv, where v = 5 and 17 ≤ k ≤ 26, or v = 15 and 15 ≤ k ≤ 35;

(ii) G contains no soluble transitive subgroups; and

(iii) bl2(G) ≥ f , where f is specified in the middle column of Table A.2 (see Appendix A).

In these exceptional cases, the bounds for d(G) in Table A.2 hold.

Recall that by “log”, we always mean log to the base 2. The following is immediate from Theorem

5.3. Note also that Corollary 1.2 follows immediately from Theorem 5.3.

As can be seen from the proof of Theorem 5.3, and the statement of the theorem itself, the cases

when bl2(G) is large are the most difficult to deal with using our methods. We believe that the finite

number of exceptions given in Theorem 5.3 Part (2) are not exceptions at all, that is, we believe that

the bound d(G) ≤ ⌊c1n/
√
log n⌋ should hold for all n and all G.

Note also that, as shown in [21], the bounds in our results are of the right order. Moreover, the

infimum of the set of constants c satisfying d(G) ≤ cn/
√
log n, for all soluble transitive permutation

groups G of degree n ≥ 2, is the constant c1 in Theorem 5.3, since d(G) = 4 when n = 8 and

G ∼= D8 ◦ D8. We conjecture that the best “asymptotic” bound, that is, the best possible upper

bound when one is permitted to exclude finitely many cases, is d(G) ≤ ⌊c̃n/√log n⌋, where c̃ is some

constant satisfying b/2 ≤ c̃ < b =
√

2/π (see Example 6.10 for more details).

In Section 5.1 we discuss an application of the results of Section 4 to wreath products. We reserve

Section 5.2 for the proof of Theorem 5.3.
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5.1 An application of the results in Section 4 to wreath products

We first make the following easy observation.

Proposition 5.4. Let A = T1 × T2 × . . . × Tf , where each Ti is isomorphic to the nonabelian finite

simple group T . Suppose that M ≤ A is a subdirect product of A, and suppose that M ′ EM is also a

subdirect product of A. Then M ′ = M .

Proof. We prove the claim by induction on f , and the case f = 1 is trivial, so assume that f > 1.

Since M is subdirect, each M ∩ Ti is normal in Ti. If M = A, then since the only normal subgroups

of A are the groups
∏

i∈Y Ti, for Y ⊆ {1, . . . , f}, the result is clear. So assume that M ∩ Ti = 1 for

some i. Then M ′ ∩ Ti = 1, and M ′Ti/Ti and MTi/Ti are subdirect products of
∏

j 6=i Tj . It follows,

using the inductive hypothesis, that M ′Ti = MTi. Hence M ′ = M , since M ∩ Ti = 1, and the proof

is complete.

We also need the following result of Lucchini and Menegazzo.

Theorem 5.5 ([25] and [27]). Let L be a proper minimal normal subgroup of the finite group G.

Then d(G) ≤ d(G/L) + 1. Furthermore, if L is the unique minimal normal subgroup of G, then

d(G) ≤ max {2, d(G/L)}.

We will now fix some notation which will be retained for the remainder of the section.

• Let R be a finite group (we do not exclude the case R = 1).

• Let S be a transitive permutation group of degree s ≥ 2.

• Let G be a large subgroup of the wreath product R ≀ S (see Definition 2.3).

• Write B := R(1) ×R(2) × . . .×R(s) for the base group of R ≀ S.

• write π : G → S for the projection homomorphism onto the top group.

• Let H := NG(R(1)) = π−1(StabS(1)).

• Let Ω := H\G.

• Let K := G ∩B = coreG(H) = KerG(Ω).

Recall that for a subgroup N of R, BN
∼= N s denotes the direct product of the distinct S-conjugates

of N . In particular, if N E R, then BN E R ≀ S. Throughout, we will view R as a subgroup of B by

identifying R with R(1). We also note that

• |G : H| = s; and

• S = GΩ.

In particular, the notation is consistent with the notation introduced at the beginning of Section 4.3.

Remark 5.6. The results in this section will be obtained by applying the results in Section 4 with

H = H1 and d = 1 (see the notation introduced at the beginning of Section 4.3).
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Remark 5.7. If R is a transitive permutation group, acting on a set ∆, then G is an imprimitive

permutation group acting on the set ∆×{1, 2, . . . , s}, and H = StabG((∆, 1)). Furthermore H∆ = R,

since G is large (see Remark 2.7).

Our strategy for proving Theorem 5.3 can now be summarised as follows:

Step 1: Show that K is “built” from induced modules for G, and non-abelian G-chief factors.

Step 2: Derive bounds on d(G) in terms of the factors from Step 1 and d(S).

Step 3: Use Theorem 5.5, together with the results from Section 4, to bound the contributions from

the factors in Step 1 to the bound from Step 2.

Step 4: Use induction to bound d(S).

We begin with Step 1.

Lemma 5.8. Suppose that R > 1 and that 1 := N0 ≤ N1 ≤ . . . ≤ Ne = R is a normal series for

R, where each factor is either elementary abelian, or a nonabelian chief factor of R. Consider the

corresponding normal series 1 := G∩BN0 ≤ G∩BN1 ≤ . . . ≤ G∩BNe = G for G. Let Vi := Ni/Ni−1

and Mi := G ∩BNi
/G ∩BNi−1 .

(i) If Vi is elementary abelian, then Mi is a submodule of the induced module Vi ↑GH .

(ii) If Vi is a nonabelian chief factor of R, then Mi is either trivial, or a nonabelian chief factor of

G.

Proof. Assume first that Vi is elementary abelian, of order pa say. Then BNi
/BNi−1 is a module for

G of dimension as = a|G : H| over the finite field of order p. Furthermore, BNi
/BNi−1 is generated,

as a G-module, by the H-module Vi. It now follows from [1, Corollary 3, Page 56] that BNi
/BNi−1 is

isomorphic to the induced module Vi ↑GH . This proves (i).

Next, suppose that Vi is a nonabelian chief factor of R. Write bars to denote reduction modulo

BNi−1 . Then G is a large subgroup of the wreath product R ≀ S, and Ni is a nonabelian minimal

normal subgroup of R. So we just need to prove that G∩BNi
is either trivial or a nonabelian minimal

normal subgroup of G. To this end, consider the projection maps

ρj : NG(R(j)) → R(j)

defined in (2.1.1). Suppose that M is a normal subgroup of G contained in G ∩ BNi
. Then M ≤

NG(R(1)), and hence ρ1(M) is a normal subgroup of ρ1(NG(R(1))) = R(1) contained in the minimal

normal subgroup of R(1) corresponding to Ni. If ρ1(M) = 1 then ρj(M) = 1 for all j, since π(G) = S

is transitive. Hence, in this case, we have M = 1. Otherwise, ρ1(M) ∼= Ni, and M is a subdirect

product of s copies of Ni. In this case, since a minimal normal subgroup of a finite group is a direct

product of simple groups, we must have M = G ∩ BNi
by Proposition 5.4. Thus, if G ∩ BNi

is

non-trivial, then G ∩BNi
is a nonabelian minimal normal subgroup of G, as required.
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For the remainder of this section, suppose that 1 := N0 ≤ N1 ≤ . . . ≤ Ne = R is a chief series for

R, and let Vi := Ni/Ni−1 and Mi := G∩BNi
/G∩BNi−1 . If Vi is abelian we will also write |Vi| = paii ,

for pi prime.

We now have Step 2.

Corollary 5.9. We have

d(G) ≤
∑

Vi abelian

dG(Mi) + cnonab(R) + d(S)

Proof. We will prove the corollary by induction on |R|. If |R| = 1 then the bound is trivial, since

G ∼= S in that case, so assume that |R| > 1, and note that

G/M1 is a large subgroup of (R/V1) ≀ S. (5.1)

Suppose first that V1 is abelian. Then M1 is a G-module, so

d(G) ≤ dG(M1) + d(G/M1).

Since cnonab(R) = cnonab(R/V1), (5.1) and the inductive hypothesis give the result.

So we may assume that V1 is nonabelian. Then M1 is either trivial or a minimal normal subgroup

of G, by Lemma 5.8 Part (ii). Hence, d(G) ≤ d(G/M1) + 1 by Theorem 5.5. The result now follows,

again from (5.1) and the inductive hypothesis.

Before stating our next corollary, we refer the reader to Definition 4.21 for a reminder of the

definitions of the functions E and Esol. The next two corollaries deal with Step 3.

Corollary 5.10. Define E′ to be Esol if S contains a soluble transitive subgroup, and E′ := E

otherwise. Then

(i) d(G) ≤
∑

Vi abelian
aiE

′(s, pi) + cnonab(R) + d(S).

(ii) Suppose that |R| = 2 and s = 2mq, where q is odd, and that S has a tuple of primitive components

X = (R2, . . . , Rt), where blX,2(S) ≥ 1. Let Γ be a full set of blocks for S of size 2blX,2(S), and

set S̃ := SΓ. Then

d(G) ≤
blX,2(S)∑

i=0

E′(2m−iq, 2) + d(S̃).

(iii) Suppose that |R| = 2 and s = 2m3, and that S contains no soluble transitive subgroups. Then by

Corollary 3.12 there exists a Mersenne prime p1 = 2a − 1 and a triple of integers (e, t1, t), with

e ≥ 1, and t ≥ t1 ≥ 0, such that

(1) m = ea+ t, and;

(2) There exists a subgroup N of G, such that NΩ is soluble and has 2e+t1 orbits, with
(e
k

)
2t1 of

them of length 3pk1 × 2t−t1 , for each 0 ≤ k ≤ e.
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Here, we have

d(G) ≤
e∑

k=0

2t−t1

(
e

k

)
Esol(3p

k
12

t1 , 2) + d(S).

Proof. By Corollary 5.9, we have

d(G) ≤
∑

Vi abelian

dG(Mi) + cnonab(R) + d(S).

Now, by Corollary 4.26, dG(Mi) ≤ aiE
′(s, pi). This proves (i).

To prove (iii) first note that, by Corollary 3.12, and as mentioned in the statement of (iii), there

exists a Mersenne prime p1 := 2a − 1, and a triple (e, t1, t), with e ≥ 1, and t ≥ t1 ≥ 0, such that

(i) m = ea+ t, and;

(ii) There exists a subgroup N of G, such that NΩ is soluble and has 2e+t1 orbits, with
(e
k

)
2t1 of

them of length 3pk1 × 2t−t1 , for each 0 ≤ k ≤ e.

Note that, since |R| = 2, the base group K ≤ Rs of G is soluble. Hence, since NΩ ∼= N/N ∩ K is

soluble, it follows that N itself is also soluble. Corollary 4.25 Part (ii)(b) (with ad = 1) then implies

that

dG(M1) ≤
e∑

k=0

2t1
(
e

k

)
Esol(3p

k
12

t−t1 , 2)

Since |R| = 2, we have d(G) ≤ dG(M1) + d(S), and the result follows.

Finally, we prove Part (ii). We will show that

d(S) ≤
blX,2(S)∑

i=1

E(2m−iq, 2) + d(S̃) (5.2)

by induction on blX,2(S). The result will then follow, since d(G) ≤ E′(2mq, 2) + d(S) by Part (i).

Now, by hypothesis, S has a tuple of primitive components X = (R2, . . . , Rt). Also, |R2| = 2 since

blX,2(S) ≥ 1. Hence, by Theorem 2.5, S is a large subgroup of a wreath product R2 ≀S2, where either

S2 = 1, or S2 is a transitive permutation group of degree 2m−1q, with a tuple Y := (R3, . . . , Rt) of

primitive components. If S2 = 1 then the result follows, since s = 4 and S̃ = 1 in that case. So

assume that S2 > 1. By Part (i), we have

d(S) ≤ E′(2m−1q, 2) + d(S2) (5.3)

If blX,2(S) = 1 then S2 = S̃ and (5.2) follows from (5.3). So assume that blX,2(S) > 1. Then

blY,2(S2) = blX,2(S)−1 ≥ 1. The inductive hypothesis then yields d(S2) ≤
∑blY,2(S2)

i=1 E(2m−1−iq, 2)+

d(S̃) =
∑blX,2(S)

i=2 E(2m−iq, 2) + d(S̃). The bound (5.2) now follows immediately from (5.3), which

completes the proof.

The next corollary will be key in our proof of Theorem 5.3 when G is imprimitive with minimal

block size 4.

38



Corollary 5.11. Assume that R = S4 or R = A4. Define E′ to be Esol if S contains a soluble

transitive subgroup, and E′ := E otherwise. Then

d(G) ≤ E′(s, 2) + min

{
bs√
log s2

,
s

s3

}
+ E′(s, 3) + d(S).

Proof. Let ∆ := {1, 2, 3, 4}, so that R is transitive on ∆. We have V1
∼= 22, V2

∼= 3, and V3
∼= 2 if

R ∼= S4. Since K
∆ is a normal subgroup of H∆ = R (see Remark 5.7), K∆ is isomorphic to either 22,

A4, or S4. In the first two cases M3 is trivial, so

d(G) ≤ dG(M1) + dG(M2) + d(S) ≤ 2E′(s, 2) + E′(s, 3) + d(S)

by Corollaries 5.9 and 4.26. So assume that K∆ ∼= S4. Then a Sylow 3-subgroup P3 of K∆ acts

transitively on the non-identity elements of V1. Thus, χ(P3 ∩K,V ∗
1 ) = 1, so

dG(M1) ≤ min

{
bs√
log s2

,
s

s3

}

by Corollary 4.25 Parts (iii) and (iv), with (p, q) := (2, 3). The result follows.

5.2 The proof of Theorem 5.3

In this section, we prove Theorem 5.3. First, we deal with Step 4: the inductive step. As mentioned

at the beginning of Section 5, the cases where bl2(G) is large are the most difficult to deal with using

our methods. In these cases, we have d(G) ≤ E(s, 2) + d(S) and usually the bounds on d(S) which

come from the inductive hypothesis then suffice to prove the theorem. However in some small cases

the inductive hypothesis does not suffice, and we have to work harder. These cases, of which there are

finitely many, are the subject of Appendix A, and include both the exceptional cases from Theorem

5.3 (Table A.2), and some additional cases which have a large 2-part (Table A.1). The purpose of

Lemma 5.12 is to prove that the bounds in Appendix A hold.

Throughout this section, we retain the same notation as introduced immediately following Theorem

5.5, with one additional assumption: that R is a primitive permutation group of degree r ≥ 2. Hence,

G is a transitive permutation group of degree n := rs, and Remark 5.7 applies. Also, set E′ to be

Esol if S contains a soluble transitive subgroup, and E′ := E otherwise.

Recall also that paii denote the orders of the abelian chief factors of R, for pi prime.

Lemma 5.12. Assume that Theorem 5.3 holds for degrees less than n. Then

(i) The bounds in Table A.1 (see Appendix A) hold, and;

(ii) If n and f are as in Table A.2, and either

(a) G contains a soluble transitive subgroup; or

(b) bl2 (G) < f ,

then d(G) ≤ ⌊c1n/
√
log n⌋, where c1 =

√
3
2 .

(iii) If n and f are as in Table A.2, and
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(a) G contains no soluble transitive subgroup; and

(b) bl2 (G) ≥ f ,

then, the bounds in Table A.2 (Appendix A) hold.

Proof. We first recall some bounds which will be used throughout the proof. We have

d(G) ≤ s⌊log r⌋+ d(S), if r ≥ 4; and (5.4)

d(G) ≤
∑

i

aiE
′(s, pi) + cnonab(R) + d(S). (5.5)

These bounds follow from Corollary 2.12 and Corollary 5.10 Part (i) respectively.

To bound d(S) above, we use the database of transitive groups of degree up to 32 in MAGMA

([10]) if 2 ≤ s ≤ 32; otherwise, we use either the previous rows of Tables A.1 and A.2; or the bound

d(S) ≤ ⌊c1s/
√
log s⌋ (from the hypothesis of the lemma) if s is not in Tables A.1 or A.2.

We will first prove (i) and (ii).

(i) and (ii) The values of n occurring in Table A.1 are n = 2m for 6 ≤ m ≤ 11; n = 2m+13 for

3 ≤ m ≤ 19; n = 2m5 for 3 ≤ m ≤ 16; and n = 2m15 for 2 ≤ m ≤ 14. We distinguish a number

of cases. Recall that n = rs. Throughout, we define E′′ := Esol if s is of the form s = 2m,

and E′′ := E otherwise. (Note that a transitive group of prime power degree always contains a

soluble transitive subgroup.)

1. r > 16. Then d(G) ≤ s⌊log r⌋ + d(S) by (5.4). Combining this with the bounds on d(S)

described above gives the required for each n in Table A.1, and each possible pair (r, s)

with r > 16 and n = rs, except when (n, r, s) = (3145728, 24, 131072). However, each

primitive group of degree 24 is either simple, or has a simple normal subgroup of index 2

(using the MAGMA [5] database). Hence, in this case, (5.5), together with the hypothesis

of the lemma, gives d(G) ≤ E(s, 2) + 1 + ⌊c1s/
√
log s⌋ = 52895. This gives us what we

need.

2. r = 2. We distinguish two sub-cases.

(a) S contains a soluble transitive subgroup. Then d(G) ≤ Esol(s, 2) + d(S) by (5.5), and

this, together with the bounds on d(S) described above gives the bounds in Table A.1

in each of the relevant cases.

(b) S contains no soluble transitive subgroups. Then s is not of the form s = 2m. We

distinguish each of the relevant cases.

i s = 2m3, for some 3 ≤ m ≤ 19. By using the MAGMA database [5], we see

that each transitive permutation group of degree 24 contains a soluble transitive

subgroup, so we must have s = 2m3 ≥ 48. In particular, 4 ≤ m ≤ 19. By Corollary

5.10 Part (iii) there exists a Mersenne prime p1 = 2a − 1 and a triple of integers

(e, t1, t), with e ≥ 1, and t ≥ t1 ≥ 0, such that m = ea+ t, and

d(G) ≤
e∑

k=0

2t−t1

(
e

k

)
Esol(3p

k
12

t1 , 2) + d(S). (5.6)
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Since 4 ≤ m ≤ 19, the possibilities for n and the triple (a, e, t) are as follows:

Table 5.1

n (a, e, t)

48 (3, 1, 1)

96 (3, 1, 2), (5, 1, 0)

192 (3, 1, 3), (3, 2, 0), (5, 1, 1)

384 (3, 1, 4), (3, 2, 1), (5, 1, 2), (7, 1, 0)

768 (3, 1, 5), (3, 2, 2), (5, 1, 3), (7, 1, 1)

1536 (3, 1, 6), (3, 2, 3), (3, 3, 0), (5, 1, 4), (7, 1, 2)

3072 (3, 1, 7), (3, 2, 4), (3, 3, 1), (5, 1, 5), (7, 1, 3), (5, 2, 0)

6144 (3, 1, 8), (3, 2, 5), (3, 3, 2), (5, 1, 6), (7, 1, 4), (5, 2, 1)

12288 (3, 1, 9), (3, 2, 6), (3, 3, 3), (3, 4, 0), (5, 1, 7), (7, 1, 5), (5, 2, 2)

Table 5.1 ctd.

n (a, e, t)

24576 (3, 1, 10), (3, 2, 7),

(3, 3, 4), (3, 4, 1),

(5, 1, 8), (7, 1, 6),

(13, 1, 0), (5, 2, 3)

49152 (3, 1, 11), (3, 2, 8),

(3, 3, 5), (3, 4, 2),

(5, 1, 9), (7, 1, 7),

(13, 1, 1), (5, 2, 4),

(7, 2, 0)

98304 (3, 1, 12), (3, 2, 9),

(3, 3, 6), (3, 4, 3),

(3, 5, 0), (5, 1, 10),

(7, 1, 8), (13, 1, 2),

(5, 2, 5), (7, 2, 1), (5, 3, 0)

196608 (3, 1, 13), (3, 2, 10),

(3, 3, 7), (3, 4, 4),

(3, 5, 1), (5, 1, 11),

(7, 1, 9), (13, 1, 3),

(5, 2, 6), (7, 2, 2), (5, 3, 1)

Table 5.1 ctd.

n (a, e, t)

393216 (3, 1, 14), (3, 2, 11),

(3, 3, 8), (3, 4, 5),

(3, 5, 2), (5, 1, 12),

(7, 1, 10), (13, 1, 4),

(17, 1, 0), (5, 2, 7),

(7, 2, 3), (5, 3, 2)

786432 (3, 1, 15), (3, 2, 12),

(3, 3, 9), (3, 4, 6),

(3, 5, 3), (3, 6, 0),

(5, 1, 13), (7, 1, 11),

(13, 1, 5), (17, 1, 1),

(5, 2, 8), (7, 2, 4), (5, 3, 3)

1572864 (3, 1, 16), (3, 2, 13),

(3, 3, 10), (3, 4, 7),

(3, 5, 4), (3, 6, 1),

(5, 1, 14), (7, 1, 12),

(13, 1, 6), (17, 1, 2),

(19, 1, 0), (5, 2, 9),

(7, 2, 5), (5, 3, 4)

Going through each of the relevant values of n in the first column of Table A.1,

each triple (a, e, t) in the last column of Table 5.1, and each possible value of t1 ≤ t,

with n/2 = 2ea+t3, the required bound follows from (5.6) each time.

ii s = 2m5, for some 2 ≤ m ≤ 15; or s = 2m15 for some 1 ≤ m ≤ 14. Then the

bound d(G) ≤ E(s, 2) + d(S), together with the bounds on d(S) described above,

give the bounds in Table A.1 in each case.
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3. r = 3. Here, d(G) ≤ E′′(s, 3) + E′′(s, 2) + d(S), and the bounds from Table A.1 follow in

each case from applying the usual upper bounds on d(S).

4. r = 4. Then

d(G) ≤ E′′(s, 2) + min

{
bs√
log s2

,
s

s3

}
+ E′′(s, 3) + d(S) (5.7)

by Corollary 5.11. Combining this with the bounds on d(S) described above again gives

the bound from the second column of Table A.1 for each of the values of n in the first

column, as required.

5. r = 5. The possible lists of chief factors of the primitive group R of degree 5 can be

obtained from the MAGMA database [5]. In particular, applying (5.5) yields

d(G) ≤ 2E′′(s, 2) + E′′(s, 5) + d(S).

Again, combining this with the bounds on d(S) described above yields the required bound

from Table A.1 in each case.

6. r = 6. Again, we take the possible lists of chief factors of the primitive group R of degree

6 from the MAGMA database [5], and apply (5.5). We get

d(G) ≤ E′′(s, 2) + 1 + d(S).

Combining this with the bounds on d(S) described above yields the required bound from

Table A.1 in each of the relevant cases.

7. r = 8. After obtaining the possible chief factors of R from the MAGMA database, we

again apply (5.5) and get

d(G) ≤ 3E′′(s, 2) + E′′(s, 3) +E′′(s, 7) + d(S).

Using the above with the bounds on d(S) described previously gives the required bound

from Table A.1 in each case.

8. 10 ≤ r ≤ 16. In each case, we use the same approach as in the previous case, so to avoid

being too repetitive we will just check the r = 16 case. Again we can take the possible lists

of chief factors of the primitive groups R of degree 16 from the MAGMA database, and

apply (5.5). We get

d(G) ≤ 7E′′(s, 2) + E′′(s, 3) + max{E′′(s, 3), E′′(s, 5)} + d(S).

As before, combining this with the usual bounds for d(S) gives the bounds in Table A.1 in

each case.

(iii) We now consider the bounds in Table A.2., i.e. the exceptional cases from Theorem 5.3. Thus,

either n = 2m5 and 17 ≤ m ≤ 26, or n = 2m15 and 15 ≤ m ≤ 35. Note that 0 ≤ bl2(G) ≤ m.
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If bl2(G) = 0 then (5.4) for r > 16, and (5.5) for 2 < r ≤ 16, as in our proofs in (i) and (ii)

above yields the required bounds in each case.

So assume that bl2(G) ≥ 1. Then

d(G) ≤
bl2(G)∑

i=1

E(2m−i5, 2) + d(S̃) (5.8)

where S̃ is transitive of degree 2m−bl2(G)v, by Corollary 5.10 Part (ii).

Now, fix a transitive permutation group G of degree n where n is one of the values from the

first column of Table A.2. Suppose first that bl2(G) ≤ f , where f is the corresponding value to

n in the second column of Table A.2. To bound d(S̃) above, we use the database of transitive

permutation groups of degree up to 32 in MAGMA (see [10]) if 2 ≤ 2m−bl2(G)v ≤ 32; otherwise,

we use the previous rows of Tables A.1 and A.2. Combining these bounds for d(S̃) with (5.8)

yields d(G) ≤ ⌊c1n/
√
log n⌋ in each case, as required.

If G contains a soluble transitive subgroup, then the bound at (5.8) with E replaced by Esol

holds, and yields d(G) ≤ ⌊c1n/
√
log n⌋ in each case, as needed.

So we may assume that bl2(G) > f , and that G contains so soluble transitive subgroups. In

particular, the bound at (5.8) again holds. If S̃ is primitive of degree 2m−bl2(G)v, then the bound

d(S̃) ≤ ⌊log (2m−bl2(G)v)⌋ of Theorem 2.11 gives us the required bound in Table A.2 in each case.

So assume that S̃ is imprimitive, with minimal block size r̃ > 2. Also, write s̃ := 2m−fGv/r̃.

With (r, s) replaced by (r̃, s̃), we can now apply (5.4) if r̃ > 16, and (5.5) for 2 < r ≤ 16, as

in cases (i) and (ii) above. (Note that d(S̃) is bounded above using the database of transitive

permutation groups of degree up to 32 in MAGMA (see [10]) if 2 ≤ s̃ ≤ 32). This gives us

the required bound in Table A.2 in each case. (We perform these calculations for each possible

value of fG, and each pair (r̃, s̃) with r̃ > 2 and 2m−fGv = r̃s̃.) This completes the proof.

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. The proof is by induction on n. Suppose first that G is primitive. The result

clearly holds when n ≤ 3. When n ≥ 4, we have log n ≤ c1n/
√
log n, so the result follows immediately

from Theorem 2.11. This can serve as the initial step.

The inductive step concerns imprimitive G. For this, we now use the notation introduced im-

mediately following Theorem 5.5. Write Vi for the abelian chief factors of R, and write |Vi| = paii .

Recall that a(R) denotes the composition length of R. In particular, a(R) ≥ ∑
i ai + cnonab(R). The
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inductive hypothesis, together with the bounds obtained in Corollaries 4.27 and 2.12, give

d(G) ≤
⌊
2a(R)s

c′ log s

⌋
+

⌊
c1s√
log s

⌋
(if 2 ≤ s ≤ 1260) (5.9)

d(G) ≤
⌊
a(R)b

√
2s√

log s

⌋
+

⌊
cs√
log s

⌋
(if s ≥ 1261) (5.10)

d(G) ≤
⌊
a(R) 2

c′ s√
log s

⌋
+

⌊
cs√
log s

⌋
(for all s ≥ 2) (5.11)

d(G) ≤ s⌊log r⌋+
⌊

cs√
log s

⌋
(for r ≥ 4, s ≥ 2) (5.12)

respectively. Note that (5.9) and (5.10) follow from Corollaries 4.27 and 5.10 Part (i), and together

imply (5.11), while (5.12) follows from Corollary 2.12. Recall that we need to prove that d(G) ≤
c1rs/

√
log rs for all cases apart from those listed in Theorem 5.3 Part (2).

Suppose first that r ≥ 481. Then (5.11), together with Theorem 2.10, gives

d(G) ≤ ([(2 + c0) log r − (1/3) log 24] 2c′ + c)s√
log s

.

This is less than c1rs/
√
log rs for r ≥ 481 and s ≥ 2, which gives us what we need.

So we may assume that 2 ≤ r ≤ 480. Suppose first that 10 ≤ r ≤ 480, and consider the function

f(e, z, w) =
(eb

√
2 + c)

√
z + w

2z
√
w

defined on triples of positive real numbers. Clearly when the pair (e, z) is fixed, f becomes a decreasing

function of w. We distinguish two sub-cases:

(a) s ≥ 1261. For each of the cases 10 ≤ r ≤ 480, we compute the maximum value aprim(r) of

the composition lengths of the primitive groups of degree r, using MAGMA. Each time, we get

f(aprim(r), log r, log s) ≤ f(aprim(r), log r, log 1261)

< c1, and the result then follows, in each case, from (5.10).

(b) 2 ≤ s ≤ 1260. For each fixed r, 10 ≤ r ≤ 480, and each s, 2 ≤ s ≤ 1260, we explicitly

compute min {⌊2aprim(r)s/(c′ log s)⌋, s⌊log r⌋} + ⌊c1s/
√
log s⌋. Each time, except when r = 16

and 72 ≤ s ≤ 1260, this integer is less than or equal to ⌊c1rs/
√
log rs⌋, which, after appealing

to the inequalities at (5.9) and (5.12), gives us what we need. If r = 16, and 72 ≤ s ≤ 1260,

we have d(G) ≤ 7E(s, 2) + 2E(s, 3) + ⌊c1s/
√
log s⌋, by Corollary 5.10 Part (i), and this gives the

required bound in each case (the chief factors of the primitive groups of degree 16 are computed

using MAGMA - see Table B.2).

Finally, we deal with the cases 2 ≤ r ≤ 9. In considering each of the relevant cases, we take the

possible lists of chief factors of R from the MAGMA database. In each case, we bound d(S) above

by using the database of transitive permutation groups of degree up to 32 in MAGMA (see [10]) if

2 ≤ s ≤ 32, Lemma 5.12 if s is in the left hand column of Table A.1 or Table A.2, or the inductive

hypothesis otherwise.
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(a) r = 2. Corollary 5.10 Part (i) gives d(G) ≤ E(s, 2) + d(S). Write s = 2mq, where q is odd,

and assume first that s < 1066. Assume first that lpp(q) ≥ 19. Then d(G) ≤ s/19 + d(S), and

the bounds on d(S) described above, yield d(G) ≤ 2c1s/
√
log 2s for s < 1066. So assume further

that lpp(q) ≤ 17. Then q is of the form q = 3l35l57l711l1113l1317l17 , where 0 ≤ l3 ≤ 2, and

0 ≤ li ≤ 1, for i = 5, 7, 11, 13 and 17. Fix one such q. Then 0 ≤ m ≤ m(q) := ⌊log (1066/q)⌋,
and d(G) ≤ E(2mq, 2) + d(S). Now, by using the upper bounds on d(S) described above, we get

d(G) ≤ 2c1s/
√
log 2s, for each of the 96 possible values of q, and each 0 ≤ m ≤ m(q). This gives

us what we need.

Thus, we may assume that s ≥ 1066. We distinguish two sub-cases.

(i) s2 ≥ s858/1000. Then E(s, 2) ≤ bs/
√
log s2 ≤ bs

√
1000/858/

√
log s. Hence, d(G) ≤

bs
√

1000/858/
√
log s+c1s/

√
log s, and this is less than or equal to 2c1s/

√
log 2s for s ≥ 1066,

as required.

(ii) s/s2 ≥ s142/1000. Then, by Lemma 2.17, we have

E(s, 2) ≤ s/(c′ log (s/s2)) ≤ (1000/142)s/c′ log s,

and hence d(G) ≤ (1000/142)s/(c′ log s) + c1s/
√
log s. Again, this is less than or equal to

2c1s/
√
log 2s, for s ≥ 1066.

(b) r = 3. Here, Corollary 5.10 Part (i) gives d(G) ≤ E(s, 3) + E(s, 2) + d(S). Using the bounds for

d(S) described above, this gives us what we need whenever 2 ≤ s ≤ 5577, and whenever S is one

of the exceptional cases listed in Theorem 5.3 Part (2) )in these cases, we take the bounds for

d(S) from Table A.2). Otherwise, s ≥ 5578, and we use Corollary 4.27 to distinguish two cases,

with α = 1/3.

(i) s2, s3 ≤ s1/3. Then d(G) ≤ 3s/(c′ log s) + c1s/
√
log s, and this is less than or equal to

3c1s/
√
log 3s for s ≥ 3824.

(ii) s2 ≥ s1/3, or s3 ≥ s1/3. Then lpp (s/s3) ≥ s1/3 or lpp (s/s2) ≥ s1/3, so d(G) ≤ b
√
3s/

√
log s+

s2/3 + c1s/
√
log s, and this is at most 3c1s/

√
log 3s, for s ≥ 5578.

(c) r = 4. Here Corollary 5.11 implies that

d(G) ≤ E(s, 2) + min

{
bs√
log s2

,
s

s3

}
+ E(s, 3) + d(S). (5.13)

Using the bounds on d(S) described above, this yields the required upper bound whenever S is

one of the exceptional cases of Theorem 5.3 Part (2), and whenever 7 ≤ s ≤ 49435925. When

2 ≤ s ≤ 6, G is transitive of degree 4s, and the result follows by using Table B.1. So assume that

s ≥ 115063, and that s is not one of those cases listed in Theorem 5.3 Part (2). We distinguish

three cases.

(i) s2, s3 ≤ s21/50. Then d(G) ≤ (200/29)s/(c′ log s) + c1s/
√
log s by Corollary 4.27 (with

alpha = 21/50), and this is less than or equal to 4c1s/
√
log 4s for s ≥ 49435925, as needed.
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(ii) s2 ≥ s21/50. Then E(s, 2) ≤
√

50/21bs/
√
log s, and E(s, 3) ≤ s/ lpp (s/s3) ≤ s/s2 ≤

s29/50. Hence, d(G) ≤ 2
√

50/21bs/
√
log s + s29/50 + c1s/

√
log s by (5.13). This is at most

4c1s/
√
log 4s, for s ≥ 28090868.

(iii) s3 ≥ s21/50. Then d(G) ≤
√

50/21bs/
√
log s+2s29/50 + c1s/

√
log s using a similar argument

to (ii) above. This is less than or equal to 4c1s/
√
log 4s, for s ≥ 56. This completes the

proof of the theorem in the case r = 4.

(d) r = 5. Corollary 5.10 Part (i) gives d(G) ≤ E(s, 5) + 2E(s, 2) + d(S). Again, this gives us what

we need for each s in the range 3 ≤ s ≤ 552, and each exceptional S. Also, s = 2 implies that

G is transitive of degree 10, and the result follows from Table B.1. Thus, we may assume that

s ≥ 553. Applying Corollary 4.27, with α = 2/5, yields three cases.

(i) s2, s5 ≤ s2/5. Then d(G) ≤ 5s/(c′ log s) + c1s/
√
log s, which is less than or equal to

5c1s/
√
log 5s for s ≥ 553, as required.

(ii) s2 ≥ s2/5. Then d(G) ≤ 2b
√

5/2s/
√
log s + s3/5 + c1s/

√
log s, and this is no greater than

5c1s/
√
log 5s when s ≥ 139.

(iii) s5 ≥ s2/5. Then d(G) ≤ b
√

5/2s/
√
log s+ 2s3/5 + c1s/

√
log s, which is less than or equal to

5c1s/
√
log 5s for s ≥ 17.

(e) r = 6. Here, Corollary 5.10 Part (i), together with the inductive hypothesis, gives d(G) ≤
E(s, 2)+1+d(S). Using the usual bounds on d(S), this is at most ⌊6cs/√log 6s⌋ for 2 ≤ s ≤ 1260,

and whenever S is one of the exceptional cases. Otherwise, s ≥ 1261, and d(S) ≤ c1s/
√
log s.

Hence, by Corollary 4.27 Part (iii), d(G) ≤ b
√
2s/

√
log s + 1 + c1s/

√
log s, which is less than or

equal to 6c1s/
√
log 6s for s ≥ 2. This completes the proof of the theorem in the case r = 6.

(f) r = 7. Here, d(G) ≤ E(s, 2) + E(s, 3) + E(s, 7) + d(S), again using Corollary 5.10 Part (i).

Bounding d(S) as described previously, this is at most ⌊7c1s/
√
log 7s⌋ for each s in the range

2 ≤ s ≤ 1260, and each exceptional S. Otherwise, s ≥ 1261, and by Corollary 4.27 Part (iii)

d(G) ≤ 3b
√
2s/

√
log s+ c1s/

√
log s. This is less than 7c1s/

√
log 7s for s ≥ 7, and, again, we have

what we need.

(g) r = 8. Using Corollary 5.10 Part (i), d(G) ≤ 3E(s, 2) + E(s, 3) + E(s, 7) + d(S). In each of

the cases 2 ≤ s ≤ 272, and each exceptional case, this bound, together with the bounds on d(S)

described above, give us what we need. Thus, we may assume that s ≥ 273. Then the inductive

hypothesis gives d(S) ≤ c1s/
√
log s, and applying Corollary 4.27, with α = 37/100, yields three

cases.

(i) max {s2, s3, s7} ≤ s37/100. Then d(G) ≤ (500/63)s/(c′ log s) + c1s/
√
log s, which is less than

or equal to 8c1s/
√
log 8s for s ≥ 273, as required.

(ii) s2 ≥ s37/100. Then d(G) ≤ 3b
√

100/37s/
√
log s+2s63/100+c1s/

√
log s, and this is no greater

than 8c1s/
√
log 8s when s ≥ 98.

(iii) max {s3, s7} ≥ s37/100. Then d(G) ≤ 2b
√

100/37s/
√
log s + 3s63/100 + c1s/

√
log s, which is

less than or equal to 8c1s/
√
log 8s for s ≥ 27.
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(h) r = 9. By Corollary 5.10 Part (i), d(G) ≤ 4E(s, 2) + 3E(s, 3) + d(S). When 3 ≤ s ≤ 2335, and

when S is one of the exceptional cases, this bound, together with the usual bounds on d(S), give

us what we need. If s = 2, then G is transitive of degree 18, and the result follows from Table

A.1. Otherwise, s ≥ 2336, and d(S) ≤ c1s/
√
log s, using the inductive hypothesis. We now use

Corollary 4.27 to distinguish three cases, with α = 37/100.

(i) s2, s3 ≤ s37/100. Then d(G) ≤ (700/63)s/(c′ log s) + c1s/
√
log s, and this is less than or

equal to 9c1s/
√
log 9s for s ≥ 2336, as needed.

(ii) s2 ≥ s37/100. Then d(G) ≤ 4b
√

100/37s/
√
log s + 3s63/100 + c1s/

√
log s, which is no larger

than 9cs/
√
log 9s, whenever s ≥ 1197.

(iii) s3 ≥ s37/100. Here, d(G) ≤ 3b
√

100/37s/
√
log s+4s63/100 + c1s/

√
log s, and this is less than

or equal to 9c1s/
√
log 9s for s ≥ 148.

This completes the proof of Theorem 5.3.

6 The proof of Theorem 1.7

In proving Theorem 1.7, we will omit reference to the constant C, and just use the Vinogradov

notation defined immediately after Definition 4.29. We will now restate some results from Sections 2,

3 and 4 in this language for the convenience of the reader.

We begin with Theorems 2.10 and 1.1.

Theorem 6.1. Let R be a primitive permutation group of degree r. Then a(R) ≪ log r.

Theorem 6.2. Let S be a transitive permutation group of degree s ≥ 2. Then d(S) ≪ s/
√
log s.

We also note the following useful consequence of Corollaries 5.9 and 4.27, and Theorem 6.2.

Corollary 6.3. Let R be a finite group, let S be a transitive permutation group of degree s ≥ 2, and

let G be a large subgroup of the wreath product R ≀ S. Then

d(G) ≪ a(R)s√
log s

.

Theorem 2.11 reads as follows in Vinogradov notation.

Theorem 6.4 ([19], Theorem 1.1). Let H be a subnormal subgroup of a primitive permutation

group of degree r. Then d(H) ≪ log r.

Finally, we will need the following theorem of Cameron, Solomon and Turull; note that we only

give a simplified version of their result here.

Theorem 6.5 ([9], Theorem 1). Let G be a permutation group of degree n ≥ 2. Then a(G) ≪ n.
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6.1 Orders of transitive permutation groups

We now turn to bounds on the order of a transitive permutation group G, of degree n. First, we

fix some notation which will be retained for the remainder of the section. Let G be a transitive

permutation group of degree n, and let (R1, . . . , Rt) be a tuple of primitive components for G, where

each Ri is primitive of degree ri, and
∏

i ri = n. Furthermore, we will write π1 for the identity map

G → G, and for i ≥ 2, we will write πi to denote the projection πi : Gπi−1 ≤ Ri−1 ≀(Ri ≀Ri+1 ≀. . .≀Rt) →
Ri ≀ Ri+1 ≀ . . . ≀ Rt.

The following is a simplified version of a theorem of C. Praeger and J. Saxl [33] (which was later

improved by A. Maróti in [30]).

Theorem 6.6 ([33], Main Theorem). Let G be a primitive permutation group of degree r, not

containing Alt(r). Then log |G| ≪ r.

Since the symmetric and alternating groups are 2-generated, the next corollary follows immediately

from Theorems 6.4 and 6.6.

Corollary 6.7. Let G be a subnormal subgroup of a primitive permutation group of degree r. Then

d(G) log |G| ≪ r log r.

6.2 The proof of Theorem 1.7

Before proceeding to the proof of Theorem 1.7, we require an application of the results in Section 5.1.

First, we need a preliminary lemma.

Lemma 6.8. Let R and S be transitive permutation groups of degree r ≥ 2 and s ≥ 1 respectively, let

D be a subgroup of Sym(d) containing Alt(d), let P be a large subgroup of the wreath product D ≀ S,
and let G be a large subgroup of R ≀P . Also, write Ui for the abelian chief factors of R. Suppose that

d ≥ 5. Then

(i) There exists a large subgroup Q of the wreath product R ≀D, and an embedding θ : G → Q ≀ S,
such that Gθ is a large subgroup of Q ≀ S.

(ii) Let H := NQ(R(1)). Then Q has a normal series

1 = N0 ≤ N1 ≤ . . . < Nt < Nt+1 ≤ Nt+2 = Q,

where for each abelian Ui with i ≤ t, Ni/Ni−1 is contained in the Q-module Ui ↑QH ; and for each

non-abelian Ui with i ≤ t, Ni/Ni−1 is either trivial or a non-abelian chief factor of Q. Also,

Nt+1/Nt
∼= Alt(d), and |Nt+2/Nt+1| ≤ 2.

Proof. Note first that G is an imprimitive permutation group of degree rds, with a block ∆1 of size

r, by Remark 2.4. Now, by Remark 2.7, G is also a subgroup of the wreath product X := (R ≀D) ≀ S.
Hence, G also has a block of size rd, again using Remark 2.4. Let ∆ be a block of size rd containing

∆1. Let H1 := StabG(∆1) and H := StabG(∆) = NQ(R(1)). Then H1 ≤ H, and ∆1 is a block for

H∆ of size r, with block stabiliser H∆
1 . Let Γ1 be the set of H-translates of ∆1, and let Γ be the

set of G-translates of ∆. Then G is a large subgroup of H∆ ≀ GΓ, while H∆ is a large subgroup of
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H∆1
1 ≀HΓ1 , by Theorem 2.5. By Definition 2.3, H∆1

1
∼= R. Thus, to complete the proof of Part (i) we

just need to show that HΓ1 ∼= D and GΓ ∼= S (we then take Q = H∆).

First, let π : G ≤ R ≀ P → P denote projection over the top group. Note that Hπ ≤ P is a

permutation group of degree ds, stabilising a block of size d. Furthermore, since Ker(π) = coreG(H1) ≤
H1 ≤ H, we have s = |G : H| = |Gπ : Hπ|. Thus, Hπ is the full (set-wise) stabiliser of a block for P

of size d. It follows that HΓ1 ∼= D, since P is large in D ≀ S.
Since Ker(π) = KerG(∆

G
1 ) ≤ KerG(Γ), we have GΓ ∼= π(G)Γ = PΓ = S, as needed. Finally, since

Q is a large subgroup of R ≀D, and D ∼= Alt(d) or D ∼= Sym(d), Part (ii) follows from Lemma 5.8.

The mentioned application can now be given as follows.

Proposition 6.9. Let R be a finite group, let S be a transitive permutation group of degree s ≥ 2, let

D be a subgroup of Sym(d) containing Alt(d), let P be a large subgroup of the wreath product D ≀ S,
and let G be a large subgroup of R ≀ P . Also, let K1 be the kernel of the action of P ≤ D ≀ S on a

set of blocks of size d, and let A be the induced action of K1 on a fixed block ∆ for P . Assume that

A 6= 1, that d ≥ 5, and set g(d, s) := max{1, d√
log s

}. Then

(i) d(G) ≪ a(R)s; and

(ii) d(G) ≪ a(R)g(d,s)s√
log s

.

Proof. Let Ui, for 1 ≤ i ≤ t say, denote the chief factors of R. Also, if Ui is abelian, write |Ui| = paii ,

for pi prime. By Lemma 6.8 Part (i), G is a large subgroup of Q ≀ S, where Q is a large subgroup of

R ≀D. Let H1 := NQ(R(1)). By Lemma 6.8 Part (ii), Q has a normal series

1 = N0 ≤ N1 ≤ . . . ≤ Nt < Nt+1 ≤ Nt+2 = Q,

where each abelian factor Ni/Ni−1, for i ≤ t, is contained in the Q-module Ui ↑QH1
, and each nonabelian

factor is a chief factor of Q. Also, Nt+1/Nt
∼= Alt(d), and |Nt+2/Nt+1| ≤ 2. In particular,

cnonab(Q) ≤ cnonab(R) + 1. (6.1)

Denote by B the base group of Q ≀ S, and consider the corresponding normal series

1 = G ∩BN0 ≤ G ∩BN1 ≤ G ∩BN2 ≤ . . . ≤ G ∩BNt (6.2)

< G ∩BNt+1 ≤ G ∩BNt+2 = G ∩B (6.3)

for G ∩B. Let Mi be the abelian factors in (6.2). Then

d(G) ≪
∑

Ui abelian

dG(Mi) + cnonab(R) +
s√
log s

(6.4)

by Corollary 5.9 and Theorem 6.2. Viewing G as a subgroup of Q ≀ S, let H := NG(Q(1)). Also, let

π : R ≀ P → P denote projection over the top group. Since Hπ ≤ P stabilises a block of size d, we

may assume, without loss of generality, that

Hπ = StabP (∆)
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(recall that ∆ is a block of size d for P ≤ D ≀ S). Note also that Mi is a submodule of the induced

module Ui ↑HH1
↑GH∼= Ui ↑GH1

, by Lemmas 5.8 and 6.1.

Fix i in the range 1 ≤ i ≤ t such that Ui is abelian. Suppose first that spi ≤
√
s. Then Corollary

4.27 Part (ii), with α := 1/2, gives

dG(Mi) ≪
aids

log s
≤ aig(d, s)s√

log s
(6.5)

Assume next that spi >
√
s for some fixed i. Let K := coreG(H). Note that Kπ = K1 ≤ P , since

Hπ = StabP (∆) is a block stabiliser. Then

1 < A = (Kπ)∆ E (Hπ)∆ = D,

so (Kπ)∆ ≥ Alt(d). Hence, Proposition 4.30 Part (ii) implies that

dG(Mi) ≪
ais√
log spi

≤
√
2ais√
log s

≪ aig(d, s)s√
log s

. (6.6)

Thus, (6.4), (6.5) and (6.6) yield:

d(G) ≪
∑

Ui abelian

aig(d, s)s√
log s

+ cnonab(R) +
s√
log s

≪ a(R)g(d, s)s√
log s

+
s√
log s

≪ a(R)g(d, s)s√
log s

+
g(d, s)s√

log s
≪ a(R)g(d, s)s√

log s

and this proves Part (ii).

Finally, 6.4 and Proposition 4.30 Part (i) give

d(G) ≪
∑

Ui abelian

ais+ cnonab(R) +
s√
log s

≪ a(R)s+
s√
log s

≪ a(R)s

and this completes the proof.

We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. Let f(G) = d(G) log |G|√log n/n2. We will prove, by induction on n, that

f(G) ≪ 1. If G is primitive, then f(G) ≪ (log n)3/2/n by Corollary 6.7, and the claim follows.

For the inductive step, assume that G is imprimitive. Fix a tuple

(R1, R2, . . . , Rt) of primitive components for G, where each Ri is primitive of degree ri, say. Also, for

1 ≤ i ≤ t−1, let ∆i be a block of size ri for πi(G) ≤ Ri ≀πi+1(Ri), and denote by Ai the induced action

of Kerπi(G)({∆i
g : g ∈ πi(G)}) on ∆i (in particular, note that Ai E Ri). Finally, set At := πt(G).
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Then

|G| ≤
t∏

i=1

|Ai|
n

r1...ri (6.7)

Next, for 1 ≤ i ≤ t, we define the functions fi as follows

fi(G) :=
d(G)n log |Ai|

√
log n

r1r2 . . . rin2
=

d(G) log |Ai|
√
log n

r1r2 . . . rin
(6.8)

The inequality at 6.7 then yields f(G) ≤ ∑t
i=1 fi(G). We claim that fi(G) ≪ (i−1)

2i−1 for 2 ≤ i ≤ t,

and that f1(G) ≪ 1 (the implied constants here are independent on i). The result will then follow.

Indeed, in this case, f(G) ≪
∑∞

i=1
i−1
2i−1 ≪ 1.

To this end, first fix i in the range 2 ≤ i ≤ t. Clearly we may assume that Ai is non-trivial. Let

D = Ri, S := πi(G), and note that G is a large subgroup of a wreath product R ≀ P , where R is

transitive of degree r := r1r2 . . . ri−1, and P is a large subgroup of D ≀ S. Set d := ri, s := ri+1 . . . rt,

and m := max {r, d, s}. Suppose first that d ≥ 5 and that D contains the alternating group Alt(d).

(In particular, we are in the “bottom heavy” situation of Proposition 6.9.) Then Ai, being a nontrivial

normal subgroup of D, also contains Alt(d). Note that |Ai| ≤ dd. We distinguish two cases. Note

throughout that log n ≤ logm3 ≪ logm.

1. s ≤ 2(log d)
2
. Then n = rds ≤ m2

12
(logm1)2 , where m1 := max {r, d}. Thus, log n ≤ 2 logm1 +

(logm1)
2 ≪ (logm1)

2. Since a(R) ≪ r by Theorem 6.5, Proposition 6.9 Part (i) then implies

that d(G) ≪ rs. Hence, from 6.8 we deduce

fi(G) ≪ rsd log d logm1

r2d2s
=

log d logm1

rd
≪ log r

r
≤ (i− 1)

2i−1

since r ≥ 2i−1, and this gives us what we need.

2. s > 2(log d)
2
. Note that m ∈ {r, s} in this case. Set g(d, s) := max

{
1, d√

log s

}
. Then

g(d, s) log d ≤ d (6.9)

since
√
log s > log d. Now, Theorem 6.5 gives a(R) ≪ r. Hence, Proposition 6.9 Part (ii) gives

d(G) ≪ rg(d,s)s√
log s

. Hence, since n ≤ m3, we have

fi(G) ≪ rg(d, s)sd log d
√
logm

r2d2s
√
log s

=
g(d, s) log d

√
logm

rd
√
log s

≤ d
√
logm

rd
√
log s

by (6.9),

≤
√
log r

r
≤

√
i− 1

2i−1
since m ∈ {r, s}.

This gives us what we need.

Next, suppose that either d ≤ 4, or that D does not contain Alt(d). Then log |Ai| ≪ d by Theorem
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6.6. Now, G is a large subgroup of R ≀ P , where P is transitive of degree ds. Also, a(R) ≪ r by

Theorem 6.5. Then, by Corollary 6.3 we have

d(G) ≪ rds√
log ds

.

Thus

fi(G) ≪ rdsd
√
logm

r2d2s
√
log ds

=

√
logm

r
√
log ds

≤
√
log r

r
≤

√
i− 1

2i−1

and again this gives us what we need.

Finally, we deal with the case i = 1. Here, set r := r1, s := r2r3 . . . rt, and m = max {r, s}. Then
|Ai| ≤ rr and log n ≪ logm. Also, G is a large subgroup of a wreath product R ≀ S, where R is

primitive of degree r, and S is transitive of degree s. Thus, a(R) ≪ log r by Theorem 6.1. Thus,

Corollary 6.3 implies that d(G) ≤ s log r/
√
log s, and hence

fi(G) ≪ (log r)sr log r
√
logm

r2s
√
log s

=
(log r)2

√
logm

r
√
log s

≤ (log r)5/2

r
≪ 1.

This completes the proof.

We conclude with an example which shows that the bounds of Theorems 5.3 and 1.7 are asymp-

totically best possible.

Example 6.10. Let A be an elementary abelian group of order 22k−1, and write R for the radical of

the group algebra F2[A]. Consider the 2-group G := Rk−1
⋊A.

The largest trivial submodule of F2[A] is 1-dimensional, while dim (Rk−1) > 1, by [21, 3.2]. Hence,

the centraliser CA(R
k−1) of Rk−1 in A is a proper characteristic subgroup of A; since A is character-

istically simple, it follows that CA(R
k−1) = 1. Thus, CG(R

k−1) = Rk−1, so Z := Z(G) = CRk−1(A).

Again, since the largest trivial submodule of Fp[A] is 1-dimensional, and Z is nontrivial, it follows

that Z has order 2, and hence Z is the unique minimal normal subgroup of G. Let H be a subspace

complement to Z in Rk−1. Then H has codimension 1 in Rk−1, and hence has index 22k in G. It is

also clear that H is core-free in G, so G is a transitive permutation group of degree 22k.

Next, note that

√
2k

(
2k

k

)
1

4k
=

[
1

2

(
3

2

3

4

)(
5

4

5

6

)
. . .

(
2k − 1

2k − 2

2k − 1

2k

)]1/2
=


1

2

k∏

j=2

(
1 +

1

4j(j − 1)

)

1/2

.

As in the proof of Theorem 1.3, the expression in the middle converges to b =
√

2/π, by Wallis’

formula. Hence, since the expression on the right is increasing, we conclude that for all ǫ > 0, there

exists a positive integer k such that
√
2k

(
2k
k

)
1
4k

≥ b− ǫ, that is,
(
2k
k

)
≥ (b− ǫ)4k/

√
2k.

Now, the derived subgroup G′ of G is Rk, and G/G′ ∼= (Rk−1/Rk) × A is elementary abelian of

rank
(2k−1
k−1

)
+ 2k − 1, again using [21, 3.2]. Thus, for large enough k we have

d(G) =

(
2k − 1

k − 1

)
+ 2k − 1 =

1

2

(
2k

k

)
+ 2k − 1 ≥ (b− ǫ)22k

2
√
2k

+ 2k − 1.
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Furthermore, |Rk−1| = 2
∑2k−1

i=k−1 (
2k−1

i ) = 22
2k−1−2k−2 ∼ 2n/2. Hence, |G| ∼ 2n−1, which shows that

d(G) log |G| is at least a constant times n2/
√
log n.

53



Appendices

A Upper bounds for d(G) for some transitive groups of small degree

The groups G in the right hand column of Table A.1 below are transitive permutation groups of degree

d, where d is as specified in the left hand column. In Table A.2, the groups are transitive permutation

groups of degree d which have at least f 2-blocks (see Section 1).

Table A.1

d d(G) ≤
48 16

64 20

96 31

128 40

192 57

256 75

384 109

512 145

283 203

210 271

293 392

211 523

2103 738

Table A.1 ctd

d d(G) ≤
2113 1431

2123 2718

2133 5292

2143 10118

2153 19770

2163 38002

2173 74467

2183 143750

2193 282317

2203 546854

235 9

245 18

255 34

Table A.1 ctd

d d(G) ≤
265 66

275 130

285 258

295 514

2105 1026

2115 2050

2125 4098

2135 8194

2145 16386

2155 32770

2165 65538

2215 15

Table A.1 ctd

d d(G) ≤
2315 27

2415 52

2515 100

2615 196

2715 388

2815 772

2915 1540

21015 3076

21115 6148

21215 12292

21315 24580

21415 49156

Table A.2

d f d(G) ≤

2175 5 130900

2185 4 257722

2195 4 504220

2205 4 984067

2215 4 1919461

2225 4 3745164

2235 5 7312620

2245 5 14290701

2255 6 27953017

2265 7 54725580

21515 6 98308

Table A.2 ctd

d f d(G) ≤

21615 4 196612

21715 3 392700

21815 3 773166

21915 3 1512660

22015 3 2952202

22115 3 5758386

22215 3 11235497

22315 3 21937865

22415 3 42872110

22515 3 83859059

Table A.2 ctd

d f d(G) ≤

22615 4 164176748

22715 4 321692696

22815 4 630835627

22915 4 1237980292

23015 5 2431149936

23115 5 4777379825

23215 5 9393534359

23315 6 18480443646

23415 7 36376783048

23515 8 71639170628
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