

University of Birmingham

Runtime analyses of the population-based
univariate estimation of distribution algorithms on
LeadingOnes
Lehre, Per Kristian; Nguyen, Hai

DOI:
https://doi.org/10.1007/s00453-021-00862-3

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Lehre, PK & Nguyen, H 2021, 'Runtime analyses of the population-based univariate estimation of distribution
algorithms on LeadingOnes', Algorithmica, vol. 83, no. 10, pp. 3238-3280. https://doi.org/10.1007/s00453-021-
00862-3

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1007/s00453-021-00862-3
https://doi.org/10.1007/s00453-021-00862-3
https://doi.org/10.1007/s00453-021-00862-3
https://birmingham.elsevierpure.com/en/publications/69489017-58e3-4c17-a98b-4ec58fd3a5f9

Vol.:(0123456789)

Algorithmica
https://doi.org/10.1007/s00453-021-00862-3

1 3

Runtime Analyses of the Population‑Based Univariate
Estimation of Distribution Algorithms on LeadingOnes

Per Kristian Lehre1 · Phan Trung Hai Nguyen1,2

Received: 29 May 2020 / Accepted: 18 July 2021
© The Author(s) 2021

Abstract
We perform rigorous runtime analyses for the univariate marginal distribution algo-
rithm (UMDA) and the population-based incremental learning (PBIL) Algorithm
on LeADIngOnes. For the UMDA, the currently known expected runtime on the
function is O

(

n� log � + n
2
)

 under an offspring population size � = Ω(log n) and a
parent population size � ≤ �∕(e(1 + �)) for any constant 𝛿 > 0 (Dang and Lehre,
GECCO 2015). There is no lower bound on the expected runtime under the same
parameter settings. It also remains unknown whether the algorithm can still optimise
the LeADIngOnes function within a polynomial runtime when � ≥ �∕(e(1 + �)) . In
case of the PBIL, an expected runtime of O(n2+c) holds for some constant c ∈ (0, 1)
(Wu, Kolonko and Möhring, IEEE TEVC 2017). Despite being a generalisation of
the UMDA, this upper bound is significantly asymptotically looser than the upper
bound of O

(

n
2
)

 of the UMDA for � = Ω(log n) ∩O(n∕ log n) . Furthermore, the
required population size is very large, i.e., � = Ω(n1+c) . Our contributions are then
threefold: (1) we show that the UMDA with � = Ω(log n) and � ≤ �e1−�∕(1 + �) for
any constants � ∈ (0, 1) and 0 < 𝛿 ≤ e

1−𝜀 − 1 requires an expected runtime of eΩ(�)
on LeADIngOnes, (2) an upper bound of O

(

n� log � + n
2
)

 is shown for the PBIL,
which improves the current bound O

(

n
2+c

)

 by a significant factor of Θ(nc) , and (3)
we for the first time consider the two algorithms on the LeADIngOnes function in a
noisy environment and obtain an expected runtime of O

(

n
2
)

 for appropriate param-
eter settings. Our results emphasise that despite the independence assumption in the
probabilistic models, the UMDA and the PBIL with fine-tuned parameter choices
can still cope very well with variable interactions.

Keywords Estimation of distribution algorithms · Running time analysis · Level-
based analysis · Noisy optimisation · Theory of randomised search heuristics

Preliminary versions of this work appeared in the Proceedings of the 2018 Springer Parallel Problem
Solving from Nature Conference (PPSN ’18) and 2019 ACM Genetic and Evolutionary Computation
Conference (GECCO ’19)

Extended author information available on the last page of the article

http://orcid.org/0000-0003-0783-2224
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00862-3&domain=pdf

 Algorithmica

1 3

1 Introduction

1.1 Motivations

Estimation of distribution algorithms (eDAs) [24, 38, 40] are randomised search
heuristics that look for optimal solutions by building and sampling from probabilis-
tic models. They are known by various other names, including probabilistic model-
building genetic algorithms [40] or iterated density estimation algorithms [2].
Unlike traditional evolutionary algorithms (eAs), which use standard genetic opera-
tors such as mutation and crossover to create variation, eDAs, on the other hand,
generate it via model building and model sampling. The workflow of eDAs is an
iterative process. The starting model is a uniform distribution over the search space,
from which an initial population of � individuals is sampled. The algorithm ranks
individuals according to a fitness function and selects the � ≤ � fittest individuals
to update the model. The procedure is repeated many times and terminates when
a threshold on the number of iterations is exceeded or a solution of good quality is
obtained [13, 20]. We call the parameter � the offspring population size, while the
parameter � is known as the parent population size of the algorithm.

Several eDAs have been proposed over the last decades. They differ in how they
learn the variable interplay and build/update the probabilistic models over itera-
tions. In general, eDAs can be categorised into two main classes: univariate and
multivariate. Univariate eDAs assume variable independence and usually repre-
sent the model as a probability vector (each component is a marginal), encoding a
product distribution from which individuals are sampled independently and identi-
cally. Typical eDAs in this class are the univariate marginal distribution algorithm
(UMDA [38]), the compact genetic algorithm (cgA [19]) and the population-based
incremental learning (PBIL [1]). Some ant colony optimisation algorithms like the
�-MMAS [42] can also be cast into this framework (also called n-Bernoulli-�-EDA
[15]). In contrast, multivariate eDAs apply statistics of order two or more to capture
the underlying structures of the addressed problems. This paper focuses on univari-
ate eDAs on discrete optimisation, and for that reason we refer the interested readers
to [20, 23] for other eDAs on a continuous domain.

The UMDA is probably the most famous univariate eDA. In each so-called itera-
tion, the algorithm updates marginals to the ‘empirical’ frequencies of 1s sampled
among the � fittest individuals. In 2015, Dang and Lehre [5], via the level-based
theorem [3], obtained an upper bound of O

(

n� log � + n2
)

 on the expected runtime
for the algorithm on the LeADIngOnes function when the offspring population size is
� = Ω(log n) and the parent population size � ≤ �∕(e(1 + �)) for any constant 𝛿 > 0 .
For � = Ω(log n) ∩O(n∕ log n) , the above bound becomes O

(

n2
)

 . Under a selective
pressure �∕� ≥ (1 + �)∕e , it is still unknown whether the UMDA could optimise the
function in polynomial expected runtime. Furthermore, we are also missing a lower
bound on the expected runtime, that is necessary to understand how the algorithm
copes with variable dependencies.

Another univariate eDA is the PBIL [1]—a generalisation of the UMDA—which
updates the marginals using a convex combination with a smoothing parameter

1 3

Algorithmica

� ∈ (0, 1] between the current marginals and the empirical frequencies of 1s sam-
pled among the � fittest individuals (also called incremental learning). Unlike the
UMDA, runtime results for the PBIL are very limited. The only rigorous analysis
on test functions has been published recently in [47], where the authors argued that
the algorithm with a sufficiently large population size can avoid making wrong
decisions early even when the smoothing parameter is large. They also showed an
expected runtime of O(n�) = O

(

n2+�
)

 on the LeADIngOnes function for some small
constant � ∈ (0, 1) . And yet the required offspring population size still remains
large, i.e., � = Ω(n1+�) [47]. It remains open whether a tighter upper bound can be
obtained for the PBIL on the LeADIngOnes function. The answer to this question is
of special interest because it might be considered as the first step towards showing
the substantial advantage of incremental learning over the update mechanism used
by the UMDA. Furthermore, more bounds on the expected runtime of the PBIL on
test functions with well-known structures possibly shed light on the behaviour of the
algorithm on other problems, especially those with a separably additive decompo-
sition property [37] because many sub-functions may have fitness landscapes that
resemble those of test functions, and in these situations the behaviours of the algo-
rithms can be quickly deduced.

See Table 1 for a summary of the latest runtime results of the UMDA and the
PBIL on the LeADIngOnes function.

1.2 Our Contributions

The contributions of this paper are three-fold.

Table 1 Summary of running times of the UMDA and PBIL on LeADIngOnes

Algorithm Constraints Expected runtime References

UMDA �∕� ≤ (1 − �)∕e , � = Ω(log n) O(n� log � + n
2) Dang et al. [5]

� ∈ (0, 1)

�∕� ≤ (1 − �)∕e,� = Ω(log n) Ω(n�∕ log �) [Theorem 18]
� ∈ (0, 1)

�∕� ≥ (1 + �)∕e1−�,� = Ω(log n) e
Ω(�) [Theorem 15]

𝜀 ∈ (0, 1), 0 < 𝛿 ≤ e
1−𝜀 − 1

Prior noise, O(1) ∋ p ∈ (0, 1) O
(

n� log � + n
2
)

[Theorem 26]
𝜇∕𝜆 ≤ 1∕(e(1 + 𝛿)),𝜇 = Ω(log n), 𝛿 > 0

PBIL � = Ω(n1+c),� = O
(

n
c∕2

)

O
(

n
2+c

)

Wu et al. [47]
O(1) ∋ � ∈ (0, 1], c ∈ (0, 1)

� = Ω(log n),O(1) ∋ � ∈ (1∕e, 1] O
(

n� log � + n
2
)

[Theorem 21]
O(1) ∋ 𝜇∕𝜆 ≤ c(𝜌) < 1

Prior noise, O(1) ∋ p ∈ (0, 1) O
(

n� log � + n
2
)

[Theorem 27]
O(1) ∋ �∕� = c(�, p),� = Ω(log n)

�-MMAS 𝜆 ≥ c log n, c > 0 O
(

n� log � + n
2
)

[Corollary 24]

 Algorithmica

1 3

1. We analyse the expected runtime of the UMDA. Together with previous results
[5, 6], our results provide a clearer picture of the runtime of the algorithm on the
LeADIngOnes function. We show that under a low selective pressure the algorithm
fails to optimise the function in polynomial expected runtime. This result essen-
tially reveals the limitations of probabilistic models based on probability vectors
as the algorithm hardly stays in promising states when the selective pressure is
not high enough, while the optimum cannot be sampled with high probability. On
the other hand, when the selective pressure is sufficiently high, we obtain a lower
bound of Ω(n�∕ log �) on the expected runtime under any offspring population
sizes � = Ω(log n).

2. We obtain an expected runtime of O
(

n� log � + n2
)

 for the PBIL on the LeAD-
IngOnes function under any population sizes � = Ω(log n) . For � = O(n∕ log n) ,
the runtime bound becomes O

(

n2
)

 , making it relatively comparable to the per-
formance of the class of univariate unbiased black-box algorithms in the sense
of Lehre and Witt [31]—a general framework covering many well-known ran-
domised search heuristics in evolutionary computation. More importantly, the
new upper bound improves the previously best known upper bound of O

(

n2+c
)

[47] by a factor of Θ(nc) for some constant c ∈ (0, 1) . Our bound only requires a
population of size � = Ω(log n) as opposed to � = Ω(n1+�) as in [47]. To do this,
we make use of the level-based theorem [3] with some additional arguments. By
taking advantage of the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality [33],
we observe that with high probability, the empirical frequency does not deviate
far from the model probability. We believe that it is the first time that the DKW
inequality has been used in the runtime analysis of model-based algorithms.

3. We introduce noise to the LeADIngOnes function, where a single bit is flipped
before evaluating the fitness with a constant probability p ∈ (0, 1) (also called
prior noise). We note that the same noise model is first considered in [11, 41] for
the (1 + 1) EA and [4, 17] for population-based eAs. We show that if the selec-
tive pressure �∕� is sufficiently high, the algorithms optimise the noisy LeADIn-
gOnes function within an expected runtime of O

(

n2 + n� log �
)

 . To the best of our
knowledge, this is also the first time that the UMDA and the PBIL are rigorously
studied in a noisy environment, while the cgA is already considered in [16] under
Gaussian posterior noise. Despite the simplicity of the noise model considered,
this can be viewed as the first step towards understanding the behaviour of these
eDAs in a noisy environment.

1.3 Outline of the Paper

The paper is structured as follows. Section 2 introduces the studied algorithms and
general tools used in the paper. Section 3 provides a detailed analysis for an expo-
nential expected runtime for the UMDA on the LeADIngOnes function in case of low
selective pressure, followed by the analysis under a high selective pressure in Sect. 4.
We also present in this section an improved upper bound on the expected runtime of
the PBIL on LeADIngOnes. In Sect. 5, we consider the LeADIngOnes function under
a prior noise model and obtain an upper bound O

(

n2
)

 on the expected runtime for

1 3

Algorithmica

appropriate parameter settings. Section 6 presents an empirical study to complement
theoretical results derived earlier. The paper ends in Sect. 7, where we give our con-
cluding remarks and speak of potential future work.

2 Preliminaries

We first recall that a random variable Y is said to follow a Bernoulli distribution with
success probability p ∈ [0, 1] , denoted as Y ∼ Ber(p) , if and only if Pr(Y = 1) = p
and Pr(Y = 0) = 1 − p [36, p. 445]. If there are n ∈ ℕ such random variables (with
the same success probability p), then the sum of them (i.e., a random variable X)
follows a binomial distribution with n trials and success probability p, denoted as
X ∼ Bin(n, p) [36, p. 445]. An extension of the binomial distribution is the Poisson
binomial distribution, in which each of n random variables can have a different suc-
cess probability [14, p. 263]. More formally, we write X ∼ PB(p1, p2,… , pn) if and
only if X =

∑n

i=1
Xi , where Pr

(

Xi = 1
)

= pi and Pr
(

Xi = 0
)

= 1 − pi for all i ∈ [n].

2.1 The Studied Fitness Function

In evolutionary computing, we represent a solution to an optimisation problem as
a bitstring (or an individual) x = (x1, x2,… , xn) of length n ∈ ℕ , where xi ∈ {0, 1}
for all i ∈ {1, 2,… , n} =∶ [n] . We consider in the paper the problem of maximising
the number of leading 1s in a bitstring. The fitness value of such a bitstring can be
obtained by

This is a uni-modal function with a maximum fitness value of n when the input is
the all-ones bitstring (i.e., the global optimum). In essence, the bits in this particular
function are highly correlated, so it is often used to study the ability of eDAs to cope
with variable dependency [22]. We call n the problem instance size and X = {0, 1}n
the finite binary search space consisting of all bitstrings of length n.

2.2 Population‑Based Univariate EDAs

The UMDA, defined in Algorithm 1, maintains a probabilistic model that is repre-
sented as an n-vector pt∶=(pt,1,… , pt,n) , where each so-called marginal pt,i ∈ [0, 1]
for i ∈ [n] is the probability of sampling a one at the i-th bit position in the offspring.
The probability of sampling a particular individual x = (x1, x2,… , xn) ∈ X from the
given probability vector pt equals

(1)LeadingOnes(x)∶=

n
∑

i=1

i
∏

j=1

xj.

(2)Pr
(

x = (x1, x2,… , xn) ∣ pt
)

=

n
∏

i=1

[

(

pt,i
)xi

(

1 − pt,i
)1−xi

]

.

 Algorithmica

1 3

We often call the distribution defined in Eq. 2 a product distribution. The start-
ing model is the uniform distribution p0∶=(1∕2,… , 1∕2) . The algorithm, in
each iteration t ∈ ℕ , samples an offspring population of � individuals, denoted as
Pt = (x

(1)
t , x

(2)
t ,… , x

(�)
t) , and sorts them in descending order according to fitness to

obtain a sorted population P̃t = (x̃
(1)
t , x̃

(2)
t ,… , x̃

(𝜆)
t) . A parent population consisting

of the � fittest individuals in P̃t participates in the update of the probabilistic model.
Let x(j)

t,i
 denote the value sampled at bit position i in the j-th individual in the off-

spring population Pt (and analogously x̃(j)
t,i

 for the parent population P̃t). Then,
Xt,i∶=

∑𝜇

j=1
x̃
(j)
t is the number of 1s sampled at bit position i ∈ [n] across the parent

population. The algorithm first sets each marginal to the value Xt,i∕� and then
adjusts them to be within the interval [1∕n, 1 − 1∕n] , where the two values, 1/n and
1 − 1∕n , are called the lower and upper borders (or margins), respectively. In sum-
mary, the updating process can be written as follows.

Furthermore, the ratio of �∕� ∈ (0, 1] is known as the selective pressure of the algo-
rithm. The whole procedure is repeated until some terminal condition has been ful-
filled. Some common choices are a threshold on the number of iterations allowed to
run or a lower bound on the fitness quality of the fittest individual in the population.
However, for theoretical analysis, we halt the algorithm only after a global optimum
has been found for the first time.

Algorithm 1: UMDA with an offspring population size λ and a parent
population size µ for the maximisation of a function f(x) where x is of
length n.
1 t ← 0; initialise pt ← (1/2, 1/2, . . . , 1/2)
2 repeat
3 for j = 1, 2, . . . , λ do
4 x

(j)
t,i ← Ber(pt,i) for each i ∈ [n]

5 Pt ← (x(1)
t , x

(2)
t , . . . , x

(λ)
t)

6 P̃t ← (x̃(1)
t , x̃

(2)
t , . . . , x̃

(λ)
t) by sorting Pt in descending order of fitness, where ties

are broken uniformly at random
7 for i = 1, 2, . . . , n do
8 Xt,i ←

∑µ
j=1 x̃

(j)
t,i

9 pt+1,i ← max{1/n,min{1− 1/n,Xt,i/µ}}
10 t ← t+ 1
11 until termination condition is fulfilled

A generalisation of the UMDA is the PBIL. While most operations in the PBIL
are similar to those of the UMDA, the algorithm makes use of a new smoothing
parameter � ∈ (0, 1] and updates the model via a convex combination as follows.

(3)pt+1,i ← max

{

1

n
, min

{

1 −
1

n
,
Xt,i

�

}}

for all i ∈ [n],

1 3

Algorithmica

In essence, the PBIL takes into account the current marginals when updating the
probabilistic model. We also note that the UMDA is the PBIL with a maximum
smoothing parameter � = 1.

2.3 Level‑Based Analysis

First proposed in [25], the level-based theorem is a general tool that provides upper
bounds on the expected runtime of many non-elitist population-based algorithms on
a wide range of optimisation problems [3, 5, 6, 8, 26, 27, 29]. The theorem assumes
that the studied algorithm can be cast into the framework in Algorithm 2, which
maintains a population Pt ∈ X

� , where X� is the space of all populations of size � .
We write Pt,i to denote the i-th individual in the population Pt . The theorem also
assumes the existence of a mapping D from the space of populations X� to the space
of the probability distribution over the search space. In iteration t, the mapping D
depends only on the population Pt and involves in the production of a new popula-
tion for the next iteration [3].

Algorithm 2: Non-elitist population-based algorithm
1 t ← 0; create initial population Pt

2 repeat
3 for i = 1, . . . , λ do
4 sample Pt+1,i ∼ D(Pt)

5 t ← t+ 1
6 until termination condition is fulfilled

However, the theorem never assumes specific fitness functions, selection mecha-
nisms, or generic operators like mutation and crossover, but it assumes that the
search space X can be partitioned into m disjoint subsets A1,… ,Am , which we call
levels, and the last level Am consists of all global optima of the objective function.
Let A

≥j∶= ∪m
k=j

Ak . The following theorem is taken from [3, Theorem 1].

Theorem 1 (Level-Based Theorem) Given a partition
(

Ai

)

i∈[m]
 of X , define

T∶=min{t𝜆 ∣ |Pt ∩ Am| > 0},where for all t ∈ ℕ , Pt ∈ X
� is the population of Algo-

rithm 2 in iteration t. Let y ∼ D(Pt). If there exist z1,… , zm−1, � ∈ (0, 1], and
�0 ∈ (0, 1) such that for any population Pt ∈ X

� ,

(G1) for each level j ∈ [m − 1] , if |Pt ∩ A
≥j| ≥ �0� then

(4)pt+1,i ← max

{

1

n
, min

{

1 −
1

n
, (1 − �)pt,i + � ⋅

Xt,i

�

}}

for all i ∈ [n],

Pr
(

y ∈ A
≥j+1

)

≥ zj.

 Algorithmica

1 3

(G2) for each level j ∈ [m − 2] and all � ∈ (0, �0] , if |Pt ∩ A
≥j| ≥ �0� and

|Pt ∩ A
≥j+1| ≥ �� then

(G3) and the population size � ∈ ℕ satisfies

 where z∗∶=minj∈[m−1]{zj} , then

2.4 Dvoretzky–Kiefer–Wolfowitz Inequality

The DKW inequality [33] provides an estimate on how close an empirical distribu-
tion will be to the true distribution from which the samples are drawn. Let �A(x)
be the indicator function, where �A(x) = 1 if x ∈ A and 0 otherwise. The following
theorem is derived by replacing � = ��

√

� into [33, Corollary 1].

Theorem 2 (DKW Inequality) Let X1,… ,X� be � i.i.d. real-valued random vari-
ables with cumulative distribution function F. Let F̃� be the empirical distribution
function which is defined by

For any � ∈ ℕ and 𝜀 > 0, we always have

We note that the advantage of the DKW inequality comes from the fact that the
upper bound exp{−2��2} depends only on the number of samples � , which in our
case is the offspring population size of the algorithms.

2.5 Majorisation

We also exploit the properties of majorisation, defined in Definition 3 [18, p. 183],
between two vectors.

Pr
(

y ∈ A
≥j+1

)

≥ (1 + �)� .

� ≥

(

4

�0�
2

)

ln

(

128m

z∗�
2

)

,

�[T] ≤
(

8

�2

)

m−1
∑

j=1

[

� ln

(

6��

4 + zj��

)

+
1

zj

]

.

F̃�(x)∶=
1

�

�
∑

i=1

�{Xi ≤ x}.

Pr

(

sup
x∈ℝ

|

|

�F𝜆(x) − F(x)|
|

> 𝜀

)

≤ 2e−2𝜆𝜀
2

.

1 3

Algorithmica

Definition 3 (Majorisation) Given two vectors p∶=(p1,… , pn) and q∶=(q1,… , qn) ,
where p1 ≥ p2 ≥ … ≥ pn and analogously for the qi . Vector p is said to majorise
vector q

if

and

Majorisation is a powerful tool in runtime analysis of univariate eDAs because
the algorithms operate on a probability vector-based model (see [6, 10, 27, 45, 47]).
The following lemma shows one of the properties of majorisation, which will be
used frequently in the main parts of the paper.

Lemma 4 Let X ∼ PB(p1,… , pn) and Y ∼ PB(q1,… , qn). If the vector (p1,… , pn)
majorises the vector (q1,… , qn), then

Proof We obtain from [32, Proposition F.1.a.] that if the vector (p1,… , pn) major-
ises the vector (q1,… , qn) , then

The proof is complete by noting that Pr(X = n) =
∏n

i=1
pi and Pr(Y = n) =

∏n

i=1
qi .

 ◻

2.6 Other Tools

Lemma 5 (Chernoff Bound [36]) Let X ∼ PB(p1, p2,… , pn). Let � = �[X] =
∑n

i=1
pi

. Then

(a) Pr(X ≥ (1 + �)�) ≤ e−�
2�∕3 for any 𝛿 > 0.

(b) Pr(X ≤ (1 − �)�) ≤ e−�
2�∕2 for any 0 ≤ � ≤ 1.

Lemma 6 (Chernoff–Hoeffding Bound [12]) Let X ∼ PB(p1, p2,… , pn). Let
� = �[X] =

∑n

i=1
pi. Then, Pr(|X − �| ≥ t) ≤ 2e−2t

2∕n.

k
∑

i=1

pi ≥

k
∑

i=1

qi for all k ∈ [n − 1],

n
∑

i=1

pi =

n
∑

i=1

qi.

Pr(X = n) ≤ Pr(Y = n).

n
∏

i=1

pi ≤

n
∏

i=1

qi.

 Algorithmica

1 3

We also recall that a random variable X is said to stochastically dominate another
random variable Y (defined on the same probability space) if for all k ∈ ℝ we have
Pr(X ≥ k) ≥ Pr(Y ≥ k) [7, Definition 1.8.1], and as a result �[X] ≥ �[Y] [7, Corol-
lary 1.8.3]. We write ln(⋅) to denote the natural logarithm (with base e) and log(⋅) for
logarithm with base two.

3 Runtime Analysis Under Low Selective Pressure

Before we get to analysing the function, we introduce some notation. Let Ct,i for all
i ∈ [n] denote the number of individuals having at least i leading 1s in iteration t,
and Dt,i is the number of individuals having exactly i − 1 leading 1s. For the special
case i = 1 , Dt,i consists of individuals that do not have any leading 1s.

Once the population has been sampled, the algorithm invokes truncation selec-
tion to select the � fittest individuals (out of a population of �) to update the prob-
ability vector. We take this �-cutoff into account by defining a random variable

which tells us how many marginals, counting from bit position one, are set to the
upper border 1 − 1∕n in iteration t. Furthermore, we define another random variable

to be the number of leading 1s of the fittest individual(s).

3.1 On the Distributions of C
t,i and D

t,i

In order to analyse the distributions of the random variables Ct,i and Dt,i , we shall
take an alternative view on the sampling process at an arbitrary bit position i ∈ [n]
in iteration t ∈ ℕ via the principle of deferred decisions [36, p. 55]. We imagine that
the process samples the values of the first bit for � individuals. Once this has fin-
ished, it moves on to the second bit and so on until the population is sampled.

To be more specific, we now look at the first bit in iteration t. The number of 1s
sampled at the first bit position follows a binomial distribution with parameters �
and pt,1 , i.e., Ct,1 ∼ Bin

(

�, pt,1
)

 . Thus, the number of 0s at the first bit position is
Dt,1 = � − Ct,1 . For completeness, we always assume that Ct,0 = �.

Having sampled the first bit for � individuals, note that the bias due to selection at
the second bit position comes into play only if the first bit is a 1. If this is the case,
then a 1 is more preferred to a 0 at the second-bit position. Among the Ct,1 fittest
individuals, the probability of sampling a 1 at the second bit position is pt,2 ; thus,
the number of individuals having at least 2 leading 1s is binomially distributed with
parameters Ct,1 and pt,2 , that is, Ct,2 ∼ Bin

(

Ct,1, pt,2
)

 , and the number of 0s equals
Dt,2 = Ct,1 − Ct,2 . Among the Dt,1 last individuals, since for these individuals the
first bit is a 0, there is no bias between a 1 and a 0. The number of 1s sampled at the
second bit position among the Dt,1 last individuals follows a binomial distribution
with parameters Dt,1 (or � − Ct,1) and pt,2.

(5)Zt∶=max{i ∈ {0} ∪ [n] ∶ Ct,i ≥ �},

(6)Z∗
t
∶=max{i ∈ {0} ∪ [n] ∶ Ct,i > 0}

1 3

Algorithmica

We can generalise this result for an arbitrary bit position i ∈ [n] . The number of
individuals having at least i leading 1s follows a binomial distribution with Ct,i−1 tri-
als and success probability pt,i , i.e.,

and

Furthermore, the number of 1s sampled among the � − Ct,i−1 remaining individu-
als is binomially distributed with � − Ct,i−1 trials and success probability pt,i . Let
(Ft ∶ t ∈ ℕ) be a filtration induced from the population (Pt ∶ t ∈ ℕ) [44, p. 93]. If
we consider the expectations of these random variables, by the tower property of
conditional expectation (or tower rule) [44, p. 88] and the fact that pt,i is Ft−1-meas-
urable [44, p. 93], we then get

and similarly

We note that by the end of this sampling process, we will obtain a population that is
sorted in descending order according to the LeADIngOnes-values.

Recall that we aim at showing that the UMDA takes exponential time to opti-
mise the LeADIngOnes function when the selective pressure is not sufficiently high,
as required in [6, Theorem 7]. Let �∶=�∕� denote the selective pressure of the algo-
rithm. For any constant � ∈ (0, 1) , we define

Clearly, we always get � ≤ � . We also define a stopping time.
�∶=min{t ∈ ℕ ∶ Zt ≥ �} to be the first hitting time of the value � for the random
variable Zt . We then consider two phases: (1) until the random variable Zt hits the
value � for the first time (t ≤ �), and (2) after the random variable Zt has hit the
value � for the first time (t > 𝜏).

3.2 Phase 1: Before the Fitness of the � th Individual Hits the Threshold ̨

The algorithm starts with an initial population P0 sampled from a uniform distri-
bution p0 = (1∕2,… , 1∕2) . An initial observation is that the all-ones bitstring can-
not be sampled in the population P0 with high probability since the probability of

(7)Ct,i ∼ Bin
(

Ct,i−1, pt,i
)

,

(8)Dt,i = Ct,i−1 − Ct,i ∼ Bin
(

Ct,i−1, 1 − pt,i
)

.

(9)

�[Ct,i ∣ Ft−1] = �[�[Ct,i ∣ Ct,i−1,Ft−1] ∣ Ft−1]

= �[Ct,i−1 ⋅ pt,i ∣ Ft−1]

= �[Ct,i−1 ∣ Ft−1] ⋅ pt,i,

(10)�[Dt,i ∣ Ft−1] = �[Ct,i−1 ∣ Ft−1] ⋅ (1 − pt,i).

(11)� = �(n)∶= log1−1∕n(�∕(1 − �))

(12)� = �(n)∶= log1−1∕n(�∕(1 + �)).

 Algorithmica

1 3

sampling it from the uniform distribution is 2−n , then by the union bound [14, p. 23]
it appears in the population P0 w.p. at most � ⋅ 2−n = 2−Ω(n) since we only consider
the offspring population of size at most polynomial in the problem instance size n
(i.e., � ∈ poly (n)). The following lemma states the expectations of the random vari-
ables Z∗

0
 and Z0.

Lemma 7 �[Z0] ≤ �[Z∗
0
] = O(log �).

Proof Because Z0 ≤ Z∗
0
 , we have �[Z0] ≤ �[Z∗

0
] . We are left to bound the expecta-

tion �[Z∗
0
] . Recall that Z∗

0
= max{i ∶ C0,i > 0} and let f∶=LeadingOnes . The prob-

ability of sampling an individual with more than k leading 1s (where k < n) is
Pr(f (x) > k) = (1∕2)k+1 = 2−(k+1), thus Pr(f (x) ≤ k) = 1 − Pr(f (x) > k) = 1 − 2−(k+1) .
The event Z∗

0
≤ k implies that the � individuals all have at most k leading 1s, i.e.,

and Pr(Z∗
0
> k) = 1 − (1 − 2−(k+1))𝜆 . Given that �[Y] ≤

∑∞

i=0
Pr(Y > i) for any

bounded integer-valued random variable Y [7, Lemma 6.1], the random variable Z∗
0

is integer-valued, we then get

which completes the proof. ◻

Lemma 8 It holds for any t ∈ ℕ and i ≥ Zt + 2 that Xt,i ∼ Bin
(

�, pt,i
)

.

Proof By the definition of the random variable Zt , we know that Ct,Zt
≥ � and

Ct,Zt+1
< 𝜇 . Consider bit position j∶=Zt + 2 . We then obtain from Eq. 7 that among

the Ct,j−1 fittest individuals there are Ct,j ∼ Bin
(

Ct,j−1, pt,j
)

 individuals with at least
j leading 1s. For the 𝜇 − Ct,j−1 > 0 remaining individuals (among the � fittest indi-
viduals), the overall fitness (or the fitness ranking) of these individuals have been
already decided by the first j − 1 bits, and what is sampled at bit position j will not
have any impact on the ranking of these individuals. In other words, there is no bias

Pr(Z∗
0
≤ k) =

�
∏

i=1

Pr(f (x
(i)

0
) ≤ k) = (1 − 2−(k+1))�,

�
[

Z∗
0

]

<

∞
∑

k=0

Pr(Z∗
0
> k)

=

∞
∑

k=0

(1 − (1 − 2−(k+1))𝜆)

≤ log 𝜆 +

∞
∑

k=log 𝜆

(1 − (1 − 2−(k+1))𝜆)

≤ log 𝜆 + 𝜆

∞
∑

k=log 𝜆

2−(k+1) (by Bernoulli’s ineq. [8])

≤ log 𝜆 + 𝜆 ⋅ 2− log 𝜆+1

= log 𝜆 + 2,

1 3

Algorithmica

in bit j among these (remaining) individuals, which also means that the number of
1s sampled here follows a binomial distribution with � − Ct,j−1 trials and success
probability pt,j , i.e., Bin

(

� − Ct,j−1, pt,j
)

 . Thus, we get:

Because the distribution of Xt,j depends only on pt,j , the same line of arguments can
be repeated for each of the remaining bit positions Zt + 3,… , n . The proof is now
complete. ◻

We now show that the value of the random variable Zt does not decrease during
phase 1 with high probability.

Lemma 9 Pr
(

∀t ∈ [1, �] ∶ Zt ≥ Zt−1
)

≥ 1 − �e−Ω(�).

Proof It suffices to show that w.p. at most �e−Ω(�) there exists an iteration t ∈ [1, �]
such that Zt < Zt−1 . We first note that the value of the random variable Zt drops in
iteration t + 1 only if the number of individuals with at least Zt leading 1s in the next
iteration is less than � . Recall that Zt < 𝛼 for any t < 𝜏 . The number of individuals
with at least Zt leading 1s, sampled in iteration t + 1 , follows a binomial distribution
with � trials and success probability (1 − 1∕n)Zt . Thus, in expectation the number of
such individuals is

By a Chernoff bound (see Lemma 5), the probability of sampling at most
(1 − �) ⋅ �∕(1 − �) = � such individuals is at most e−(�2∕2)⋅�∕(1−�) = e−Ω(�) for any
constant � ∈ (0, 1) . By the union bound, this rare event happens at least once during
the first � iterations w.p. at most �e−Ω(�) , and the complement event takes place w.p.
at least 1 − �e−Ω(�) , which completes the proof. ◻

3.3 Phase 2: After the Fitness of the � th Individual has Hit Value ̨ for the First
Time

By the definition of Zt , the first Zt marginals are set to the upper border 1 − 1∕n in
iteration t ∈ ℕ . Recall that the random variable Xt,i denotes the number of 1s at bit
position i ∈ [n] among the � fittest individuals, which is used to update the probabil-
istic model of the UMDA.

The preceding section shows that the random variable Zt is non-decreasing during
phase 1 w.p. 1 − �e−Ω(�) . The following lemma also shows that its value stays above
� afterwards with high probability.

Xt,j ∼ Ct,j + Bin
(

� − Ct,j−1, pt,j
)

∼ Bin
(

Ct,j−1, pt,j
)

+ Bin
(

� − Ct,j−1, pt,j
)

∼ Bin
(

�, pt,j
)

.

�

(

1 −
1

n

)Zt

≥ �

(

1 −
1

n

)�

=
�

1 − �
.

 Algorithmica

1 3

Lemma 10 It holds for any constant k > 0 that

Proof Consider the worst scenario in which Zt = � for some t ∈ [�, � + ek�] . We
also note that the value of the random variable Zt drops below � in iteration t + 1 if
and only if the number of individuals with at least Zt leading 1s sampled in the next
iteration is less than � . An offspring with at least � leading 1s is still sampled w.p.
(1 − 1∕n)� = �∕(�(1 − �)) for some constant � ∈ (0, 1) , and by a Chernoff bound,
there are at most � such individuals sampled in the next iteration w.p. at most e−Ω(�) .
By the union bound, this happens at least once in the interval [�, � + ek�] w.p. at
most ek� ⋅ e−Ω(�) . The complement event then occurs w.p. at least 1 − ek� ⋅ e−Ω(�) ,
which completes the proof. ◻

The following lemma further shows that there is also an upper bound on the ran-
dom variable Zt.

Lemma 11 It holds for any constant k > 0 that

Proof It suffices to show that w.p. at most ek� ⋅ e−Ω(�) there exists an iteration
t ∈ [0, ek�] (for any constant k > 0) such that Zt > 𝛽 . Consider an arbitrary iteration
t ∈ [0, ek�] . An individual with at least � leading 1s is sampled w.p.

for some constant � ∈ (0, 1) . Thus, the number of such individuals sampled in the
next iteration will be stochastically dominated by Bin(�,�∕(�(1 + �))) , and thus
their expected number is at most �∕(1 + �) . By a Chernoff bound, the probability of
sampling at least (1 + �) ⋅ �∕(1 + �) = � such individuals in the next iteration is at
most e−Ω(�) . By the union bound, this rare event happens at least once in the inter-
val [0, ek�] w.p. at most ek� ⋅ e−Ω(�) . Thus, the complement event occurs w.p. at least
1 − ek� ⋅ e−Ω(�) . The proof is then complete by noting that the value of the random
variable Zt exceeds � if and only if the number of individuals with more than � lead-
ing 1s sampled in the next iteration is at least � . ◻

Lemmas 10 and 11 together give essential insights about the behaviour of the
algorithm. The random variable Zt will stay well below the threshold � for eΩ(�)
iterations w.p. 1 − e−Ω(�) for a sufficiently large parent population size � . More pre-
cisely, the random variable Zt will move back and forth around an equilibrium value

This is because when Zt = � , in expectation there are exactly �(1 − 1∕n)� = �� = �
individuals having at least � leading 1s.

Pr(∀t ∈ [�, � + ek�] ∶ Zt ≥ �) ≥ 1 − ek� ⋅ e−Ω(�).

Pr(∀t ∈ [0, ek�] ∶ Zt ≤ �) ≥ 1 − ek� ⋅ e−Ω(�).

�
∏

i=1

pt,i ≤
(

1 −
1

n

)�

=
�

�(1 + �)

(13)� = �(n)∶= log1−1∕n(�).

1 3

Algorithmica

An exponential lower bound on the runtime is obtained if we can also show that
the probability of sampling the n − � last bits correctly is exponentially small. We
now choose the ratio of �∕� such that n − � ≥ �n for any constant � ∈ (0, 1) , that is
equivalent to � ≤ n(1 − �) . By (12) and solving for � , we then obtain

The right-hand side is at most 1∕e1−� as (1 − 1∕n)n ≤ 1∕e for all n > 0 [36], so the
above inequality always holds if the selective pressure satisfies � ≥ (1 + �)∕e1−� for
any constants 𝛿 > 0 and � ∈ (0, 1).

The remainder of this section shows that the n − (� + 1) = Ω(n) last bits cannot
be sampled correctly in any polynomial number of iterations with high probability.
We first show that the sampling processes among the Ω(n) last bits are mutually
independent. To ease the analysis, we further define Yt,1, Yt,2,… , Yt,n to be n Ber-
noulli random variables representing an offspring sampled from the product distri-
bution pt (see Eq. 2).

Lemma 12 Let k be any positive constant. It holds w.p. at least 1 − ek� ⋅ e−Ω(�) that
the random variables Yt,�+2, Yt,�+3,… , Yt,n are pairwise independent for all t ≤ ek�.

Proof By Lemma 11, we know that Zt ≤ � for any t ≤ ek� w.p. at least 1 − ek� ⋅ e−Ω(�) .
We also obtain by Lemma 8 that Xt+1,j ∼ Bin

(

�, pt+1,j
)

 for any j ≥ � + 2 . In other
words, the number of ones sampled at a bit position j ≥ � + 2 among the � fittest
individuals in the next iteration depends only on the marginal pt,j . Thus, for any two
distinct bit positions j1, j2 ∈ {� + 2,… , n} sampling a one at bit position j1 is inde-
pendent of sampling a one at bit position j2 . ◻

Now consider an arbitrary bit position i ≥ � + 1 . We always get
�[Yt,i ∣ Ft−1] = pt,i , and by the tower property of conditional expectation we also
obtain

For the UMDA without borders, the stochastic process (pt,i ∶ t ∈ ℕ) is a martingale
[15], which results in �[pt,i] = p0,i = 1∕2 . We will show in the following lemma that
for the UMDA with borders the expected value of a marginal at an arbitrary bit posi-
tion i ≥ � + 2 also stays at 1/2 for any t ∈ ℕ.

Lemma 13 Let � ≥ c log n for a sufficiently large constant c > 0. If there exists a
constant k < n such that Zt ≤ k − 2 for any t ∈ ℕ, then for any i ≥ k that

Proof For readability, we omit the index i through out the proof. Recall that
pt = max{1∕n, min{1 − 1∕n,Xt−1∕�}} . By the definition of expectation, we get

�

1 + �
≥

(

1 −
1

n

)n(1−�)

.

�[Yt,i] = �[�[Yt,i ∣ Ft−1]] = �[pt,i].

�[pt,i] =
1

2
.

 Algorithmica

1 3

We note further that

from which we then obtain

Substituting (15) into (14) yields

We are left to calculate the two probabilities that Xt−1 = 0 and Xt−1 = � . Since these
are unconditional probabilities, we shall make no assumption (even on pt−1) when
calculating them. All we know are that p0 = 1∕2 and, by Lemma 8, Xt−1 is binomi-
ally distributed with � trials and success probability pt−1 , which means that there is
no bias towards any border in the stochastic process (Xt ∶ t ∈ ℕ) . Due to this sym-
metry, we get

Furthermore, by the tower rule we also have

Substituting (17) and (18) into (16) yields �[pt] = �[pt−1] . Then by induction on
time, we obtain

which completes the proof. ◻

Lemma 13 gives us insights into the expected values of the marginals at any time
t ∈ ℕ . One should not confuse the expectation with the actual value of the margin-
als. Friedrich et al. [15] showed a similar result for the UMDA without border that

(14)�[pt] =
Pr

(

Xt−1 = 0
)

n
+
(

1 −
1

n

)

Pr
(

Xt−1 = �
)

+

�−1
∑

k=1

k ⋅ Pr
(

Xt−1 = k
)

�
.

�[Xt−1] =

�
∑

k=0

k Pr(Xt−1 = k)

= � Pr(Xt−1 = �) +

�−1
∑

k=1

k Pr(Xt−1 = k),

(15)
�−1
∑

k=1

k ⋅ Pr(Xt−1 = k) = �[Xt−1] − � ⋅ Pr(Xt−1 = �).

(16)�[pt] =
�
[

Xt−1

]

�
+

Pr
(

Xt−1 = 0
)

− Pr
(

Xt−1 = �
)

n
.

(17)Pr
(

Xt−1 = �
)

= Pr
(

Xt−1 = 0
)

.

(18)

�[Xt−1] = �[�[Xt−1 ∣ pt−1]]

= �
[

�
[

Bin
(

�, pt−1
)

∣ pt−1
]]

= � ⋅ �[pt−1]

�[pt] = �[pt−1] = �[pt−2] = … = �[p0] =
1

2
,

1 3

Algorithmica

even when the expectation stays at 1/2, the actual value of the marginal in iteration
t can be close to the trivial lower or upper border due to its large variance. Very
recently, Doerr and Zheng [9] obtained a tight bound of Θ(�) on the first hitting
time of any trivial border for these marginals. Furthermore, Lehre and Nguyen [28]
showed that the variance reaches a value of Θ(�2) after only Ω(�) iterations.

Lemma 14 Let � ≥ c log n for some sufficiently large constant c > 0 and
� ≤ �e1−�∕(1 + �) for any constants � ∈ (0, 1) and 0 < 𝛿 ≤ e1−𝜀 − 1. Then, the
n − (� + 1) = Ω(n) last bits cannot be sampled as all 1s during any eΩ(�) iterations
w.p. 1 − e−Ω(n).

Proof Given that �� ≥ (1 + �)∕e1−� , by Lemma 11 we get Zt ≤ � ≤ n(1 − �)
for any t = poly(n) w.o.p. We shall prove the lemma by looking at the
n − (� + 2) ≥ n − n(1 − �) − 2 = �n − 2 = Ω(n) last bit positions. Let us now con-
sider the total number of zeros sampled at these bit positions in an iteration. We
know by Lemma 13 (for k = � + 2) that their marginals stay at 1/2 in expectation,
and we also know by Lemma 12 that the samplings at these bit positions are mutu-
ally independent. Therefore, by the linearity of expectations, the expected total num-
ber of zeros sampled there is

This means that in order to sample all ones at these bit positions there are still at
least Ω(n) zeros to flip. In other words, we need to deviate a distance of Ω(n) below
the expected value, and by a Chernoff-Hoeffding bound (see Lemma 6) such an
event happens w.p. at most

By the union bound, this event happens at least once in a polynomial number of
iterations (in n) w.p. still at most e−Ω(n) . The proof is now complete. ◻

We are ready to show our main result.

Theorem 15 The UMDA with a parent population size � ≥ c log n for some suffi-
ciently large constant c > 0 and a selective pressure satisfying

for any constants � ∈ (0, 1) and 0 < 𝛿 ≤ e1−𝜀 − 1 has a runtime of eΩ(�) on the LeAD-
ingOnes function w.p. 1 − e−Ω(�) and also in expectation.

Proof Due to the low selective pressure, we have � ≤ n(1 − �) . We now consider
the two phases as introduced above. During phase 1, the all-ones bitstring cannot be

(n − (� + 2))
(

1 −
1

2

)

= Ω(n).

2 ⋅ exp

{

−
2(Ω(n))2

n

}

= e−Ω(n).

�

�
≥

1 + �

e1−�

 Algorithmica

1 3

sampled w.p. at least 1 − e−Ω(n) since by Lemma 14 the Ω(n) last bit positions cannot
be sampled correctly with the same probability. If this phase lasts for eΩ(�) iterations,
then we are done, and the theorem holds trivially. Thus, we shall assume that phase
1 lasts for at most poly (n) iterations.

During phase 2, we have observed by Lemma 11 that the random variable Zt
exceeds � in an iteration t ≤ ek� for some constant k > 0 w.p. at most e−Ω(�) , while in
the same iteration the Ω(n) last bits are sampled as all ones w.p. at most e−Ω(n) due to
Lemma 14. Thus, the all-ones bitstring can be sampled in that iteration w.p. at most
e−Ω(�) , and by the union bound the all-ones bitstring is sampled at least once in ek�
iterations w.p. at most e−Ω(�) . Note also that the last statement only holds if the con-
stant c (in � ≥ c log n) is chosen sufficiently large. Therefore, the algorithm takes at
least eΩ(�) iterations to optimise the function w.p. at least 1 − e−Ω(�).

By the law of total expectation [36], the expected runtime is at least
eΩ(�)(1 − e−Ω(�)) = eΩ(�) , which completes the proof. ◻

4 Runtime Analysis Under High Selective Pressure

4.1 A New Lower Bound for the UMDA

When the selective pressure � = �∕� is set too high such that the value of � , defined
in Eq. 11, exceeds the problem instance size n, phase 1 will end when the � fittest
individuals are all-ones bitstrings. By Eq. 11, this case occurs when

for any constant � ∈ (0, 1) . The right-hand side is at least (1 − �)∕e for any
n ≥ (1 + �)∕� [30], and the above inequality always holds if we choose the selective
pressure � ≤ (1 − �)2∕e , We now recall the following result [5, Theorem 4], which
in this case yields the first upper bound on the expected runtime for the UMDA on
the LeADIngOnes function.

Theorem 16 The UMDA with an offspring population size � ≥ c log n for some suf-
ficiently large constant c > 0 and a selective pressure satisfying

for any constant 𝛿 > 0 has an expected runtime of O
(

n� log � + n2
)

 on the LeADin-
gOnes function.

Until now, we are still missing a lower bound on the expected runtime for the
UMDA on the LeADIngOnes function, and in this section, we aim at deriving such a
lower bound.

�

1 − �
≤

(

1 −
1

n

)n

�

�
≤

1

e(1 + �)

1 3

Algorithmica

Recall that the random variable Zt , defined in Eq. 5, denotes the number of mar-
ginals, counting from the first bit position, which are set to the upper border 1 − 1∕n
in iteration t, and the random variable Z∗

t
 , defined in Eq. 6, denotes the fitness

value of the fittest individual. The following lemma shows the expected difference
between these two random variables in an arbitrary iteration t ∈ ℕ . We pessimisti-
cally assume that the Zt first marginals are all set to one since we are only interested
in a lower bound and this will speed up the optimisation process.

Lemma 17 It holds for any t ∈ ℕ that �[Z∗
t
− Zt] < log(2e𝜇).

Proof Let �t∶=Z∗
t
− Zt . Consider the bit positions Zt + 2, Zt + 3,… , n among the �

fittest individuals. We shall view this as an abstract population of � individuals, each
of length n − (Zt + 1) , and also let ��

t
∶=Z∗

t
− (Zt + 1) = �t − 1 . In other words, �′

t
 is a

random variable describing the number of leading 1s of the fittest individual in this
abstract population. We first note that if Xt,Zt+1

= 0 , then Z∗
t
= Zt and �t = 0 . By the

law of total expectation, we get

We are left to calculate the last conditional expectation. Consider again the abstract
population introduced above. The probability of sampling at most k leading 1s in
this population is 1 −

∏(Zt+2)+k

i=Zt+2
pt,i, and the probability that all � in the abstract pop-

ulation have more than k leading 1s is

Because �[Y] ≤
∑∞

i=0
Pr(Y > i) for any bounded integer-valued random variable Y,

we then get

We know, by Lemma 13, that the values of the marginals pt,i for each i ≥ Zt + 2
stay at 1/2 in expectation and also, by Lemma 12, that the samplings at these bit
positions are pairwise independent. Note also that x ↦ (1 − x)� is a convex func-
tion for any x ∈ [0, 1] , so by Jensen’s inequality for convexity [44, p. 61] we get
�[(1 − x)�] ≥ (1 − �[x])� . Thus,

�
[

𝛿t ∣ Zt
]

=

=0

���������������������������

�

[

𝛿t ⋅ �{Xt,Zt+1
=0} ∣ Zt

]

+�
[

𝛿t ⋅ �{Xt,Zt+1
>0} ∣ Zt

]

= �

[

(1 + 𝛿�
t
) ⋅ �{Xt,Zt+1

>0} ∣ Zt

]

≤ 1 + �

[

𝛿�
t
⋅ �{Xt,Zt+1

>0} ∣ Zt

]

.

1 −

(

1 −

(Zt+2)+k
∏

i=Zt+2

pt,i

)�

.

�

[

𝛿�
t
⋅ �{Xt,Zt+1

>0} ∣ Zt, pt,Zt+2,… , pt,n

]

≤

∞
∑

k=0

(

1 −

(

1 −

(Zt+2)+k
∏

i=Zt+2

pt,i

)𝜇)

.

 Algorithmica

1 3

which completes the proof. ◻

Lemma 17 gives an important insight that the two random variables Zt and Z∗
t

only differ by a logarithmic additive term at any point in time in expectation. The
global optimum is found when the random variable Z∗

t
 reaches the value of n. We can

therefore alternatively analyse the random variable Zt instead of Z∗
t
 . In other words,

the random variable Zt , starting from an initial value Z0 given in Lemma 7, has to
travel an expected distance of n −O(log�) − Z0 (at bit positions) before the global
optimum is found. We shall apply the additive drift theorem (for a lower bound)
[21] for a potential function g(x) = n − x on the stochastic process (Zt ∶ t ∈ ℕ) . The
single-step change (also called drift) is

We are ready to show a lower bound on the expected runtime of the UMDA on the
LeADIngOnes function.

Theorem 18 The UMDA with a parent population size � ≥ c log n for some suffi-
ciently large constant c > 0 and a selective pressure satisfying

for any constant � ∈ (0, 1) has an expected runtime of Ω(n�∕ log �) on the LeADin-
gOnes function.

Proof Let i∶=Zt + 1 . By definition, Zt+1 = Zt and Δt = 0 if there are less than � indi-
viduals with at least i leading 1s sampled in the next iteration (i.e., Ct+1,i < 𝜇). Thus,
the drift is maximised when Ct+1,i ≥ � . By the law of total expectation, we then get

�

[

𝛿�
t
⋅ �{Xt,Zt+1

>0} ∣ Zt

]

= �

[

�

[

𝛿�
t
⋅ �{Xt,Zt+1

>0} ∣ Zt, pt,Zt+2,… , pt,n

]

∣ Zt

]

(by tower rule)

≤

∞
∑

k=0

(

1 − �

[(

1 −

(Zt+2+k)
∏

i=Zt+2

pt,i

)𝜇

∣ Zt

])

(by linearity of expectation)

≤

∞
∑

k=0

(

1 −

(

1 − �

[(Zt+2+k)
∏

i=Zt+2

pt,i ∣ Zt

])𝜇)

(by Jensen’s inequality)

≤

∞
∑

k=0

(

1 −

(

1 −

(Zt+2+k)
∏

i=Zt+2

�
[

pt,i ∣ Zt
]

)𝜇)

(by independence, Lemma 12)

=

∞
∑

k=0

(1 − (1 − 2−(k+1))𝜇) (by Lemma 13)

< log𝜇 + 2, (by the proof of Lemma 7)

Δt∶=g(Zt) − g(Zt+1) = Zt+1 − Zt.

�

�
≤

(1 − �)2

e

1 3

Algorithmica

We are left to bound the expectation. Given Zt , we know by Lemma 13 that the
marginals of bit positions from Zt + 2 to n stay at 1/2 in expectation, and also by
Lemma 8 the samplings at these bit positions are pairwise independent. By follow-
ing the proof of Lemma 17, we can quickly upper bound the required expectation as
follows.

Then, the expected drift is

Because the random variable Zt has to travel an expected distance of
n −O(log �) − Z0 before the global optimum is found, by the additive drift theo-
rem [21] the expected number of iterations, conditional on Z0 , until the optimum is
found for the first time is upper bounded by (n −O(log �) − Z0)∕O(log �). Note that
�[Z0] = O(log �) , there are � function evaluations performed in each iteration, and
by the tower rule, we then obtain an overall expected runtime of

which completes the proof. ◻

4.2 A Tighter Upper Bound for the PBIL

In this section, we aim at showing a tighter upper bound than the upper bound of
O
(

n2+c
)

 in [47] for the PBIL on the LeADIngOnes function. We shall apply the level-
based theorem. To begin with, we first remark that Algorithm 2 assumes a mapping
D from the space of populations X� to the space of probability distributions over the
search space. The mapping D is often said to depend on the current population only
[3]; however, it is not always necessary, especially for the PBIL with a sufficiently
large offspring population size � . The rationale behind this is that in each iteration
the PBIL draws � samples from the product distribution, specified in Eq. 2, that cor-
respond to � individuals in the current offspring population. If the number of sam-
ples � is sufficiently large, it is very unlikely that the many empirical frequencies of
ones deviate far from the true marginals. We will make this intuition more rigorous
via the DKW inequality (see Theorem 2).

�
[

Δt ∣ Zt
]

=

=0

���������������������������

�

[

Δt ⋅ �{Ct+1,i<𝜇}
∣ Zt

]

+�
[

Δt ⋅ �{Ct+1,i≥𝜇}
∣ Zt

]

= �
[

Δt ∣ Ct+1,i ≥ 𝜇, Zt
]

⋅ Pr(Ct+1,i ≥ 𝜇 ∣ Zt)

≤ �
[

Δt ∣ Ct+1,i ≥ 𝜇, Zt
]

= �
[

Zt+1 ∣ Ct+1,i ≥ 𝜇, Zt
]

− Zt

�
[

Zt+1 ∣ Ct+1,i ≥ �, Zt
]

≤ Zt + 1 +O(log �).

�[Δt ∣ Zt] = O(log �).

� ⋅

n −O(log �) − �[Z0]

O(log �)
= Ω

(

n�

log �

)

,

 Algorithmica

1 3

We shall use a canonical partition of the search space, where each subset Aj con-
tains bitstrings with j leading 1s.

Thus, there are n + 1 levels, ranging from A0 to An . We then need to verify three
conditions in Theorem 1. Recall that A

≥j = ∪n
i=j
Ai . For conditions (G1) and (G2), we

assume that there are at least �0� individuals in levels A
≥j in iteration t. Following

[5], we choose �0 = �∕� . This implies that the � fittest individuals have at least j
leading 1s. We define

to be the frequency of ones at bit position i in the entire population of � individu-
als. We now show under the assumption of the condition (G1) of the level-based
theorem that if the population size is � = Ω(log n) , the first j marginals cannot be too
close to the lower border 1/n with high probability.

Lemma 19 Assume that |Pt ∩ A
≥j| ≥ �0� and � ≥ c((1 + 1∕�)∕�0)

2 ln(n) for any con-
stants c, 𝜀 > 0 and �0 ∈ (0, 1), then

(a)
∏j

i=1
pt,i ≥ �0∕(1 + �) w.p. at least 1 − 2n−2c , and

(b) pt,i ≥ �0∕(1 + �) w.p. at least 1 − 2n−2c for an arbitrary i ∈ [j].

Proof We only show the first statement as the second follows from the first state-
ment. Let Qi be the number of ones sampled among the j first bit positions in the i-th
individual in the current population Pt . By the assumption |Pt ∩ A

≥j| ≥ �0� on the
current population, the empirical distribution function of Qi must satisfy

where q̂t ≥ 𝛾0 is the fraction of individuals in the current population with j lead-
ing ones, while the true distribution function satisfies F(j − 1) = 1 − qt , where
qt ∶=

∏j

i=1
pt,i is the probability of sampling at least j leading ones in an individual.

The DKW inequality yields that

for all 𝜙 > 0 . Therefore, with probability at least 1 − 2e−2��
2 it holds

q̂t − qt ≤ 𝜙 and, thus, qt ≥ q̂t − 𝜙 ≥ 𝛾0 − 𝜙 . Choosing � ∶= ��0∕(1 + �) , we
get qt =

∏j

i=1
pt,i ≥ �0(1 − �∕(1 + �)) = �0∕(1 + �) with probability at least

1 − 2e−2�
2� ≥ 1 − 2n−2c . ◻

(19)Aj∶={x ∈ X ∶ LeadingOnes(x) = j}.

p̃t,i∶=
1

�

�
∑

j=1

x
(j)

i

F̂𝜆(j − 1) =
1

𝜆

𝜆
∑

i=1

�{Qi≤j−1}
≤ 1 − q̂t,

Pr(q̂t − qt > 𝜙) ≤ Pr(|q̂t − qt| > 𝜙) ≤ 2e−2𝜆𝜙
2

1 3

Algorithmica

Lemma 19 tells us that if the current level of the population is j, then all mar-
ginals pt,1, pt,2,… , pt,j are at least �0∕(1 + �) in an iteration t ∈ ℕ with probability
polynomially close to one. To show an upper bound on the expected runtime for the
PBIL on the LeADIngOnes function, we first apply the level-based theorem to obtain
an upper bound conditional on the event that for all iterations t ≤ t∗ , and 1 ≤ i ≤ j ,
where j is the current level in iteration t, satisfy pt,i ≥ �0∕(1 + �) where t∗ is a suffi-
ciently long time interval which will be specified later. In the end, we follow the line
of argumentations put forward in [10, Theorem 8] to derive an overall unconditional
expected runtime.

We first introduce the AM-GM inequality [34].

Lemma 20 (AM-GM Inequality) Let a1,… , an be n non-negative real numbers. It
holds that

Equality occurs if and only if a1 = a2 = ⋯ = an.

We are ready to establish an improved upper bound on the expected runtime of
the PBIL on the LeADIngOnes function. Surprisingly, the proof is straightforward
and not very technically demanding compared to the proof in [47].

Theorem 21 The PBiL with an offspring population size � with c log n ≤ � = poly (n)
for a sufficiently large constant c > 0, a constant smoothing parameter � ∈ (1∕e, 1]
and a constant selective pressure satisfying

for any constant 𝜀 > 0, has an expected runtime of O
(

n� log � + n2
)

 on the LeADin-
gOnes function.

Proof First, we partition the search space into “levels” using the canonical partition
defined in (19), in which each subset Aj contains individuals with exactly j leading
1s.There are a total of n + 1 levels ranging from A0 to An.

Let � ∶= T∕� denote the runtime of the algorithm in terms of number of itera-
tions. We say that failure event Ft occurs in iteration t ∈ ℕ if there exist two indi-
ces i, j ∈ ℕ satisfying 1 ≤ i ≤ j ≤ n such that |Pt ∩ A

≥j| ≥ �0� and pt,i < 𝛾0∕(1 + 𝜀) ,
where � and �0 are parameters which will be specified later. Furthermore, for any
t ≥ 0 , we let Gt ∶=

⋀t

i=0
¬Fi denote the event that there is no failure in the first t

iterations. We will first estimate the expected runtime of the algorithm starting from
any initial state, conditional on the event G�∨s , i.e., that no failure occurs before the
optimum has been found for the first time or before iteration s, whichever is the
larger. Here, s is a parameter we will define later, and x ∨ y ∶= max(x, y) . Note that
Pr

(

G𝜏∨s

)

> 0 because any new individual in any iteration is optimal with probability

n
∑

i=1

ai

n
≥

n
∏

i=1

a
1

n

i
.

(20)�

�
≤

(

�2+ln(1+�)

e(1 + �)

)1∕ ln(e�)

 Algorithmica

1 3

at least n−n > 0 . Afterwards, we will estimate the overall expected runtime of the
algorithm on the function.

To obtain an upper bound on the expected runtime conditional on the event G�∨s ,
we apply the level-based theorem with respect to the partition A0,… ,An described
above.

For the two conditions (G1) and (G2), assuming that |Pt ∩ A
≥j| ≥ �0� = � , we

are required to show that the probability of sampling an offspring in levels A
≥j+1

in iteration t + 1 is lower bounded by (1 + �)� for some constant 𝛿 > 0 . We note by
Lemma 4 that this probability can be bounded from below as follows:

that holds for any vector q∶=(q1,… , qj) , which majorises the vector
p∗
t+1

∶=(pt+1,1,… , pt+1,j) . In the remainder of this proof, we shall construct such a
vector q from vector p∗

t+1
.

In order to construct vector q, we will shift the weight
∑j

i=1
pt+1,i as far as possible

to the marginals with smaller indices. The trivial upper bound on each component
qi is the upper border 1 − 1∕n . For the lower bound, we note from the assumption
|Pt ∩ A

≥j| ≥ � that the � fittest individuals have at least j leading 1s, meaning that
when updating the model we always have pt+1,i = (1 − �)pt,i + � ≥ � for each i ∈ [j] .
Therefore, a trivial lower bound on each component qi is the smoothing parameter � .
We define a vector q = (q1,… , qj) as follows:

for an integer m = ⌊g(j)⌋ , where

Because of the floor function, we always get g(j) − 1 < m ≤ g(j) , and thus
� ≤ qm+1 ≤ 1 − 1∕n , meaning that the defined value of the component qm+1 is indeed
a probability. By the definition of the vector q in (21), we have for any k ∈ [j − 1]
that

and

j+1
∏

i=1

pt+1,i ≥

(

j
∏

i=1

qi

)

⋅ pt+1,j+1,

(21)qi =

⎧

⎪

⎨

⎪

⎩

1 − 1∕n, if 0 ≤ i ≤ m,

�, if m + 2 ≤ i ≤ j,
∑j

i=1
pt+1,i − m(1 − 1∕n) − (j − m − 1)�, if i = m + 1,

(22)g(j) =

∑j

i=1
pt+1,i − j�

1 − 1∕n − �
≥

∑j

i=1
pt+1,i − j�

1 − �
.

k
∑

i=1

qi ≥

k
∑

i=1

pt+1,i

j
∑

i=1

qi =

j
∑

i=1

pt+1,i.

1 3

Algorithmica

Therefore, according to Definition 3 the vector q majorises the vector p∗
t+1

 . By
Lemma 4, the probability of sampling the first j bits correctly is

which holds because (1 − 1∕n)m ≥ 1∕e for any integer m < n . Recall that we aim at
showing that the above probability is at least a constant, so we are done if we can
show that j − m = O(1) . We are going to show that this is indeed the case.

Let p0∶=�0∕(1 + �) . We get by Lemmas 19 and 20 that the weight

thus,

We also have the following.

where the last inequality follows the fact that ln(x) ≤ n(x1∕n − 1) for all n > 0
and x > 0 [39]. Since the value �0 is assumed constant, and so is the value
p0 = �0∕(1 + �) for any constant 𝜀 > 0 ; thus,

meaning the the probability of sampling the first j bits correctly in iteration t + 1 is at
least a constant. In the remainder of the proof, we will use this result to verify condi-
tions (G1) and (G2) of the level-based theorem.

For condition (G1), we are interested in a lower bound zj on the probability
of sampling an offspring in levels A

≥j+1 in iteration t + 1 . Because the marginal
pt+1,j+1 ≥ 1∕n , this probability is

(23)
j

∏

i=1

pt+1,i ≥

j
∏

i=1

qi ≥
(

1 −
1

n

)m

⋅ �j−m ≥
�j−m

e
,

(24)
j

∑

i=1

pt,i ≥ j ⋅

(

j
∏

i=1

pt,i

)1∕j

≥ j ⋅ p
1∕j

0
;

j
∑

i=1

pt+1,i = (1 − �)

j
∑

i=1

pt,i + j� ≥ (1 − �)jp
1∕j

0
+ �j.

j − m < j − (g(j) − 1) (since m > g(j) − 1)

≤ j + 1 −
(1 − 𝜌)jp

1∕j

0
+ 𝜌j − j𝜌

1 − 𝜌
(by Eq. 22)

= 1 + j(1 − p
1∕j

0
)

≤ 1 + j ⋅ (− ln(p0)∕j)

= 1 − ln(p0),

(25)j − m ≤ 1 − ln(p0) = O(1),

 Algorithmica

1 3

Thus, condition (G1) is satisfied with the lower bound z∗ = zj = Ω(1∕n).
For condition (G2), assuming further that |Pt ∩ A

≥j+1| ≥ �� , meaning that the mar-
ginal at bit position j + 1 will be set to pt+1,j+1 ≥ (1 − �)pt,j+1 + �(��)∕� ≥ ��∕�0 . In
this case, the probability of sampling the first j + 1 bits correctly is

For � = 1 , the lower bound in (26) becomes �∕(e�0) , and the condition (G2) can be
easily confirmed by setting �0 ≤ 1∕(e(1 + �)) for any constant 𝜀 > 0 . We note that
this is already obtained in Theorem 16 for the UMDA on the LeADIngOnes function.
Otherwise, if the smoothing parameter 𝜌 < 1 , we can rewrite

for any constant 𝜀 > 0 , then (26) is equivalent to

which always holds if we choose the value �0 such that

For any � ∈ (0, 1] , the right-hand side of Eq. 27 is always less than one as
1 − ln � ≥ 1 , so in the left-hand side we require 1 + ln 𝜌 > 0 , which is equivalent to
𝜌 > 1∕e . We then obtain the following bound on �0:

The smoothing parameter � is a constant, so is the upper bound on �0 . In the end,
condition (G2) of Theorem 1 is verified.

To satisfy the condition (G3), it suffices to choose � ≥ c log n for a sufficiently
large constant c > 0.

(

j
∏

i=1

pt+1,i

)

⋅ pt+1,j+1 ≥
�j−m

e
⋅

1

n
(by Eq. 23)

≥
�O(1)

en
(by Eq. 25)

= Ω
(

1

n

)

.

(26)

(

j
∏

i=1

pt+1,i

)

⋅ pt+1,j+1 ≥
�1−ln p0

e
⋅

��

�0
≥

�2−ln(p0)�

e�0
=

�2�

�ln(p0)�0e
.

�ln(p0) = p
ln �

0
=

�
ln �

0

(1 + �)ln �

≥
�2�

�0e
⋅

(1 + �)ln �

�
ln �

0

=
�2�(1 + �)ln �

e�
1+ln �

0

≥ (1 + �)� ,

(27)�
1+ln �

0
≤

�2

e(1 + �)1−ln �
=

�2+ln(1+�)

e(1 + �)
.

(28)�0 ≤

(

�2+ln(1+�)

e(1 + �)

)1∕ ln(e�)

.

1 3

Algorithmica

Having verified the three conditions (G1), (G2) and (G3), and noting that
ln
(

6𝛿𝜆∕(4 + 𝛿𝜆zj)
)

< ln (3𝛿𝜆∕2) , Theorem 1 now guarantees an upper bound, for
some constant c1 > 0,

To obtain an upper bound on the unconditional expected runtime, we divide the run
into consecutive phases, each of length s ∶= 2t∗ = poly (n) iterations. Note that for
all i ∈ ℕ , the event � ≤ s is independent of the failure event Fs+i . By Lemma 281 and
(29), it follows that the probability that the algorithm finds the optimum within one
phase is

We now estimate the probability of the event Gs . By Lemma 19 and a union bound,
failure event Ft occurs with probability at most 2n−2c+1 assuming the population size
satisfies � ≥ c((1 + 1∕�)∕�0)

2 ln(n) for a constant c > 0 . By another union bound
and assuming that c is chosen sufficiently large, the probability of no failure within
s = poly (n) iterations is

From (30) and (31), it follows that the algorithm, starting from any initial state, finds
the optimum within a phase with probability at least 1∕2 − o(1).

If the algorithm does not find the optimum within a phase or event Gs does not
hold, the algorithm enters some unknown state at the end of the current phase.
Because our analysis makes no assumption about the state of the algorithm at the
beginning of the phase, we can repeat the same analysis for the next phase. Hence,
the number of phases until an optimum is found for the first time is stochastically
dominated by a geometric random variable [35, Definition 2.8] with success proba-
bility 1∕2 − o(1) . By [7, Corollary 8.3] and [35, p. 32], the expected number of itera-
tions until an optimum is found for the first time is at most 1∕(1∕2 − o(1)) = O(1).

It follows that the overall expected runtime of the PBIL on the LeADIngOnes
function is O(�s) = O

(

n� log � + n2
)

 , which completes the proof. ◻

We note from Eq. 28 that the threshold on the selective pressure is a function
of the smoothing parameter � ∈ (1∕e, 1] , denoted by h(�) . When � → 1 , that is, the
PBIL converges to the UMDA, h(�) → 1∕(e(1 + �)) , which matches the selective
pressure considered in Theorem 16. Also, h(�) is an increasing function and has a
very small value when � gets closer to 1∕e ≈ 0.3679 (see Fig. 1). In other words, we
need to pick an extremely high selective pressure when the smoothing parameter �
approaches 1/e (from above).

(29)�
[

T ∣ G�∨s

]

≤

(

8

�2

)

n−1
∑

j=0

[

� ln
(

3��

2

)

+
1

zj

]

≤ c1(n� log � + n2) =∶ �t∗.

(30)Pr (� ≤ s) ≥ Pr
(

Gs

)

(1 − t∗∕s) = Pr
(

Gs

)

∕2.

(31)Pr
(

Gs

)

≥ 1 − s2n−2c+1 = 1 − o(1).

1 In the Appendix.

 Algorithmica

1 3

4.3 Direct Extensions

The function

is another test function also widely used in runtime analyses of eDAs [6, 10, 27, 46].
This is a linear function where the bit weights decrease exponentially with bit posi-
tions. Due to some similarity with the LeADIngOnes function, we will show that the
runtime bound derived in Theorem 21 can be extended to the BInVAL function. We
first partition the search space into non-empty disjoint subsets A0,… ,An as follows.

for j ∈ [n] ∪ {0} , where
∑0

i=1
2n−i = 0 . The following lemma formalises the similar-

ity between the two functions.

Lemma 22 x ∈ Aj if and only if LeadingOnes(x) = j.

Proof For the sufficient condition, if x ∈ Aj , meaning that

then the first j bits must be 1s, followed by a 0 at bit position j + 1 . This is due to the
fact that 2n−(j+1) >

∑n

i=j+2
2n−i . For the necessary condition, if LeadingOnes(x) = j ,

the first j bits are 1s, followed by a 0 at bit position j + 1 . The BInVAL-value of the
bitstring is at most

BinVal(x)∶=

n
∑

i=1

2n−ixi

Aj∶=

{

x ∈ X ∣

j
∑

i=1

2n−i ≤ BinVal(x) <

j+1
∑

i=1

2n−i
}

j
∑

i=1

2n−i ≤ BinVal(x) <

j+1
∑

i=1

2n−i,

Fig. 1 Threshold on the selec-
tive pressure for the PBIL with
� ∈ (1∕e, 1] on the LeADIngOnes
function in Eq. 28 with � = 0.01 .
Note also that 1∕e ≈ 0.3679 and
1∕(e(1 + �)) ≈ 0.3642

1 3

Algorithmica

Therefore, x must be in the level of Aj . ◻

We now consider the sorting of individuals after the population is sampled in
an arbitrary iteration. For the LeADIngOnes function, all that matters to determine
the ranking of a bitstring is the number of leading 1s. Alternatively, we can say the
ranking of an individual depends on the position of the leftmost zero in the bitstring,
and all following bits have no contribution to the overall fitness of the individual.
However, this is not the case for the BInVAL function, where all individuals are first
sorted according to their LeADIngOnes-values. Ties are broken not uniformly at
random as for the LeADIngOnes function but by comparing the number of leading
1s following the leftmost zero among these individuals. However, since the proof
of Theorem 21 never takes bits after the leftmost zero into account, the result also
holds for the BInVAL function. The following corollary yields the first upper bound
on the expected runtime of the PBIL on the BInVAL function. We note that a similar
bound for the UMDA on the BInVAL function is shown in [6].

Corollary 23 The PBiL with an offspring population size � ≥ c log n for a sufficiently
large constant c > 0, a constant smoothing parameter � ∈ (1∕e, 1], and a constant
selective pressure satisfying

for any constant 𝜀 > 0, has an expected runtime of O
(

n� log � + n2
)

 on BinVAL.

Furthermore, due to the similarity between the PBIL and the �-MMAS [42], we
are now able to establish the expected runtime of the �-MMAS on the LeADIngOnes
and BInVAL functions. For the �-MMAS, we have � = 1 , substituting this into Eq. 20
and noting also that � ≥ c log n , we then obtain

Corollary 24 The �-MMAS with a population size � ≥ c log n for a sufficiently large
constant c > 0 has an expected runtime of O

(

n� log � + n2
)

 on the LeADingOnes and
BinVAL functions.

∑

i≠j+1

2n−i <

j+1
∑

i=1

2n−i.

�

�
≤

(

�2+ln(1+�)

e(1 + �)

)1∕ ln(e�)

� ≥ max

{

c log n,

(

�2+ln(1+�)

e(1 + �)

)1∕ ln(e�)}

= Ω(log n).

 Algorithmica

1 3

5 Runtime Analyses on Noisy LeadingOnes

We also consider a prior noise model and formally define the problem for any con-
stant 0 < p < 1 as follows.

We denote F as the noisy fitness and f as the actual fitness. For simplicity, we also
denote Pt as the population prior to noise. The same noise model is studied in [4, 11,
17, 41, 43] for population-based eAs on the OneMAx and LeADIngOnes functions.

We shall make use of the level-based theorem and first partition the search space
X into n + 1 disjoint subsets A0,… ,An as in Eq. 19. Recall that A

≥j = ∪n
i=j
Ai . We

then need to verify three conditions (G1), (G2) and (G3) of the level-based theorem,
where due to the presence of noise we choose the parameter �0 = �∕((1 − �)(1 − p))
for any constant � ∈ (0, 1) and the selective pressure � = �∕� to leverage the impact
of noise in our analysis. The following lemma tells us the number of individuals in
the population in iteration t which have fitness F(x) = f (x) ≥ j.

Lemma 25 Assume that |Pt ∩ A
≥j| ≥ �0�, where �0∶=�∕((1 − p)(1 − �)) for some

constant � ∈ (0, 1), and � = �∕� is assumed constant. Then, there are at least �
individuals with the fitness F(x) = f (x) ≥ j in the noisy population w.p. 1 − e−Ω(�).

Furthermore, there are at most �� individuals with actual fitness f (x) ≤ j − 1 and
noisy fitness F(x) ≥ j for some small constant � ∈ (0, 1) w.p. 1 − e−Ω(�).

Proof We take an alternative view on the sampling of the population and the appli-
cation of noise. More specifically, we first sample the population, sort it in descend-
ing order according to the true fitness, and then noise occurs at any individual w.p.
p. Because noise does not occur at an individual w.p. 1 − p , amongst the �0� indi-
viduals in levels A

≥j , in expectation there are

individuals unaffected by noise. Furthermore, by a Chernoff bound [36], there are
at least (1 − �) ⋅ �∕(1 − �) = � such individuals for some constant 0 < 𝛿 < 1 w.p. at
least 1 − e−(�

2∕2)⋅�∕(1−�) = 1 − e−Ω(�) , which proves the first statement.
For the second statement, we only consider individuals with actual fitness

f (x) < j and noisy fitness F(x) ≥ j in the population. If such an individual is selected
when updating the model, it will introduce a 0 to the total number of 0s among the
� fittest individuals for the first j bits. Let B denote the number of such individu-
als. There are at most (1 − �0)� individuals with actual fitness f (x) < j , so the prob-
ability that their noisy fitness values are at least F(x) ≥ j is at most p/n because a
specific bit must be flipped in the prior noise model. Hence the expected number of
these individuals is upper bounded by

F(x1,… , xn) =

{

f (x1,… , xn), w.p. 1 − p, and

f (… , 1 − xi,…), w.p. p, where i ∼ Unif([n]).

(1 − p)�0� =
��

1 − �
=

�

1 − �

1 3

Algorithmica

We now show by a Chernoff bound that the event B ≥ �� for a small constant
� ∈ (0, 1) occurs w.p. at most e−Ω(�) . We shall rely on the fact that �p∕n ≤ ��∕2 for
sufficiently large n, which follows from the assumption �∕� = O(1) . We use the
parameter �∶=��∕�[B] − 1 , which by (32) and the assumption �p∕n ≤ ��∕2 satis-
fies � ≥ ��n∕(p�) − 1 ≥ 1 . We also have the lower bound

A Chernoff bound [36] now gives the desired result

which completes the proof. ◻

We now derive upper bounds on the expected runtime of the UMDA on the LeAD-
IngOnes function in the noisy environment.

Theorem 26 Consider a prior noise model with constant parameter p ∈ (0, 1). The
UMDA with a parent population size � ≥ c log n for some sufficiently large constant
c > 0 and a constant selective pressure satisfying

for some constants �, � ∈ (0, 1) has an expected runtime of O
(

n� log � + n2
)

 on the
LeADingOnes function.

Proof We will apply the level-based theorem. Each level Aj for j ∈ [n] ∪ {0} is for-
mally defined as in (19), and there are a total of m∶=n + 1 levels.

For the condition (G1), we assume that |Pt ∩ A
≥j| ≥ �0� , and we are required to

show that the probability of sampling an offspring in levels A
≥j+1 in iteration t + 1 is

lower bounded by a value zj . We choose the parameter �0 = �∕((1 − �)(1 − p)) for
any constant � ∈ (0, 1) and the constant selective pressure � = �∕� . For conveni-
ence, we also partition the noisy population into four groups:

1. Individuals with fitness f (x) ≥ j and F(x) ≥ j.
2. Individuals with fitness f (x) ≥ j and F(x) < j.
3. Individuals with fitness f (x) < j and F(x) ≥ j.
4. Individuals with fitness f (x) < j and F(x) < j.

By Lemma 25, there are at least � individuals in group 1 w.p. 1 − e−Ω(�) . The algo-
rithm selects the � fittest individuals according to the noisy fitness values to update
the probabilistic model. Hence, unless the mentioned event does not happen, no
individuals from group 2 or group 4 will be included when updating the model.

(32)�[B] ≤
(1 − 𝛾0)𝜆p

n
<

𝜆p

n
.

� ⋅ �[B] = �� − �[B] ≥ �� −
�p

n
≥

��

2
.

(33)Pr(B ≥ ��) = Pr(B ≥ (1 + �)�[B]) ≤ e−��[B]∕3 = e−��∕6,

�

�
≤

1 − �

e(1 + �)

 Algorithmica

1 3

We are now going to analyse how individuals from group 3 impact the marginal
probabilities. Let B denote the number of individuals in group 3. We pessimistically
assume that the algorithm uses all of the B individuals in group 3 and � − B indi-
viduals chosen from group 1 when updating the model. For all i ∈ [j] , let Qi be the
number of individuals in group 3 which have 1s at bit positions 1 through j, except
for one position i where they have a 0. By definition, we then have

∑j

i=1
Qi = B. The

marginal probabilities after updating the model are

Again by Lemma 4, we can lower bound the probability of sampling an offspring x
with actual fitness f (x) ≥ j , by

which holds for any vector q∶=(q1,… , qj) which majorises the vector (pt,1,… , pt,j) .
By Definition 3, we construct such a vector q which by the definition majorises the
vector (pt,1,… , pt,j) as follows.

We now show that with high probability, the vector element qj stays within the inter-
val [1 − 1∕n − �, 1 − 1∕n] , i.e., qj is indeed a probability. Since pt,i ≤ 1 − 1∕n for all
i ≤ j , we have the upper bound qj ≤ (1 − 1∕n)j − (1 − 1∕n)(j − 1) = 1 − 1∕n . For
the lower bound, we note from (34) that pt,i ≥ 1 − Qi∕� − 1∕n for all i ≤ j and any
Qi ≥ 0 , so we also obtain

By Lemma 25, we have B ≤ �� for some small constant � ∈ (0, 1) w.p. 1 − e−Ω(�) .
Assume that this high-probability event actually happens, we therefore have
qj ≥ 1 − 1∕n − � . From this result, the definition of the vector q and (35), we can
conclude that the probability of sampling in iteration t + 1 an offspring x with actual
fitness f (x) ≥ j is

(34)pt,i =

{

1 − Qi∕𝜇, if Qi > 0,

1 − Qi∕𝜇 − 1∕n, if Qi = 0.

(35)
j

∏

i=1

pt,i ≥

j
∏

i=1

qi,

qi =

�

1 − 1∕n, if i < j,
∑j

k=1
pt,k − (1 − 1∕n)(j − 1), if i = j.

qj ≥

j
∑

k=1

(

1 −
Qi

�
−

1

n

)

−
(

1 −
1

n

)

(j − 1)

= 1 −
1

n
−

j
∑

k=1

Qi

�

= 1 −
1

n
−

B

�
.

j
∏

i=1

pt,i ≥

j
∏

i=1

qi ≥
(

1 −
1

n

)j−1(

1 −
1

n
− �

)

≥
1 − � − o(1)

e
= Ω(1)

1 3

Algorithmica

since (1 − 1∕n)j−1 ≥ 1∕e for any n > 0 . Because we also have pt,j+1 ≥ 1∕n , the prob-
ability of sampling an offspring in levels A

≥j+1 is at least Ω(1) ⋅ (1∕n) = Ω(1∕n) .
Thus, the condition (G1) holds with a value of zj = Ω(1∕n).

For the condition (G2), we assume further that |Pt ∩ A
≥j+1| ≥ �� for some value

� ∈ (0, �0) , and we are also required to show that the probability of sampling an off-
spring in levels A

≥j+1 is at least (1 + �)� for some small constant � ∈ (0, 1) . Because
the marginal pt,j+1 can be lower bounded by ��∕� , the above probability can be writ-
ten as follows.

where by choosing

for some constants �, � ∈ (0, 1) and some other constant �� ∈ (0, 1) . Thus, the condi-
tion (G2) of the level-based theorem is verified.

The condition (G3) requires the offspring population size to satisfy

which, by noting that �0 = (�∕�)∕((1 − �)(1 − p)) , is equivalent to

which can be easily satisfied by choosing a sufficiently large constant c in � ≥ c log n

.
Having verified the three conditions (G1), (G2) and (G3), and noting that

ln(𝛿𝜆∕(4 + 𝛿zj)) < ln(3𝛿𝜆∕2) , the level-based theorem now guarantees an upper
bound of

Note that, throughout the proof, we always assume the occurrence of the following
two events in each iteration (see Lemma 25):

(1) The number of individuals in group 1 is at least � w.p. 1 − e−Ω(�),
(2) The number of individuals in group 3 is B ≤ �� for some small constant � ∈ (0, 1)

w.p. 1 − e−Ω(�).

By the union bound, either or all of these events happen in an iteration t ∈ ℕ with
probability at most 2n−2c+1 + e−Ω(�) + e−Ω(�) = n−c2 for some constant c2 > 0 . The
complementary event occurs with probability at least 1 − n−c2 . Following the same

j+1
∏

i=1

pt,i ≥ pt,j+1 ⋅

j
∏

i=1

pt,i ≥
��

�
⋅

1 − � − o(1)

e
≥ (1 + �)� ,

�

�
≤

1 − � − o(1)

e(1 + �)
=

1 − ��

e(1 + �)

� ≥
4

�0�
2
ln

(

128m

�2 ⋅minj{zj}

)

,

� ≥
4(1 − �)(1 − p)

�2
ln

(

128m

�2 ⋅minj{zj}

)

,

O
(

n� log � + n2
)

.

 Algorithmica

1 3

line of argumentation as in [10, Theorem 8] (which has already been applied in the
proof of Theorem 21), the overall expected runtime is O

(

n� log � + n2
)

 . ◻
We remark here that the exponential lower bound in Theorem 15 for the LeADIn-

gOnes function without noise also holds for the noisy LeADIngOnes function. We are
also interested in the runtime of the PBIL on the noisy LeADIngOnes. The following
theorem derives such a result.

Theorem 27 Consider the prior noise model with constant parameter p ∈ (0, 1).
The PBiL with a parent population size � ≥ c log n for some sufficiently large con-
stant c > 0, a constant smoothing parameter � ∈ (1∕e, 1], and also a constant selec-
tive pressure satisfying

for some constant � ∈ (0, 1) has an expected runtime of O
(

n2 + n� log �
)

 on the
LeADingOnes function.

Proof We assume that �0 = �∕((1 − �)(1 − p)) for any constant � ∈ (0, 1) and the
selective pressure � = �∕� . We also partition the noisy population into four groups
as in the proof of Theorem 26 and pessimistically assume that the PBIL uses all of
the B individuals in group 3 and � − B individuals chosen from group 1 when updat-
ing the model. For all i ∈ [j] , let Qi be the number of individuals in group 3 which
has 1s at bit positions 1 through j, except for one position i where it has a 0. By defi-
nition, we then have

Similarly to the proof of Theorem 21, we shall show that the probability of sampling
the first j bits correctly is at least a constant using a majorisation argument. Because
noise only impacts the weight

∑j

i=1
pt+1,i , we still define the vector q as in (21)

and an integer m = ⌊g(j)⌋ as in (22). We are left to show a constant upper bound on
the difference j − m used in Eq. 23. We notice that in this case the weight becomes

which by noting that
∑j

i=1
Xi,t = j� −

∑j

i=1
Qi = j� − B satisfies

(36)
�

�
≤

(

�
2+

�e

1−�
+ln((1−p)(1+�)2)

e(1 + �)

)1∕ ln(e�)

(37)
j

∑

i=1

Qi = B.

j
∑

i=1

pt+1,i = (1 − �)

j
∑

i=1

pt,i +
�

�

j
∑

i=1

Xi,t

≥ (1 − �)(jp
1∕j

0
) +

�

�

j
∑

i=1

Xi,t, (by Eq. 24)

(38)≥ (1 − �)jp
1∕j

0
+

�

�
(j� − B) = (1 − �)jp

1∕j

0
+ �j − �

B

�
.

1 3

Algorithmica

Putting everything together, we then obtain

which by (33) that B ≤ �� for some small constant 𝜀 > 0 w.p. 1 − e−Ω(�) satisfies

Thus, the probability of sampling an offspring in levels A
≥j is at least a constant,

which immediately results in a lower bound of Ω(1∕n) on the probability of sam-
pling the first j + 1 bits correctly, confirming the condition (G1) of the level-based
theorem.

For condition (G2), we use the lower bound pt+1,j+1 ≥ ���∕� = ��∕� . Then, the
probability of sampling an offspring in levels A

≥j+1 is

which always holds if we choose the selective pressure � = �∕� such that

Similar to Eq. 27, we also require � ∈ (1∕e, 1] . The condition (G2) is now verified.
For condition (G3), it suffices to use a population size � ≥ c log n , for a suffi-

ciently large constant c > 0 . Having verified three conditions, Theorem 1 now
guarantees an upper bound of O

(

n2 + n� log �
)

 . Note that throughout the proof we
always assume the occurrence of the following three events:

(1) Each of the first j marginals is at least p0 ≥ �0∕(1 + �) w.p. 1 − 2n−2c
for any constants c > 0 and 𝜀 > 0 , which requires a population of
� ≥ c((1 + 1∕�)∕�0)

2 ln(n) = Ω(log n) (see Lemma 19),

j − mj + 1 −
(1 − �)jp

1∕j

0
− �B∕�

1 − �
(by Eq. 22 & Eq. 38)

= 1 +
�B

(1 − �)�
+ j − jp

1∕j

0

≤ 1 +
�B

(1 − �)�
− ln(p0), (by Eq. 25)

(39)≤ 1 +
���

(1 − �)�
− ln(p0) = 1 +

��

1 − �
− ln(p0) = O(1).

(

j
∏

i=1

pt+1,i

)

⋅ pt+1,j+1 ≥
�

e�
⋅ �

2+
��

1−�
−ln(p0) (by Eq. 26 & Eq. 39)

≥
��

2+
��

1−�

e�
⋅

(1 + �)ln �

�
ln �

0

≥
��

2+
��

1−�

e
⋅

(1 − p)ln �(1 + �)2 ln �

(�)1+ln �

≥ (1 + �)� ,

�

�
≤

(

�
2+

�e

1−�
+ln((1−p)(1+�)2)

e(1 + �)

)1∕ ln(e�)

.

 Algorithmica

1 3

(2) The number of individuals in group 1 (with actual fitness f (x) ≥ j and noisy
fitness F(x) ≥ j) is at least � w.p. 1 − e−Ω(�) (see Lemma 25),

(3) The number of individuals in group 3 is B ≤ �� for some small constant 𝜀 > 0
w.p. 1 − e−Ω(�).

By the union bound, either or all of these events happen in an iteration t ∈ ℕ with
probability at most 2n−2c+1 + e−Ω(�) + e−Ω(�) = n−c2 for some constant c2 > 0 . The
complementary event occurs with probability at least 1 − n−c2 . Following the same
line of argumentation as in [10, Theorem 8] (which has already been applied in the
proofs of Theorems 21 and 26), the overall expected runtime is O

(

n� log � + n2
)

 .
 ◻

Figure 2 plotted the threshold on the selective pressure in Eq. 36 for two noise
probabilities p = 0.2 and p = 0.95.

6 Experiments

In this section, we provide an empirical study to see how closely the theoretical
results match the experimental results for reasonable problem instance sizes, and
to investigate a broader range of parameters. Our analysis is focused on different
regimes on the selective pressure in the noise-free setting.

6.1 Under Low Selective Pressure

We have shown in Theorem 15 that when the selective pressure � ≥ (1 + �)∕e1−� for
any constants 𝛿 > 0 and � ∈ (0, 1) , the UMDA requires an expected runtime of eΩ(�)
to optimise the LeADIngOnes function. We now choose � = 0.2 and � = 0.1 , we then
get � ≥ (1 + 0.2)∕e1−0.1 ≈ 0.4879 . Thus, the choice � = 0.5 should be sufficient
to yield an exponential runtime. For the population size, we experiment with two

Fig. 2 Threshold on the selective pressure for the PBIL with � ∈ (1∕e, 1] on the noisy LeADIngOnes func-
tion in Eq. 36 with � = 0.01 for two noise probabilities p = 0.2 (left) and p = 0.95 (right). Note also that
1∕e ≈ 0.3679 and 1∕(e(1 + �)) ≈ 0.3642

1 3

Algorithmica

different settings: � = 5 log n (small) and � = n (large) for a problem instance size
n = 100 . Substituting everything into (11) and (12), we then get � ≈ 47 and � ≈ 87 .
The numbers of leading 1s of the fittest individual and the �-th individual in the
sorted population (denoted by random variables Z∗

t
 and Zt respectively) are shown

in Fig. 3 over an epoch of 5000 iterations. The dotted blue lines denote the constant
functions of � = 47 and � = 87 . One can see that the Zt-values keep increasing until
it reaches the value of � during the early stage and always stays well under value �
afterwards. Furthermore, Z∗

t
-values do not deviate too far from Zt that matches our

analysis since the chance of sampling all ones from the n − � last bits is exponen-
tially small.

Fig. 3 The LeADIngOnes-values of the fittest and the �-th individuals, i.e., Z∗ and Z, respectively, for the
UMDA for n = 100 and �∕� = 0.5 over 5000 iterations. (Top) Small population size � = 5 log n . (Bot-
tom) Large population size � = n . The upper and lower dotted lines denote the bounds � ≈ 87 in Eq. 12
and � ≈ 47 in Eq. 11, respectively, while the dashed line in the middle represents the value � ≈ 69 in
Eq. 13

 Algorithmica

1 3

We also run the same experiments for the PBIL when we further choose a
smoothing parameter of � = 0.5 ∈ (1∕e, 1] . As predicted, one can see that two ran-
dom variables Zt and Z∗

t
 stay well below the threshold � (Fig. 4).

6.2 Under High Selective Pressure

When the selective pressure is sufficiently high, that is, � ≤ (1 − o(1))(1 − �)∕e for
any constant � ∈ (0, 1) , there is an upper bound O

(

n2 + n� log �
)

 on the expected
runtime [5]. Theorem 18 yields a lower bound of Ω(n�∕ log n) . We start by looking
at how the values of random variable Zt and Z∗

t
 change over time. Our analysis shows

that it never decreases during the whole optimisation course with overwhelming

Fig. 4 The LeADIngOnes-values of the fittest and the � th individuals, i.e., Z∗ and Z, respectively, for
the PBIL with � = 0.5 for n = 100 and �∕� = 0.5 over 5000 iterations. (Top) Small population size
� = 5 log n . (Bottom) Large population size � = n . The upper and lower dotted lines denote the values
� ≈ 87 in Eq. 12 and � ≈ 47 in Eq. 11, respectively, while the dashed line in the middle represents the
value � ≈ 69 in Eq. 13

1 3

Algorithmica

probability and eventually reaches the value of n. Similarly, we consider the two
different settings for population size and also note that our result holds for a parent
population size � ≥ c log n , when the constant c > 0 must be tuned carefully; in this
experiment, we set c = 5 (an integer larger than 3 should be sufficient). We then get
� ≤ (1 − 1∕100)(1 − 0.1)∕e ≈ 0.3278 . Therefore, the choice of � = 0.1 should be
sufficient and we then get 𝛼 ≈ 160 > n = 100 . The experiment outcomes are shown
in Fig. 5. The empirical result shows that both the Z- and Z∗-values keep increas-
ing over the whole course of optimisation, matching our findings in Sect. 4.1. Fur-
thermore, the difference between the Z- and Z∗-values in each iteration is relatively
small, which again matches the result of Lemma 17.

Fig. 5 The LeADIngOnes-values of the fittest and the � th individuals, i.e., Z∗ and Z, respectively, in one
run of the UMDA with n = 100 and �∕� = 0.1 . (Top) Small population size � = 5 log n . (Bottom) Large
population size � = n

 Algorithmica

1 3

7 Conclusion

In this paper, we have derived runtime results for population-based univariate eDAs
(i.e., the UMDA and the PBIL) on the LeADIngOnes function—a well-known test
problem in the theory of evolutionary computation. For the UMDA, we have found
that the algorithm under a low selective pressure requires an exponential expected
runtime in the population size. More specifically, the algorithm takes an expected
runtime of 2Ω(�) when � ≥ c log n for a sufficiently large constant c > 0 and
�∕� ≥ (1 + �)∕e1−� for any constant 𝛿 > 0 and � ∈ (0, 1) . The analyses reveal the
limitations of the probabilistic model based on probability vectors as the algorithm
hardly stays at promising states for long enough to make progress. This leads the
algorithm into a non-optimal equilibrium state from which the global optimum is
exponentially unlikely to be sampled. On the other hand, when the selective pres-
sure is high we obtain a lower bound of Ω(n�∕ log �) on the expected runtime for the
algorithm.

We then moved on to consider the PBIL on the LeADIngOnes function. The algo-
rithm is shown to optimise the function within an expected runtime of O

(

n2
)

 for
appropriate parameter settings. Our findings here improve the currently best-known
upper bound of O

(

n2+c
)

 in [47] by a significant factor of Θ(nc) for some constant
c ∈ (0, 1).

Furthermore, we for the first time study the performances of the UMDA and the
PBIL on the LeADIngOnes function under a prior noise model, where a uniformly
chosen bit is flipped with a constant probability p ∈ (0, 1) before invoking the fitness
function. We show that an O

(

n2
)

 expected runtime still holds in this case for both
algorithms under an offspring population size � = Ω(log n) ∩O(n∕ log n) . Despite
the simplicity of the noise model, this can be viewed as the first step towards broad-
ening our understanding of the two algorithms’ behaviours in a noisy environment.

The UMDA with an offspring population size � = Ω(log n) ∩O(n∕ log n)
needs an O

(

n2
)

 expected time on the LeADIngOnes function [5]. In this case, Theo-
rem 18 yields a lower bound Ω(n2∕ log2 n) . Thus, it remains open whether this gap
of Θ(log2 n) could be closed to achieve a tight bound on the runtime. Note that
our result in Theorem 15, together with Theorem 16, provide upper bounds on the
expected runtime of the UMDA on the LeADIngOnes function when the selective
pressure is low and high (around the threshold value of 1/e). Although we could
choose the constant small/large enough such that the selective pressure becomes
arbitrarily close to 1/e, it is still unknown whether the UMDA will take a polynomial
or exponential expected runtime when the selective pressure is exactly 1/e. Another
avenue for future work would be to investigate the PBIL with a smoothing parameter
� ∈ (0, 1∕e) . Our analysis does not cover this regime of the smoothing parameter.

Additional Results

In the following variant of Markov’s inequality, we use the notation
x ∨ y ∶= max(x, y).

1 3

Algorithmica

Lemma 28 Assume any random variable � ∈ ℕ and a sequence of events F0,F1,…
such that for all s, i ∈ ℕ , the event � ≤ s is independent of the event Fs+i . Define
for all t ∈ ℕ the event Gt ∶=

⋀t

i=0
(¬Fi) . For any t ∈ ℝ, s ∈ ℕ with s ≥ t , if

Pr
(

G𝜏∨s

)

> 0 and

then Pr (𝜏 > s) ≤ 1 − Pr
(

Gs

)

(1 − t∕s).

Proof By the law of total probability, we have

 ◻

Acknowledgements Lehre was supported by a Turing AI Fellowship (EPSRC Grant ref EP/V025562/1).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Baluja, S.: Population-based incremental learning: a method for integrating genetic search based
function optimization and competitive learning. Technical report, Carnegie Mellon University
(1994)

 2. Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in multiobjective evo-
lutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 174–188 (2003)

 3. Corus, D., Dang, D.C., Eremeev, A.V., Lehre, P.K.: Level-based analysis of genetic algorithms and
other search processes. IEEE Trans. Evol. Comput. 22(5), 707–719 (2018)

 4. Dang, D.C., Lehre, P.K.: Efficient optimisation of noisy fitness functions with population-based
evolutionary algorithms. In: Proceedings of the Conference on Foundations of Genetic Algorithms,
FOGA ’15, pp. 62–68 (2015)

 5. Dang, D.C., Lehre, P.K.: Simplified runtime analysis of estimation of distribution algorithms. In:
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’15, pp. 513–518
(2015)

(40)�
[

� ∣ G�∨s

]

≤ t

Pr (𝜏 ≤ s) ≥ Pr
(

Gs

)

Pr
(

𝜏 ≤ s ∣ Gs

)

by independence of 𝜏 ≤ s and Fs+i for all i ∈ ℕ = Pr
(

Gs

)

Pr
(

𝜏 ≤ s ∣ G𝜏∨s

)

= Pr
(

Gs

)(

1 − Pr
(

𝜏 > s ∣ G𝜏∨s

))

by Markov’s inequality and 40) ≥ Pr
(

Gs

)

(

1 −
𝔼
[

𝜏 ∣ G𝜏∨s

]

s

)

≥ Pr
(

Gs

)

(

1 −
t

s

)

.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Algorithmica

1 3

 6. Dang, D.C., Lehre, P.K., Nguyen, P.T.H.: Level-based analysis of the univariate marginal distribu-
tion algorithm. Algorithmica 81, 668–702 (2018)

 7. Doerr, B. Probabilistic tools for the analysis of randomized optimization heuristics. CoRR.
abs/1801.06733 (2018)

 8. Doerr , B., Kötzing, T. Multiplicative up-drift. In: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’19, pp. 1470–1478 (2019)

 9. Doerr, B., Zheng, W.: Sharp bounds for genetic drift in estimation of distribution algorithms. IEEE
Trans. Evol. Comput. 24, 1 (2020)

 10. Droste, S.: A rigorous analysis of the compact genetic algorithm for linear functions. Nat. Comput.
5(3), 257–283 (2006)

 11. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1 + 1) evolutionary algorithm. Theor.
Comput. Sci. 276(1–2), 51–81 (2002)

 12. Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algo-
rithms, 1st edn. Cambridge University Press, Cambridge (2009)

 13. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003)
 14. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, 3rd edn. Wiley, New

York (1968)
 15. Friedrich, T., Kötzing, T., Krejca, M.S.: EDAs cannot be balanced and stable. In: Proceedings of the

Genetic and Evolutionary Computation Conference, GECCO ’16, pp. 1139–1146 (2016)
 16. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: The compact genetic algorithm is efficient

under extreme gaussian noise. IEEE Trans. Evol. Comput. 21(3), 477–490 (2017)
 17. Gießen, C., Kötzing, T.: Robustness of populations in stochastic environments. Algorithmica 75(3),

462–489 (2016)
 18. Gleser, L.J.: On the distribution of the number of successes in independent trials. Ann. Probab. 3(1),

182–188 (1975)
 19. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IlliGAL report No. 97006.

University of Illinois at Urbana-Champaign (1997)
 20. Hauschild, M., Pelikan, M.: An introduction and survey of estimation of distribution algorithms.

Swarm Evol. Comput. 1(3), 111–128 (2011)
 21. He, J.: Towards an analytic framework for analysing the computation time of evolutionary algo-

rithms. Artif. Intell. 145(1), 59–97 (2003)
 22. Krejca M.S., Carsten, W.: Theory of estimation-of-distribution algorithms. CoRR, arXiv: 1806.

05392 (2018)
 23. Larrañaga, P., Karshenas, H., Bielza, C., Santana, R.: A review on probabilistic graphical models in

evolutionary computation. J. Heuristics 18(5), 795–819 (2012)
 24. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary

Computation. Genetic Algorithms and Evolutionary Computation, Springer, New York (2001)
 25. Lehre, P.K.: Fitness-levels for non-elitist populations. In: Proceedings of the Genetic and Evolution-

ary Computation Conference, GECCO ’11, pp. 2075–2082 (2011)
 26. Lehre, P.K., Nguyen, P.T.H.: Improved runtime bounds for the univariate marginal distribution algo-

rithm via anti-concentration. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, GECCO ’17, pp. 1383–1390 (2017)

 27. Lehre, P.K., Nguyen, P.T.H.: Level-based analysis of the population-based incremental learning
algorithm. In: Proceedings of the Conference on Parallel Problem Solving from Nature. PPSN XV,
pp. 105–116 (2018)

 28. Lehre, P.K., Nguyen, P.T.H.: On the limitations of the univariate marginal distribution algorithm to
deception and where bivariate EDAs might help. In: Proceedings of the Conference on Foundations
of Genetic Algorithms, FOGA ’19, pp. 154–168 (2019)

 29. Lehre, P.K., Nguyen, P.T.H.: Runtime analysis of the univariate marginal distribution algorithm
under low selective pressure and prior noise. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference, GECCO ’19. pp. 1497–1505 (2019)

 30. Lehre, P.K., Oliveto, P.S.: Theoretical Analysis of Stochastic Search Algorithms, pp. 1–36. Springer,
Berlin (2018)

 31. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64(4), 623–642 (2012)
 32. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications.

Springer Series in Statistics, Springer, New York (2011)
 33. Massart, P.: The tight constant in the Dvoretzky–Kiefer–Wolfowitz inequality. Ann. Probab. 18(3),

1269–1283 (1990)

http://arxiv.org/abs/1806.05392
http://arxiv.org/abs/1806.05392

1 3

Algorithmica

 34. Mitrinović, D.S.: Analytic Inequalities. Springer, Berlin (1970)
 35. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilis-

tic Analysis. Cambridge University Press, New York (2005)
 36. Motwani, R., Raghavan, P.: Randomised Algorithms. Cambridge University Press, Cambridge

(1995)
 37. Mühlenbein, H., Mahnig, T.: Convergence theory and applications of the factorized distribution

algorithm. CIT J. Comput. Inform. Technol. 7(1), 19–32 (1999)
 38. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. binary

parameters. In: Proceedings of the Conference on Parallel Problem Solving from NaturE. PPSN IV,
pp. 178–187 (1996)

 39. Natural logarithm: Inequalities—wolfram functions site. https:// funct ions. wolfr am. com/ Eleme ntary
Funct ions/ Log/ 29/. Accessed 09 Nov 2020

 40. Pelikan, M., Goldberg, D.E., Lobo, F.G.: A survey of optimization by building and using probabilis-
tic models. Comput. Optim. Appl. 21(1), 5–20 (2002)

 41. Qian, C., Bian, C., Jiang, W., Tang, K.: Running time analysis of the (1+1)-EA for Onemax and
Leadingones under bit-wise noise. In: Proceedings of the Conference on Genetic and Evolutionary
Computation, GECCO ’17, pp. 1399-1406 (2017)

 42. Stützle, T., Hoos, H.H.: Max–Min ant system. Fut. Gen. Comput. Syst. 16(8), 889–914 (2000)
 43. Sudholt, D.: On the robustness of evolutionary algorithms to noise: refined results and an example

where noise helps. In: Proceedings of the Conference on Genetic and Evolutionary Computation,
GECCO ’18, pp. 1523-1530 (2018)

 44. Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991)
 45. Witt, C.: Upper bounds on the runtime of the univariate marginal distribution algorithm on One-

max. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17, pp.
1415–1422 (2017)

 46. Witt, C.: Domino convergence: why one should hill-climb on linear functions. In: Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO ’18, pp. 1539–1546 (2018)

 47. Wu, Z., Kolonko, M., Möhring, R.H.: Stochastic runtime analysis of a cross entropy algorithm.
IEEE Trans. Evol. Comput. 21(4), 616–628 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Per Kristian Lehre1 · Phan Trung Hai Nguyen1,2

 * Per Kristian Lehre
 p.k.lehre@cs.bham.ac.uk

 * Phan Trung Hai Nguyen
 p.nguyen@exeter.ac.uk

1 School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
2 Present Address: Department of Computer Science, University of Exeter, Exeter EX4 4QJ, UK

https://functions.wolfram.com/ElementaryFunctions/Log/29/
https://functions.wolfram.com/ElementaryFunctions/Log/29/
http://orcid.org/0000-0003-0783-2224

	Runtime Analyses of the Population-Based Univariate Estimation of Distribution Algorithms on LeadingOnes
	Abstract
	1 Introduction
	1.1 Motivations
	1.2 Our Contributions
	1.3 Outline of the Paper

	2 Preliminaries
	2.1 The Studied Fitness Function
	2.2 Population-Based Univariate EDAs
	2.3 Level-Based Analysis
	2.4 Dvoretzky–Kiefer–Wolfowitz Inequality
	2.5 Majorisation
	2.6 Other Tools

	3 Runtime Analysis Under Low Selective Pressure
	3.1 On the Distributions of and
	3.2 Phase 1: Before the Fitness of the  th Individual Hits the Threshold
	3.3 Phase 2: After the Fitness of the  th Individual has Hit Value for the First Time

	4 Runtime Analysis Under High Selective Pressure
	4.1 A New Lower Bound for the UMDA
	4.2 A Tighter Upper Bound for the PBIL
	4.3 Direct Extensions

	5 Runtime Analyses on Noisy LeadingOnes
	6 Experiments
	6.1 Under Low Selective Pressure
	6.2 Under High Selective Pressure

	7 Conclusion
	Acknowledgements
	References

