
 
 

University of Birmingham

Matrix roots in the max-plus algebra
Jones, Dan

DOI:
10.1016/j.laa.2021.08.008

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Jones, D 2021, 'Matrix roots in the max-plus algebra', Linear Algebra and its Applications, vol. 631, pp. 10-34.
https://doi.org/10.1016/j.laa.2021.08.008

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Apr. 2024

https://doi.org/10.1016/j.laa.2021.08.008
https://doi.org/10.1016/j.laa.2021.08.008
https://birmingham.elsevierpure.com/en/publications/26ac68ae-70b7-4051-ba8e-523cc65cd784


Matrix Roots in the Max-Plus Algebra

Daniel Jones∗
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Abstract. We define positive integer roots of finite matrices in the 2 × 2
case. Where possible, we try to generalise results to finite n× n matrices.
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1 Introduction
There are links between finite matrices in the max-plus setting and positive
matrices in the classical linear algebra setting. Positive matrices are of interest
in the study of stochastic and Markov matrices, see [1] and [2], respectively. In
the classical world, it is often the case that positive matrices have many roots
but there are so-called principal (unique) roots which are of particular interest
and defined using diagonalisation or, more generally, Jordan normal form and
by considering only positive roots of eigenvalues. These unique principal roots
(should they exist) are analogous to positive real roots of positive real numbers.
In this context, for example, −

√
2 is a real number whose square is equal to 2,

whereas
√

2 is considered the square root of 2 (the principal root). The spectral
properties of matrices (multiplicities / distinct number of algebraic eigenvalues)
are closely related to the number of roots of A. For irreducible matrices with
m eigenvalues, there are typically pm distinct pth roots [1].

A similar phenomenon is observed in this paper, which is primarily concerned
with finite 2 × 2 matrices in the tropical (max-plus) world. We observe that
spectral properties of these 2×2 matrices (multiplicities of the greatest algebraic
eigenvalues) reveal information about the number of roots as we define them.
We also observe a direct link between the principal tropical roots of finite 2× 2
matrices for which the diagonal terms are the same and the principal roots of real
numbers in the classical algebra. In [2], infinitely divisible matrices are defined
for stochastic matrices, namely matrices for which arbitrary integer roots exist.
In that paper, the problem is related to the question of whether a Markov chain
is embeddable. In the tropical setting, we show that a 2 × 2 finite matrix is
infinitely divisible if and only if d (A) ≥ 0. We also explore infinite divisibility
in the context of general n × n matrices in the final section and use this to
explore a class of idempotent square matrices. Note that it was shown in [3]
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2 PRELIMINARIES

that finding kth roots of Boolean matrices (equivalently kth roots of digraphs)
for any fixed positive integer k ≥ 2 is NP-complete and so we cannot expect
that finding roots is a tractable problem for higher dimensions than 2.

2 Preliminaries

For a full introduction to max-plus algebra, see [4].
We assume everywhere that n ≥ 1 is a natural number and define N :=

{1, ..., n} . If a, b ∈ R then we set

a⊕ b = max(a, b)

and
a⊗ b = a+ b.

The symbol ⊗ is often omitted, in the same way the symbol × is often omitted
in classical linear algebra. It will also be useful to define the dual operations as
follows: for a, b ∈ R, we set

a⊕′ b = min(a, b)

and
a⊗′ b = a+ b.

If a ∈ R, then the symbol a−1 stands for −a. The symbol ak (k ≥ 1 integer)
stands for the iterated product a⊗a⊗ . . . in which the symbol a stands k times
(that is ka in conventional notation). By max-algebra (also called “tropical
linear algebra”) we understand the analogue of linear algebra developed for the
pair of operations (⊕,⊗), extended to matrices and vectors as in conventional
linear algebra. That is, if A = (aij) , B = (bij) and C = (cij) are matrices of
compatible sizes with entries from R, we write C = A⊕B if cij = aij ⊕ bij for
all i, j and C = A⊗B if

cij =
⊕
k∈N

aik ⊗ bkj = max
k∈N

(aik + bkj)

for all i and j. If α ∈ R, then α ⊗ A = (α⊗ aij). Given a matrix A ∈ Rn×n
and a natural number k ≥ 1, we denote the iterated product of A, k times,

by Ak =
(
a
(k)
ij

)
. Note here that akij denotes the kth power of aij , whereas

a
(k)
ij denotes the (i, j) component in the kth power of A. Define the min-trace

(max-trace) of A to be the smallest (greatest) of its leading diagonal elements
and denoted Tr⊕′ (A) and Tr⊕ (A), respectively. That is Tr⊕′ (A) =

⊕′
i∈N aii

and Tr⊕ (A) =
⊕

i∈N aii. If A ∈ R2×2, then a′ denotes Tr⊕′ (A) and a denotes
Tr⊕ (A). We denote by Pn the set of permutations on N . The max-algebraic
permanent of A ∈ Rn×n is denoted

maper (A) =
⊕
σ∈Pn

⊗
i∈N

ai,σ(i) = max
σ∈Pn

∑
i∈N

ai,σ(i).
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2 PRELIMINARIES

We respectively define the notions of positive and negative determinant of A as

det+ (A) =
⊕

σ∈Pn:sgn(σ)=1

⊗
i∈N

ai,σ(i) and det− (A) =
⊕

σ∈Pn:sgn(σ)=−1

⊗
i∈N

ai,σ(i),

where sgn (σ) = 1 if σ is an even permutation and sgn (σ) = −1 if σ is an odd
permutation. For notational convenience, we also define the quantity

d (A) = det+ (A)
[
det− (A)

]−1
.

For A ∈ R2×2,det+ (A) = a′a,det− (A) = a12a21 and d (A) = a′aa−112 a
−1
21 . Note

det+ (A) ≥ det− (A) if and only if d (A) ≥ 0. Given a matrix M ∈ R2×2, define
the matrix

	 (M) :=

 √
d (M)

−1 √
d (M)√

d (M)

√
d (M)

−1

 ◦M, (1)

where ◦ denotes component-wise max-plus multiplication, or the tropical Hadamard
product. For A ∈ Rn×n, we define the associated weighted digraph DA =
(N (A) , E (A) , w), where N (A) = N,E (A) = {(i, j) : aij ∈ R} and weights
are w (i, j) = aij for (i, j) ∈ E (A). In this paper we deal only with finite
matrices and so the associated weighted digraphs are complete. Suppose that
σ = (i1, . . . , ip = i1) is a cycle in DA, then the weight of σ is defined to be

w (σ,A) = ai1i2ai2i3 . . . aip−1i1 .

The quantity

µ (σ,A) = w (σ,A)
1
k

denotes the geometric mean of σ = (i1, . . . , ik, i1). The maximum geometric
mean over all possible cycles in DA is called the maximum cycle mean and
denoted

λ (A) = max
σ

µ (σ,A) .

The critical subgraph of DA is the subgraph of DA comprising only cycles σ
for which µ (σ,A) = λ (A). Such cycles are called critical cycles. For finite
matrices, the greatest common divisor of the lengths of these critical cycles is
the cyclicity of λ (A). For finite (and therefore irreducible) matrices A, the
maximum cycle mean is the unique geometric eigenvalue of A. That is to say, it
is the unique λ for which there exists x ∈ Rn such that Ax = λx. For more on
the eigenproblem, see [5]. For A ∈ R2×2, we have λ (A) = max

{
a,
√
a12, a21

}
.

Lemma 1. Suppose a′ = a. Then d (A) ≥ 0 if and only if λ (A) = a.

Proof. The result follows immediately since
√
a′a = a.

Given A ∈ Rn×n, an algebraic eigenvalue of A is a root of the characteristic
max-polynomial defined χA (x) = maper (A⊕ Ix), where a root is a point of non-
differentiability of the polynomial function. The characteristic max-polynomial
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3 FINITE 2× 2 MATRICES

is composed of piecewise linear functions and the multiplicity of a root is defined
as the change in gradient at that root. The greatest algebraic eigenvalue coin-
cides with the maximum cycle mean λ (A). It is through this interpretation as
an algebraic eigenvalue that we define the multiplicity of λ (A). For A ∈ R2×2,
λ (A) is either a simple eigenvalue (has multiplicity 1) or a double eigenvalue
(has multiplicity 2).

Given A ∈ Rn×n and k ≥ 1, the matrix B ∈ Rn×n is called a k root of A if
Bk = A. If, in addition, there does not exist a matrix C ≥ B,C 6= B such that
Ck = A, then B is called a principal k root of A. We define the equivalence
relation ≡k so that B ≡k C if Bk = Ck and either B ≤ C or C ≤ B. This
defines a set of equivalence classes where each class can be represented by the
component-wise supremum of its constituent members (the principal member).
It follows that if there exists a k root of A, then there exists a corresponding
principal k root of A. The main achievement of this paper is in identifying all
principal k roots of all matrices A ∈ R2×2 for all integers k ≥ 1.

3 Finite 2× 2 matrices

3.1 Matrix Powers

In order to better understand matrix roots of 2 × 2 matrices of higher orders
(cube roots, fourth roots, fifth roots etc.), we first look to better understand
matrix powers. If we are examining the powers of a 2×2 matrix B, then it is the
relationship between the elements of B which dictate the nature of its natural
powers. Useful and well-known in the study of matrix powers is the Cyclicity
Theorem, see [6], [7, Theorem 3.9], [8, Theorem 3.109], [9, Theorem 27-6]. Since
we will only use this theorem in the context of 2× 2 finite matrices, we present
here a simplified version.

Theorem 1 (Cyclicity Theorem). Let B ∈ R2×2 and c be the cyclicity of λ (B).
Then for k sufficiently large, it holds

Bk+c = λ (B)
c ⊗Bk.

Recall b′ = b11 ⊕′ b22 and b = b11 ⊕ b22. We show that it is where 0 stands
in relation to the quantities b′

2
b−112 b

−1
21 and b2b−112 b

−1
21 which dictates the nature

of the natural powers of B and we give explicit formulae for those powers. We
consider three cases:

1) b2b−112 b
−1
21 < 0 (see Lemmas 2 and 3).

2) b′
2
b−112 b

−1
21 ≤ 0 ≤ b2b−112 b

−1
21 (see Lemma 4).

3) 0 < b′
2
b−112 b

−1
21 (see Lemmas 5 and 6).

Before the statement of the lemmas, one useful property of 2 × 2 matrix
powers should be noted.

Remark 1. The position of the smaller of the diagonal elements in B is the
position of the smaller of the diagonal elements in B` for all ` ≥ 1. That is to

say, b11 ≤ b22 if and only if b
(`)
11 ≤ b

(`)
22 .
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Lemma 2. Let B ∈ R2×2 and ` ≥ 1 a natural number. Suppose b2b−112 b
−1
21 < 0.

Then B2` = λ2`−2B2, where λ =
√
b12b21. Further, d

(
B2`

)
> 0 for all ` ≥ 1.

Lemma 3. Let B ∈ R2×2 and ` ≥ 1 a natural number. Suppose b2b−112 b
−1
21 < 0.

Then B2`+1 = λ2`−2B3, where λ =
√
b12b21. Further, d

(
B2`+1

)
< 0 for all

` ≥ 1.

Lemma 4. Let B ∈ R2×2 and ` ≥ 2 a natural number. Suppose
b′

2
b−112 b

−1
21 ≤ 0 ≤ b2b−112 b

−1
21 . Then B` = λ`−2B2, where λ = b. Further,

d
(
B`
)

= 0 for all ` ≥ 2. Note d (B) is not necessarily equal to 0.

Lemma 5. Let B ∈ R2×2 and ` ≥ 1 a natural number. Suppose b′
2
b−112 b

−1
21 > 0

and b′ = b11. Then

B` =

(
b′
` ⊕ b12b21b`−2 b12b

`−1

b21b
`−1 b`

)
.

Further, d
(
B`
)
≥ 0 for all ` ≥ 1 and d

(
B`
)

is non-increasing. Additionally,

d
(
B`
)

= 0 for ` sufficiently large (as soon as B`+1 = λB`, where λ = b) when

b′ < b and d
(
B`
)

= d (B) > 0 for all ` ≥ 1 when b′ = b.

Lemma 6. Let B ∈ R2×2 and ` ≥ 1 a natural number. Suppose b′
2
b−112 b

−1
21 > 0

and b′ = b22. Then

B` =

(
b` b12b

`−1

b21b
`−1 b′

` ⊕ b12b21b`−2

)
.

Further, d
(
B`
)
≥ 0 for all ` ≥ 1 and d

(
B`
)

is non-increasing. Additionally,

d
(
B`
)

= 0 for ` sufficiently large (as soon as B`+1 = λB`, where λ = b) when

b′ < b and d
(
B`
)

= d (B) > 0 for all ` ≥ 1 when b′ = b.

Proof of Lemmas 2 and 3. Suppose b2b−112 b
−1
21 < 0. In general,

B2 =

(
b12b21 b12b
b21b b12b21

)
and B3 =

(
b12b21b b21b

2
12

b12b
2
21 b12b21b

)
. (2)

The eigenvalue λ =
√
b12b21 is double and the cyclicity of B is 2, which implies

generally that B2+` = λ2B` for ` sufficiently large. But in the present case, this
is true for ` ≥ 2 since B4 = λ2B2. In particular, by stating the later result we
readily get

(∀` ≥ 1)B2` = λ2`−2B2, B2`+1 = λ2`−2B3.

From (2) we see d
(
B2
)

= (b12b21)
2 (
b12b21b

2
)−1

= b12b21b
−2 > 0. It fol-

lows that for ` ≥ 1 we have d
(
B2`

)
= d

(
B2
)
> 0. Similarly, d

(
B3
)

=

(b12b21b)
2

(b12b21)
−3

= b2b−112 b
−1
21 < 0. It follows that for ` ≥ 1 we have d

(
B2`+1

)
=

d
(
B3
)
< 0.
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Proof of Lemma 4. Suppose b′
2
b−112 b

−1
21 ≤ 0 ≤ b2b−112 b

−1
21 . It can be readily

shown that λ = b is a simple or double eigenvalue depending on whether b2 >
b12b21 or not, respectively. In either case, the cyclicity of B is 1 which implies
generally that B`+1 = λB` for ` sufficiently large. Moreover, in the case b′ = b11,
we get that (b12, b)

T
is a right eigenvector, since B (b12, b)

T
= λ (b12, b)

T
. Also

note that

B2 =

(
b12b21 b12b
b21b b2

)
= (b12, b)

T
(b21, b) .

It follows that for ` ≥ 2, we have

B` = B`−2B2 = B`−2
(
b12
b

)
(b21, b) = λ`−2

(
b12
b

)
(b21, b) = λ`−2B2.

A similar result is obtained in the case b′ = b22. Note that d
(
B2
)

= 0 in both

cases and so it follows (∀` ≥ 2) d
(
B`
)

= 0. It is not necessarily true however
that d (B) is equal to 0.

Proof of Lemmas 5 and 6. Suppose 0 < b′
2
b−112 b

−1
21 . It can be shown that λ = b

is simple or double depending if b′ < b or not, respectively. In both cases, the
cyclicity of B is 1 which implies generally that B`+1 = λB` for ` sufficiently
large, in which case B` has the same formula as in Lemma 4. However, contrary
to the previous case, this ` can be arbitrarily large and depends on the value
of b′b−1. In fact, it can be shown that it happens when (by a slight abuse of
notation)

` ≥ b12b21 b
′ 2

b′b−1
+ 2.

For the more general formula (which applies either when b′ < b or b′ = b), let
us consider the case b′ = b11 (Lemma 5) and proceed by proof by induction. It
is readily seen that

B2 =

(
b′

2
b12b

b21b b2

)
and B3 =

(
b′

3 ⊕ b12b21b b12b
2

b21b
2 b3

)
.

For ` ≥ 2, let P (`) be the statement:

“B` =

(
b′
` ⊕ b12b21b`−2 b12b

`−1

b21b
`−1 b`

)
.”

Clearly P (2) and P (3) hold. Suppose now P (`) holds for some ` ≥ 2. Then

B`+1 =

(
b′
` ⊕ b12b21b`−2 b12b

`−1

b21b
`−1 b`

)
⊗
(

b′ b12
b21 b

)
=

(
b′
`+1 ⊕ b′b12b21b`−2 ⊕ b12b21b`−1 b12 b

′ ` ⊕ b212b21b`−2 ⊕ b12b`
b′b21b

`−1 ⊕ b21b` b12b21b
`−1 ⊕ b`+1

)
=

(
b′
`+1 ⊕ b12b21b`−1 b12b

`

b21b
` b`+1

)
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and so P (`+ 1) holds. It follows by induction that P (`) holds for all ` ≥ 2.
The case for b′ = b22 (Lemma 6) is similar and yields for ` ≥ 2:

B` =

(
b` b12b

`−1

b21b
`−1 b′

` ⊕ b12b21b`−2

)
.

In both cases note that det+
(
B`
)

= (b′b)
` ⊕ b12b21b

2`−2 and det−
(
B`
)

=

b12b21b
2`−2 and so d

(
B`
)
≥ 0 for all ` ≥ 2 and is non-increasing (since it

can be shown that b12b21b
2`−2 is growing at a faster rate than (b′b)

`
in the

case b′ < b). In fact, when b′ < b, we have d
(
B2
)
> 0 and d

(
B`
)

= 0 for `
sufficiently large (as soon as B`+1 = λB`). Note that when b′ = b, we have

det+
(
B`
)

= (b′b)
`

= b2` for all ` and it follows d
(
B`
)

= d (B) > 0.

3.2 Odd Roots

Theorem 2. Let A ∈ R2×2 and k ≥ 1. If d (A) ≥ 0, then the unique principal
2k + 1 root is

B = (bij) =
(

(aii ⊕ ajj)−
2k

2k+1 aij

)
.

Proof. We consider the cases d (A) > 0 and d (A) = 0 separately and refer in
each case to the appropriate lemmas from Lemmas 2 - 6.

• Suppose d (A) > 0 and let us assume a′ = a11 (the case a′ = a22 will yield
the same result via Lemma 6). It follows by Remark 1 and Lemmas 2 - 6

that the only solution is the one given by Lemma 5: b′
2
b−112 b

−1
21 > 0 and

B2k+1 =

(
b′

2k+1 ⊕ b12b21b2k−1 b12b
2k

b21b
2k b2k+1

)
=

(
a′ a12
a21 a

)
. (3)

It follows from (3)

b = a−
2k

2k+1 a, b12 = a−
2k

2k+1 a12, b21 = a−
2k

2k+1 a21. (4)

Substituting (4) into the (1, 1) component of (3) we see

b12b21b
2k−1 = a12a21a

−4k+2k−1
2k+1 = a12a21a

−(2k+1)
2k+1 = a12a21a

−1 < a′

and so it follows from (3) and cancellation that b′
2k+1

= a′, yielding

b′ = (a′)
− 2k

2k+1 a′. We conclude

B = (bij) =
(

(aii ⊕ ajj)−
2k

2k+1 aij

)
.

• Suppose d (A) = 0 and suppose a′ = a11 (the case a′ = a22 will yield the
same result). It follows by Remark 1 and Lemmas 2 6 that there are only
two cases to consider regarding the structure of the corresponding matrix
B.
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– If B satisfies the condition of Lemma 4, then

B2k+1 = b2k−1
(
b12b21 b12b
b21b b2

)
=

(
a′ a12
a21 a

)
. (5)

It follows from (5)

b = a−
2k

2k+1 a, b12 = a−
2k

2k+1 a12, b21 = a−
2k

2k+1 a21. (6)

Note

b2k−1b12b21 = a
2k−1
2k+1 a12a21a

−4k
2k+1 = a12a21a

−(2k+1)
2k+1 = a12a21a

−1 = a′.

It follows from Lemma 4 and the definition of b′ that

b′ ≤ min
{√

b12b21, b
}

= min
{
a−

2k
2k+1
√
a12a21, a

− 2k
2k+1 a

}
= min

{
a−

2k
2k+1

√
a′a, a−

2k
2k+1 a

}
= a−

2k
2k+1

√
a′a.

We conclude that the component-wise supremum over all B such that
b′

2
b−112 b

−1
21 ≤ 0 ≤ b2b−112 b

−1
21 , B

2k+1 = A and satisfy the condition of
Lemma 4 is given by

B1 = a−
2k

2k+1

( √
a′a a12
a21 a

)
which is also a solution.

– If B satisfies the condition of Lemma 5, then

B2k+1 =

(
b′

2k+1 ⊕ b12b21b2k−1 b12b
2k

b21b
2k b2k+1

)
=

(
a′ a12
a21 a

)
. (7)

It follows from (7)

b = a−
2k

2k+1 a, b12 = a12a
− 2k

2k+1 , b21 = a21a
− 2k

2k+1 . (8)

From (8) we see

b12b21b
2k−1 = a12a21a

−1 = a′

and so b′
2k+1 ≤ a′ is sufficient. We conclude that the component-

wise supremum over all B such that b′
2
b−112 b

−1
21 > 0, B2k+1 = A and

satisfy the condition of Lemma 5 is given by

B2 = (bij) =
(

(aii ⊕ ajj)−
2k

2k+1 aij

)
which is also a solution.
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3.3 Even Roots 3 FINITE 2× 2 MATRICES

We conclude by noting that the only distinction between B1 and B2 is the
(1, 1) component. It can be shown that

(B1)11 = a−
2k

2k+1

√
a′a ≤ (a′)

− 2k
2k+1 a′ = (B2)11

and so the component-wise supremum over all matricesB such thatB2k+1 =
A is given by

B = (bij) =
(

(aii ⊕ ajj)−
2k

2k+1 aij

)
.

The result follows.

Theorem 3. Let A ∈ R2×2 and k ≥ 1. If d (A) < 0, then there exists a matrix
B such that B2k+1 = A if and only if a′ = a. Further, if a′ = a, then the unique
principal 2k + 1 root is given by

B = (
√
a12a21)

− 2k
2k+1 A.

Proof. Suppose d (A) < 0. It follows from Lemmas 2 - 6 and (2) that the only
solution is obtained through Lemma 3: a′ = a and B2k+1 = λ2k−2B3, where
λ =
√
b12b21. By referring to (2), we see(

a a12
a21 a

)
= (b12b21)

k

(
b b12
b21 b

)
,

yielding a system of three linear equations in three variables. It can be shown

b = a (
√
a12a21)

− 2k
2k+1

b12 = a12 (
√
a12a21)

− 2k
2k+1

b21 = a21 (
√
a12a21)

− 2k
2k+1 .

Since b′ ≤ b we conclude the component-wise supremum over all B such that
B2k+1 = A is given by

B = (
√
a12a21)

− 2k
2k+1 A

which is also a solution.

3.3 Even Roots

Theorem 4. Let A ∈ R2×2 and k ≥ 1. If d (A) ≥ 0, then there is a unique
principal 2k root B1 satisfying d (B1) ≥ 0 given by

B1 = (bij) =
(

(aii ⊕ ajj)−
2k−1
2k aij

)
. (9)

Further, there is an additional principal 2k root B2 if and only if a′ = a and
d (A) 6= 0. In this case, B2 is the unique principal 2k root satisfying d (B2) < 0
and is given by

B2 = a−
2k−1
2k

 √
a12a21 a

√
a12a

−1
21

a
√
a21a

−1
12

√
a12a21

 . (10)
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3.3 Even Roots 3 FINITE 2× 2 MATRICES

Also, when a′ = a and d (A) = 0, we have B1 = B2.

Proof. We consider the cases d (A) > 0 and d (A) = 0 separately and refer in
each case to the appropriate lemmas from Lemmas 2 - 6.

• Suppose d (A) > 0 and let us suppose a′ = a11 (the case a′ = a22 will
yield the same result via Lemma 6). It follows by Remark 1 and Lemmas
2 - 6 that there are only two solutions (from Lemmas 2 and 5) regarding
the structure of the corresponding matrix B.

– If B satisfies the condition of Lemma 2, then

B2k = (b12b21)
k−1

(
b12b21 b12b
b21b b12b21

)
=

(
a′ a12
a21 a

)
.

It follows a′ = a and it can be shown that

b =
√
a12a21a

− 2k−1
2k

b12 = a

√
a12a

−1
21 a

− 2k−1
2k

b21 = a

√
a21a

−1
12 a

− 2k−1
2k .

It follows

B =

 λ a
√
a12a

−1
21 a

− 2k−1
2k

a
√
a21a

−1
12 a

− 2k−1
2k µ

 ,

where λ⊕µ =
√
a12a21a

− 2k−1
2k . Therefore the component-wise supre-

mum over all matrices B such that B2k = A and satisfy the condition
of Lemma 2 is given by

B2 = a−
2k−1
2k

 √
a12a21 a

√
a12a

−1
21

a
√
a21a

−1
12

√
a12a21


and B2 itself is a solution of B2k = A.

– If B satisfies the condition of Lemma 5, then

B2k =

(
b′

2k ⊕ b12b21b2k−2 b12b
2k−1

b21b
2k−1 b2k

)
=

(
a′ a12
a21 a

)
.

It follows

b = a−
2k−1
2k a

b12 = a12a
− 2k−1

2k

b21 = a21a
− 2k−1

2k .
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3.4 Concluding Remarks and Observations on 2× 2 Matrices3 FINITE 2× 2 MATRICES

Note that

b12b21b
2k−2 = a12a21a

−2k+1−2k+1+2k−2
2k = a12a21a

−1 < a′

and so b′ = (a′)
− 2k−1

2k a′. We conclude

B = B1 = (bij) =
(

(aii ⊕ ajj)−
2k−1
2k aij

)
.

• Suppose d (A) = 0 and let us suppose a′ = a11 (the case a′ = a22 will yield
the same result). Note that we do not need to consider Lemma 5 since if
2k is sufficiently large so that d

(
B2k

)
= 0, then we obtain the formula of

Lemma 4 anyway. By considering Lemmas 2 - 6 we see the only case to
consider is Lemma 5 and the proof in this case is similar to the d (A) = 0
case in the proof of Theorem 2 and yields the component-wise supremum
over all matrices B such that B2k = A and satisfy the condition of Lemma
5 is given by

B̃ = a−
2k−1
2k

( √
a12a21 a12
a21 a

)
. (11)

which is also a solution.

We note that the only distinction between B1 in (9) and B̃ in (11) is the (1, 1)
component. It can be shown that

(B1)11 = (a′)
− 2k−1

2k a′ ≥ a−
2k−1
2k
√
a12a21 =

(
B̃
)
11

and so B1 is the component-wise supremum of B1 and B̃. The result follows.

Corollary 1. Let A ∈ R2×2 and k ≥ 1. If d (A) > 0 and a′ = a, then there are
two and only two principal 2k roots of A. These matrices are B1 and B2 (see
(9) and (10)) and satisfy d (B1) > 0 and d (B2) < 0, respectively.

Theorem 5. Let A ∈ R2×2 and k ≥ 1. If d (A) < 0, then there does not exist
a matrix B such that B2k = A.

Proof. By referring to Lemmas 2 - 3, we see that for any matrix B ∈ R2×2 and
k ≥ 1, we have d

(
B2k

)
≥ 0. The result follows.

3.4 Concluding Remarks and Observations on 2 × 2 Ma-
trices

The following remark aims to make clear the relationship between the two prin-
cipal 2k roots of A (when they exist).

Remark 2. Suppose a′ = a and k ≥ 1. If d (A) ≥ 0, then λ (A) is a double
eigenvalue and there are only two principal 2k roots of A. Namely

B1 = λ (A)
− 2k−1

2k A

B2 = 	
(
λ (A)

− 2k−1
2k A

)
.

Further, if d (A) = 0, then B1 = B2 is a repeated principal 2k root.
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Corollary 2. Suppose a′ = a and k ≥ 1. There exists a matrix B such that
Bk = A if and only if

B = λ (A)
− k−1

k A

satisfies Bk = A.

Corollary 3. Suppose a′ 6= a and k ≥ 1. The maximum cycle mean is a simple
eigenvalue and there exists a matrix B such that Bk = A if and only if d (A) ≥ 0.
Further, in this case the unique principal k root is given by

B = (bij) =
(

(aii ⊕ ajj)−
k−1
k aij

)
.

Remark 3. There are parallels between tropical matrix roots of 2× 2 matrices
A for which a′ = a in the max-plus algebra and classical roots of real numbers
in the classical linear algebra, summarised in table 1.

tropical matrix roots of A ∈ R2×2 classical real roots of t ∈ R
when a′ = a

d (A) ≥ 0 t ≥ 0
2k+1√

A is the unique principal
2k+1
√
t is the unique real number

2k + 1 root of A. r such that r2k+1 = t.

d
(

2k+1√
A
)
≥ 0

2k+1
√
t ≥ 0.

2k√
A and 	 2k√

A are the only two
2k
√
t and − 2k

√
t are the only two

principal 2k roots of A. real numbers r such that r2k = t.

d
(

2k√
A
)
≥ 0.

2k
√
t ≥ 0.

d
(
	 2k√

A
)
≤ 0. − 2k

√
t ≤ 0.

2k√
A = 	 2k√

A iff d (A) = 0.
2k
√
t = − 2k

√
t iff t = 0.

d (A) < 0 t < 0
2k+1√

A is the unique principal
2k+1
√
t is the unique real number

2k + 1 root of A. r such that r2k+1 = t.

d
(

2k+1√
A
)
< 0.

2k+1
√
t < 0.

There does not exist a matrix B There does not exist a real
such that B2k = A. number r such that r2k = t.

Table 1: Parallels between tropical matrix roots of 2× 2 matrices with constant
term on the leading diagonal and classical real roots of real numbers.

Based on table 1, it seems natural to define the matrix
k√
A in the following

way for matrices A.

Definition 1. Let A ∈ R2×2 and let k ≥ 1.

• If a′ = a,
k√
A := λ (A)

− k−1
k A.
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4 A GENERALISATION TO SPECIAL TYPES OF N ×N MATRICES

• If a′ 6= a,
k√
A := (bij) =

(
(aii ⊕ ajj)−

k−1
k aij

)
.

Observations made for 2 × 2 matrices suggest an extension for matrices of
higher dimension.

Example 1. Let

A =

 1 1 0
2 1 1
0 0 1

 .

Note (∀i) aii = 1 and d (A) = 1 > 0. Also λ (A)
− 1

2 = − 3
4 and so we might hope

that the matrix B defined as

B := −3

4
A =

 1/4 1/4 −3/4
5/4 1/4 1/4
−3/4 −3/4 1/4


acts as a square root of the matrix A but it is not the case, thus showing that
we cannot generalise our results on 2 × 2 matrices to higher dimensions quite
so easily.

4 A generalisation to special types of n× n ma-
trices

In this section, A ∈ Rn×n is a matrix such that

(∀i) (∀j) (∀t) t 6= i, j; aijatt ≥ aitatj . (12)

This is essentially the condition that certain 2 × 2 minors (those which touch
the diagonal but may not be principal) are non-negative in the sense that their
positive determinant is greater than or equal to their negative determinant.
This is weaker than the condition that all the 2 × 2 minors are nonnegative, a
condition which is shown to be equivalent to total positivity of the matrix A,
see [10]. Let k ≥ 1 be fixed and for the remainder of this section define

B = (bij) =
(
aij (aii ⊕ ajj)−

k−1
k

)
,

so that
(∀i) bii = a

1
k
ii .

Theorem 6.

(∀1 ≤ ` ≤ k)B` =
(
b
(`)
ij

)
=
(
aij (aii ⊕ ajj)−

k−`
k

)
.

The following lemma may be useful in the proof of Theorem 6.
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4 A GENERALISATION TO SPECIAL TYPES OF N ×N MATRICES

Lemma 7. Let a, b ∈ R and suppose r, s ≥ 0. Then

(a⊕ b)r+s ≥ arbs.

Proof of Theorem 6. Let P (`) be the statement

“B` =
(
b
(`)
ij

)
=
(
aij (aii ⊕ ajj)

`−k
k

)
”

for ` ≤ k. Clearly P (1) holds. Let 1 ≤ ` ≤ k − 1 and suppose P (`) holds, that
is

(∀i) (∀j) b(`)ij = aij (aii ⊕ ajj)
`−k
k ⇒ (∀i) b(l)ii = a

`
k
ii .

We show that P (`+ 1) holds also.

• Let i ∈ N. Then

b
(`+1)
ii =

⊕
t∈N

b
(`)
it bti

=b
(`)
ii bii ⊕

⊕
t 6=i

b
(`)
it bti

=a
`
k
iiaiia

1−k
k

ii ⊕
⊕
t 6=i

ait (aii ⊕ att)
`−k
k ati (att ⊕ aii)

1−k
k

=a
`+1
k
ii ⊕

⊕
t 6=i

aitati (aii ⊕ att)
`+1−2k

k .

Let t 6= i be fixed. We claim that

a
`+1
k
ii ≥ aitati (aii ⊕ att)

`+1−2k
k .

To see this, first observe

(aii ⊕ att)
2k−`−1

k ≥ a
k−`−1

k
ii a

k
k
tt (13)

by Lemma 7 (note k − `− 1 ≥ 0). We then have

a
`+1
k
ii ≥ aitati (aii ⊕ att)

`+1−2k
k

⇔a
`+1
k
ii

≥a
k−`−1

k
ii a

k
k
tt by (13)︷ ︸︸ ︷

(aii ⊕ att)
2k−`−1

k ≥ aitati

⇐a
`+1
k
ii a

k−`−1
k

ii a
k
k
tt ≥ aitati

⇔aiiatt ≥ aitati,

which holds by (12). It follows

b
(`+1)
ii = a

`+1
k
ii = aii (aii ⊕ aii)

`+1−k
k ,

as required.
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• Let i, j ∈ N, i 6= j. First observe

a
`
k
ii ⊕ a

1
k
jj (aii ⊕ ajj)

`−1
k = (aii ⊕ ajj)

`
k . (14)

We then have

b
(`+1)
ij =

⊕
t∈N

b
(`)
it btj

=b
(`)
ii bij ⊕ b

(`)
ij bjj ⊕

⊕
t6=i,j

b
(`)
it btj

=a
`
k
iiaij (aii ⊕ ajj)

1−k
k ⊕ aij (aii ⊕ ajj)

`−k
k a

1
k
jj ⊕

⊕
t6=i,j

b
(`)
it btj

=aij (aii ⊕ ajj)
1−k
k

=(aii⊕ajj)
`
k by (14)︷ ︸︸ ︷[

a
`
k
ii ⊕ a

1
k
jj (aii ⊕ ajj)

`−1
k

]
⊕
⊕
t 6=i,j

b
(`)
it btj

=aij (aii ⊕ ajj)
`+1−k

k ⊕
⊕
t 6=i,j

ait (aii ⊕ att)
`−k
k atj (att ⊕ ajj)

1−k
k .

Let t 6= i, j be fixed. We claim that

aij (aii ⊕ ajj)
`+1−k

k ≥ ait (aii ⊕ att)
`−k
k atj (att ⊕ ajj)

1−k
k . (15)

To see this, first observe

(aii ⊕ ajj)
`+1−k

k (aii ⊕ att)
k−`
k (att ⊕ ajj)

k−1
k ≥ att. (16)

This follows since

(aii ⊕ ajj)
`+1−k

k (aii ⊕ att)
k−`
k (att ⊕ ajj)

k−1
k

≥ (aii ⊕ ajj)
`+1−k

k a
k−`−1

k
ii a

1
k
tta

k−1
k

tt

= (aii ⊕ ajj)
`+1−k

k a
k−`−1

k
ii att

=a
`+1−k

k
ii a

k−`−1
k

ii att ⊕ a
`+1−k

k
jj a

k−`−1
k

ii att

=att ⊕ a
`+1−k

k
jj a

k−`−1
k

ii att

≥att,

where the first inequality holds by two uses of Lemma 7 (note that k −
`− 1 ≥ 0).

We can now show (15) holds, as follows:
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aij (aii ⊕ ajj)
`+1−k

k ≥ ait (aii ⊕ att)
`−k
k atj (att ⊕ ajj)

1−k
k

⇔aij

≥att by (16)︷ ︸︸ ︷
(aii ⊕ ajj)

`+1−k
k (aii ⊕ att)

k−`
k (att ⊕ ajj)

k−1
k ≥ aitatj

⇐aijatt ≥ aitatj ,

which holds by (12).

Therefore
b
(`+1)
ij = aij (aii ⊕ ajj)

`+1−k
k .

We conclude P (`+ 1) holds and the result follows by induction.

Corollary 4.
Bk = A.

Proof.

Bk =
(
b
(k)
ij

)
=
(
aij (aii ⊕ ajj)

k−k
k

)
= (aij) = A.

Example 2. A =

 1 0 1
1 2 2
0 0 1

 satisfies (12). For k = 3 we have

B = (bij) =
(
aij (aii ⊕ ajj)

−2
3

)
=


1
3 − 4

3
1
3

− 1
3

2
3

2
3

− 2
3 − 4

3
1
3

 .

We then see that

B2 =


2
3 − 2

3
2
3

1
3

4
3

4
3

− 1
3 − 2

3
2
3

 and B3 =

 1 0 1
1 2 2
0 0 1

 = A,

as expected.

Example 3. A =

 1 0 1
1 2 2
1 1 1

 does not satisfy (12) since a21a33 < a23a31.

If we define

B = (bij) =
(
aij (aii ⊕ ajj)

−2
3

)
=


1
3 − 4

3
1
3

− 1
3

2
3

2
3

1
3 − 1

3
1
3

 ,
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then

B2 =


2
3 0 2

3

1 4
3

4
3

2
3

1
3

2
3

 and B3 =

 1 2
3 1

5
3 2 2
1 1 1

 6= A.

Interestingly, the matrix B3 is “off” in exactly two positions. We can also
check that the matrix A violates exactly two of the conditions of Theorem 6.
In particular, a21a33 < a23a31 and a12a33 < a13a32. All other conditions are
satisfied. We have the following remark.

Remark 4. In the proof of Theorem 6, we fix i, j and then prove b
(`)
ij is as

expected. Not all conditions of the theorem are used however. To prove b
(`)
ij =

aij (aii ⊕ ajj)
`−k
k we require only

(∀t 6= i, j) aijatt ≥ aitatj . (17)

We call (17) the root constraints for (i, j). We summarise with the following
corollary.

Corollary 5. Let A ∈ Rn×n and k ≥ 2 an integer. Define the matrix

B = (bij) =
(
aij (aii ⊕ ajj)

1−k
k

)
and let i, j be fixed. If

(∀t 6= i, j) aijatt ≥ aitatj ,

then
(∀` ≥ 1) b

(`)
ij = aij (aii ⊕ ajj)

`−k
k .

It follows that if a matrix A ∈ Rn×n satisfies the root constraints for (i, j)
for most pairs (i, j), then B may serve as a good approximation (in some sense)
to a kth root of A. This could prove an interesting direction for future research.

5 Idempotent matrices
We discuss the connection between matrix roots and idempotent matrices.
Firstly, suppose A ∈ Rn×n satisfies (12), which we recall here:

(∀i) (∀j) (∀t) t 6= i, j; aijatt ≥ aitatj .

Define
A (k) :=

(
aij (aii ⊕ ajj)

1−k
k

)
, for k ≥ 2.

Remark 5.
lim
k→∞

A (k) =
(
aij (aii ⊕ ajj)−1

)
=: A

and the diagonal elements of A are zero.
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Proposition 1. Let A ∈ Rn×n satisfying the root conditions (12). Then A, as
defined in Remark 5, is an idempotent matrix.

Proof. For ease of notation, denote A by B. It is sufficient to show B2 = B.

Denote B2 =
(
b
(2)
ij

)
and let i, j ∈ N . Then

b
(2)
ij =

⊕
t∈N

bitbtj

= biibij ⊕ bijbjj ⊕
⊕

t∈N,t6=i,j

bitbtj

= bij ⊕
⊕

t∈N,t6=i,j

bitbtj .

Let t ∈ N, t 6= i, j. It suffices to show

bitbtj ≤ bij . (18)

Note that (18) holds if and only if

ait (aii ⊕ att)−1 atj (att ⊕ ajj)−1 ≤ aij (aii ⊕ ajj)−1 . (19)

We consider cases, as follows.

• att ≥ aii ⊕′ ajj . Without loss of generality,

att ≥ aii (20)

(the case att ≥ ajj is similar). Then, (19) holds if and only if

aita
−1
tt atj (att ⊕ ajj)−1 ≤ aij (aii ⊕ ajj)−1

⇔aitatj (att ⊕ ajj)−1 ≤ aijatt (aii ⊕ ajj)−1

⇐

{
aitatj ≤ aijatt
att ⊕ ajj ≥ aii ⊕ ajj

⇐(12) and (20).

•
att < aii ⊕′ ajj . (21)

Then, (19) holds if and only if

aita
−1
ii atja

−1
jj ≤ aij (aii ⊕ ajj)−1

⇔aitatj ≤ aij (aii ⊕′ ajj)
⇐(12) and (21)

since
aitatj ≤ aijatt < aij (aii ⊕′ ajj) .
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It follows that A is idempotent.

We have seen that given a matrix A ∈ Rn×n satisfying the root conditions
(12), there is a corresponding matrix, namely the matrix A, which is idempotent
and has all diagonal entries equal to 0. An interesting question is: “given such
an idempotent matrix B, can we describe a matrix A such that A satisfies the
root conditions (12) and A = B?”

Note that, necessarily, an idempotent matrix has non-positive diagonal en-
tries but it is not necessary in general for all diagonal entries to be 0. Therefore
we are not considering here all idempotent matrices.

Lemma 8. Let B ∈ Rn×n be an idempotent matrix such that (∀i) bii = 0. Then

(∀i) (∀j) (∀t) t 6= i, j, bitbtj ≤ bij .

Proof. Let i, j, t ∈ N, t 6= i, j. Then

b
(2)
ij =

⊕
t∈N

bitbtj

= biibij ⊕ bijbjj ⊕
⊕

t∈N,t6=i,j

bitbtj

= bij ⊕
⊕

t∈N,t6=i,j

bitbtj .

It follows by idempotency of B that (∀t 6= i, j) bitbtj ≤ bij .

Theorem 7. Let B ∈ Rn×n be an idempotent matrix such that (∀i) bii = 0 and
let λ1, . . . , λn ∈ R satisfy

(∀i) (∀j) (∀t) t 6= i, j;λij
(
b−1ij bitbtj

)
≤ λt ≤ λ′ij

(
bijb
−1
it b
−1
tj

)
,

where λij := λi ⊕ λj and λ′ij := λi ⊕′ λj . Then the matrix A defined by

(∀i) (∀j) aij := bijλij

satisfies the root conditions (12) and is such that A = B.

Proof. Suppose now there exists a matrix A such that A = B. Denote for all
i, λi = aii and define λij := λi ⊕ λj . Similarly, define λ′ij := λi ⊕′ λj . Since

(∀i) (∀j) aij = aijλ
−1
ij , we have

(∀i) (∀j) aij = bijλij . (22)

The matrix A should satisfy the root conditions (12). Let i, j, t ∈ N, t 6= i, j.
Using (22) and (∀i) bii = 0, we see (12) holds if and only if

bijλijλtb
−1
it λ

−1
it b
−1
tj λ

−1
tj ≥ 0. (23)

Denote by T the left hand side of (23). We consider six cases, as follows.
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• Suppose λi ≥ λj ≥ λt. Then

T = bijλiλtb
−1
it λ

−1
i b−1tj λ

−1
j

= bijλtb
−1
it b
−1
tj λ

−1
j

and
bijλtb

−1
it b
−1
tj λ

−1
j ≥ 0⇔ λt ≥ λj

(
b−1ij bitbtj

)
.

• Suppose λi ≥ λt ≥ λj . Then

T = bijλiλtb
−1
it λ

−1
i b−1tj λ

−1
t

= bijb
−1
it b
−1
tj ≥ 0,

where the last inequality holds by Lemma 8.

• Suppose λj ≥ λi ≥ λt. Then

T = bijλjλtb
−1
it λ

−1
i b−1tj λ

−1
j

= bijλtb
−1
it λ

−1
i b−1tj

and

bijλtb
−1
it λ

−1
i b−1tj ≥ 0 (24)

⇔λt ≥ λi
(
b−1ij bitbtj

)
. (25)

• Suppose λj ≥ λt ≥ λi. Then

T = bijλjλtb
−1
it λ

−1
t b−1tj λ

−1
j

= bijb
−1
it b
−1
tj ≥ 0,

where the last inequality holds by Lemma 8.

• Suppose λt ≥ λi ≥ λj . Then

T = bijλiλtb
−1
it λ

−1
t b−1tj λ

−1
t

= bijλib
−1
it λ

−1
t b−1tj

and
bijλib

−1
it λ

−1
t b−1tj ≥ 0⇔ λt ≤ λi

(
bijb
−1
it b
−1
tj

)
. (26)

• Suppose λt ≥ λj ≥ λi. Then

T = bijλjλtb
−1
it λ

−1
t b−1tj λ

−1
t

= bijλjb
−1
it λ

−1
t b−1tj

and
bijλjb

−1
it λ

−1
t b−1tj ≥ 0⇔ λt ≤ λj

(
bijb
−1
it b
−1
tj

)
. (27)
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Note that in the case λt ≤ λ′ij and by considering (24) and (25), we have
T ≥ 0 if and only if

λ′ij
(
b−1ij bitbtj

)
≤ λt ≤ λ′ij ,

which is implied by the stronger condition

λij
(
b−1ij bitbtj

)
≤ λt ≤ λ′ij . (28)

Similarly, in the case λt ≥ λij and by considering (26) and (27), we have T ≥ 0
if and only if

λij ≤ λt ≤ λij
(
bijb
−1
it b
−1
tj

)
,

which is implied by the stronger condition

λij ≤ λt ≤ λ′ij
(
bijb
−1
it b
−1
tj

)
. (29)

Since we don’t have an a priori knowledge of the ordering of the λ elements,
we may combine (28) and (29) to obtain the sufficient condition in the lemma
statement.

Remark 6. Note that the sufficient condition in Theorem 7 has the solution
(∀i)λi = λ for any λ ∈ R. Indeed, if λ ∈ R is fixed, then it is easy to check
λB = B.

Remark 7. The sufficient condition in Theorem 7 is a system of dual inequal-
ities and the solution set can be described in terms of a generating matrix in
polynomial time. See [4].

The following example shows that less trivial solutions also exist. Note the
use of classical linear notation for ease of understanding.

Example 4. Consider the matrix

B =

(
0 −1
−1 0

)
.

We wish to find a matrix A of the form

A =

(
λ1 λ12 − 1

λ12 − 1 λ2

)
.

The sufficient condition of Theorem 7 gives{
λ1 − 2 ≤ λ2 ≤ λ1 + 2

λ2 − 2 ≤ λ1 ≤ λ2 + 2

⇔‖λ1 − λ2‖ ≤ 2.

One non-trivial solution is λ1 = 1, λ2 = 0, which yields

A =

(
1 0
0 0

)
.

Indeed, det+ (A) ≥ det− (A) and A = B.

Page 21 Compiled on 23/08/2021 at 15:18:17



REFERENCES

6 Summary

We defined principal k roots (for a fixed positive integer k) for 2 × 2, finite
matrices (when such roots exist). We also explicitly described when such roots
do and do not exist and also related the number of roots to the multiplicity
of the maximum cycle mean. We were able to generalise the formula for the
kth root of a matrix to the general n × n case, provided the matrix satisfied
some conditions on some of its 2× 2 minors. Corollary 5 motivated a question
about approximations of matrix roots - which may be useful considering finding
exact roots for n× n matrices is NP-complete in the Boolean case. Some open
questions are the following:

• Does there exist a matrix A ∈ Rn×n and a natural number k ≥ 2 for
which A does not satisfy the root conditions (12) but there exists a matrix
B ∈ Rn×n such that Bk = A?

• Can we extend the ideas of this paper to rational matrix powers, negative
matrix powers and matrix polynomials?

• In the classical linear algebra, considering matrices over Cn×n allows us
to find matrix roots with complex entries, is there a corresponding way
to extend the tropical algebra to find more roots, especially in the 2 × 2
case?
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