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Schizophrenia is associated with increased levels of oxidative stress, as reflected by

an increase in the concentrations of damaging reactive species and a reduction in

anti-oxidant defences to combat them. Evidence has suggested that whilst not the

likely primary cause of schizophrenia, increased oxidative stress may contribute to

declining course and poor outcomes associated with schizophrenia. Here we discuss

how oxidative stress may be implicated in the aetiology of schizophrenia and examine

how current understanding relates associations with symptoms, potentially via lipid

peroxidation induced neuronal damage. We argue that oxidative stress may be a good

target for future pharmacotherapy in schizophrenia and suggest a multi-step model of

illness progression with oxidative stress involved at each stage.

Keywords: schizophrenia, oxidative stress, psychosis symptoms, antio×idants, dopamine, glutamate,

inflammation

INTRODUCTION

Schizophrenia is a severe and debilitatingmental disorder that has an estimated life-time prevalence
worldwide of 0.75% (1). Long term outcomes of this disorder are often poor, and those diagnosed
with schizophrenia are up to three times more likely to die early than the general population in
spite of treatment (2). Schizophrenia is characterised by positive, negative, and disorganisation
symptoms. Positive symptoms include hallucinations (perceptual experiences in the absence of
corresponding stimuli, for example: hearing voices or seeing things that are not there) and delusions
(unshakeable beliefs arising internally, e.g., a delusion of grandeur occurs when a person believes
themselves to be superior to others with no evidence for this). Negative symptoms include loss of
motivation, apathy and social withdrawal. Disorganisation includes disordered form of thought and
inappropriate affect. Negative and disorganisation symptoms occur alongside impaired cognitive
function and deterioration in both social and occupational functioning (3, 4). Schizophrenia has an
age of onset of between 18 and 25 years in men and 25–35 years in women (5), with a prodromal
phase that can be detected up to 30 months before onset (6).

Oxidative stress is caused by an excess of free radicals generated by cellular metabolic stress and
an impaired antioxidant defence system, and is known to cause membrane dysfunction implicated
in the pathophysiology of schizophrenia (7). However, our understanding of schizophrenia and
the involvement of oxidative stress is constantly evolving in the wake of new neurobiological
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methodologies, such asmagnetic resonance spectroscopy, used to
assess in vivo metabolites within the brain. The advancement of
new technologies and increased understanding will enable us to
develop novel treatments to target clinical symptoms and identify
preventative mechanisms to halt transition to schizophrenia in
individuals at high risk for mental health disorders.

Despite this, the mechanisms of different psychotic disorders,
including schizophrenia, are not fully established, with
evidence supporting a number of theories including neuronal
maldevelopment (8), hyperactive dopamine transmission
(9), hypoactive glutamatergic signalling (10) and immune
dysfunction (11), including microglial dysfunction (12), and
overproduction of inflammatory cytokines via innate immune
cells (13). However, one commonality between many of these
theories is altered function of the neuronal membrane, along
which is a litany of neurotransmitter receptors and ion channels.
The neuronal membrane is the functional site of drug effects and
signal transduction (14) and, furthermore, represents a point
where both genetic and environmental factors related to the
aetiology of schizophrenia may interact (15).

This review will explore the mechanisms by which oxidative
stress may affect the brain and how this may be related
to the symptom profile of schizophrenia. Initially we will
provide a brief description of oxidative stress, covering free
radicals and exploring endogenous antioxidant defences. We
will then examine the literature on impaired antioxidant
defence mechanisms in schizophrenia, including the
methods by which this is assessed, before evaluating how
these mechanisms may relate to the symptom profile of
schizophrenia, including positive, negative and disorganised
symptom severity. The studies were found via PubMed and
Google Scholar searches using combinations of key words
“schizophrenia,” “oxidative stress,” “antioxidant defence,”
“magnetic resonance spectroscopy,” “dopamine,” “glutamate,”
“mTOR” “inflammation,” “dysconnectivity,” and “symptoms.”
The searches yielded original research, meta-analyses and review
articles that were peer reviewed and in English.

OXIDATIVE STRESS

Oxidative stress is defined as an imbalance between the
production and subsequent build-up of reactive species, or
free radicals, and the body’s inability to detoxify these reactive
products. This in turn can lead to molecular and cellular damage
(16). There are two types of reactive species: reactive oxygen
species (ROS), such as superoxide (O•−

2 ) or hydrogen peroxide
(H2O2), and reactive nitrogen species (RNS), such as the nitroxyl
anion (NO−) and various nitrogen oxides (NO2, N2O4, etc.)
(17). Reactive oxygen species are generated as by-products of
mitochondrial production of adenosine triphosphate (ATP), a
crucial molecule for cellular actions (18). The electron transport
chain employed in this production consumes roughly 90% of all
oxygen absorbed by the cells (19) with an estimated 0.1–0.5% of
this oxygen being converted into superoxide radicals (20).

Free radicals, such as the superoxide radical, are known to
have some beneficial physiological effects; e.g., they can aid

the body’s innate immune system and provide a key line of
defence against pathogens (21). In a healthy state the level of free
radicals is controlled to maintain a balance between oxidation
and reduction in tissues (22). However, when production of
these species increases, such as when the body is in a high
stress condition or disease state, they begin to negatively affect
important structures within cells, such as lipids, proteins and
nucleic acids (23). One example of this is when the hydroxyl
radical and peroxynitrite are in excess, they can cause lipid
peroxidation which in turn damages cell membranes and
lipoproteins. This can lead to the formation of malondialdehyde
and conjugated diene, both of which are known to have toxic
and mutagenic properties (24). Furthermore, neurons within the
central nervous system are at risk of damage from reactive species
(25). The brain has high levels of oxygen consumption, around
20% of total basal oxygen consumption and an increased rate of
oxidative metabolism. These factors, combined with lower levels
of protective antioxidant enzymes and a high proportion of easily
oxidised membrane polyunsaturated fatty acids (PUFAs), when
compared with the rest of the body, lead to a much greater risk
for the negative effects of oxidative stress (26).

To combat excessive accumulation of ROS and RNS there is a
complex set of endogenous antioxidant defences, both enzymatic
and non-enzymatic. Antioxidant enzymes such as Superoxide
Dismutase (SOD), Catalase (CAT), and Glutathione Peroxidase
(GPx) help to block the initiation of reactive species chain
reactions and form the first line of antioxidant defence (25).
These enzymes act in conjunction to inactivate the superoxide
radical. O•−

2 is transferred into H2O2 via the addition of an
electron in a reaction catalysed by SOD. The hydrogen peroxide
produced by this reaction is then decomposed into harmless
water and oxygen by CAT andGPx (27). As each of these enzymes
is critical in different stages of free radical metabolism, change in
activity of one without compensation by the others could leave
cellular membranes vulnerable to damage (28).

The second line of defence comes from non-enzymatic
antioxidant components such as glutathione (GSH), metal
binding proteins (MBPs) and uric acid (UA) which rapidly
inactivate reactive species and thereby prevent the propagation
of chain reactions (17). These non-enzymatic antioxidants
work in a number of ways to help neutralise excess free
radicals. MBPs inhibit the formation of new reactive species
by binding metals such as iron and copper (29), whereas GSH
is a free radical scavenger; it scavenges reactive species and
inactivates them. During the reaction GSH is oxidised into
glutathione disulphide GSSG, which can then be reduced
back into GSH (30). Additionally, dietary antioxidants
such as vitamin E, vitamin C and carotenoids can affect
the activity of endogenous antioxidants, with vitamin C
helping to support the regeneration of GSSG back into
GSH (31).

To summarise, the human body has to maintain a delicate
balance of forming enough reactive species to perform useful
physiological roles, whilst breaking down the excess to prevent
unnecessary cellular damage. As such oxidative stress is thought
to play a key role in many physical disorders such as
cardiovascular disease and diabetes (32, 33), as well as a number
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of mental disorders such as depression and schizophrenia
(34, 35).

OXIDATIVE STRESS AND SCHIZOPHRENIA

Increased levels of reactive species and decreased levels of
antioxidant defences are seen to cause oxidative damage to a
number of cellular structures. Many studies have now shown
that oxidative damage is present in schizophrenia (14, 36, 37).
Although this may not be the primary cause of schizophrenia,
growing evidence has suggested that it may contribute to the
declining course and poor outcome in schizophrenia (38).

Examining oxidative stress within the brain is particularly
difficult because, until recently, there was no way to assess
metabolite concentrations in living human tissue. As such, a
variety of methods have previously been employed to assess
oxidative stress within schizophrenia. A large number of studies
have assessed peripheral biomarkers of oxidative stress such as
antioxidant levels. Total antioxidant and glutathione levels have
been shown to be lower within the plasma of non-medicated,
medicated, first-episode and chronic schizophrenia patients (39–
42). In addition to this, increased levels of reactive oxygen species
have been found in the periphery of schizophrenia patients
(43, 44), in conjunction with reduced levels of SOD and GPx
(45). Furthermore, redox regulatory findings have been shown to
be influenced by illness phase e.g., stable or acute schizophrenia
(46). Post-mortem studies also report reduced glutathione levels
in the brains of schizophrenic patients, specifically within the
prefrontal cortex and the caudate (47, 48), with abnormal protein
expression in the anterior cingulate cortex (ACC) a result of
increased oxidative stress (49).

Results from in vivo MRS studies of glutamate/glutamine
concentrations in schizophrenia, whilst inconsistent,
have highlighted that sub-grouping patients on “residual
schizophrenia” (long-term negative symptoms/impairments)
revealed reduced, highly correlated, GSH, glutamate and
glutamine concentrations in the ACC (50, 51). Lower grey matter
volume (GMV) in medial frontal and ACC in ultra-high-risk
individuals for schizophrenia also predicted poorer long-term
functional outcome at follow-up (∼9 years later), irrespective of
transition to schizophrenia or persistence of at-risk mental state
(52).

It has been suggested that, in schizophrenia, redox
dysregulation and subsequent oxidative stress may be limited
to a specific subgroup representing ∼1 third of patients
(46, 53–55). This subgroup is characterised by very low levels of
polyunsaturated fatty acids (PUFAs) within red blood cells during
the acute phase of illness (53), when PUFAs were bimodally
distributed, as well as deleterious effects of eicosapentanoate
(EPA) or vitamin E and C onmental functioning (54, 55). During
a stable phase, PUFA was no longer bimodally distributed,
but high 2-amino butyrate in the low PUFA group indicated
persistent redox dysregulation (46).

Genetic Studies
Genome wide association studies have shown an association
between gene polymorphisms for oxidative stress and

schizophrenia (56). Genetic variations have been found in
the strands of DNA that code for the rate limiting enzyme,
glutathione cysteine ligase and glutathione-S-transferases,
involved in the synthesis of glutathione (57). A high-risk
genotype for the glutathione cysteine ligase catalytic unit has
been linked to impaired capacity to synthesise GSH under
conditions of oxidative stress, as well as a reduction in medial
prefrontal GSH levels (58, 59). Genome wide association studies
have also identified a “psychiatric susceptibility gene” cacna1c
as one of the strongest genetic risk factors for the development
of affective disorders (60). This gene has recently been linked
to mitochondrial function and subsequent oxidative stress (61),
suggesting it may play a key role in the aberrant generation of
damaging reactive oxygen species seen in schizophrenia.

Animal Models
Higher levels of reactive species within mitochondria have
been found in the brains of ketamine-induced rat models of
schizophrenia compared to wild-type controls (62). Another
rodent model of schizophrenia is the N-methyl-D-aspartate-
antagonist MK-801-induced model, and this too has been found
to have increased levels of oxidative stress in the prefrontal
cortex (63). Glutathione depletion after the administration
of 2-cyclohexen-1-one, a chemical which enhances the rapid
degradation of GSH has also resulted in schizophrenia-like
behaviour in rodents (64). Knockout mice that lack a subunit
of glutamate cysteine ligase have demonstrated a significant
reduction of GSH in the anterior cingulate cortex (65),
which has resulted in schizophrenia-like behaviour, including
hyperlocomotion and altered social behaviour (66). Furthermore,
these knockout mice demonstrate neuronal changes within the
hippocampus similar to those seen in schizophrenia, specifically
decreasing the numbers of parvalbumin interneurons (67).

Evidence of redox dysregulation is seen in other common
neurodevelopmental animal models of schizophrenia. For
example, the social isolation rearing model explores the effects
of environmental insults via social deprivation on the developing
brain after birth, with animals developing specific behaviours
and neurobiology akin to schizophrenia (68, 69). Within this
model increases in SOD activity are seen in conjunction with
higher levels of lipid peroxidation in the prefrontal cortex
(70). Furthermore, mitochondrial dysfunction is also noted,
with increased striatal and decreased frontal cortex ATP (71).
Inflammatory mouse models have also shown evidence of
increased oxidative stress with prenatal exposure to the bacterial
endotoxin lipopolysaccharide shown to decrease levels of GSH
in the hippocampus (72). Several studies have demonstrated a
significant increase in lipid peroxidation when inflammation is
induced postnatally (73–75).

Clinical Trials
Several studies report that antioxidant treatment has had
positive effects on schizophrenia, although the evidence is
inconsistent. Treatment with the antioxidant N-acetylcysteine
has been of great interest in recent years, with studies finding
that it ameliorated depressive symptoms (76–78) and may
reverse oxidative stress induced by mitochondrial dysfunction
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(79). A recent meta-analysis by (80) concluded that n-
acetylcysteine led to improvement in negative symptom score,
total symptom score and working memory. Sulforaphane,
another antioxidant, has been shown to have neuroprotective
properties (81) and may reduce the risk of transition to
schizophrenia from an at-risk state (82). Sedlak et al. (83)
demonstrated that treatment with sulforaphane increased the
levels of available GSH in the brains of healthy controls after
7 days. Results from animal trials have suggested that dietary
intake of the sulforaphane precursor glucoraphanin prevented
cognitive deficits in adult offspring after maternal immune
activation (84). Additionally, a small study of seven human
patients with schizophrenia found a significant improvement
in a test of working memory after an 8-weeks treatment
with sulforaphane, although the sample size may have been
too small to detect any other improvements (85). Due to
the positive results seen from these studies clinical trials
are now underway to assess the efficacy of sulforaphane in
clinical subjects.

Further research into dietary antioxidants such as vitamins
and Omega-3 PUFAs have been of interest in recent years
(86). Vitamin C and E have been reported to improve patient
symptoms (87), however, more recent studies have shown that
in high doses, these vitamins may act as pro-oxidants and can
increase the levels of oxidative stress, although when combined
with ethyl-EPA, vitamin E and C in these high doses was not
deleterious (54, 88). Omega-3-PUFAs are shown to be reduced
in schizophrenia (38, 89) and act as an essential building block
of eicosanoids which act to regulate inflammation and oxidative
stress (90). Studies assessing Omega-3 PUFA supplementation
have yielded mixed results with some demonstrating a reduction
in symptom severity (91, 92) and others have found no
additional benefit compared to placebo (93–95). It has been
suggested that perhaps the reason for these mixed results is
due to illness phase and those with chronic schizophrenia
may have progressed too far for supplementation to have a
beneficial effect (86). Indeed one meta-analysis suggested that
Omega-3 PUFA supplementation was most effective in earlier
phases of illness and reduces the conversion from high risk
to first episode (96). Furthermore, it has been suggested not
only dietary supplementations but elimination of substances
which are toxic or not tolerated by some patients may have
a beneficial effect in schizophrenia treatment. For example a
recent study showed that the removal of gluten from a patients
diet was associated with a reduction in negative symptom
severity (97).

It should be noted that there is some contention as to whether
peripheral biomarkers can reflect the status of the CNS (25).
Traces of oxidative damage may arise from a variety of areas
within the body and as such peripheral indicators of oxidative
stress may not reflect the conditions within the brain (59, 98).
Whilst some studies have shown peripheral antioxidant capacity
is consistent with the central nervous system (99), peripheral
status is simply indirect evidence. As a result of this, the next
step is to assess oxidative status in vivo. The primary method
by which this can occur is the use of magnetic resonance
spectroscopy (MRS).

Magnetic Resonance Spectroscopy
MRS is a relatively new tool that is used in conjunction with
MRI to non-invasively measure the concentration of metabolites
within living tissue (100). It can be used to assess antioxidant
concentrations in the brain (101). Similar to magnetic resonance
imaging (MRI), MRS acquires a signal from hydrogen protons.
However, while MRI acquires signal primarily from protons
within water and fat, due to their high concentration within
the brain, MRS acquires its signal from other molecules, such
as GSH. By examining the difference in resonance frequency
of hydrogen nuclei in difference chemical environments, MRS
can distinguish between hydrogen nuclei in different molecules.
Hydrogen protons seen in fat and water are approximately
one thousand times more abundant than those detected in
molecules by MRS (102) and thus MRS employs a method to
suppress the water proton signal. Since the molecules of interest
within MRS studies are much less abundant than water, larger
voxels of acquisition are required, typically 2 × 2 × 2 cm3

(103). Larger voxels help to improve the signal to noise ratio
which is often poor in MRS studies (104). However, with a
larger voxel comes difficulties in voxel composition, a 2 cm3

voxel makes it incredibly difficult to get a “pure” white matter
location and virtually impossible to obtain a “pure” grey matter
placement (104).

In light of the evidence for extensive structural and
functional brain abnormality in schizophrenia (105), the question
of optimum placement of an MRS voxel for identification
of relevant abnormalities in antioxidant concentrations in
schizophrenia remains unanswered (106). Nonetheless, meta-
analyses of convergent GMV loss across diverse psychiatric
diagnostic groups (107), post-mortem studies of tissue from
patients and also the evidence from relevant animal models
of schizophrenia reviewed above suggest that the prefrontal
cortex, anterior cingulate and medial temporal lobe including
hippocampus, are candidate regions of interest. Furthermore, in
mice the highest concentrations of GSH are in the cortex followed
by the cerebellum, hippocampus and striatum (108) suggesting
differential sensitivity of different brain regions to damage from
oxidative stress. There is also the issue of grey matter or white
placement, with GSH concentrations shown to be 30% higher
in white matter than grey matter (109), however grey matter is
seen to be more vulnerable to oxidative stress (110). Hence, no
‘gold standard’ approach has resulted in studies often choosing
different areas of the brain to assess antioxidant concentrations
resulting in varied findings.

INTERACTION OF OXIDATIVE STRESS
AND CURRENT SCHIZOPHRENIA
HYPOTHESES

The Dopamine Hypothesis
The dopamine hypothesis is the most well-known in
schizophrenia and has dominated the literature for many
years. This theory was proposed after it was discovered that the
drug chlorpromazine had antipsychotic properties (111), further
to this, Carlsson and Waldeck (112) discovered that dopamine
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was a neurotransmitter. It was subsequently proposed that
the therapeutic effects were the result of selective blockade of
dopamine D2 receptors (113). To this day, all antipsychotic drugs
act on dopaminergic receptors in the brain (9). It is proposed that
D2 receptor neurotransmission is hyperactive within subcortical
and limbic brain regions. This hyperactivity is thought to
contribute toward positive symptoms in schizophrenia.
Alongside D2 hyperactivity, it is also thought that D1 receptor
hypoactivity can contribute toward the negative and cognitive
symptoms seen in this disorder (114). Post mortem studies
have found an increased density of D2 receptors in the brains
of schizophrenia patients (115). Upregulation of D2 receptors
within the caudate nucleus is also reported to correlate with
cognitive dysfunction (116). Additionally, indirect dopamine
agonists, such as amphetamine and cocaine, have been shown to
induce positive symptoms in the general population (117) with
schizophrenia patients displaying an increased sensitivity to the
dopamine-releasing effects of these drugs (118–120).

However, antipsychotic drugs tend to alleviate positive
symptoms more than negative symptoms (121), with some
studies showing that they may worsen negative symptoms in
patients (122) and even induce them in healthy controls (123).
It has been suggested that hypoactivity of the dopamine pathway
is a mediator of negative symptoms in schizophrenia, indicating
that reduced dopamine activity may be the end difficulty rather
than dopamine overactivity (124).

Metabolism of dopamine has been suggested to be a
prominent producer of reactive oxygen species in the brain (26).
Oxidation of dopamine (both enzymatic and non-enzymatic)
results in the generation of H2O2 which when in the presence
of iron or oxygen can form the more active hydroxyl radical
(.OH) (125). Additionally, the oxidation of dopamine can form
dopamine quinones; these could then react with the sulfhydryl
groups of glutathione, thus reducing the levels of GSH and
increasing the levels of ROS (126). One study found that
dopamine alone caused a 40% reduction in GSH levels within
cortical neurons (127).

The Glutamate Hypothesis
Initially proposed in 1980 after glutamate levels were seen
to be lower in the cerebrospinal fluid of schizophrenia
patients (128), the glutamate hypothesis postulates that the
negative symptoms seen in schizophrenia are in part linked
to dysfunctional glutamatergic signalling, mediated by NMDA
receptors on GABAergic interneurons (10). Similar to the
dopamine hypothesis, initial support for this theory came from
studies into mind altering drugs. NMDA receptor antagonists,
such as ketamine, are seen to induce psychosis in healthy controls
(129), with the induced psychosis caused by NMDA receptor
antagonists resembling schizophrenia symptoms more closely
than those that act on the dopaminergic system (130).

A number of genes have been seen to influence the
function of glutamate receptors (131, 132). Reports from genome
wide association studies have found that out of 108 loci
related to schizophrenia risk, six involve genes implicated in
brain glutamate function, with many more thought to affect
glutamate function indirectly (133). Bustillo et al. (134) found

that polymorphisms in the glutamate-related genes CLCN3

GRM3 and SLC38A7 were directly correlated with combined
glutamate and glutamine signal in the grey matter of younger
schizophrenia patients (<36 years). Post-mortem studies have
found a reduction in NMDA receptors in the brain tissue of
schizophrenia patients (135). Moreover, brain imaging studies
have demonstrated reduced binding of NMDA receptors in the
hippocampus of schizophrenia patients (136).

Although the glutamate hypothesis may be closer to the
root cause of schizophrenia, it does not rule out the dopamine
hypothesis. Recent circuit-based models have implicated both
glutamatergic and dopaminergic neurotransmission in the
pathogenesis of schizophrenia (137). Dopamine neurons are
regulated by glutamatergic inputs to the midbrain dopamine
nuclei. As such, dopamine function may be secondary to
aberrant glutamate functioning. NMDA receptor dysfunction
on GABAergic interneurons leads to disinhibited glutamate
transmission which could result in the appearance of negative
symptoms. Furthermore, these glutamate neurones project into
the midbrain and activate the dopamine pathways that are key to
positive symptom appearance (Figure 1) (138).

Results from animal studies show that GSH and glutamate
are closely related (139). Glutathione synthesis is directly related
to glutamate uptake in microglia and the subsequent release of
glutamate metabolites (140); additionally, glutathione depletion
as a result of oxidative stress is strongly related to microglial
glutamate release (141). Activation of glutamatergic pathways
can trigger the generation of free radicals while reducing
endogenous protection against free radical damage (142).
Furthermore, free radicals can trigger the release of glutamate
into the synaptic cleft while blocking its reuptake (143).

GSH and NMDA receptor activity are closely linked;
an increase in glutathione levels is shown to raise NMDA
receptor responsiveness, whereas its depletion has resulted in
NMDA receptor hypofunction (144, 145). Hypofunction of these
receptors can result in increased free radical production and
subsequent oxidative damage (146). One more recent study has
shown that synaptic NMDA receptor activity is intrinsically
linked to GSH production, with an increase in synaptic
activity triggering a subsequent growth in GSH production and
utilisation (147). Taken together these studies demonstrate the
close link between the glutamatergic system, NMDA receptor
hypofunction and GSH.

mTOR Pathways
More recently a new hypothesis for schizophrenia aetiology
has arisen; the mammalian target of rapamycin (mTOR)
hypothesis (148). The mammalian target of rapamycin (mTOR)
acts as a central regulator of cell metabolism, growth and
proliferation via the integration of both intra and extracellular
signals (149). Misregulation of mTOR via upstream proteins
phospotidylinositol 3-phosphate kinase (PI3K) and protein
kinase B (PKB) is thought to contribute to schizophrenia (150,
151). Inhibition of either PI3K/PKB or mTOR leads to inhibited
of neuronal growth and thus might contribute to the aberrant
synaptic architecture seen in schizophrenia (152). As a result of
this inhibited neuronal growth there is a reduction in dendritic
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FIGURE 1 | Interactions between GABAergic disinhibition of glutamatergic neurons and subsequent stimulation of midbrain dopaminergic neurons. NMDAR,

N-methyl-D-aspartate receptor; GABA, Gamma-Aminobutyric acid; Glu, Glutamate; DA, Dopamine.

branching and subsequent synaptic formation (153). This may
result in the development of negative symptoms due to the lack
of neuronal connexions (148). Overstimulation of the mTOR
system in specific brain areas has been linked with cognitive
deficits seen in schizophrenia (154). While inhibition of this
pathway causes reduced dendritic branching, overstimulation is
thought to increase the number of synaptic connexions, thus
leading to the generation of positive symptoms (155). The mTOR
pathway has been shown to have connexions to both serotonin
and glutamatergic pathways in the brain, through interactions
with the serotonin receptor 5-HT6 (156) and glutamate receptors
mGluR and NMDA (157), thus linking the mTOR pathway to the
glutamate hypothesis.

Oxidative stress can also interact with the mTOR pathway
resulting in the development of cognitive symptoms within
schizophrenia. It has been proposed that cognitive symptoms
arise from prefrontal cortex dysconnectivity (158). This
dysconnectivity has been related to myelin and oligodendrocyte
abnormalities in schizophrenia patients (159). Myelin is
produced by mature oligodendrocytes, the precursor of which
is particularly susceptible to oxidative stress (160). It has been
proposed that reactive oxygen species can inactivate sections
of the mTOR pathway leading to reduced myelination and
proliferation of the oligodendrocyte precursors and subsequent
disruption of connectivity within the prefrontal cortex (161).

The Immune Hypothesis
Long before the development of modern antipsychotics,
infections and inflammation were proposed to be the cause of
psychosis. During an influenza pandemic in the late 19th century
it was demonstrated that psychiatric conditions could be caused
by an infectious agent, in this case the flu, and one specific
type of infection can produce a number of different psychiatric

syndromes (162). These insights are still valid today (163);
however, they have become more generalised, with inflammation
thought to play a key role in many psychiatric disorders in the
absence of an acute infectious disease (164).

Pro-inflammatory cytokines, astrocytes, microglia and
immune cells such as macrophages and T- or B- lymphocytes
help to mediate inflammation in the CNS (165). Under
normal circumstances these inflammatory mediators play an
essential role in combating infection, harmful chemicals and
responding to tissue damage (166). However, dysregulation of
the inflammatory response, for example via infection, can trigger
a cascade which affect central nervous system (CNS) processes
and behavioural phenotypes (167). This dysregulation is central
to the immune hypothesis of schizophrenia. Inflammation could
cause significant CNS changes which result in the appearance of
positive, negative, and disorganised symptoms (168).

Genome wide association studies have located key risk genes
for schizophrenia within the major histocompatibility complex
(MHC) on chromosome 6, a key loci that codes for specific
cell surface proteins essential within the immune system (169).
Complement component 4 (C4), a gene located within the
MHC which affects both synaptic pruning and opsonization
of pathogens, is of particular interest. Recent studies have
shown that people with schizophrenia overexpress this gene,
thus causing a disruption in synaptic pruning and inflammation
related damage (170). Furthermore, overexpression of C4
may help to explain the developmentally timed nature of
schizophrenia (171). Additional polymorphisms on genes coding
for inflammatory cytokines have also been implicated in
schizophrenia risk (172).

Further clinical studies have found increased biomarkers of
neuroinflammation in schizophrenia patients, including greater
levels of circulating inflammatory cytokines such as Interleukin-6
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(IL-6), Tumour Necrosis Factor Alpha (TNF-α) and Interferon
Gamma (IFN-γ) (35, 173–176). Elevated cytokine levels are
seen to arise before the onset of schizophrenia (177) and may
even predict later transition from an at risk mental state, for
example elevated levels of IL-6 at age 9 are shown to double
the risk of a psychotic disorder diagnosis at age 18 (35). Higher
levels of C-reactive protein (CRP) at age 15 are also associated
with an increased risk of schizophrenia development by age
27 (178).

It has been hypothesised that these inflammatory cytokines
may result in the appearance of the schizophrenia phenotype
via disturbance of key neurotransmitter systems (179).
Evidence has suggested that pro-inflammatory cytokines
increase the concentration of kynurenic acid, a naturally
occurring NMDA receptor antagonist, triggering hypofunction
of the NMDA receptor and thus promoting increased
glutamatergic transmission, ultimately resulting in schizophrenia
symptoms (180).

One potential cause of the neuroinflammation seen in
schizophrenia could be maternal immune activation (MIA)
(181). Studies have shown an association between maternal
infection in pregnancy and schizophrenia development in
offspring (182). Further studies have shown that this is not
dependant on the type of infection the mother has, immune
activation alone, and the subsequent cytokine release, is enough
to significantly increase schizophrenia risk in offspring (183). It
has been suggested that 14%-21% of all schizophrenia cases could
be prevented by the eradication of maternal influenza (184).

Inflammation and oxidative stress are intrinsically
linked. Tissue damage caused by oxidative stress can trigger
inflammation and an immune response (185). Furthermore,
macrophages and microglia use reactive oxygen species to kill
pathogens (186). As such oxidative stress can be seen as both
an inducer and a product of inflammation (187). In addition to
this, the imbalance between pro and anti-oxidants may play a
key role in the maternal immune activation model (72). In mice
it has been demonstrated that MIA resulted in the elevation of a
number of oxidative stress markers, including glutathione (188).
Taken together it appears that inflammation and oxidative stress
have a close reciprocal relationship within schizophrenia.

The Dysconnectivity Hypothesis
One of the more prominent schizophrenia hypotheses today
is the dysconnectivity hypothesis. First proposed in 1995 by
Friston and Frith, it suggests that schizophrenia symptoms may
arise from disrupted brain connectivity. This hypothesis was
based on findings that schizophrenia patients demonstrated a
reduction in the connectivity between the prefrontal cortex (PFC)
and temporal brain regions (189). Since these initial findings a
number of imaging studies have investigated this, each with more
descriptive and sensitive techniques [including Dynamic Causal
Modelling (DCM), Psycho–Physiological Interaction (PPI) and
Independent Component Analysis (ICA)] (190).

A number of white matter abnormalities have been seen
in both medicated an unmedicated schizophrenia patients,
including a disruption in white matter integrity which is

correlated with cognitive impairment (191–193). Importantly
this disruption in white matter integrity occurs before the onset
of frank schizophrenia and worsens as symptoms progress (194–
196). Additionally, diffusor tensor imaging (DTI) has revealed
widespread decreases in white matter tracts across a number
of long-range pathways within schizophrenia, such as frontal-
temporal-limbic, and cortico-cerebellar pathways (197, 198).

In addition to these white matter abnormalities, meta-analyses
have revealed grey matter loss across a number of brain sites,
including cortical, subcortical, cerebellar and limbic, with this
loss becoming more pronounced as the disorder progresses (199,
200). Meta-analyses of GMV loss also reveals reduced integrity
of anterior insula and dorsal anterior cingulate based neural
systems (e.g., the salience network) linked to psychotic disorders
and deficits in executive functioning (107). These deficits are
largely attributed to cellular deficits rather than neuronal loss,
for example reduced dendritic branching and spine density
(201). In spite of these widespread deficits in structural integrity,
functional connectivity between brain areas is quite variable. For
example, within specific frontal and temporal regions there is a
deficit in white matter and subsequent functional connectivity,
however in some cases an increase in connectivity is seen (202,
203). In addition to this, connectivity patterns may vary based
on whether the brain is at rest or performing a task (204, 205). As
such it has been proposed that schizophrenia can be characterised
by structural brain deficits with irregular functional hypo or
hyper-connectivity patterns.

It has been hypothesised that these functional deficits
in connectivity are in part due to myelin abnormalities
(206, 207). As mentioned previously myelin is produced by
oligodendrocytes, interrupting the production of myelin can
lead to functional dysconnectivity and the appearance of frank
psychotic symptoms (161). It is here where oxidative stress may
play a role, the oligodendrocyte precursors (OPC) are susceptible
to oxidative stress, redox dysregulation alongside inflammation
and glutamatergic hypofunction to impair the development of
OPCs to mature oligodendrocytes, thus impacting neuronal
myelination (207, 208). In a series of human and rodent
studies, glutathione deficit in the prefrontal cortex was linked
to impaired OPC proliferation alongside oligodendrocyte and
myelin maturation (209). OPCs and oligodendrocytes are known
to have up to six times more reactive oxygen species within
them, perhaps due to the increased metabolic activity required
to produce myelin (210). As such, these cells are constantly
in a state of increased oxidative stress, to which they are
already susceptible. It has been indicated that a redox change
of as little as 15% can influence the pathways that stimulate
oligodendrocyte maturation (211). Additionally, oxidative stress
can trigger downregulation of gene expression related to
myelination (212). As such the myelin abnormalities and
subsequent dysconnectivity of specific brain regions observed
within schizophrenia may be due to oxidative-stress induced
OPC dysfunction. Furthermore, it has been noted that the
impaired development of OPCs to mature oligodendrocytes
can be reversed by supplementation with the antioxidant
NAC (207, 209).
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OXIDATIVE STRESS AND SYMPTOM
PROFILE

Although oxidative stress has been implicated in the aetiology
of schizophrenia many times (213–215), the method by which it
may relate to specific symptoms is still unclear (216). It has been
demonstrated that increased levels of reactive oxygen species
and a dysfunction in antioxidant defences can cause significant
damage to neuronal architecture. Impairments in oxidative
status have been linked to cognitive decline and behavioural
abnormalities (217). As such schizophrenia symptoms may be
a result of damage to the neuronal lipid membrane in specific
regions or networks, caused by excess reactive oxygen species
(218).

Studies have shown that an increase in antioxidant enzyme
activity in red blood cells, plasma and cerebrospinal fluid are
associated with tardive dyskinesia, negative symptoms and
poor premorbid dysfunction (43, 219, 220). GSH depletion
in particular has been linked to the negative symptoms of
schizophrenia (221). Lower glutathione levels have been
correlated with worse Positive and Negative Syndrome Scale
(PANSS) scores and worse community functioning (222, 223).
Additionally, patients with residual or deficit schizophrenia,
two subtypes of schizophrenia with predominantly negative
symptoms, exhibited a greater reduction in GSH levels
compared to those with stable schizophrenia (51, 224). It
is assumed that the substantial negative symptoms seen
in schizophrenia are a result of aberrant glutamatergic
transmission mediated by NMDA receptor hypofunction
(225). As mentioned previously, GSH, the glutamatergic
system and NMDA receptor function are closely related. The
links between these may suggest why negative symptoms are
so strongly correlated with GSH concentration in specific
brain regions.

Previous studies have demonstrated that SOD activity is
positively associated with both positive and negative symptoms,
as well as general psychopathology in chronic schizophrenia
patients (226, 227). However, other studies have found no link
between overall symptom severity and SOD activity (228). One
study even found that SOD activity was inversely associated with
positive symptoms (229). A more recent study has found that
gender differences play a role in clinical symptoms, with higher
SOD activity correlated with negative symptoms in men, but
with positive symptoms in women (230). A recent study has
notably found that platelet lipid peroxidation is associated with
the severity of disorganisation symptoms (216).

A number of reasons have been proposed as to why
results are inconsistent, including: antipsychotic medication
confound, variable disease severity, number of psychotic episodes
and source of test material (blood, plasma, or serum) (231).
Additionally, there are a number of additional confounding
factors which may influence results such as, smoking (232) and
obesity (233). An alternative argument for this may be that each
biomarker for oxidative stress does not work independently,
and they could interfere with each other (234). As such it
may be the case that each individual biomarker may not have

satisfactory diagnostic power (235) and it may be more pertinent
to combine several markers to improve diagnostic precision in
future studies.

DISCUSSION

Oxidative stress has been heavily implicated in the pathogenesis
of schizophrenia. With a number of studies finding increased
levels of reactive species and decreased concentrations of
antioxidant defences alongside significant levels of oxidative
damage in schizophrenia (37, 39, 43). Evidence for this has come
from a variety of study designs, including post-mortem, genetic,
animal and clinical trials (47, 61, 67, 82). Oxidative stress may
be seen within the light of most current biomedical hypotheses
of schizophrenia, and may play an important role in unifying
schizophrenia hypotheses in future. Additionally, a small but
increasing number studies have implicated oxidative stress in
relation to specific symptoms in schizophrenia, with negative,
disorganised and cognitive symptoms most evident (221, 227).
It may be the case that the symptoms more related to neuronal
development in schizophrenia are a result of membrane damage
via lipid peroxidation.

Taken together these results could present a rough timeline
of schizophrenia progression (Figure 2). First, maternal immune
activation during pregnancy can cause the release of pro-
inflammatory cytokines (181). These cytokines can trigger the
overproduction of kynurenic acid, an NMDAR antagonist,
thus resulting in NMDAR hypofunction on GABAergic
interneurons (180). The hypofunctioning NMDARs result
in disinhibition of glutamate neurons which can lead to
negative symptoms of schizophrenia (236). These excitatory
glutamate neurons project into the midbrain and trigger
hyperactivity of dopaminergic pathways which are associated
with positive symptoms (237). Treatment with first generation
antipsychotics are seen to alleviate these symptoms (238).
Catecholamines such as dopamine can auto-oxidate into
free radicals (239). Free radicals produced by this will
cause tissue damage and increase inflammation (138). In
response to increased free radical generation an increase
in the antioxidants SOD and GSH are seen to combat this
(240). GSH availability is reduced due to the excessive ROS
produced by increased dopamine levels (241). As mentioned
previously a reduction in available GSH can lead to NMDA
receptor hypofunction within inhibitory GABA interneurons
(144, 145). Thus, generating a cycle of pyramidal glutamatergic
neurotransmission and the generation of diverse symptoms seen
in acute schizophrenia (242).

A model such as this provides an opportunity for novel
therapeutic interventions in schizophrenia. The biomedical
underpinnings of schizophrenia are presented here as a multi-
step, cyclical, process that ultimately results in the manifestation
of positive symptoms, however such processes are not reflected
in current treatments of schizophrenia. Currently antipsychotic
medication is prescribed at all stages of the disorder and only
effective against positive symptoms. A novel approach would be
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FIGURE 2 | The cyclical nature of schizophrenia progression from maternal pro-inflammatory state to behavioural phenotype.

to use oxidative stress and inflammatory markers as a target for
schizophrenia progression and adapting treatment based on the
individual, thus moving toward a more personalised approach to
schizophrenia treatment (243).

Over the last three decades a large number of clinical trials
have been performed and the interest within this research area
has been increasing. A 2016 review identified 22 clinical studies of
antioxidant treatments in schizophrenia (244), however, authors
noted limited evidence for symptom improvements and under-
powered study designs. Indeed, varying results from clinical trials
are noted in more recent studies, for example, the antioxidant
N-acetylcysteine (NAC) has been shown to improve depressive
symptoms in patients (78), however, a separate study found
that NAC did not improve clinical symptoms or functional
outcomes (243). Perhaps these varying results are due to
the small sample sizes of the cohorts tested, additionally a
recent meta-analysis suggested that longer interventions may
be required for antioxidant treatments such as NAC to work,
as a significant improvement in symptoms can be seen at
24 weeks or more, but not <8 weeks (80). Oxidative stress
presents as a good candidate for schizophrenia intervention,
future studies should continue to investigate potential treatments
over an extended time course. A broad range of interventions
from pharmaceuticals to diet and exercise may have potential

to be effective, however stratification based on the patient’s
biochemical and inflammatory are needed (86, 97, 245). These
future studies will not only provide potential new nutraceutical
and pharmacological therapies for schizophrenia, they will also
allow us to continually improve the knowledge surrounding this
complex disorder.
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