

University of Birmingham

Input-to-state representation in linear reservoirs
dynamics
Verzelli, Pietro; Alippi, Cesare; Livi, Lorenzo; Tino, Peter

DOI:
10.1109/TNNLS.2021.3059389

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Verzelli, P, Alippi, C, Livi, L & Tino, P 2021, 'Input-to-state representation in linear reservoirs dynamics', IEEE
Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3059389

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

P. Verzelli, C. Alippi, L. Livi and P. Tiňo, "Input-to-State Representation in Linear Reservoirs Dynamics," in IEEE Transactions on Neural
Networks and Learning Systems, doi: 10.1109/TNNLS.2021.3059389.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

https://doi.org/10.1109/TNNLS.2021.3059389
https://doi.org/10.1109/TNNLS.2021.3059389
https://birmingham.elsevierpure.com/en/publications/1bea3dfc-f3e0-4e33-ada0-7d1de2f03184

INPUT-TO-STATE REPRESENTATION
IN LINEAR RESERVOIRS DYNAMICS

A PREPRINT

Pietro Verzelli∗
Faculty of Informatics

(Università della Svizzera Italiana)

Cesare Alippi
Department of Electronics,

Information and bioengineering
(Politecnico di Milano)
Faculty of Informatics

(Università della Svizzera Italiana)

Lorenzo Livi
Departments of Computer Science and Mathematics

(University of Manitoba)
Department of Computer Science

(University of Exeter)

Peter Tiňo
School of Computer Science
(University of Birmingham)

February 15, 2021

ABSTRACT

Reservoir computing is a popular approach to design recurrent neural networks, due to its training
simplicity and approximation performance. The recurrent part of these networks is not trained
(e.g., via gradient descent), making them appealing for analytical studies by a large community of
researchers with backgrounds spanning from dynamical systems to neuroscience. However, even
in the simple linear case, the working principle of these networks is not fully understood and their
design is usually driven by heuristics. A novel analysis of the dynamics of such networks is proposed,
which allows the investigator to express the state evolution using the controllability matrix. Such a
matrix encodes salient characteristics of the network dynamics; in particular, its rank represents an
input-indepedent measure of the memory capacity of the network. Using the proposed approach, it
is possible to compare different reservoir architectures and explain why a cyclic topology achieves
favourable results as verified by practitioners.

Keywords Reservoir Computing · Recurrent Neural Networks · Dynamical Systems

1 Introduction

Despite of being applied to a large variety of tasks, Recurrent Neural Networks (RNNs) are far from being fully
understood and performance improvement is usually driven by heuristics. Understanding how the computation is
conducted by the dynamics of the RNNs is an old question [1] which still remains unanswered, even though advances
were recently achieved [2, 3]. The introduction of gating mechanisms (such as LSTM [4] and GRU [5]) dramatically
improved the performance of RNNs, but the use of complex architectures makes the theoretical analysis harder [6, 7, 8].
Even for simple networks, we currently lack a sound framework to describe how the signal history is encoded in the
state. Another relevant issue is the memory-nonlinearity trade-off [9, 10]. Memory capacity maximization does not
necessarily imply performance (e.g., prediction) maximization [11]. In recent years, large efforts have been devoted to
tackle these problems, by studying the dynamical systems behind RNNs [2, 12, 13, 3, 14, 15].

∗Referring author : pietro.verzelli@usi.ch

ar
X

iv
:2

00
3.

10
58

5v
3

 [
cs

.N
E

]
 1

2
Fe

b
20

21

A PREPRINT - FEBRUARY 15, 2021

Reservoir Computing (RC) is a computational paradigm developed independently by Jaeger [16, 17] (Echo State
Networks (ESNs)) and Maas [18] (Liquid State Machines (LSMs)) and Tiňo [19] (Fractal Predicting Machines (FPMs)).
The basic idea is to create a representation of the input signal using an untrained RNN, called the reservoir, and then to
use a trainable readout layer to generate the network output. RC demonstrated its effectiveness in various tasks and
has risen great interest in the physical computing community due to the underlying idea of natural computation. In
particular, photonics [20] and neuromorphic computation [21] are commonly implemented using RC, but also a bucket
of water [22] or road traffic [23] have been used as reservoirs. See [24] for a review.

The architecture simplicity makes RC prone to theoretical investigations [25, 26, 27, 15, 12, 28], which have mainly
concentrated on questions about computational capabilities of whole classes of dynamical systems [26], while little
has been understood about how specific setting of the dynamical system can influence the network computational
property [15]. Some important theoretical results can be derived assuming that the reservoir dynamics are linear
[12, 11, 15, 28, 29]. This assumption can be seen as a first-order approximation of the nonlinear system, sharing some –
but not all – of its features [30].

In this work, we propose a novel analysis shedding light on how a linear RNN encodes input signals in its state. The
analysis decouples the network state in two terms: the controllability matrix C, which only depends on the reservoir and
input weights vector, and the network encoded input s, which depends on the reservoir weights and the input signal
driving the system. Writing the system in this form, allows one to decouple the properties of the reservoir topology –
encoded in C – from the specific input driving the network, encoded in s. We analyze different reservoir topologies in
terms of the nullspace of C and show that the rank of C is a measure for the richness of the representation of the input
signal. More specifically, we show that the nullspace of C is linked to the memory forgetting capacity of the network.
Based on these results, we demonstrate that a cyclic reservoir topology (forming a ring structure) is optimal. The claim
is corroborated by empirical evidence.

The remaining of the paper is organized as follows. In Section 2 the RC paradigm is presented, along with the the
various reservoir topologies studied in this work. Section 3 develops a representation of the network output in terms
of its controllability matrix. Section 4 is devoted to the analysis of the input representation in the network’s states,
while Section 6 discusses the memory of the network in terms of the rank of the controllability matrix. In Section 6
some experiments are conducted to validate are claims. Finally, Section 7 draws the conclusion. The Appendices are
dedicated to derivations.

2 Reservoir computing

RC was developed as a tool to explain the brain working principle [18] and as computational paradigm to avoid the
complex and expensive training procedure of RNNs [16], e.g., based on backpropagation through time [31, 32]. RC
training requires to randomly generate the weights of the recurrent layer called reservoir, which is tuned only at the
hyper-parameter level (e.g., by searching for the best-performing spectral radius of the corresponding weight matrix).
The reservoir reads the input signal through an input layer, resulting in an untrained representation of the input in
the network’s state. A readout layer is then trained to produce the system output. Common tasks involve time-series
prediction [33, 34], simulation of dynamical systems [35], and time-series classification [36].

Let xk ∈ Rn be the state of a reservoir of dimension n at time k, W ∈ Rn×n be its reservoir connection matrix and
w ∈ Rn its input weights vector. When considering left-infinite signal, the time-index k runs from 0 to −∞ , so that
the driving input signal is u = (u0, u−1, u−2, . . .), u−k ∈ R.

In the linear case, the reservoir evolves according to:
xk = Wxk−1 +wuk (1)

By recursively applying (1) we get
x0 = Wx−1 +wu0 = W 2x−2 +Wwu−1 +wu0 (2)

= W 3x−3 +W 2wu−2 +Wwu−1 +wu0 (3)
i.e.,

x0 =

∞∑
k=0

W kwu−k (4)

One usually relies on a (trained) linear readout r ∈ Rn to generate the system output y−k, so that at time 0

y0 = r · x0 = r ·
∞∑
k=0

W kwu−k (5)

2

A PREPRINT - FEBRUARY 15, 2021

w rW

uk yk

xk
Figure 1: Schematic representation of a RC with a scalar input, a uni-dimensional output and N = 8 neurons in the
reservoir. Fixed connections are drawn using solid lines while dashed lines represent learned connections.

In the seminal paper [16], training is based on a simple least-square regression. More sophisticated techniques where
later introduced, including some forms of regularization [37] and online-training procedures [38]. For simplicity, we
have only described the case in which the input and the output are uni-dimensional, but the proposed approach can be
easily generalized to the multidimensional case. In Fig. 1, a schematic representation of the RC architecture is depicted.

Even though a reservoir layer does not require a proper training procedure, hyper-parameters tuning must be carried
out in to improve performance. The most studied hyper-parameter is the Spectral Radius (SR) ρ(W) [39, 40, 41]
which is the largest eigenvalue in magnitude of W , related to the Maximum Singular Value (MSV) σmax(W). Other
hyper-parameters refer to the input and output scaling factors, the sparsity degree of W and the input bias. Moreover,
the update equation (1) is usually chosen to be non-linear, i.e., xk = φ(Wxk−1 +wuk) and different choices of the
nonlinear transfer function φ can be explored [42].

Many studies were devoted to understand how these hyper-parameters affect the dynamics of the network and its
computational capabilities. In particular, it appears that the hyper-parameter space can be divided into a region where
the dynamics are “regular” (meaning that they are stable with respect to the inputs driving the system) and another one
where they are “disordered” (meaning that they are unstable and do not provide a representation for the input) [43]. The
narrow region separating these two regimes is known in the literature as Edge of Chaos or Edge of Criticality (EoC)
[44, 45, 46] and appears to be common to a large variety of complex systems beyond RNNs [47, 48, 49].

In the following, we introduce different reservoir architectures that are commonly found in the literature.

2.1 Delay line

In a delay line each neuron is connected the subsequent one to form a chain-like architecture, so that the reservoir
connection matrix Wd reads:

Wd,ij = δi,j−1 (6)

where δ is the Kronecker delta. Note that the last neuron in the chain is not connected to the first one. Moreover, the
input weights vector is wd = (1, 0, 0, . . . , 0), meaning that the input enters the network only through the first neuron of
the chain. Mathematically, such a model setting corresponds to the n-th order AR model, which is a really popular and
studied tool in time series analysis and system identification [50].

3

A PREPRINT - FEBRUARY 15, 2021

Delay Line Cyclic Reservoir Random Reservoir Wigner Reservor

Figure 2: The different architectures discussed in this work. From left to right: delay line, cyclic, random and Wigner
topology. The thickness of the arrow accounts for the strength of the connection. Notice that it has the same value for
all the connections in both the delay line and the cyclic reservoir, while it varies for the other two. Note the presence of
self loops in random and Wigner architectures. Also consider that the Wigner reservoir has symmetric connections
(double-headed arrows).

2.2 Cyclic reservoir

A reservoir is said to be cyclic when each neuron is connected to another one, in a way that they form a ring. The
reservoir matrix of a cyclic reservoir has the form:

Wc,ij = δi,j−1 (7)

where, with an abuse of notation, δ0,−1 := δ0,n−1. From the product of Kroenecker deltas, it follows that:

W 2
c,ij =

∑
k

Wc,ikWc,kj =
∑
k

δi,k−1δk,j−1 = δi,j−2 (8)

as well for higher powers.

2.3 Random reservoir

In a random reservoir the entries of the reservoir matrix Wr are independent random variables. In the sequel, we
consider the generic ij component of the matrix to be drawn from a Gaussian distribution.

Wr,ij ∼ N
(
0,
ρ2

n

)
(9)

With this choice, the expected value for the SR 〈ρ(Wr)〉 = ρ [13] and MSV 〈σmax(Wr)〉 = 2ρ [51] .

2.4 Wigner reservoir

The diagonal elements are distributed as in (9), i.e., Ww,ii ∼ N (0, ρ21/n), while off-diagonal elements follow:

Ww,ij =Wr,ji ∼ N
(
0,
ρ22
n

)
, i 6= j (10)

Wigner matrices are symmetric. In this work, we will always set 2ρ1 = ρ2 = ρ. Notably, this leads to 〈ρ(Wr)〉 =
〈σmax(Wr)〉 = ρ.

3 Controllability matrix and network encoded input

Here we develop a representation for the network state evolution based on the Cayley-Hamilton (CH) theorem [52].
The CH theorem states that every real square matrix satisfies its own characteristic equation, implying that

W n = ϕn−1W
n−1 + ϕn−2W

n−2 + · · ·+ ϕ1W + ϕ0I (11)

4

A PREPRINT - FEBRUARY 15, 2021

where the ϕi are the negated coefficient of the characteristic polynomial (see Appendix A for details). Accordingly,
any power of matrix W can be written as a linear combination of the first n− 1 powers, where n is the matrix order
(and also the size of the reservoir):

W k =

n−1∑
j=0

φ
(k)
j W j (12)

where the apex k denotes the fact that the n coefficients are expansion coefficients of the k-th power of W . In
Appendix B we also show how the coefficients φ(k)j can be written in terms of ϕj in (11).

By inserting (12) in (4), we obtain:

x0 =

∞∑
k=0

n−1∑
j=0

φ
(k)
j W jwu−k (13)

=

n−1∑
j=0

W jw

∞∑
k=0

φ
(k)
j u−k =

n−1∑
j=0

W jwsj (14)

where

sj :=

∞∑
k=0

φ
(k)
j u−k (15)

is what we call the network encoded input. It is useful to interpret s = (s0, s1, . . . , sn−1) as a vector with n components,
which “encodes” the left-infinite input signal u in the spatial representation provided by the network. In order for the sj
term to exist, the sum in (15) must converge; we will discuss this issue in the next section. We emphasize the fact that
the sum over j (the dimensionality of our system) is a finite sum with n terms, as opposed to the infinite sum over the k
(the time index).

Inspired by well-known tools from control theory [53], we define the controllability matrix of the reservoir as

C = [w Ww W 2w . . . W n−1w] (16)

Then, the state-update equation (4) becomes
x0 = Cs (17)

and the output (5) can then be expressed as:
y0 = rCs (18)

i.e., the readout filters the input according to controllability matrix.

4 How the network encodes the input signal

From (18), we see that the possibility for the readout to produce the correct output (i.e., the output that solves the task at
hand depends on two distinct elements: the controllability matrix C (function of W and w) and the network encoded
input s (which depends on W and u).

In Appendix B we show that the coefficients φ(k+1)
i of (12) can be recursively expressed in terms of φ(k)i as:
φ
(k+1)
0

φ
(k+1)
1

...
φ
(k+1)
n−2
φ
(k+1)
n−1

 = M


φ
(k)
0

φ
(k)
1
...

φ
(k)
n−2
φ
(k)
n−1

 (19)

where M is the Frobenius companion matrix of W (see Apprendix B for details). Note that the characteristic
polynomial of M is that of W ; as such, the two matrices share the same eigenvalues. Thus, the series (15) converges,
for bounded inputs, when W has a spectral radius smaller than 1.2

2Note that most theoretical results (see e.g.,[16, 26, 15]) require the MSV to be smaller than one, which is a stricter condition (as
SR≤MSV); it follows that our analysis can be applied to a larger class of reservoirs.

5

A PREPRINT - FEBRUARY 15, 2021

The s vector can be written as: 
s0
s1
...

sn−2
sn−1

 =



∑∞
k=0 φ

(k)
0 u−k∑∞

k=0 φ
(k)
1 u−k

...∑∞
k=0 φ

(k)
n−2u−k∑∞

k=0 φ
(k)
n−1u−k

 (20)

In Appendix A we show that for k < n, φ(k)j = δkj holds. We also note that terms corresponding to time-step k = n
follow from (11). This means that (4) can be written as:


s0
s1
. . .
sn−2
sn−1

 =


u0
u−1
. . .

u−(n−2)
u−(n−1)

+


u−nϕ0

u−nϕ1

. . .
u−nϕn−2
u−nϕn−1



+


∑∞
k=n+1 φ

(k)
0 u−k∑∞

k=n+1 φ
(k)
1 u−k

. . .∑∞
k=n+1 φ

(k)
n−2u−k∑∞

k=n+1 φ
(k)
n−1u−k


(21)

All other terms in (21) corresponding to time steps k > n can be computed according to (12).

This procedure shows that, in general, the inputs from 0 to n− 1 steps back in time will always appear in their original
form, and the cross-contribution starts only from u−n backwards in time. We will make use of this result to analytically
examine the properties of different networks topologies. Moreover, by deriving the expression for the φ(k)i we can study
how the network is able to recall its past inputs. In general, if the φ(k)i s are large then the network will not be able
to recall the inputs, since the input u−j can only be read through sj = u−j +

∑∞
k=n φ

(k)
j u−k. It follows that having

large expansion coefficients φ(k)j prevents the network from being able to recall its past inputs. We will show in the

next section that, when we can derive an analytical expression for the φ(k)i , it is possible to anticipate how the network
recalls its past inputs. Note that, as implied by (18), for a linear network this is deeply related to its expressive power,
since the network output is basically a linear combination of past inputs. The inputs accessibility to the readout is also
due to C, which is a property of the network only, as it does not depend on any input signal. A detailed discussion
about the relation between the network properties and the rank of the controllability matrix C was recently presented in
[54]. There, the authors prove that the memory capacity for linear reservoirs equals the rank of C. In the following, we
analyze the different architectures described in Section 2 discussing the properties of their controllability matrices.

In the random reservoir case (Subsection 2.3, the property of C can be studied by considering the expected values of the
norm of its columns,which describes how the system accesses past inputs. Let us consider the n-by-n matrix Wr in (9)
and a vector with n components w = {wj} ∼ N (0, 1

n). Since wj are generated independently, the expected value of
the squared norm of the random vector w is l(w) = n〈w2

i 〉. We drop the r in W , to simplify the notation. We now
study z := Ww and obtain:

〈z2i 〉 = 〈(Ww)2i 〉 = 〈(
∑
j

Wijwj)
2〉 = n〈W 2

ij〉〈w2
i 〉 (22)

where the last equality follows from the independence of the zero-mean entries of W and w. Now, by the way we
constructed W and w, we see that 〈W 2

ij〉 = ρ2/n and that 〈w2
i 〉 = 1/n. This results in:

〈z2i 〉 = n〈W 2
ij〉〈w2〉 = n

ρ2

n

1

n
=
ρ2

n
(23)

This means that l(z) = n〈z2i 〉 = ρ2 and that the standard deviation is
√
〈z2i 〉 =

ρ√
n

.

From the above the first column of C has euclidean norm ‖w‖ = 1, the second ρ , the third ρ2; the last one ρ(n−1).

6

A PREPRINT - FEBRUARY 15, 2021

Since ρ must be smaller than 1, the components of last columns of C shrink quickly. This fact explains the shading
observed in the column of C for the random case of Fig. 3 and Fig. 4. For the Wigner case the effect if emphasized
by the correlations introduced by the symmetry of Ww. The controllability matrix C for the delay line and the cyclic
reservoir can instead be described in exact terms (see Appendices C and D). A sample of each case in provided in Fig. 3
and Fig. 4 for n = 100 and n = 1000, respectively. For the delay line a complete analysis of the network output can be
carried. As shown in Appendix C, we can write that:

y0 = r · I · sd =

n−1∑
i=0

riu−i (24)

where I is the identity matrix. This is, as one would expect, simply a regression model of order n.

For the cyclic reservoir architecture (Subsection 2.2) we show in Appendix D that defined the i-time permuted input
weights vector as:

w(i) := W i
c w (25)

then, the output of the cyclic reservoir at time zero y0 is:

y0 = r · C̃c · s̃ (26)
where

s̃j =

∞∑
p=0

ρj+pnu−j+pn (27)

C̃c = [w w(1) w(2) . . .w(n−1)] (28)

The fact that, as suggested in [27], w should be non-periodic for the network to work at its best, is now evident. In fact,
if w is periodic, it means that some columns of Ĉc are linearly related and, therefore, the rank degenerates, as supported
by theoretical arguments in [15].

Note that u−j is only readable through the term sj = u−j + ρnu−(j+n) + . . . and, in order to do that, it must hold that
u−j � ρnu−(j+n). This may suggest to choose small spectral radii, but the smaller the spectral radius, the faster the
decay of the memory, since ŝj = ρjsj . This confirms previous intuitions [27], stating that by choosing a small spectral
radius, the network preserves an accurate representation of recent inputs, at the expense of losing the ability to recall
remote ones. Conversely, if one sets a large spectral radius (i.e., close to 1) the network will be able to (partially) recall
inputs from the past, but its memory of more recent inputs will decrease.

5 The nullspace of C and the network memory

By (18) one can understand how the rank of the controllability matrix C is associated with the degrees of freedom (the
effective number of parameters used by the model to solve the task at hand) that can be exploited by the readout (i.e.,
the “complexity” of the model).

Note from Figures 3 and 4 that the cyclic reservoir always has the highest rank of C, while the Wigner the lowest. The
difference increases with the number of neurons.3

The fact that C is not full-rank is linked to the presence of the nullspace.4 This means that there are some network
encoded inputs s which are mapped to 0 by C (17) and hence are indistinguishable by the readout perspective. In Fig. 5,
we plot the rank of C as a function of the reservoir dimension n. In the experiments using Wigner and cyclic reservoirs,
the spectral radius ρ and the maximum singular value σmax coincide and their values are set to 0.995 (Fig. 5a) and
0.9 (Fig. 5b). For the random reservoir, ρ and σmax are distinct, so we design an experiment where the spectral radius
is fixed and another one where the maximum singular value is set (we remind the reader that 〈ρ〉 = 1

2 〈σmax〉). But
what is the shape of the basis of this nullspace? We show its basis in two cases (see Fig. 6). The controllability matrix
obtained with a cyclic reservoir does not have a nullspace for such a value of ρ, since C is full-rank. Note that, in order
to interpret each vector in Fig. 6 as a time series, one must consider the last inputs seen as the ones closer to the origin.
Given this interpretation, we clearly see how the memory is linked to the rank of C: the reservoirs’ ability to recall past
inputs depend on the rank of C as inputs which only differ in the far-away past are mapped to the same final state.

3Note that this is coherent with the findings in [15], since the Q defined in that work is simply Q = C>C and the number of
motifs is related to the rank of Q (and so, of C).

4What we call the nullspace is practically the effective nullspace detected up to the numerical precision, computed using the
Numpy dedicated function [55].

7

A PREPRINT - FEBRUARY 15, 2021

0 20 40 60 80

0

20

40

60

80

Random - rank = 82

0 20 40 60 80

0

20

40

60

80

Wigner - rank = 43

0 20 40 60 80

0

20

40

60

80

Delay line - rank = 98

0 20 40 60 80

0

20

40

60

80

Cyclic - rank = 100

Figure 3: The controllability matrix and its rank for different architectures. The Spectral Radius is ρ = 0.99 and the
reservoirs has N = 100 neurons. The four architectures share the same randomly-generated w.

0 200 400 600 800

0

200

400

600

800

Random - rank = 274

0 200 400 600 800

0

200

400

600

800

Wigner - rank = 57

0 200 400 600 800

0

200

400

600

800

Delay line - rank = 968

0 200 400 600 800

0

200

400

600

800

Cyclic - rank = 1000

Figure 4: The controllability matrix and its rank for different architectures. The Spectral Radius is ρ = 0.99 and the
reservoirs has N = 1000 neurons. The four architectures share the same randomly-generated w.

Let us consider an example. Let s1 and s2 be two network encoded inputs, which differ only in the last n−m elements.
Denote by xi0 the final state of the system after being fed by the signal si. We can then write s2 = s1 + d, where d
encodes the difference between the two representations. We see that the first m elements of d are null. So, we can
write:

x2
0 = Cs2 = C(s1 + d) = Cs1 + Cd = Cs1 + 0 = x1

0 (29)
since d lives in the nullspace of C. This results in the network not being able to distinguish between the two signals.

6 Memory curves

In order to validate our theoretical claims, we designed networks asked to remember a random i.i.d. input. We generate
inputs of length T and split them in a training set ranging in (0, t0) and a test set ranging in (t0, T). In the task under
consideration, the network is trained to reproduce past input (a white noise signal) at a given past-horizon τ , so that
yk ≡ uk−τ . The input signal u is chosen to be Gaussian i.i.d. white noise, uk ∼ N (0, 1). With choice T = 1500 and
t0 = 1000, the training set contains Ltrain = 1000 sample and the test set Ltest = 500. The readout is finally configured
through a least means square procedure and its accuracy is then evaluated on the test set as γ = max{1− NRMSE, 0},
where the Normalized Root Mean Squared Error (NRMSE):

NRMSE :=

√√√√∑T
k=t0

(yk − ŷk)2∑T
k=t0

(yk − y)2
(30)

yk denotes the system output at time k, y := 1
T

∑T
k=t0

yk is its average and ŷk stands for the predicted output.

In Figure 7 the memory curves, introduced in [16], are plotted for four different architectures. The Random and the
Wigner architectures appear to have a short memory. Their accuracy dramatically decreases as τ grows. The behavior of
the cyclic reservoir appears to be radically different. As described in [27], the performance does not decrease gradually,
but remains almost constant for some time and then abruptly decreases. The drop in performance occurs when τ = n,

8

A PREPRINT - FEBRUARY 15, 2021

0 200 400 600 800 1000
Number of elements

0

200

400

600

800

1000

Ra
nk

 o
f C

random
random (MSV)
wigner
delay_line
cyclic

(a)

0 200 400 600 800 1000
Number of elements

0

200

400

600

800

1000

Ra
nk

 o
f C

random
random (MSV)
wigner
delay_line
cyclic

(b)

Figure 5: Ranks of the controllability matrix C as a function of the reservoir dimension n, for ρ = 0.995 (a) and ρ = 0.9
(b). Note the saturation of the delay line and the cyclic reservoir, which happens, because ρ is not close enough to 1 for
its powers to be numerically distinguishable from zero.

n being the number of neurons in the reservoir. This is coherent with the theory we developed and with the findings
in [56]. Note that in [57, Section 3] a similar shape for the memory curve is obtained by using an “almost unitary”
reservoir matrix, where all singular values equal a constant C < 1. We note that also the cyclic reservoir Wc shares this
feature, explaining why the results are similar.

We comment on how the SR affects the performance: when the SR is close to one, the accuracy in the reconstruction of
u(t− τ) is lower for recent inputs samples (i.e., smaller τ) but higher for distant in time ones. In other words, choosing
a large ρ allows the network to better remember the distant past, at the price of compromising its ability to remember

9

A PREPRINT - FEBRUARY 15, 2021

0 20 40 60 80 100
index in the network encoded input s

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
Random

(a)

0 20 40 60 80 100
index in the network encoded input s

0.4

0.2

0.0

0.2

0.4

Wigner

(b)

Figure 6: Nullspace basis for a Random (a) and a Wigner (b) reservoir matrices. Each curve represents a basis vector of
the nullspace of C, where the x-axis accounts for the vector components. In both cases, we set the spectral radius to
ρ = 0.99, while the reservoirs size is n = 100. The vertical black lines represent the ranks of C, i.e., the dimensions of
the image spaces.

the recent one. This is a direct implication of (27) and (21): a larger SR amplifies the contribution of past inputs over
the more recent ones, since the input reproducibility property is controlled by ρj+pn (see Appendix B for more details).

We investigate the impact of the spectral radius on memory capacity in Figure 8, where the accuracy γ of the three
architectures in recalling a past input (at various τ) is plotted as function of the SR. According to our predictions, a
larger SR is required to correctly recall inputs that are further in past (but for which τ < N), since the SR controls the
magnitude of the φ(k)j , i.e., the permanence of uk on the state. We notice that the Random and the Wigner architectures
show a similar behavior, with the former displaying a superior performance than the latter. Instead, the Cyclic network
has the same behavior as the SR increases, but displays an abrupt fall as it approaches 1. This is coherent with the
theory we developed, since for ρ ≈ 1 the powers of ρ in (27) do not shrink towards zero fast enough to forget remote
inputs with the consequence that the network state will be an unreadable superposition of all the past outputs

7 Conclusions

In this paper, we proposed a methodology for explaining how linear reservoirs encode inputs in their internal states.
Theoretic findings allow to express the system state in terms of the controllability matrix C and the network encoded
input s. The matrix properties of C allow us to compare different connectivity patterns for the reservoir in a quantitative
way by. Results show that reservoirs with a cyclic topology give the richest possible encoding of input signals, yet they
also offer one the most parsimonious reservoir parametrization. To the best of our knowledge, our contribution pioneers
the rigorous study on how specific coupling patterns for the recurrent layer and individual setting of the dynamical

10

A PREPRINT - FEBRUARY 15, 2021

0 50 100 150 200 250 300 350 400
Steps in the past

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Random
sr = 0.995
sr = 0.99
sr = 0.95

(a)

0 50 100 150 200 250 300 350 400
Steps in the past

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Wigner
sr = 0.995
sr = 0.99
sr = 0.95

(b)

0 50 100 150 200 250 300 350 400
Steps in the past

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Delay line
sr = 0.995
sr = 0.99
sr = 0.95

(c)

0 50 100 150 200 250 300 350 400
Steps in the past

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Cyclic
sr = 0.995
sr = 0.99
sr = 0.95

(d)

Figure 7: Memory curves for the random, Wigner, delay line and cyclic reservoir with different values of ρ, for
a reservoir of N = 100 neurons. Plotted values are averages over 10 different realizations, with the shaded area
accounting for a standard deviation: a side effect of plotting data in this way is that the value may be negative even
if the accuracy is defined as a positive quantity. Note that having a high ability to reconstruct recent inputs (k < N)
compromises the capacity to remember the more distant ones.

system influence computational properties (e.g., memory), providing deeper insights about phenomena that so far have
been observed only empirically in the literature.

A Cayley-Hamilton Theorem

The CH Theorem allows one to describe the n-th power of a matrix in term of the first n− 1-powers (including the zero
power, which is the identity).

Let W ∈ Rn×n be a square matrix. Its characteristic polynomial is defined as:

det (λI −W) = 0 → λn + αn−1λ
n−1 + · · ·+ α1λ+ α0 = 0 (31)

where λ is an eigenvalue of W and the αk are the coefficients of the characteristic polynomial.

Theorem 1 (Cayley-Hamilton) Every real square matrix satisfies its characteristic equation

W n + αn−1W
n−1 + · · ·+ α1W

1 + α0I = 0. (32)

Accordingly, it is possible to show that the n-th power of the matrix can be represented as a linear combination of its
lower powers:

W n = −αn−1W n−1 − · · · − α1W
1 − α0I (33)

11

A PREPRINT - FEBRUARY 15, 2021

0.0 0.2 0.4 0.6 0.8 1.0
Spectral radius

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Random
= 10
= 30
= 50

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Spectral radius

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Wigner
= 10
= 30
= 50

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Spectral radius

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Delay line
= 10
= 30
= 50

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Spectral radius

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Cyclic
= 10
= 30
= 50

(d)

Figure 8: Accuracy in remembering an i.i.d. past-input as function of the spectral radius. All the networks have
N = 100 neurons. Plotted values are averages over 10 different realizations, with the shaded area accounting for a
standard deviation: a side effect of plotting data in this way is that the value may be negative even if the accuracy is
defined as a positive quantity.

For matrix W , Theorem 1 states:

W n = ϕn−1W
n−1 + ϕn−2W

n−2 + · · ·+ ϕ1W + ϕ0I (34)

Here, W is a n × n matrix, I is the n × n identity matrix, and ϕk = −αk are the negated coefficients of the
characteristic polynomial of W . It holds true that

Wm = φ
(m)
n−1W

n−1 + φ
(m)
n−2W

n−2 + · · ·+ φ
(m)
1 W + φ

(m)
0 I (35)

implying that any power m ≥ n of W can be specified by W and scalars (φ(m)
n−1, . . . φ

(m)
0). The apexes denote the

fact that the n coefficients are those proper of the m-th power for the φmj coefficients. Note that, for m < n, we have

(φ
(i)
n−1, . . . , φ

(i)
0) = (0, . . . , 0, 1, 0, . . . , 0), where the only non-zero term is the m-th one, i.e.,

φ
(m)
j = δmj for m < n (36)

Moreover, note that for m = n, (φ(m)
n−1, . . . , φ

(m)
0) = (ϕn−1, . . . , ϕ0).

12

A PREPRINT - FEBRUARY 15, 2021

For each m ≥ n, we can derive the scalars in recursive way by noting that:

Wm+1 = WmW (37)

= (φ
(m)
n−1W

n−1 + φ
(m)
n−2W

n−2 + · · ·+ φ
(m)
1 W + φ

(m)
0 I)W (38)

= φ
(m)
n−1W

n + φ
(m)
n−2W

n−1 + · · ·+ φ
(m)
1 W 2 + φ

(m)
0 W (39)

= φ
(m)
n−1

(
ϕn−1W

n−1 + ϕn−2W
n−2 + · · ·+ ϕ1W + ϕ0I

)
+ φ

(m)
n−2W

n−1 + · · ·+ φ
(m)
1 W 2 + φ

(m)
0 W (40)

= (ϕn−1φ
(m)
n−1 + φ

(m)
n−2)︸ ︷︷ ︸

φ
(m+1)
n−1

W n−1 + (ϕn−2φ
(m)
n−1 + φ

(m)
n−3)︸ ︷︷ ︸

φ
(m+1)
n−2

W n−2

+ · · ·+ (ϕ1φ
(m)
n−1 + φ

(m)
0)︸ ︷︷ ︸

φ
(m+1)
1

W + (ϕ0φ
(m)
n−1)︸ ︷︷ ︸

φ
(m+1)
0

I (41)

which implies 

φ
(m+1)
0 = ϕ0φ

(m)
n−1

φ
(m+1)
1 = ϕ1φ

(m)
n−1 + φ

(m)
0)

. . .

φ
(m+1)
n−2 = ϕn−2φ

(m)
n−1 + φ

(m)
n−3

φ
(m+1)
n−1 = ϕn−1φ

(m)
n−1 + φ

(m)
n−2

(42)

Eq. 42 can be thought as a linear system: 
φ
(m+1)
0

φ
(m+1)
1

...
φ
(m+1)
n−2
φ
(m+1)
n−1

 = M


φ
(m)
0

φ
(m)
1
...

φ
(m)
n−2
φ
(m)
n−1

 (43)

where M is defined as:

M =


0 0 ϕ0

1 0 . . . 0 ϕ1

. .
0 . . . 1 0 ϕn−2
0 0 . . . 1 ϕn−1

 (44)

Note that the characteristic polynomial of M is equal to the one of W , so that they also share the same eigenvalues. In
fact, M is also know as the Frobenius companion matrix of W .

B The network encoded input

The possibility for the readout to produce the correct output for the task at hand depends on two distinct elements: the
controllability matrix C (which depends on W and w) and the s vector (which depends on both W and the signal u).
Here we show how s is obtained from u.

Under the assumption of bounded inputs u−k ∈ [−U,U],∀k, we see that

|sj | =

∣∣∣∣∣
∞∑
k=0

φ
(k)
j u−k

∣∣∣∣∣ ≤ U
∞∑
k=0

∣∣∣φ(k)j

∣∣∣
allowing us to focus on the properties of the φ(k)j .

13

A PREPRINT - FEBRUARY 15, 2021

These terms are the element of s, which we rewrite as:
s0
s1
. . .
sn−2
sn−1

 =


∑∞
k=0 φ

(k)
0 u−k∑∞

k=0 φ
(k)
1 u−k

. . .∑∞
k=0 φ

(k)
n−2u−k∑∞

k=0 φ
(k)
n−1u−k

 (45)

In Appendix A we show that for k < n, φ(k)j = δkj (Eq. 36). This implies that the first n− 1 time steps are simply the
inputs: 

s0
s1
. . .
sn−2
sn−1

 =


u0 +

∑∞
k=n φ

(k)
0 u−k

u−1 +
∑∞
k=n φ

(k)
1 u−k

. . .

u−(n−2) +
∑∞
k=n φ

(k)
n−2u−k

u−(n−1) +
∑∞
k=n φ

(k)
n−1u−k



=


u0
u−1
. . .

u−(n−2)
u−(n−1)

+


∑∞
k=n φ

(k)
0 u−k∑∞

k=n φ
(k)
1 u−k

. . .∑∞
k=n φ

(k)
n−2u−k∑∞

k=n φ
(k)
n−1u−k



(46)

Then, we observe that the terms corresponding to time-step k = n follow from Eq. 34:
s0
s1
. . .
sn−2
sn−1

 =


u0
u−1
. . .

u−(n−2)
u−(n−1)

+


u−nϕ0

u−nϕ1

. . .
u−nϕn−2
u−nϕn−1

+

+


∑∞
k=n+1 φ

(k)
0 u−k∑∞

k=n+1 φ
(k)
1 u−k

. . .∑∞
k=n+1 φ

(k)
n−2u−k∑∞

k=n+1 φ
(k)
n−1u−k


(47)

successive terms corresponding to time steps k > n can be computed by using (42). This procedure shows that, in
general, the inputs from 0 to n− 1 time steps in the past will always appear in their original form, and the “mixing”
will begin starting from the n-th time step in the past.

C Delay line

It is easy to see that, applying Wd to a vector v = (v1, v2, . . . , vn) results in a vector

v′ := Wdijv = (0, v1, . . . , vn−1)

and because of the associativity of the matrix product, we see that applying Wdij to a vector k times results in permuting
the vector k times and the substituting the first k elements with the same number of 0s. So, the controllability matrix for
the delay line is:

Cd = [wd Wdwd . . . W n−1
d wd] (48)

which would be a lower diagonal matrix for a generic v but for wd = (1, 0, . . . , 0) is just the identity.

Now, consider the fact that

W n
d = 0 (49)

14

A PREPRINT - FEBRUARY 15, 2021

The CH theorem implies that any higher power will be null as well. So we simply have:

s0 = u0

s1 = u1

and so on, because all the φ(m)
j for m > n are null. If we define sd := (u0, u−1, u−2, . . . , u−(n−1)):

y0 = r · Cd · sd = r · I · sd =

n−1∑
i=0

riu−i (50)

which, as expected, is simply a regressive model of order n.

D Cyclic reservoirs

The characteristic polynomial of Wc is λn = 1 so that the CH Theorem implies:

W n
c = I (51)

Meaning that, for all m > n,

Wm
c =

n−1∑
j=0

φ
(m)
j W j

c = W µ
c (52)

where µ := m mod n. Note that, in general:

(aWc)
m = amW µ

c (53)

So, if in our reservoir we fix W = ρWc (where ρ is a parameter controlling the spectral radius) we obtain a number of
simplifications. First of all, the elements of s assume a regular form. For example:

s0 = u0 + ρnu−n + ρ2nu−2n + . . .

s1 = u−1 + ρnu−(n+1) + ρ2nu−(2n+1) + . . .

so that their general form is

sj =

∞∑
k=0

φ
(k)
j u−k =

∞∑
p=0

ρpnu−j+pn (54)

Moreover, the controllability matrix Cc assumes a simple form. If we define the i-time permuted input weight vector as:

w(i) := W i
cw (55)

we obtain:
Cc = [w ρw(1) ρ2w(2) . . . ρn−1w(n−1)] (56)

so that:

y0 = (r0, r1, · · · , rn−1)Cc


s0
s1
s2
...

sn−1

 (57)

The output can be written in compact form by defining:

s̃j =

∞∑
p=0

ρj+pnu−j+pn (58)

C̃c = [w w(1) w(2) . . .w(n−1)] (59)
so that, finally:

y0 = rC̃cs̃ (60)

15

A PREPRINT - FEBRUARY 15, 2021

Acknowledgment

LL gratefully acknowledges partial support of the Canada Research Chairs program.

References

[1] M. Casey, “The dynamics of discrete-time computation, with application to recurrent neural networks and finite
state machine extraction,” Neural computation, vol. 8, no. 6, pp. 1135–1178, 1996.

[2] D. Sussillo and O. Barak, “Opening the black box: low-dimensional dynamics in high-dimensional recurrent
neural networks,” Neural computation, vol. 25, no. 3, pp. 626–649, 2013.

[3] A. Ceni, P. Ashwin, and L. Livi, “Interpreting recurrent neural networks behaviour via excitable network attractors,”
Cognitive Computation, pp. 1–27, 2019.

[4] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[5] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learn-
ing phrase representations using rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[6] C. Tallec and Y. Ollivier, “Can recurrent neural networks warp time?” arXiv preprint arXiv:1804.11188, 2018.

[7] J. Van Der Westhuizen and J. Lasenby, “The unreasonable effectiveness of the forget gate,” arXiv preprint
arXiv:1804.04849, 2018.

[8] I. D. Jordan, P. A. Sokol, and I. M. Park, “Gated recurrent units viewed through the lens of continuous time
dynamical systems,” arXiv preprint arXiv:1906.01005, 2019.

[9] M. Inubushi and K. Yoshimura, “Reservoir computing beyond memory-nonlinearity trade-off,” Scientific Reports,
vol. 7, no. 1, p. 10199, 2017.

[10] J. Dambre, D. Verstraeten, B. Schrauwen, and S. Massar, “Information processing capacity of dynamical systems,”
Scientific reports, vol. 2, no. 1, pp. 1–7, 2012.

[11] S. Marzen, “Difference between memory and prediction in linear recurrent networks,” Physical Review E, vol. 96,
no. 3, p. 032308, 2017.

[12] A. Goudarzi, S. Marzen, P. Banda, G. Feldman, C. Teuscher, and D. Stefanovic, “Memory and information
processing in recurrent neural networks,” arXiv preprint arXiv:1604.06929, 2016.

[13] A. Rivkind and O. Barak, “Local dynamics in trained recurrent neural networks,” Physical review letters, vol. 118,
no. 25, p. 258101, 2017.

[14] F. Mastrogiuseppe and S. Ostojic, “A geometrical analysis of global stability in trained feedback networks,” Neural
computation, vol. 31, no. 6, pp. 1139–1182, 2019.

[15] P. Tiňo, “Dynamical systems as temporal feature spaces.” Journal of Machine Learning Research, vol. 21, no. 44,
pp. 1–42, 2020.

[16] H. Jaeger, “The “echo state” approach to analysing and training recurrent neural networks-with an erratum note,”
2001.

[17] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless
communication,” science, vol. 304, no. 5667, pp. 78–80, 2004.

[18] W. Maass, T. Natschläger, and H. Markram, “Real-time computing without stable states: A new framework for
neural computation based on perturbations,” Neural computation, vol. 14, no. 11, pp. 2531–2560, 2002.

[19] P. Tino and G. Dorffner, “Predicting the future of discrete sequences from fractal representations of the past,”
Machine Learning, vol. 45, no. 2, pp. 187–217, 2001.

[20] K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre,
and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nature
Communications, vol. 5, no. 1, pp. 1–6, 2014.

[21] A. Katumba, M. Freiberger, F. Laporte, A. Lugnan, S. Sackesyn, C. Ma, J. Dambre, and P. Bienstman, “Neuro-
morphic computing based on silicon photonics and reservoir computing,” IEEE Journal of Selected Topics in
Quantum Electronics, vol. 24, no. 6, pp. 1–10, Nov 2018.

16

A PREPRINT - FEBRUARY 15, 2021

[22] C. Fernando and S. Sojakka, “Pattern recognition in a bucket,” in European conference on artificial life. Springer,
2003, pp. 588–597.

[23] H. Ando and H. Chang, “Road traffic reservoir computing,” arXiv preprint arXiv:1912.00554, 2019.

[24] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano, and A. Hirose,
“Recent advances in physical reservoir computing: A review,” Neural Networks, 2019.

[25] L. Gonon, L. Grigoryeva, and J.-P. Ortega, “Risk bounds for reservoir computing,” arXiv preprint
arXiv:1910.13886, 2019.

[26] L. Grigoryeva and J.-P. Ortega, “Echo state networks are universal,” Neural Networks, vol. 108, pp. 495–508,
2018.

[27] A. Rodan and P. Tino, “Minimum complexity echo state network,” IEEE transactions on neural networks, vol. 22,
no. 1, pp. 131–144, 2010.

[28] S. Ganguli, D. Huh, and H. Sompolinsky, “Memory traces in dynamical systems,” Proceedings of the National
Academy of Sciences, vol. 105, no. 48, pp. 18 970–18 975, 2008.

[29] M. Hermans and B. Schrauwen, “Memory in linear recurrent neural networks in continuous time,” Neural
Networks, vol. 23, no. 3, pp. 341–355, 2010.

[30] E. Bollt, “On explaining the surprising success of reservoir computing forecaster of chaos? The universal machine
learning dynamical system with contrasts to VAR and DMD,” arXiv preprint arXiv:2008.06530, 2020.

[31] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient descent is difficult,” IEEE
transactions on neural networks, vol. 5, no. 2, pp. 157–166, 1994.

[32] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural networks,” in Proceedings
of the 30th International Conference on Machine Learning, vol. 28, Atlanta, Georgia, USA, 2013, pp. 1310–1318.

[33] F. M. Bianchi, E. De Santis, A. Rizzi, and A. Sadeghian, “Short-term electric load forecasting using echo state
networks and pca decomposition,” Ieee Access, vol. 3, pp. 1931–1943, 2015.

[34] F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and R. Jenssen, “An overview and comparative analysis
of recurrent neural networks for short term load forecasting,” arXiv preprint arXiv:1705.04378, 2017.

[35] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, “Model-free prediction of large spatiotemporally chaotic systems
from data: A reservoir computing approach,” Physical review letters, vol. 120, no. 2, p. 024102, 2018.

[36] A. Prater, “Spatiotemporal signal classification via principal components of reservoir states,” Neural Networks,
vol. 91, pp. 66–75, 2017.

[37] R. F. Reinhart and J. J. Steil, “Regularization and stability in reservoir networks with output feedback,” Neurocom-
puting, vol. 90, pp. 96–105, 2012.

[38] D. Sussillo and L. F. Abbott, “Generating coherent patterns of activity from chaotic neural networks,” Neuron,
vol. 63, no. 4, pp. 544–557, 2009.

[39] S. Basterrech, “Empirical analysis of the necessary and sufficient conditions of the echo state property,” in 2017
International Joint Conference on Neural Networks (IJCNN). IEEE, 2017, pp. 888–896.

[40] J. Jiang and Y.-C. Lai, “Model-free prediction of spatiotemporal dynamical systems with recurrent neural networks:
Role of network spectral radius,” Physical Review Research, vol. 1, no. 3, p. 033056, 2019.

[41] K. Caluwaerts, F. Wyffels, S. Dieleman, and B. Schrauwen, “The spectral radius remains a valid indicator of the
echo state property for large reservoirs,” in The 2013 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2013, pp. 1–6.

[42] P. Verzelli, C. Alippi, and L. Livi, “Echo state networks with self-normalizing activations on the hyper-sphere,”
Scientific Reports, vol. 9, p. 13887, 2019.

[43] I. B. Yildiz, H. Jaeger, and S. J. Kiebel, “Re-visiting the echo state property,” Neural networks, vol. 35, pp. 1–9,
2012.

[44] L. Livi, F. M. Bianchi, and C. Alippi, “Determination of the edge of criticality in echo state networks through
Fisher information maximization,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 3,
pp. 706–717, Mar. 2018.

[45] S. Valverde, S. Ohse, M. Turalska, B. J. West, and J. Garcia-Ojalvo, “Structural determinants of criticality in
biological networks,” Frontiers in Physiology, vol. 6, p. 127, 2015.

17

A PREPRINT - FEBRUARY 15, 2021

[46] P. Verzelli, L. Livi, and C. Alippi, “A characterization of the edge of criticality in binary echo state networks,” in
2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2018, pp.
1–6.

[47] C. G. Langton, “Computation at the edge of chaos: phase transitions and emergent computation,” Physica D:
Nonlinear Phenomena, vol. 42, no. 1-3, pp. 12–37, 1990.

[48] L. Cocchi, L. L. Gollo, A. Zalesky, and M. Breakspear, “Criticality in the brain: A synthesis of neurobiology,
models and cognition,” Progress in neurobiology, vol. 158, pp. 132–152, 2017.

[49] M. Prokopenko, J. T. Lizier, O. Obst, and X. R. Wang, “Relating fisher information to order parameters,” Physical
Review E, vol. 84, no. 4, p. 041116, 2011.

[50] S. Bittanti, Model identification and data analysis. Wiley Online Library, 2019.
[51] M. Rudelson and R. Vershynin, “Non-asymptotic theory of random matrices: extreme singular values,” in

Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary
Lectures and Ceremonies Vols. II–IV: Invited Lectures. World Scientific, 2010, pp. 1576–1602.

[52] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas. Princeton, NJ, USA: Princeton University
Press, 2009.

[53] E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer Science &
Business Media, 2013, vol. 6.

[54] L. Gonon, L. Grigoryeva, and J.-P. Ortega, “Memory and forecasting capacities of nonlinear recurrent networks,”
Physica D: Nonlinear Phenomena, vol. 414, p. 132721, 2020.

[55] T. E. Oliphant, A guide to NumPy. Trelgol Publishing USA, 2006, vol. 1.
[56] A. Rodan and P. Tiňo, “Simple deterministically constructed cycle reservoirs with regular jumps,” Neural

computation, vol. 24, no. 7, pp. 1822–1852, 2012.
[57] H. Jaeger, Short term memory in echo state networks. GMD-Forschungszentrum Informationstechnik, 2001,

vol. 5.

18

	1 Introduction
	2 Reservoir computing
	2.1 Delay line
	2.2 Cyclic reservoir
	2.3 Random reservoir
	2.4 Wigner reservoir

	3 Controllability matrix and network encoded input
	4 How the network encodes the input signal
	5 The nullspace of C and the network memory
	6 Memory curves
	7 Conclusions
	A Cayley-Hamilton Theorem
	B The network encoded input
	C Delay line
	D Cyclic reservoirs

