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Railway defect detection based on track geometry using supervised and unsupervised 
machine learning 

Abstract  

Track quality affects passenger comfort and safety. To maintain the quality of the track, track geometry 

and track component defects are inspected routinely. Track geometry is inspected using a track geometry 

car. Measured values are stored in the machine and processed to evaluate the track quality. However, 

track component defects require more effort to inspect. Track component defects can be inspected 

manually which is time- and workload-consuming or using sensors installed at additional cost. This study 

presents an approach using track geometry obtained by a track geometry car to detect track component 

defects, namely, rail, switch and crossing, fastener, and rail joint defects. Detection models are developed 

using several supervised machine learnings. The relationships between track component defects are 

analyzed to gain insights using unsupervised machine learnings. From the study, the best model for 

detecting track component defects using track geometry is a deep neural network with an accuracy of 

94.31% followed by a convolutional neural network with an accuracy of 93.77%. For the exploration of 

insights, k-means clustering is used to cluster the track components defects and association rules are used 

to find the relationships between them. Examples of the insights from applying these two techniques are 

that switch and crossing defects are usually found where the radius of curvature is less than 2,000 m and 

the gradient is positive, the most common defects when the radius of curvature higher than 4,000 m are 

rail defects, or a worn wing rail will be found when the rail section has failed, ties in switches and worn 

point blades are found with the confidence of 92.17%. The findings of the study can be applied to detect 

track component defects using track geometry where additional cost is not required and unsupervised 

machine learning provides the insights that will be beneficial for railway maintenance. The information 

obtained from machine learning models will be a complementary information to support decision making 

and improve the maintenance efficiency in the railway industry.  

Keywords: Track Geometry, Railway Track Component Defect, Supervised Learning, Unsupervised 

Learning, Deep Neural Network, Convolutional Neural Network, K-Means Clustering, Association Rules 

Highlight  

• Foot-by-foot track geometry is used to detect track component defects.  

• 4 years of 30 km of track geometry data providing more than 170k samples are used. 

• The proposed approach does not require additional costs for developing the detection system. 

• The developed detection model has an accuracy of more than 90%. 

• Insights of track component defects are explored using unsupervised learning.  

 

 

 

 

 

 



1. Introduction  

Railway transportation is known to be one of the safest transportation modes. However, if accidents 

occur, they can result in very serious consequences. Railway defects affect passenger comfort and safety 

significantly; therefore, maintaining the tracks in good condition is required. The condition of tracks is 

measured by track geometry and the level of track component defects. For track geometry, a common 

method of measurement is using a track geometry car (TGC) 1. The TGC measures deviations from the 

designed geometrical characteristics 2. In this study, data obtained from the TGC consists of longitudinal 

level (surface), alignment, gauge (gage), twist (crosslevel), and superelevation as shown in Figure 1. Track 

component defects are inspected using manual inspection, laser technology 3, or axle box acceleration 4, 

etc. It can be seen that component defect inspection is time-consuming or requires the additional 

installation cost of equipment while track geometry can be measured faster. This study proposes an 

approach to detect track component defects using the track geometry from the TGC. The process is faster 

and cost-saving because the TGC is operated along the track with a speed of up to 70 mph and the 

measurement can be used to evaluate both track geometry and track component defects. 

 

Figure 1 Track geometry 5 

In this study, the TGC measured the track geometry every 1 foot where the total length of the track was 

30 km for 4 years, 2016–2019. Therefore, the number of samples was high. To process and develop a 

detection model, machine learning is appropriate to deal with the large volume of data by which many 

studies proved that the performance was satisfied. In this study, supervised learning techniques were 

used to develop models to detect track component defects. There were 70 types of track component 

defect according to raw data so they were grouped according to the track components consisting of rail, 

switch and crossing, fastener, and rail joint defects. Some defects that might not have been directly 

related to the track geometry and samples with missing measurements were removed. Further detail is 

presented in 3.3.1 and 3.3.2. The supervised learning techniques used in this study were the deep neural 

network (DNN), the convolution neural network (CNN), multiple regression (MR), the support vector 

machine (SVM), gradient boosting (GB), a decision tree (DT), and random forest (RF). 

Unsupervised learning techniques were used to explore the insights among defects that can improve 

decision-making. K-means clustering was used to cluster defects into groups using features that were 

tested to cluster defects. The result from k-means clustering provided insights about which characteristics 

of the track needed particular attention. Association rules were also used to analyze the relationships 

between defects. The result from applying association rules makes defects more predictable when 

particular defects are found in a track section. For example, if two specific defects are detected in a track 

section, another defect is likely to occur as well. 



The results from the study are expected to improve railway maintenance. First, track component defects 

are accurately detected using the measurement from a TGC which is fast and cost-efficient. Second, the 

insights from unsupervised learning techniques improve decision-making and defect detection because 

staff know which sections of the track need special attention. Overall, the developed approach can 

improve the defect detection system and understanding of track component defects without additional 

cost. Therefore, any railway operator can apply the results of this study to improve maintenance 

capabilities. 

2. Literature review 

Railway track component defects affect passenger comfort and safety significantly. However, accurate 

inspection requires time and cost to perform. Visual or manual inspection is a traditional method of 

inspecting component defects. The inspection is then developed to be more automatic and less disruptive 

to the railway operation. Examples of advanced techniques used to inspect the track defects are laser 6, 

image processing 7, computer vision 8, and machine learning 9. However, these techniques need additional 

installation which creates cost and the installation for a whole route cannot be done easily. 

In contrast, track geometry inspection using a TGC is a traditional method widely used by railway 

operators around the world. Therefore, there are attempts to use the measurement by the TGC to detect 

track component defects because the TGC is operated regularly to inspect the track geometry. If the 

measure can be used to detect track components, it will be beneficial to railway operators. Lasisi and 

Attoh-Okine 10 calculated Track Quality Indexes (TQIs) using selected track geometry parameters. They 

claimed that this method could be used without losing the relevant information. They applied several 

machine learning techniques for binary classification (with and without defects). The best model was SVM 

where accuracy was more than 90%. Martey, Ahmed 2 focused on the substructure of the track. They 

studied the effect of geocells on track geometry quality using different machine learnings. They also 

simplified the track geometry using principal component analysis (PCA). In their study, RF performed the 

best. 

Sadeghi and Askarinejad 11 stated that using TGCs to collect data has limitations in identifying track 

structural defects. Therefore, they aimed to find relationships between track geometry and track 

structural problems. In the study, they classified the defect severity according to defects’ characteristics 

and components. For example, severities of bent rail was low while rail broken was high. Standard 

deviation (SD) of track geometry was used to predict track defects. They found that the severities of track 

defects increased when SD increased. The interesting defects were rail, sleeper, fastening, and ballast. 

Each component was differently affected by SDs. For example, gauge had the highest effect on fastenings 

while profile had the highest effect on ballast.  

Zarembski, Einbinder 12 studied on relationships between rail and geometry defects and predicted the life 

time. The technique they used in the study was multivariate regression splines. They found that the 

relationships between rail and geometry defects had the correlation of 11%.  

Soleimanmeigouni, Ahmadi 13 developed a data-driven approach to predict isolated track geometry 

defects. Data was collected using TGCs. The duration of data collection was four years from 2015-2018 

and the distance was 84 km. The study focused on the isolated longitudinal level defects. They found that 

the developed linear model performed well in detecting defects. They also applied machine learning to 



detect defects. They developed models using logistic regression when inputs were the standard deviation 

and kurtosis of longitudinal level. 

Mohammadi, He 14 studied the effect of track geometry on the occurrence of rail defects. They also used 

machine learning techniques consisting of extreme gradient boosting (XGBoost), SVM, RF, and logistic 

regression for binary classification (with and without defects). They found that XGBoost was the best 

model for their problem with an accuracy of 80%. Sharma, Cui 15 used the track geometry measurement 

to predict the geo-defect occurrence probability using RF so their problem was slightly different from 

other studies because their problem was a regression problem. They claimed that the results of their study 

could save up to 10% of the maintenance cost. 

From the literature review, it can be seen that the use of track geometry to detect rail defects is explored 

and the results show satisfying performance. However, the use of track geometry to detect track 

component defects has not been studied. Moreover, the application of unsupervised learning to discover 

the relationships between defects has not been done. Therefore, there is a gap in this area that should be 

explored for better railway maintenance. 

3. Methodology  

Machine learning is the development of computer algorithms to make machines learn from data. Machine 

learning is mainly categorized into four types, namely, supervised learning, unsupervised learning, semi-

supervised learning, and reinforcement learning. In this study, supervised and unsupervised learning were 

used. Supervised learning is suitable for pairing features and labeled data. In the study, features are data 

collected from TGCs and labeled data is track component defects. Supervised learning was used to 

develop predictive models that the paper aims to predict rail component defects based on data obtained 

from TGCs. For unsupervised learning, it is used to discover the data insights when data labeling is not 

needed. In the study, this technique was used because the authors wanted to investigate the relationships 

between rail defects such as characteristics of track that affect some types of defects and group of defects 

that tends to occur together. Further detail is presented in the following section. 

3.1 Data description  

To develop supervised and unsupervised machine learning models, data was collected from a railway 

operator. The data used in the study consisted of three sets of data, namely, track geometry measurement 

collected by the TGC, track component defects from site inspection, and the track profile as shown in 

Figure 2. The length of the studied section is 30 km. Data was collected in2016–2019.  

Track geometry 
component

Track component 
defects

Track profile 

Data preprocessing
Input for machine 
learning models

 

Figure 2 Data components 



For track geometry, the measurement is done foot-by-foot so there are more than 95,000 track geometry 

measurements every year. A track geometry measurement consists of 12 values, namely, superelevation, 

longitudinal level (10 m chord) of the right rail, longitudinal level (20 m chord) of the right rail, longitudinal 

level (10 m chord) of the left rail, longitudinal level (20 m chord) of the left rail, alignment (10 m chord) of 

the right rail, alignment (20 m chord) of the right rail, alignment (10 m chord) of the left rail, alignment 

(20 m chord) of the left rail, gauge (without load), gauge (with load), and twist (20 m chord). 

For track component defects, data was collected indicating the date, location, and types of defect. The 

locations of the defects were indicated as km-start and km-end of the track so data preprocessing was 

required with combined track geometry and defects. In the data collection period, more than 1,900 

defects were found in the studied section of track section studied and 81 types of defect were indicated. 

Examples of defects are boltless joints, damaged frogs, broken rails, and broken welds. It can be seen that 

defects can be grouped as components. 

For track profile, the data used in this study indicated the radius of curvature and gradient. They were 

included because the authors expect that these two variables affect track component defects. 

Three sets of data were preprocessed and combined to create the datasets for machine learning models. 

There were differences in the datasets used in each model. For supervised learning, datasets were the 

same in every model consisting of two parts, features and labels. For unsupervised learning, datasets were 

different depending on techniques. Data was preprocessed based on track geometry measurement so a 

given sample represented a foot of track. Visual Basic for Applications (VBA) was used for data 

preprocessing. Based on locations and dates of defects, track geometry measurement was extracted. 

Sections without defects were labeled as defect-free sections. As mentioned, there are 12 values in 

measurement, and in this study, measurements at the start and the end of a section were extracted from 

the measurement. Therefore, 24 measurements were extracted and combined with defect data. 

Machine learning models for defect detection using track geometry were preliminarily developed to 

investigate the suitability of features and labels. Different features were initially tested to screen which 

groups of features provided better performance. It was found that accuracies are improved when 37 

features are used. The first 24 features were 12 measurements at the start and the end of each track 

section, another 12 features were the differences of measurements between the start and the end of 

each section, and the last feature was a binomial feature indicating if the section is a tangent or curve. 

Two ends of measurement were used because it was assumed that they could represent conditions of 

tracks better than only one end of measurement. The preliminary test confirmed this assumption so this 

set of features was used to develop models. For labels, the authors found that 81 types of defect could 

not be used as labels directly because the accuracies were poor due to several labels. Therefore, defects 

were grouped according to components and some defects that were not directly related to track geometry 

were removed in the data filtering process. Samples with missing values were also removed in this 

process. From data grouping, there were five classes, namely, switch and crossing defect, fastener defect, 

railway joint defect, railway defect, and defect-free. In total, there were 172,436 samples in the dataset 

for developing defect detection models using supervised learning. Training data and testing data were 

split with a 70/30 proportion. Based on the raw data, the number of samples was more than 400,000 

samples. However, it was found that most of samples were defect-free samples. Therefore, the authors 

randomly removed some samples without defects to keep the samples with and without defects balance. 

The proportion of samples with and without defects is about 60% and 40% respectively. However, within 



the defective samples, the number of each type of defect is different because the data is based on the 

field data. Some types of defect are hardly found compared to others. For example, switch and crossing 

defects are relatively rare compared to rail defects. The authors want to keep these samples because they 

represent the field data. 

For unsupervised learning, k-means clustering and association rules were used in the study. K-means 

clustering uses features to cluster data. In this study, the radius of curvature and gradient were used as 

features to cluster defects. Association rules use only defects to discover the relationships between them. 

To define sections with defects, a 50 m section was used to determine if defects were included in sections. 

For example, if an interval of two defects was less than 50 m, these two defects were included in the 

section and used to determine the relationship. However, if the interval between two defects was more 

than 50 m, they were considered independent defects which were not related to each other. From this 

principle, if other defects were within the 50 m distance, they were also included in the section.  

3.2 Supervised learning 

Supervised learning is an algorithm to map features to labels or input to output. The algorithm is trained 

using a dataset labeled. Supervised learning is explained in the mathematical equation as (1) 16. 

 𝑢𝑠𝑖𝑛𝑔(𝑥𝑖 , 𝑦𝑖)𝑖=1
𝑙 , 𝑓𝑖𝑛𝑑 𝑓: 𝑥 → 𝑦 = 𝑓(𝑥)  (1) 

Where training set 𝑥 = equation finding the relationship between independent and dependent variables. 

The algorithm is trained to fit a model to map the input to the output as (2). 

 𝑦𝑡 = 𝑔(𝑥𝑡|𝜃)  (2) 

Where 𝑔(∙) is the model and 𝜃 is parameters. During the training, the algorithm minimizes the error using 

a loss function as (3). 

 arg min
𝜃

∑ 𝐿(𝑟𝑡 , 𝑦𝑡)

𝑡

= arg min
𝜃

∑ 𝐿(𝑟𝑡 , 𝑔(𝑥𝑡|𝜃))

𝑡

  (3) 

Supervised learning techniques are also categorized as regression if the prediction is continuous and 

classification if the output is discrete. In this study, supervised learning techniques used were DNN, CNN, 

MR, SVM, GB, DT, and RF. Features and labels are the same in every technique as mentioned in the 

previous section. 

3.2.1  

3.2.8 Grid search  

Some parameters are not trained during the training but they are pre-defined. Therefore, to ensure that 

the models deliver the best performance, hyperparameter tuning is done. A hyperparameter tuning 

technique used in the study is grid search. Grid search is a tuning technique performed on specific 

parameters so it can save time and resources in tuning. Hyperparameters which are tuned by grid search 

of each model are shown in Table 1.  

Table 1 Hyperparameter tuning of each model 

Model Hyperparameters 

DNN Number of hidden layers Learning rate  



Number of hidden nodes 
Activation functions 
Optimizer 

Momentum  
Batch size 

CNN Number of convolutional layers 
Filter  
Kernel 
Number of max pooling layers 
Pool size  

Activation functions 
Number of hidden layers 
Number of hidden nodes 
Optimizer 
Batch size 

MR Feature selection  
Min tolerance  

Ridge 

SVM Kernel type 
Kernel cache  

Convergence epsilon 

GB Number of trees 
Maximum depth 

Min split improvement 

DT Maximal depth 
Confidence 

Minimal leaf size 
Minimal size for split 

RF Number of trees 
Maximal depth 

Voting strategy 

 

3.2.9 Performance evaluation  

The performance of the prediction models in the study is evaluated using accuracy obtained from the 

confusion matrix which is popular in classification problems. Values relevant to the confusion matrix are 

True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) where TP means the 

prediction is positive and it is true, FP means the prediction is positive and it is false, TN means the 

prediction is negative and it is true, and FN means the prediction is negative and it is false. The accuracy 

is calculated using (4). 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 (4) 

 

3.3 Unsupervised learning 

Unsupervised learning is used when output is not labeled or there are no defined labels. It is used to 

discover the pattern of data. This technique is widely used to know the insight in data. In this study, k-

means clustering and association rules were used. 

3.3.1 K-means clustering 

K-means clustering was used to group data into a specific number of clusters. The clustering was done 

using the distance between each data point and centroid of each cluster where data belongs to the cluster 

with the nearest centroid. The number of clusters was defined according to the suitability of the data. 

Centroids were then randomly initiated. After that, data was assigned to clusters according to the nearest 

distance of each centroid using (5) to calculate distance and (6) to determine the cluster which data 

belonged to where 𝑐 were centroid and 𝑘 was the number of clusters. After data was assigned, new 

centroids were calculated using data belonging to each cluster using (7). Next, all data was assigned to 

clusters according to new centroids again and these processes were repeated until there were no changes 

in centroids and members of each cluster 17. 



 

𝑑𝑖𝑠𝑡(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

 

 (5) 

 𝑐𝑗 = {𝑥: min
𝑘

𝑑𝑖𝑠𝑡2(𝑥, 𝑐𝑘) = 𝑗} 

 

(6) 

 
𝑐𝑗 =

1

𝑚𝑗
∑ 𝑥

𝑥∈𝑐𝑗

 
(7) 

In this study, the radius of curvature and gradient were used as features for k-means clustering. These 

two features were extracted from the track profile data noted in the data description. Defects were the 

same dataset used in supervised learning techniques. 

3.3.2 Association rules 

Association rules were used to investigate the relationship between data in the same set. As mentioned 

in the data description, the study used the 50m range as a section of interest so any defects found in the 

range of 50 m were classified into the same set. Several parameters were used to explain the relationships 

between data. In this study, three parameters were used, namely, support, confidence, and lift. 

Support indicates how often the relationships are found. It is calculated using (8) where 𝑥 and 𝑦 are 

defects found in a section and N is the number of sections. 

 
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 =

𝑓𝑟𝑞(𝑥, 𝑦)

𝑁
 

 

 (8) 

Confidence indicates how often the rules are true and can be applied to the relationships. It can be 

calculated using (9). 

 
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =

𝑓𝑟𝑞(𝑥, 𝑦)

𝑓𝑟𝑞(𝑥)
 

 

 (9) 

Lift indicates the increase of the probability of finding 𝑦 when 𝑥 is found compared to the probability of 

finding 𝑦 when the finding of 𝑥 is not known. If the lift is higher than one, it can be interpreted that defects 

𝑥 and 𝑦 are dependent and tend to occur together. If the lift is lower than one, it can be interpreted that 

defects 𝑥 and 𝑦 are not often found together or negatively correlated. If the lift is close to one, it can be 

inferred that defects 𝑥 and 𝑦 are independent. In terms of data, features used for association rules are 

different from supervised learning techniques and k-means clustering because only defects are used. 

Defect data is processed as transactions or baskets. In the study, a basket could be considered a 50 m-

section track containing different defects. The number of defects could be different in each section. 

Moreover, defects used for association rules were not grouped according to the types of track 

components but 81 types of defect were used to present the relationships between particular defects 

instead of grouped defects. 

4. Results and discussion 

Several sets of data were processed and combined to create the dataset for supervised and unsupervised 

learning. There were 172,436 samples in the dataset. Seventy percent of data was used as training data 



and another 30% was used as testing data. Supervised learning was used to develop predictive models for 

detecting track component defects using track geometry measurement. Thirty-seven features were used 

to predict labels which consisted of five classes in supervised learning. Unsupervised learning was used to 

discover the insights in data. Two features, namely, the radius of curvature and gradient, were used for k-

means clustering. Baskets of defects were extracted from raw data to explore the relationships of defects 

using association rules. The results of the study are shown in the following sections. 

4.1 Prediction of railway track component defects using track geometry 

Different supervised learning techniques are used to develop models. Every model is tuned using the grid 

search as mentioned in the previous section to ensure that models are structured properly and provide 

the best performance. From hyperparameter tuning using grid search, the optimal hyperparameters of 

each model are shown in Table 2. 

Table 2 Tuned hyperparameter from grid search 

Model hyperparameter Tuned value 

DNN Number of hidden layers 
Number of hidden nodes 
Activation functions 
Optimizer 
Learning rate  
Momentum  
Batch size 

2 
750 (dense1), 1,750 (dense2) 
ReLu 
Adam 
0.001 
0.8 
128  

CNN Number of convolutional layers 
Filter  
Kernel 
Number of max pooling layers 
Pool size  
Activation functions 
Number of hidden layers 
Number of hidden nodes 
Optimizer 
Batch size 

2 
128 (conv1), 256 (conv2) 
4 (conv1), 6 (conv2) 
2 (after each conv) 
1 
ReLu 
2 
400 (dense1), 200 (dense2) 
Adam 
128 

MR Feature selection  
Min tolerance  
Ridge 

M5 prime 
0.05 
1E-8 

SVM Kernel type 
Kernel cache  
Convergence epsilon 

Dot 
200 
0.001 

GB Number of trees 
Maximum depth 
Min split improvement 

50 
5 
1E-5 

DT Maximal depth 
Confidence 
Minimal leaf size 
Minimal size for split 

10 
0.1 
2 
4 

RF Number of trees 
Maximal depth 

100 
10 



Model hyperparameter Tuned value 

Voting strategy Confidence vote 

The accuracy of each model is shown in Figure 3. From the figure, the accuracy of ANN is highest at 94.3% 

followed by CNN with an accuracy of 93.8%. However, the accuracy of other models is about 50% or lower 

while SVM has the worst performance. From the results, it can be inferred that the relationships between 

features and labels have high non-linear characteristics and are complex so ANN and CNN can perform 

better than other models. The MR model is clearly a linear model so the performance is not good. 

Surprisingly, DT performs better than RF and GB although they are all tree-based models and RF which 

benefits from voting and assembling concepts. For the SVM model, the machine creates a hyperplane to 

classify samples. However, the number of features used to develop models is 37 so it is complicated to 

create 37D hyperplane. Although ANN has the highest accuracy, its training time is not significantly higher 

than other models. The training time of all models is approximately one second/epoch except CNN where 

training time is 20 seconds/epoch. Therefore, it can be concluded that ANN is the best model for detecting 

track component defects using track geometry measurement in this study in terms of both performance 

and resources. For model application, every model can predict without significant difference in terms of 

time so there is no issue about the model application.   

 

Figure 3 Accuracies of each model 

In terms of sensitivity (recall) and specificity, the sensitivity and specificity of the ANN model are shown 

in the below table. The sensitivity and specificity show that the ANN model performs well in terms of 

accuracies, sensitivities, and specificities. It shows that the model can detect defects based on the track 

geometry measurement more than 88% based on the sensitivity. At the same time, the model can avoid 

incorrect detection more than 97% based on the specificity. 

Table 3 Sensitivity and specificity of the ANN model based on classes 

Class Sensitivity Specificity 

Switch and crossing 0 0.88 1.00 

Fastener 1 0.89 0.99 

Rail joint 2 0.92 0.99 

Rail 3 0.96 0.97 

None (Defect-free) 4 0.94 0.97 

From the results, supervised machine learning can be used to detect component defects using track 

geometry which saves a lot of time in carrying out the inspection and improves the safety of staff. 

Moreover, this approach does not require additional cost or installation to detect defects because the 



TGC is operated regularly to inspect track geometry. Besides track geometry measurement obtained from 

the TGC operation, the measurement can also be used to detect defects. The process of data collection is 

relatively fast because the TGC can operate at speeds of up to 70 mph and does not disturb the normal 

operation of the track. However, defects predicted in the study are grouped according to track 

components, namely, rail, switch and crossing, fastener, and rail joint because it is found during the 

preliminary model development that if the number of classes is too high, the models cannot execute 

prediction accurately. This issue needs to be improved to give the models more potential to detect defects 

in detail or to categorize defects better. 

4.2 Insight of railway track component defects 

K-means clustering was used to group defects. In the study, 4 clusters were used based on the preliminary 

investigation. Features used for the clustering were the radius of curvature and gradient extracted from 

track profile data. Labels consisted of four classes, namely, switch and crossing, rail, fastener, and rail 

joint. From the training, a chart showing the clustering is shown in Figure 4. From the figure, clusters can 

be categorized using a tree shown in Figure 5 and centroids of each cluster are shown in the figure.  

 

Figure 4 Result from k-means clustering  

Track section 

Radius of curvature >= 
4000
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Figure 5 Tree for clustering and centroids 

In Figures 4 and 5, tracks with a radius of curvature higher than 4,000 m and tangent tracks are not shown 

because defects are relatively rare compared to sharper curves. It is noted that the minimum radius of 

curvature that switch and crossing were installed in the route is 900 m. This might be resulted by the route 

terrain that tangent tracks were impossible to construct. It can be seen that the smaller radius of curvature 

results in a higher number of defects. When the radius of curvature is higher than 3,000 m, the number 

of defects significantly reduces. A positive gradient also results in more defects. From k-means clustering, 

the radius of curvature and gradient can be used to cluster defects as shown in Figures 4 and 5. To 

demonstrate the insights from k-means clustering more clearly, the cluster distribution based on defects 

and clusters is presented in Table 4.  

Table 4 Cluster distribution based on component defects and clusters  

Based on component defects 

 cluster_0 cluster_1 cluster_2 cluster_3 

S&C 12% 73% 8% 8% 

Fastener 53% 21% 26% 0% 

Rail joint 39% 26% 32% 3% 

Rail 38% 38% 17% 7% 

Based on clusters 

 S&C Fastener Rail joint Rail 

cluster_0 2% 7% 34% 56% 

cluster_1 15% 3% 24% 59% 

cluster_2 3% 6% 48% 43% 

cluster_3 10% 0% 20% 70% 

From Figure 4 and Table 4, several insights are discovered. First, when the radius of curvature is between 

2,000 and 4,000 m and the gradient is negative, no defect occurs and it can be inferred that tracks with 

this characteristic are not sensitive to defects. Most of the switch and crossing defects (73%) are in cluster 

1 or tracks with the radius of curvature less than 1,800 m and the gradient is positive. It is clear that when 

the radius of curvature is small, it affects the occurrence of switch and crossing defects significantly. 

However, the majority of other defects are in cluster 0 where the gradient is negative and it can be 

inferred that rolling stock might apply brakes and result in track component defects. Cluster 3 has the 

smallest proportions for all component defects which shows that the radius of curvature affects defect 

occurrence significantly and there are no fastener defects when the radius of curvature is bigger than 

4,000 m. Rail defects are the most common defects because their proportion is the biggest in every cluster 

except in cluster 2 where rail joint defects have a higher proportion. For cluster 3, rail defects’ proportion 

is up to 70% which and it can be inferred that the bigger radius of curvature reduces the occurrence of 

every component defect except rail defects. Therefore, the defects which need careful attention when 

the track is tangent are the rail defects. 

From association rules, there are 62 rules where the support is higher than 0.05. To present the insights 

from association rules, rules with confidence higher than 0.8 are presented in Table 5. In the table, 

support, confidence, and lift are presented. Support is the proportion of events found in all events. It 

demonstrates how frequent each event happens in all events. In the table, it can be seen that support 



might not high because the total number of observations is very high. Therefore, it is better to consider 

the confidence. Confidence is the proportion of events that left-hand side and right-hand side happen 

together compared to the number of events that left-hand side events happen. In other words, confidence 

shows how frequent that right-hand side events happens when left-hand side events happen. Last, lift is 

the rise of probability to have right-hand side events when left-hand side events are known compared to 

the case that the rules are not known. In other words, lift can help decision makers to decide better when 

they apply rules and the higher lift means the better chance to decide correctly. It is noted that every lift 

is higher than one because it shows the rise of probability in the unit of time.  

Table 5 Examples of association rules with the confidence higher than 0.8 

Left-hand side Right-hand side  Support  Confidence Lift 

Failed ties in switch, Surface defect on frog Rail surface defect 0.056 0.957 1.926 

Worn wing rail, Failed ties in switch, Worn 
point blade 

Rail surface defect 0.052 0.953 1.918 

Failed ties in switch, Worn point blade Rail surface defect 0.056 0.948 1.908 

Worn wing rail, Worn point blade Rail surface defect 0.059 0.927 1.867 

Rail surface defect, Failed ties in switch, 
Worn point blade 

Worn wing rail 0.052 0.927 6.204 

Failed ties in switch, Worn point blade Worn wing rail 0.054 0.922 6.171 

Rail surface defect, Worn point blade Worn wing rail 0.059 0.898 6.015 

Rail surface defect, Worn wing rail, Worn 
point blade 

Failed ties in switch 0.052 0.878 6.896 

Failed ties in switch, Worn point blade 
Rail surface defect, 
Worn wing rail 

0.052 0.878 7.805 

Worn wing rail, Worn point blade Failed ties in switch 0.054 0.855 6.712 

Rail surface defect, Worn point blade Failed ties in switch 0.056 0.852 6.686 

Worn wing rail, Failed ties in switch Rail surface defect 0.073 0.841 1.694 

Worn point blade Rail surface defect 0.065 0.837 1.684 

Surface defect on frog Rail surface defect 0.074 0.823 1.657 

Worn wing rail, Worn point blade 
Rail surface defect, 
Failed ties in switch 

0.052 0.815 7.922 

Worn point blade Worn wing rail 0.063 0.810 5.426 

Failed ties in switch Rail surface defect 0.103 0.807 1.625 

From Table 5, there are 17 rules with confidence higher than 0.8. The rule with the highest confidence is 

when a track has failed ties in switch and surface defect on frogs, rail surface defects tends to occur with 

the confidence of 0.957. These rules can help inspectors to notice defects better based on the defects 

they found. If defects on the left-hand side occur, inspectors can be aware that defects on the right-hand 

side might occur depending on the confidence shown in Table 5. 

5. Conclusion 

This study combined several sets of data, namely, track geometry measurement data, track component 

defect data, and track profile data to create the dataset for supervised and unsupervised learning. 

Supervised learning was used to develop models to detect component defects using track geometry. 

Techniques used in the study are DNN, CNN, MR, SVM, GB, DT, and RF. Each model was tuned using a grid 



search to make sure that the performance of each model was optimal based on their potential. From the 

study, DNN had the best performance with an accuracy of 94%. The model can detect defects and 

categorize them into component levels, namely, rail, rail joint, switch and crossing, and fastener which is 

more detailed than any other published study. It is noted that there might be an imbalance issue between 

samples with defects because some defects tend to occur more frequent than other defects. Therefore, 

more data can improve the completeness of data and confidence in machine learning models.  

The study applied unsupervised learning to explore insights of data. K-means clustering and association 

rules were applied. From k-means clustering, two features, which are the radius of curvature and gradient, 

were used. The number of clusters was four and each cluster well represented the characteristic of tracks 

and defects. An example of insight from k-means clustering was the occurrence of defects which was 

negatively correlated to the radius of curvature. For association rules, several rules were discovered and 

there were 17 rules wherein the confidence was higher than 0.8. Inspectors can apply these rules to 

beware of the occurrence of defects that may not detect during the inspection.  

The contributions of the study are mentioned as previously. The challenge of future work is how to select 

features and develop models to better predict track component defects because this study found that the 

models do not perform well when the number of classes is too high. If models are developed until they 

can detect particular defects, it will be a significant benefit for the railway industry because it saves a lot 

of time and cost and also improves staff safety. More data from different years, locations, and routes can 

be included to add the variability of data to make models perform better. Unsupervised learning can also 

explore new data and provide new insights from varied data.  
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