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A B S T R A C T   

Nanoinformatics models to predict the toxicity/ecotoxicity of nanomaterials (NMs) are urgently needed to 
support commercialization of nanotechnologies and allow grouping of NMs based on their physico-chemical 
and/or (eco)toxicological properties, to facilitate read-across of knowledge from data-rich NMs to data-poor 
ones. Here we present the first ecotoxicological read-across models for predicting NMs ecotoxicity, which 
were developed in accordance with ECHA’s recommended strategy for grouping of NMs as a means to explore in 
silico the effects of a panel of freshly dispersed versus environmentally aged (in various media) Ag and TiO2 NMs 
on the freshwater zooplankton Daphnia magna, a keystone species used in regulatory testing. The dataset used to 
develop the models consisted of dose-response data from 11 NMs (5 TiO2 NMs of identical cores with different 
coatings, and 6 Ag NMs with different capping agents/coatings) each dispersed in three different media (a high 
hardness medium (HH Combo) and two representative river waters containing different amounts of natural 
organic matter (NOM) and having different ionic strengths), generated in accordance with the OECD 202 
immobilization test. The experimental hypotheses being tested were (1) that the presence of NOM in the medium 
would reduce the toxicity of the NMs by forming an ecological corona, and (2) that environmental ageing of NMs 
reduces their toxicity compared to the freshly dispersed NMs irrespective of the medium composition (salt only 
or NOM-containing). As per the ECHA guidance, the NMs were grouped into two categories - freshly dispersed 
and 2-year-aged and explored in silico to identify the most important features driving the toxicity in each group. 
The final predictive models have been validated according to the OECD criteria and a QSAR model report form 
(QMRF) report included in the supplementary information to support adoption of the models for regulatory 
purposes.   

1. Introduction 

Nanoinformatics is an evolving field of research that includes the 
development of in silico models and tools that could be an alternative to 
the experimental evaluation of nanomaterials (NMs) environmental 
health and safety (exposure and toxicity) and thus contribute to NMs 
hazard and risk assessment. A wide range of methodologies and tech
niques have been integrated within nanoinformatics workflows, 
including quantum-mechanical simulations, finite element simulations, 
regression/classification algorithms, quantitative structure-activity re
lationships (QSARs), neural networks, genetic algorithms and many 

more (Rajan, 2018; Toropov and Toropova, 2015; Toropova et al., 
2017). Specifically, predictive modelling approaches that have already 
contributed to the cheminformatics field can also significantly 
contribute in the nanoinformatics area, provided that the methods and 
tools proposed are adjusted to the specific needs of NMs, such as utili
zation of algorithms that can treat limited or sparse data, as well as 
methods and tools to generate computational (quantum mechanical or 
image based) descriptors describing the NM entity (Varsou et al., 2020). 
NanoQSAR or QNAR (quantitative nanostructure–activity relationship) 
models, developed for the prediction of biological and toxicological 
adverse effects, have already been proposed in the literature (Fourches 
et al., 2010; Gajewicz et al., 2015a; Leone et al., 2018; Manganelli et al., 
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2016; Melagraki and Afantitis, 2014; Singh and Gupta, 2014; Toropov 
and Toropova, 2019). The need to build reliable nanoQSAR models is 
often highlighted as a significant regulatory challenge, since it is not 
possible to experimentally assess all variants of NMs due to time, cost 
and ethical restrictions, and thus computational models are needed. 
However, the lack of large experimental datasets and the range of 
different mechanisms of action for diverse NMs hinder efforts to develop 
robust and accurate predictive models (Gajewicz et al., 2015a; Winkler 
et al., 2013). 

The lack of suitable datasets for development of nanoQSARs arises in 
part from the challenges in generating such datasets for panels of NMs. 
These challenges arise from a number of factors including difficulties to 
keep NMs dispersed in test media over they assay duration (Petersen 
et al., 2015), the quantity of NMs required for many (eco)toxicity tests, 
the relatively limited panel of commercially available NMs of system
atically varied physico-chemical properties and the fact that NMs are so 
responsive to, and dynamic in, biological and environmental media 
undergoing a range of physical, chemical and biological transformations 
that alter their uptake and toxicity (Hjorth et al., 2017; Hund-Rinke 
et al., 2016). Common transformations that are likely to occur in the 
environment include adsorption of NOM to the NMs surface (Cupi et al., 
2015), oxidation and potentially oxidative dissolution (Collin et al., 
2016; Furtado et al., 2016), or sulfidation which decreases the rate of 
dissolution and thus, reduces NM toxicity (Levard et al., 2011). Ageing 
and transformations of NMs are considered to alter their surface speci
ation, e.g., via sulfidation, phosphidation, chloride binding or other 
changes to the surface chemistry depending on the salts present in the 
media), and/or reduce their surface reactivity as a result of adsorption of 
biomolecules from their surroundings (Briffa et al., 2018; Lowry et al., 
2013; Nasser and Lynch, 2016). Surface coatings generally act as a 
stabilizing mechanism and thus reduce the dissolution process of the 
core material (El Badawy et al., 2012), however, some studies have 
identified that NM ageing removes protective coatings and stabilizers 
(Izak-Nau et al., 2015; Virkutyte and Al-Abed, 2012), which will affect 
the NM stability and ecotoxicological outcome. 

Assessment of NMs hazards is currently performed using experi
mentally produced dose-response relationships to compare the median 
effect and lethal concentrations (EC/LC50) with observed behavior in 
order to provide assessments of hazard (Fadel et al., 2015; Mueller and 
Nowack, 2008; Nowack and Mueller, 2008). For NMs hazard assess
ment, the results from an array of scientific data are difficult to compare 
since there are no specific guidelines on the measurement of NM phys
icochemical characteristics to facilitate comparison across studies (Das 
et al., 2013), and since the NMs undergo transformations during the 
exposure that are often not considered or described (Hjorth et al., 2017; 
Nasser et al., 2020; Svendsen et al., 2020). Given the lack of experi
mental validation of exposure conditions and the form of the NMs 

actually presented to organisms, experimental datasets are often diffi
cult to reproduce since they focus mainly on the outcome or response 
caused by the NMs (El Badawy et al., 2010; Li et al., 2013; Morelli et al., 
2018), and less on the environmental transformations that drive the NM 
response in exposure models. Until recently, the focus of acute NM 
testing was on freshly dispersed synthesized/engineered NMs (Hu et al., 
2018; Pace et al., 2010; Shen et al., 2015), despite increasing under
standing of NMs transformations in the environment (Beaudrie et al., 
2013; Lowry et al., 2013; Svendsen et al., 2020). For example, silver 
NMs become more toxic as they decrease in size due to increased surface 
area for release of ions (Kim et al., 2012). 

Although the OECD does advise use of specific media for acute and 
chronic toxicity testing (OECD, 2017), there are no specific guidance or 
test modifications on how to prepare NMs for ecotoxicity testing as yet 
(Hund-Rinke et al., 2016), although work to this end is underway via the 
OECD. To simplify the tests and facilitate comparison across chemical 
compounds, the media recommended for OECD acute tests are salt only, 
which is fine for soluble chemicals as it removes the potential for binding 
of chemicals to NOM which may impact their bioavailability, but fails to 
provide a means to stabilize NMs or to account for their highly reactive 
surfaces which means they will acquire a corona through damaging 
organism’s membranes if there are no alternative biomolecules avail
able (Lesniak et al., 2012; Nasser and Lynch, 2019). In real environ
ments, NMs will acquire a coating of biomolecules almost instantly upon 
contact with the aquatic environment, and indeed even over the dura
tion of the acute tests the organisms condition their medium through 
their filtrating action (Nasser et al., 2020; Nasser and Lynch, 2019), 
resulting in eco-corona formation in situ which is not currently 
accounted for but which can provide important mechanistic insights into 
how the organisms respond to the presence of the NMs (Ellis and Lynch, 
2020). Thus, there is an absence of examination of NMs as environ
mental pollutants under environmentally representative conditions and 
with full consideration of the physico-chemical transformations they 
undergo in the environment that can reduce or enhance their toxicity 
over time (Virkutyte and Al-Abed, 2012). It is therefore crucial to study 
both “freshly dispersed” and “environmentally aged” forms of NMs using 
environmentally relevant dispersion conditions. Using NMs which are 
“aged” under realistic exposure conditions is expected to generate data 
that is more predictive of realistic exposure scenarios, and therefore 
more appropriate for regulatory and risk assessment (Guineé et al., 
2017). Utilization of dose-response and ecotoxicity data generated 
under realistic environmentally relevant media and using environmen
tally aged NMs is also expected to increase the predictivity of nanoQSAR 
models and facilitate their adoption for regulatory testing. 

Grouping and read-across have been proposed as a non-testing 
strategy for nanotoxicity assessment, established through the Read- 
Across Assessment Framework under the EU REACH regulation of the 
European Chemicals Agency (ECHA), and are considered as an efficient 
approach for data gap filling especially in the case of NMs datasets of 
limited size (ECHA, 2015). Two approaches for grouping and 
read-across have been proposed by ECHA and the OECD: the category 
and the analogue approach. In the first case, it is assumed that structural 
similarity between NMs may lead to the expression of similar (eco) 
toxicological and biological activity. Thus, NMs that have a regular 
pattern in their structural characteristics can be considered as one group 
and read-across predictions may refer to the whole group whereas, an 
analogue approach can be applied within the group for sample-specific 
toxicity estimation. In the analogue approach, regular patterns are not 
obvious in the structural characteristics of a set of NMs. In this case, the 
search for similar NMs through read-across prediction methodologies is 
restricted to a limited area of the data space and it is based either on 
experts’ critical judgment, or on computational methods that mathe
matically measure NMs similarity such as hierarchical clustering, prin
cipal components analysis and linear discriminant analysis (Lamon 
et al., 2018; Sayes et al., 2013). In that case, a “local” interpolation 
methodology can be applied to the data for toxicity/property estimation. 

Abbreviations 

DLS Dynamic Light Scattering 
ECHA European Chemical Agency 
(E)NM (Engineered) Nanomaterial 
HH combo High-hardness combo media 
NOM Natural organic matter 
OECD Organization for Economic Cooperation and 

Development 
QNAR Quantitative Nanostructure-Activity Relationship 

(modeling) 
QSAR Quantitative Structure-Activity Relationship 

(modeling) 
TEM Transmission Electron Microscopy 
UPW Ultrapure water  
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However, the boundaries between the two approaches are still unclear 
and depend on the number of available samples (Gajewicz et al., 2017, 
2015b; Giusti et al., 2019; Helma et al., 2017; Varsou et al., 2018b; 
Varsou et al., 2019a,b). 

Due to the abundance of different proposed grouping approaches, for 
harmonization purposes, ECHA has presented a methodical NM-specific 
workflow comprising of seven well-defined steps for grouping and read- 
across (ECHA, 2017). This workflow was summarized by Lamon et al. 
(2018) and Aschberger et al. (2019) into four main steps that were 
followed for two NM-specific case studies for the read-across prediction 
of toxicity endpoints of TiO2 nanoforms and multi-walled carbon 
nanotubes (MWCNTs) respectively. In all cases, the pivotal step for 
grouping is the formation of a clear hypothesis, based on the available 
data and the apparent trends in their properties, that is evaluated for its 
ability to be used for data gap filling for other materials where the 
biological or (eco)toxicological data is not available. 

Here we present two read-across models that have been developed 
and proposed to explore in silico the effects of a panel of freshly dispersed 
versus environmentally aged Ag and TiO2 NMs on the freshwater 
zooplankton Daphnia magna, which is a keystone species used in regu
latory testing. The dataset used to develop the models consisted of 11 
NMs (5 TiO2 NMs with different coatings, and 6 Ag NMs with different 
capping agents/coatings) each dispersed in three different media (a high 
hardness salt-only medium widely used for Daphnia experiments (HH 
Combo medium) and two representative river waters containing 
different amounts of natural organic matter (NOM) and having different 
ionic strengths). The NMs were studied immediately upon dispersion in 
the HH Combo medium and following 2-years of ageing in each of the 
three media, leading to 44 unique conditions in the dataset (11 NMs x 4 
conditions). The NMs were fully characterized under each condition and 
the acute immoblisation induced by the NMs within the testing periods 
(24 and 48 h) was determined for each NM at each tested condition in 
accordance with OECD Test 202 (Immobilization of Daphnia Magna) 
(OECD, 2004). 

Based on ECHA’s grouping framework the NMs were grouped into 
two categories - freshly dispersed and 2-year-aged, which have been 
explored in silico using the NovaMechanics’ in house analytics platform 
(Enalos) to identify the most important features driving the toxicity in 
each group, and thus which can be used as a basis for read-across. The 
computational modelling procedure was performed by combining Isalos 
Analytics Platform (Papadiamantis et al, 2020, 2021) and Enalos 
Chem/Nano informatics tools (Afantitis et al., 2020b), which facilitate 
the manipulation of big data, modelling, validation, and the virtual 
screening processes. The most significant variables correlating with the 
endpoint of NMs acute toxicity to D. magna using the EC40 which is the 
effective concentration at which 40% of the organisms were immobi
lized. We selected this (rather than the more conventional EC50) as the 
threshold between toxic and non-toxic samples for two reasons: (1) to 
ensure a reasonable balance of the datapoints in the two categories 
which ensures a better prediction and outcome from the models, and (2) 
as in several cases of the aged NM the maximum concentration tested, 
which was limited by dispersion concentrations supplied by the manu
facturers, only led to 40% immobilization. The final predictive models 
have been validated according to OECD criteria and a QSAR model 
report form (QMRF) prepared to promote regulatory acceptance of the 
models. 

2. Experimental methods 

In this study five TiO2-cored and six Ag-cored NMs were character
ized and exposed to D. magna neonates (<24 h old) in order to assess 
their survival at 24 and 48 h. Experimental details are presented in the 
following paragraphs. 

2.1. Medium and representative waters 

Commercially available chemicals, solvents, and humic acids (HA) 
were purchased from Sigma-Aldrich (Dorset, UK) and were of analytical 
reagent grade. Ultrapure water (UPW) with a maximum resistivity of 
18.2 M Ω cm− 1 was used throughout the experiments. Experiments were 
performed in Daphnia high hardness combo medium (HH combo) (Kil
ham et al., 1998) and in two synthetic waters - Class I water which 
represents waters typically found in Norway and the Alpine regions and 
lowland Class V artificial water which is representative of typical of 
waters found in the southern UK, Poland, Greece, France, the Balearic 
countries and the Iberian Peninsula (Hammes et al., 2013a). The HH 
combo medium represents an average hard water standard without any 
NOM and is commonly used for the culturing of Daphnia. The Class I 
water has low dissolved NOM concentration (1.84 mg L− 1) while the 
Class V water has high alkalinity and high NOM concentration (4.6 mg 
L− 1). A description of the water combinations is given in Table S1 in the 
supplemental information (SI). All three test media had comparable pH 
values between 7.6 and 7.8. 

2.2. Nanomaterials and characterization 

The Ag NMs used in this study were 60 nm uncoated Ag (from App 
Nano Ltd, Spain), 80 nm uncoated Ag (from Promethean Particles, Ltd.), 
50 nm PVP coated Ag (Amepox Ltd., Poland), 50 nm PEG-Thiol coated 
Ag (from PROM), 3–8 nm paraffin coated Ag (Amepox Ltd., Poland), and 
50 nm Ag2S-PVP coated (AppNano Ltd, Spain). The TiO2 NMs used in 
this study were all anatase TiO2 with a core size of 10–12 nm, and either 
uncoated TiO2, polyvinylpyrrolidone (PVP) coated TiO2, Dispex A4040 
coated TiO2, Solplus D540 coated TiO2 or Pluronic F127 coated TiO2 
NMs, all provided by Promethean Particles Ltd., UK. Details of the 
coating molecules are given in Table S2 in the SI. All NMs were obtained 
from the EU H2020 NanoFASE project. Ageing of the NMs was achieved 
by preparing stock solutions (1000 mg L− 1) in the HH combo, Class I and 
Class V synthetic waters and storing the stock solutions for two years in a 
dark at 4 ◦C in a refrigerator prior to the Daphnia exposures. 

Dynamic light scattering (DLS) was used to measure both the “freshly 
dispersed” and “aged” (two years in the various media) NMs’ hydro
dynamic diameters. Zeta potential was used to assess the stability of the 
NMs in the media and to monitor the changes in the NMs’ electrostatic 
charge and the solution conductivity using a Malvern Nanosizer 5000. 

Transmission electron microscopy (TEM) analysis of the freshly 
dispersed and 2-year aged NMs was performed using JEOL 1200EX 80 
kV (pristine) and JEOL 1400EX 80 kV (aged) microscopes. NMs were 
prepared by the drop casting method by depositing a 20 μL drop of the 
NM suspension onto a 300 mesh carbon-coated copper TEM grid (Agar 
Scientific, UK). TEM primary particle sizes were determined by counting 
at least 100 NMs. 

2.3. Test organisms 

Initial stocks of Daphnia were maintained using pools of genetically 
identical 3rd brood Bham2 strain. Daphnia were kept in a 20 ◦C tem
perature controlled environment with 16:8 h light:dark cycles and 
cultured in HH Combo media and in synthetic Class I and Class V river 
lowland waters (as described in (Hammes et al., 2013b)) which were 
refreshed twice weekly to ensure healthy culture maintenance. Daphnia 
cultures were fed 0.5 mg carbon daily between days 0–7 (750 μL) as 
Chollera vulgaris algae. 

The impacts of the freshly dispersed and aged NMs were assessed on 
neonates (<24 h old) over 48 h to establish the dose response re
lationships to both the freshly dispersed and the 2 years aged forms to 
each of the NMs. A total of 30 (10 × 3) Daphnia were exposed to each of a 
range of NM concentrations (both freshly dispersed and 2-year aged 
NMs) spanning 1–1600 μL for the Ag NMs and 10–1000 mg L− 1 for the 
TiO2 NMs. These ranges were selected based on our previous studies 
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where Ag NMs were found to be toxic at lower concentrations than TiO2 
NMs(Ellis et al., 2020, 2021) . Neonates were assessed at 24 and 48 h for 
survival as per the OECD 202 test. Control daphnids were not exposed to 
any NMs and were kept in only medium (HH Combo, Class I or Class V 
water) under the same conditions as the exposed neonates over the 48-h 
period and assessments of survival were obtained. 

3. Modelling methods 

3.1. Dataset 

The available experimental data points were organized, pre
processed and harmonized prior to any modelling activities. The 
experimental data for each one of the 11 tested NMs were organized 
according to the NMs’ age (freshly dispersed or 2 years aged in the 
various media), the medium (HH Combo, Class I or V river water) and 
the concentrations used to interact with Daphnia. In the experimental 
study the effective concentrations (ECs) of NMs on Daphnia were 
explored at 24 and 48 h (OECD, 2004). The concentrations of the NMs 
stock solutions (which were received as aqueous dispersions) were a 
limiting factor in the concentration range that could be tested. The much 
lower toxicity of the NMs following ageing in the media compared to the 
pristine NMs meant that it was not possible to experimentally determine 
the EC50 values for all the NMs at 48 h, meaning that we could only 
indicate that EC50 was above the highest tested concentration in some 
cases, as shown in Table 1. The experimental data for all treatments 
(pristine and aged NMs) did include a concentration where 40% of the 
test organisms were immobilized, and thus we chose to utilize these 
experimental values (in which we were confident) rather than extrap
olating to an EC50 value based on experimental data covering only the 
bottom part of a dose-response curve. Thus, a separation threshold of 
40% decrease of the initial population at 48 h (EC40) was used to pro
duce two classes with relatively balanced distributions (“toxic”, popu
lation decreased more than 40% relative to the untreated 
controls/“non-toxic”, population decreased less than 40% relative to the 
untreated controls). In total, considering the different samples in terms 
of NM age, testing medium and concentrations, 353 values were made 

available for input modelling data (150 characterized as “toxic” and 203 
characterized as “non-toxic” based on whether the concentration was 
above or below the EC40 threshold). 

The available numerical descriptors (TEM size, DLS size, electro
phoretic mobility, zeta potential at pH = 7.6–7.8, medium conductivity, 
tested concentration) were normalized (by applying the Gaussian 
normalization method) in order to guarantee their equal contribution to 
the analysis (Leach and Gillet, 2007). The most significant variables 
were identified by the BestFirst variable selection method and CfsSub
setEval (CFS) evaluator using the Isalos Analytics Platform. CFS subset 
evaluator identifies a subset of uncorrelated variables that are highly 
correlated to the endpoint (EC40 in this case). The method searches the 
possible combinations of variables and selects the best one using the 
BestFirst search method, which performs greedy hill climbing with 
backtracking (Witten et al., 2011). 

3.2. Modelling methodology 

Grouping and read-across for data gap filling, have been proposed as 
alternative techniques to experimental hazard assessment of chemicals 
and NMs. Even though the relevant concepts are well-defined for small 
molecules, when NMs are concerned, due to challenges and un
certainties in the distinction between the different nanoforms, grouping 
and consequently read-across strategies and approaches are still under 
investigation. ECHA provided systematic guidance regarding NMs 
grouping, read-across of their (eco)toxicological properties and report
ing in an effort to harmonize the different proposed methods and guide 
future efforts. In this guidance a stepwise workflow is presented con
sisting of seven steps, including adequate collection of data, grouping 
under a robust hypothesis and justification (ECHA, 2017). 

In the present work, the grouping hypothesis is that environmental 
ageing of NMs will reduce their ecotoxicity to Daphnia magna compared 
to the freshly dispersed NMs, and that this will be more pronounced for 
the media containing natural organic matter than for the salt-only me
dium. In order to evaluate the adequacy of this hypothesis, we used the k 
nearest neighbors (kNN) methodology by dividing the initial dataset 
into subgroups of NMs of the same age (i.e., freshly dispersed versus 2- 
year aged) and developing two separate models in each subgroup. All 
details are presented in Table S4. 

3.2.1. kNN 
k nearest neighbors (kNN) is an instance-based (“lazy”) classifier that 

does not need to develop a predetermined model for classification of 
new instances, as each new instance is assigned to the class indicated by 
the closest training examples (neighbors) in the feature space. Majority 
vote, in this case weighted by neighbors’ distance values, determines the 
class assigned to each new instance. This simple technique produces 
reliable predictions and performs well (in terms of computational cost) 
when relatively-small sets of data are treated and thus, it can be 
considered as an ideal classifier for the analogue read-across approach 
(OECD, 2007; Papadiamantis et al., 2021; Triguero et al., 2019). The 
EnaloskNN algorithm was used in order to apply the kNN method in our 
workflow which allowed us to observe the neighbors (analogues) from 
the training set of each test sample (NovaMechanics Ltd, 2019). 

3.3. Validation 

According to ECHA, predictive models should meet and be accom
panied by the following information for their use in regulatory purposes: 
a defined endpoint, an unambiguous algorithm, a defined domain of 
applicability, appropriate measures of goodness-of-fit, robustness and 
predictivity and a mechanistic interpretation, if possible (European 
Chemicals Agency, 2016; OECD, 2007). The validation measures used in 
this workflow are presented as follows and the compliance of the models 
with the entire set of OECD principles are summarized in the Supporting 
Information file, presented as a QSAR model report form (QMRF) report. 

Table 1 
Summary of the acute 48-h EC50 values (mg/L) determined for the NMs freshly 
dispersed in HH Combo medium and aged for 2-years in the 3 different media 
(HH Combo, and Class I and Class V artificial waters).  

NM EC50 of 
pristine NMs 
in HH combo 
(mg/L) 

EC50 of aged 
NMs in HH 
combo (mg/ 
L) 

EC50 of aged 
NMs in Class 
I water (mg/ 
L) 

EC50 of aged 
NMs in Class 
V water (mg/ 
L) 

Uncoated Ag 
(AppNano) 

0.037 0.125 0.23 >1 

PVP Ag 
(Amepox) 

0.029 0.170 0.365 0.87 

Ag2S 
(AppNano) 

0.184 0.250 >1 >1 

Paraffin Ag 
(Amepox) 

0.077 0.537 0.453 >1 

PEG Thiol Ag 
(Prom) 

0.269 >1 0.542 >1 

Uncoated Ag 
(Prom) 

0.190 >1 0.800 >1 

TiO2 

uncoated 
(Prom) 

75 >1000 570 ≪400 

TiO2 PVP 
(Prom) 

45 >1000 548 ≪400 

TiO2 Dispex 
(Prom) 

70 >1000 285 430 

TiO2 Solplus 
(Prom) 

715 >1000 360 >1000 

TiO2 Pluronic 
(Prom) 

120 150 409 847  
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In order to ensure the robustness of the produced models, in terms of 
accuracy and predictive power, an external and an internal validation 
scheme was applied. In the external validation approach the full dataset 
was divided randomly into training and test subsets in a ratio of 75:25. 
The training set was used to determine the subset of optimal descriptors 
for toxicity prediction initially and was then used to define the model
ling parameters. In an iterative process, for each model developed using 
the training set, the performance was evaluated using the test set, until 
the optimal modeling parameters were met, determined by calculating 
the following parameters (eq. [1]-[3]): sensitivity (Sn), specificity (Sp) 
and accuracy (Ac) that describe the proportion of actual toxic NMs that 
are correctly classified as “toxic”, the proportion of actual non-toxic NMs 
that are correctly classified as “non-toxic” and the overall success rate of 
the model, respectively (OECD, 2007). The Mathew’s correlation coef
ficient (MCC, eq. (4)) was also calculated to estimate the performance of 
the models in relation to a purely random prediction. 

Sn=
TP

TP + FN
(1)  

Sp=
TN

TN + FP
(2)  

Ac=
TP + TN

TP + FP + TN + FN
(3)  

MCC=
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (4)  

where, TP are true positives (toxic samples correctly classified as 
“toxic”), TN are true negatives (non-toxic samples correctly classified as 
“non-toxic”), FP are false positives (non-toxic samples incorrectly clas
sified as “toxic”) and FN are false negatives (toxic samples incorrectly 
classified as “non-toxic”). 

Y-scrambling testing was also performed in order to ensure that the 
accuracy of the produced models is not a coincidental outcome. In this 
test, the modelling calculations are repeated using the initial matrix of 
independent variables and shuffled values for the dependent variable. In 
each Y-scrambling test, a model is developed using the scrambled 
training set and validated with the original test set. If the statistical 
metrics (eq. [1]-[3]) of the produced model are reduced, comparing to 
the model built with the actual endpoints, then the original model is 
considered reliable. If the scrambled data produce higher statistical 
metrics, an acceptable predictive model cannot be produced for both 
modeling methodologies and original training set (Melagraki and 
Afantitis, 2015; Tropsha, 2010; Varsou et al., 2019a,b). The Y-scram
bling test was performed 5 times for each model using Isalos Y 
Randomization function. 

Finally, the produced models were validated internally to reduce the 
bias produced from a possible unbalanced separation of the two cate
gories between the training and the test set. Thus, for the training set 
leave-one-out (LOO) and leave-ten-out (L10O) cross-validation (CV) 
methods were employed. 

3.4. Applicability domain 

A fully validated and robust model must not be expected to provide 
reliable predictions for all possible NMs with known properties and 
unknown (adverse) outcomes on Daphnia. For example, we should not 
expect reliable predictions for gold NMs or multi-walled carbon nano
tubes using the model developed for Ag and TiO2-cored NMs. Therefore, 
it is important, especially within a safety-by-design framework, to 
denote whether a property estimation should be considered reliable or 
not, through a well-defined applicability domain (AD). The AD re
inforces the confidence of experimentalists and regulators, who wish to 
make use of the model, concerning the reliability of their predictions and 
thus, the theoretical model can be accepted in real-life applications 

(Gadaleta et al., 2016). 
In the present work the AD was defined via Euclidean distance 

method among all training and test NMs. The distance of each test NM to 
each nearest neighbor of the training NMs was compared to a predefined 
AD threshold (see eq. [5]); if this distance is lower than the threshold 
then its endpoint prediction can be considered reliable. 

thr = d + Zσ (5) 

Initially, all Euclidean distances between all training NMs are 
calculated, as well as the mean value of these distances. In a next step the 
new average value d and standard deviation σ of the distances included 
in the subset of training NMs which have lower distance than the 
average distance of all training NMs, are calculated. Z, is an empirical 
cut-off value and in this study was set equal to 0.5 (Melagraki and 
Afantitis, 2013). 

The assessment of the AD of the proposed models was elaborated 
directly in Isalos Analytics Platform, using the Domain–APD function 
that executes the aforementioned procedure (Melagraki and Afantitis, 
2013; NovaMechanics Ltd, 2019). 

4. Experimental results and discussion 

The TEM characterization of the NMs for both the pristine and 2-year 
aged NMs in each of the three waters tested are presented in Figs. 1 and 
2, and Tables S2 and S3 in the supplemental information. The medium 
type and effect of long-term ageing on the particles affected the zeta 
potential and size, both TEM and hydrodynamic size as determined by 
DLS (see Table S2). 

The hypotheses being tested experimentally were that: (1) the 
presence of NOM in the medium reduces the toxicity of the NMs (by 
forming an ecological corona); and (2) that environmental ageing of 
NMs reduces their toxicity compared to the freshly dispersed NMs 
irrespective of the medium composition (salt only or containing bio
molecules). For the models, the grouping hypotheses were (1) that 
freshly dispersed NMs had a higher toxicity than environmentally aged 
NMs and thus constituted distinct groups, and (2) that the NM properties 
most correlated with toxicity would be different for the freshly dispersed 
NMs than those for the 2-year aged NMs, with ageing core compositions 
would correlate with different physico-chemical characteristics of the 
NMs (see Fig. 3). 

Table 1 summarizes the determined EC50 values at 48 h based on the 
% daphnids immobilized at each tested concentration across a concen
tration range. In some cases, we were not able to determine an EC50 as it 
exceeded the NM concentrations of the stock solutions used to age the 
NMs, in which case we indicated it as being above the highest tested 
concentration. In a couple of the TiO2 NMs cases, the EC50 was below the 
lowest tested concentration which is also indicated using ≪, and un
fortunately, we ran out of aged NMs and thus could not repeat the study 
at lower concentrations. Based on the data in Table 1, it is clear that both 
of the hypotheses are experimentally confirmed. 

According to the Classification and Labelling of Chemicals legislation 
(Karjalainen et al., 2014), a chemical is considered to be toxic Category 
Acute 1 if the 48 h EC50 value is ≤ 1 mg L− 1, toxic Category Acute 2 if the 
48 h EC50 value is between 1 and 10 mg L− 1 and toxic Category Acute 3 if 
the 48 h EC50 value is ≤ 100 mg L− 1. Above this, chemicals are 
considered to be non-toxic. Thus, there is quite a spread in terms of the 
NMs in terms of the toxicity classifications overall from Category Acute 1 
(all the Ag NMs freshly dispersed in HH Combo medium) moving to 
Acute Category 2 for most of the Ag NMs aged in the Class V water, while 
some of the pristine titania were Category Acute 3 initially, and in all 
cases the aged TiO2 NMs would be classified as non-toxic. Due to the 
unique physicochemical properties of NMs and the effects and adverse 
outcome displayed in the daphnids at these concentrations, it is not yet 
clear how such information will feed into the regulatory risk assessment. 
However, it would be particularly useful to understand, for example, 
how long a NM may remain as a Category Acute 1 material or how 
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quickly its’ toxicity might be reduced once released into the 
environment. 

5. Modelling results and discussion 

The implementation of the predictive model for the NMs toxicity 
assessment was performed within the Isalos Analytics Platform. All 
analysis steps including normalization, variable selection, modelling 
and validation were performed in Isalos Analytics Platform using the 
available functions, as well as the proprietary Enalos + nodes (Afantitis 
et al., 2020b; Varsou et al., 2018a), developed by NovaMechanics Ltd 
(http://enalosplus.novamechanics.com/). A summary of the modelling 
results can be found in the publication’s supplementary file, presented as 
a QMRF. 

A dataset of 11 NMs tested in different media (HH Combo, Class I and 
V water) under different ageing conditions (freshly dispersed, 2 years 

aged) was exploited in silico. The available dataset variables were: core, 
surface coating, surface charge, hydrophobicity, age condition, testing 
medium, NOM concentration in the testing medium, alkalinity of the 
medium (in equivalents of CaCO3), TEM size (fresh or aged), DLS size 
(fresh or aged), zeta potential (fresh or aged), NM surface conductivity 
(fresh or aged), NM electrophoretic mobility (fresh or aged) and tested 
concentration. As previously stated, to test our read-across hypothesis, 
the dataset was divided into two subsets based on the age of the NMs 
(freshly dispersed, 2-year aged). In both cases the same normalization 
and variable selection processes were applied to the data: For the 
development of our predictive models, each subset of NMs was divided 
into training and test sets in a proportion of 75:25 following a stratified 
sampling technique. The descriptor values of the training sets were 
normalized, and the applied normalization parameters were used for the 
normalization of the test set during external validation. 

The BestFirst variable selection along with the CfsSubsetEval 

Fig. 1. TEM images of the Ag NMs showing their morphology in each media conditions versus timescale to reflect the ageing process.  

Fig. 2. TEM images of the TiO2 NMs showing their morphology in each media conditions versus timescale to reflect the ageing process.  
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evaluator were applied to each training set, with the purpose to select 
the most significant among the 13 available descriptors. Considering 
that the type of core (Ag, Ag2S, TiO2), the tested media (HH Combo, 
Class I water, Class V water) and the concentration [ppb] were elemental 
parameters during experimental evaluation (they outlined the experi
mental conditions), these descriptors were excluded from variable se
lection. The variables (apart from the three essential variables described 
above) that were selected and used for modelling purposes are presented 
in Table 2. 

Modelling via the Isalos Analytics Platform allowed us to experiment 
with different machine learning algorithms and test their performance 
(kNN, J48 and random forests). Among the applied methodologies, the 
kNN modelling technique appeared to outperform the others and best 
correlate the toxicity endpoint to the selected variables, with an opti
mized value of k = 3 neighbors in both cases (freshly dispersed and 2- 
year aged models). Credibility assessment of the produced predictions 
was performed according to OECD guidelines (OECD, 2007) including 
determination of the accuracy of the predictions, implementation of 
LOO and L10O-CV for internal validation and Y-scrambling test. Ta
bles 3 and 4 present the accuracy statistics of the models for test sets 
(freshly dispersed and aged NMs, respectively) and the accuracy values 
of CV for both models, which are higher than 0.7 thus, both models can 
be considered stable. 

When models were trained with a training set of shuffled endpoint 
values but the same parameters as the proposed models, they presented 
statistically lower predictive power when applied to the test set in 
comparison to the models using the original training values, thus the 
possibility of chance correlation is reduced. 

Finally, in both cases by observing the k selected neighbors of the 
training set for each test sample, kNN method proved to have a selec
tivity in the selection of analogues, as in most cases, the selected ana
logues had the same core thus, further investigation on the data can 
reveal more subgroups of structurally similar samples. 

5.1. Freshly dispersed subset 

The subset including only pristine NMs consists of 94 training and 32 
test samples. The accuracy statistics encoding the performance of the 
kNN model on test set are presented in Table 3. The accuracy of internal 
CV on training set is also presented in this table. 

The AD has been determined in order to define the area of reliable 
predictions. The AD threshold was calculated, based on the training set, 
equal to 1.073. All samples in the test set had values in the range of 
4.5⋅10− 5–0.903 thus the predictions for the test set can be considered 
reliable. 

5.2. Aged subset 

The subset including only aged NMs consists of 170 training and 57 
test samples. The accuracy statistics summarizing the performance of 
the kNN model on test set are presented in Table 4, as well as the ac
curacy of internal CV on training set. 

The AD threshold calculated based on the training set was equal to 
1.687. All samples in the test set had values in the range of 
7.7⋅10− 5–0.456 thus the predictions for the test set are all considered 
reliable. 

5.3. Discussion on selected descriptors 

A crucial demand in nanotoxicology is the correlation of properties 
and physicochemical characteristics of NMs to their biological or 
toxicity behavior. After developing and validating the predictive 
models, interpretation and clear definition of the variables that emerged 
as important for modelling the toxicity endpoint are provided. The in
formation included in these descriptors are investigated in order to 
understand how they affect NMs toxicity outcome and how they are 
specific to the age of the NMs, i.e., considering how the NMs properties 
change during ageing due to interaction with the medium constituents 
including the salts and NOM where present. 

NMs size is a crucial parameter for the assessment of their toxic ef
fects to living organisms due to their ability to penetrate epithelial 

Fig. 3. Based on the Grouping hypotheses: (i) NMs ageing reduces their toxicity 
to D. magna and (ii) Different NMs physico-chemical descriptors explain the 
toxicity of freshly dispersed versus aged NMs, two models were built each based 
on a set of six descriptors most predictive of the NMs’ toxicity to D. magna. Both 
models are included in the NanoSolveIT Cloud Platform developed by the 
H2020 Nanoinformatics Project NanoSolveIT (www.nanosolveit.eu) (Afantitis 
et al., 2020a) to reach all interested stakeholders including industry 
and regulators. 

Table 2 
Selected variables for each set of NMs.  

Set of samples Selected variables 

Freshly dispersed TEM size, surface coating charge, DLS size 
Aged (2 years) TEM size, zeta potential, conductivity  

Table 3 
Accuracy statistics of the kNN predictive model for the freshly dispersed NMs.  

Statistics Values 

Accuracy on test samples 0.906 
Sensitivity on test samples 0.941 
Specificity on test samples 0.867 
MCC on test samples 0.813 
Accuracy in LOO CV (training samples) 0.787 
Accuracy in L10O CV (training samples) 0.777 
Accuracy in Y-scrambling (test samples) 0.406–0.625  

Table 4 
Accuracy statistics of the kNN predictive model for the aged NMs.  

Statistics Values 

Accuracy on test samples 0.895 
Sensitivity on test samples 0.857 
Specificity on test samples 0.917 
MCC on test samples 0.774 
Accuracy in LOO CV (training samples) 0.765 
Accuracy in L10O CV (training samples) 0.765 
Accuracy in Y-scrambling (test samples) 0.474–0.614  
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tissues and be carried by the bloodstream to different organs, cells and 
organelles, causing in this way cell damage or altering cell metabolism 
(Sukhanova et al., 2018). NMs size is directly correlated with surface 
area and consequently with surface reactivity, and greatly affects the 
dissolution behavior for (partially) soluble materials. The extent of 
agglomeration phenomena of NMs in a medium is thus and important 
factor in determining NMs bioavailability to organisms – for example, in 
the case of daphnids they exist in the water column and thus if particles 
are highly agglomerated, they may settle out over time and thus become 
less bioavailable to the daphnids. Similarly, very small NMs may not be 
recognised by the Daphnia and may just be filtered with the water as part 
of the passive water filtration behavior. It has been observed that some 
particle agglomeration, such as that resulting from NMs interaction with 
NOM or the biomolecules secreted by daphnids into the medium during 
their water filtering, leads to enhanced recognition of the particles as 
food, especially if the agglomerates are close in size to the algae that 
daphnids normally consume, i.e., around 1 μm (Nasser and Lynch, 2016, 
2019). Daphnia usually consume particles from around 1 μm up to 50 
μm, although particles of up to 70 μm in diameter may be found in the 
gut content of large individuals (Ebert, 2005). Since our study utilised 
neonates (<24 h) and monitored the impact of NMs on them over 48 h, it 
is expected that agglomerates larger than 40–50 μm in diameter would 
be excluded. Thus, it is not surprising that both TEM (core size) and DLS 
(combining core and coating size plus the hydration layer, hence also 
called the hydrodynamic diameter), which give valuable information 
about the dispersion stability of NMs in a specific medium (Bae et al., 
2010; Giusti et al., 2019), are found to be important parameters in 
driving the acute toxicity of the NMs to daphnids. 

The surface charge of NMs affects their interactions with other NMs 
or organic matter of the medium and is influenced by these interactions. 
Depending on whether the particles are electrostatically stabilized only 
or are also sterically stabilized due to the presence of a polymeric 
coating, medium composition will play an important role in the NMs 
stabilization. High salt content media may have a destabilizing effect on 
NMs by neutralizing their surface charges leading to agglomeration. On 
the other hand, the presence of NOM in the medium potentially acts as a 
dispersant, coating the particles and providing them with a negative 
charge (since NOM is primarily composed of humic and fulvic acids) as 
well as introducing steric stabilization (Markiewicz et al., 2018). 
Zeta-potential encodes the NMs surface charge in relation to the “local” 
conditions (medium pH, concentration, suspension conductivity etc.). 
Thus, the electrostatic stability, the steric stabilization and thereby the 
extend of agglomerates formation can be correlated to zeta-potential 
(Lowry et al., 2016; Mikolajczyk et al., 2015; Vogel et al., 2017). 
Generally, higher zeta-potential values either positive or negative, lead 
to stable NMs suspensions, while on the contrary, lower zeta-potential 
values produce suspensions of agglomerated NMs (Lin et al., 2010), 
although this neglects the role of steric stabilization of NMs. Interest
ingly, in all cases, the zeta potential of all of the Ag NMs was negative 
and remained negative during the ageing in all media, although become 
slightly less negative in most cases, while the TiO2 NMs, irrespective of 
coating charge, were positive initially and became negatively charged 
during aging; in the case of the Class I and Class V waters, this was likely 
the result of NOM binding resulting in formation of an eco-corona, while 
in the case of the salt-only HH Combo medium, this was likely a result of 
some loss of the coatings over time, and interaction of the oxide groups 
with the salts in the medium. Inorganic anions including phosphate, 
carbonate, and to a lesser extent, sulfate were found to decrease the 
isoelectric point (IEP) of TiO2 NMs and stabilized the NMs suspensions 
owing to specific surface interactions, which was not observed for ni
trate and chloride ions, and a decrease in hydroxyl radical generation 
was observed for all inorganic anions (Farner Budarz et al., 2017). Thus, 
the reactivity of TiO2 NMs is strongly influenced by the makeup of the 
waters they are released into. The HH Combo medium contains phos
phate, carbonate, and sulfate (Table S1), which likely contributes to the 
passivation of the TiO2 NMs observed as a result of ageing, and 

interaction of these anions also explains the acquisition of a negative 
zeta potential even in the absence of NOM (Table S3) as well as the 
significant agglomeration observed upon ageing (Table S2). 

As it can be clearly denoted, agglomeration process (depending on 
the combination of surface charge, NM size, medium conductivity, salt 
composition and/or presence of NOM) plays a key role in the final 
toxicity expression of the various NMs towards D. magna, as also 
demonstrated by the experiments described in this study. The agglom
eration of the NMs during ageing, whether driven by interactions with 
anions or NOM contained in the medium, reduces their reactivity due to 
the limitation of their specific surface area (Lin et al., 2010) and in 
addition leads to possible sedimentation of the agglomerates, thus 
removing them from the water column and reducing their interaction 
with, and bioavailability to, living organisms. 

5.4. Discussion on grouping and read-across 

In order to reinforce our choice of grouping and read-across meth
odology, we have used the entire dataset of pristine and aged NMs 
(without formulating a grouping hypothesis) and different modelling 
techniques (J48, kNN and random forests) and we compared the results 
to the previously presented models. The models developed using the 
entire dataset had lower predictive accuracy in external validation, than 
the ones developed using a grouping hypothesis (based on NM age) and 
the kNN methodology. In addition, PCA analysis was run on the entire 
dataset (see Figure S2) using 3 principal components which explain up 
to 60% of the variation of the data. The grouping of the NMs in two 
separate groups of pristine and aged particles is obvious from the PCA 
analysis, which further reinforces our grouping hypothesis. 

6. Data availability 

The full dataset is available through the NanoPharos (2021) database 
https://db.nanopharos.eu/Queries/Datasets.zul) developed under the 
H2020 NanoSolveIT (Afantitis et al., 2020a) and NanoCommons 
(Nanocommons, 2021) projects, in compliance with the FAIR data 
principles (i.e., Findable, Accessible, Interoperable and Re-useable) and 
is ready for further computational analysis. 

7. Conclusions 

In this work we have developed ecotoxicological read-across models 
for predicting NM acute toxicity, following ECHA’s recommended 
strategy for grouping of NMs as a means to explore in silico the effects of 
a panel of freshly dispersed versus environmentally aged Ag and TiO2 
NMs on the freshwater zooplankton D. magna. The computational 
modelling procedure was performed by combining the KNIME Platform 
and Enalos Chem/Nano informatics tools, which facilitate the manipu
lation of big data, the modelling, the validation, and the virtual 
screening processes. The selected grouping hypotheses were that NMs 
ageing reduces their toxicity and that the degree of agglomeration, 
which is dependent on the combination of surface charge, NM size and 
surface conductivity, plays a key role in the final toxicity expression of 
the NMs to Daphnia. The agglomeration of NMs reduces their reactivity, 
reduces dissolution potential for soluble NMs such as Ag NMs, and above 
a certain size reduced bioavailability to the daphnids, both by agglom
erates larger than the size of their mandible being too large to be taken 
up by the daphnids, and as a result of agglomerates settling out of the 
water column in which the daphnids exist. The predictive power of the 
proposed models has been evaluated according to OECD criteria and a 
QMRF report has been produced and made available in the supple
mentary information. The dataset is included in the supplementary files 
and via NanoPhasros database and has been curated in manner to be 
suitable for aadditional nanoinformatics studies. 
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