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SINGULARITY OF RANDOM SYMMETRIC MATRICES REVISITED

MARCELO CAMPOS, MATTHEW JENSSEN, MARCUS MICHELEN, AND JULIAN SAHASRABUDHE

Abstract. Let Mn be drawn uniformly from all ±1 symmetric n× n matrices. We show that the

probability that Mn is singular is at most exp(−c(n logn)1/2), which represents a natural barrier in

recent approaches to this problem. In addition to improving on the best-known previous bound of

Campos, Mattos, Morris and Morrison of exp(−cn1/2) on the singularity probability, our method

is different and considerably simpler: we prove a “rough” inverse Littlewood-Offord theorem by a

simple combinatorial iteration.

1. Introduction

Let An denote a random n×n matrix drawn uniformly from all matrices with {−1, 1} coefficients.

It is an old problem, of uncertain origin1, to determine the probability that An is singular. While

a few moments of consideration reveals a natural lower bound of (1 + o(1))n22−n+1, which comes

from the probability that two rows or columns are equal up to sign, it is widely believed that in

fact

(1) P(detAn = 0) = (1 + o(1))n22−n+1 .

This singularity probability was first shown to tend to zero in 1967 by Komlós [10], who obtained

the bound P(det(An) = 0) = O(n−1/2). The first exponential upper bound was established by

Kahn, Komlós, and Szemerédi [9] in 1995 with subsequent improvements on the exponent by Tao

and Vu [17, 18] and Bourgain, Vu and Wood [1]. In 2018, Tikhomirov [20] settled this conjecture

up to lower order terms by showing P(det(An) = 0) = (1/2+o(1))n. Very recently, a closely related

problem was resolved by Jain, Sah and Sawhney [8], who showed that the analogue of (1) holds

when the entries of An are i.i.d. discrete variables of finite support that are not uniform on their

support. The conjecture (1) remains open for matrices with mean-zero {−1, 1} entries.

The focus of this paper is on the analogous question for symmetric random matrices. In par-

ticular, let Mn denote a uniformly drawn matrix among all n × n symmetric matrices with en-

tries in {−1, 1}. In this setting it is also widely believed that P(detMn = 0) = Θ(n22−n) as

in the asymmetric case [2, 3, 22] although here much less is known. For instance, the fact that

The first named author is partially supported by CNPq.
1See [9] for a short discussion on the history of this conjecture
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P(detMn = 0) = o(1), was only resolved in 2005 by Costello, Tao and Vu [3]. Subsequent su-

perpolynomial upper bounds of the form n−C for all C and exp(−nc) were proven respectively by

Nguyen [12] and Vershynin [21] by different techniques: Nguyen used an inverse Littlewood-Offord

theorem for quadratic forms based on previous work by Nguyen and Vu [11, 13], while Vershynin

used a more geometric approach pioneered by Rudelson and Vershynin [14, 15, 16].

A combinatorial approach developed by Ferber, Jain, Luh and Samotij [5] was applied by Ferber

and Jain [4] in 2018 to prove that P(detMn = 0) ≤ exp
(
− cn1/4(log n)1/2

)
. Another combina-

torial approach was taken by Campos, Mattos, Morris and Morrison [2] who achieved the bound

P(detMn = 0) ≤ exp
(
−cn1/2

)
. Their argument centers around an inverse Littlewood-Offord theo-

rem inspired by the method of hypergraph containers.

The proofs of [2, 4, 21] all follow the same general shape: divide all potential vectors v for which

we could have Mnv = 0 into “structured” and “unstructured” vectors, show that the unstructured

vectors do not contribute, and union bound over the structured vectors. The main difficulty (and

novelty) in these proofs arises in a careful understanding of the contribution of the structured

vectors.

While we have this method to thank for the recent successes on this problem, an important

limitation was pointed out in [2, Section 2.2] who argued that this method could not provide any

improvement to the singularity probability beyond exp(−c
√
n log n), provided the randomness in

the matrix is not “reused”. Here we show that this natural barrier is attainable.

Theorem 1. Let Mn be drawn uniformly from all n×n symmetric matrices with entries in {−1, 1}.
Then for c = 2−13 and n sufficiently large

P(det(Mn) = 0) ≤ exp
(
−c
√
n log n

)
.

Indeed, our proof of Theorem 1 follows the shape of [2, 4, 21] and improves upon these results

primarily by proving an improved and considerably simpler “rough” inverse Littlewood-Offord

theorem. This theorem parallels Theorem 2.1 in [2] and improves upon it by replacing the use

of Fourier analysis in [2] with a simple combinatorial algorithm. This proof additionally gives us

more information in our inverse theorem, which allows for a simplified application to the proof of

Theorem 1.

To state our rough inverse theorem, we need a few notions. For a vector v ∈ Znp and µ ∈ [0, 1],

we define the random variable Xµ(v) := ε1v1 + · · · + εnvn, where εi ∈ {−1, 0, 1} are i.i.d. and

P(εi = 1) = P(εi = −1) = µ/2. Also define ρµ(v) = maxx P(Xµ(v) = x) and2 let |v| denote the

number of non-zero entries of v. Finally for T ⊆ [n], let vT := (vi)i∈T .

2We will also write ρ1(v) = ρ(v).
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We now introduce a simple concept that is key to our rough inverse Littlewood-Offord theorem.

For a vector w = (w1, . . . , wd) we define the neighbourhood of w (relative to µ) as

Nµ(w) := {x ∈ Zp : P(Xµ(w) = x) > 2−1P(Xµ(w) = 0)},(2)

which is the set of places where our random walk is “likely” to terminate, relative to 0. The

following result, which is our “rough” Littlewood-Offord theorem, says that if v ∈ Znp and ρµ(v) is

large then there is a small subvector x of v so that vi ∈ Nµ(x) for many i ∈ [n].

Theorem 2. Let µ ∈ (0, 1/4], k, n ∈ N, p be prime and v ∈ Znp . Set d = 2
µ log ρµ(v)−1, suppose

that |v| ≥ kd and ρµ(v) ≥ 2
p . Then there exists T ⊆ [n] with |T | ≤ d so that if we set w = vT then

vi ∈ Nµ(w) for all but at most kd values of i ∈ [n] and

|Nµ(w)| ≤ 256

(µk)1/5
· 1

ρµ(v)
.

In practice we will not apply Theorem 2 directly, but rather in two parts (Lemmas 7 and 8). The

first can be found in Section 6 and uses Fourier analysis in the style of Halász [6], whose influential

techniques pervade the literature. The second is a novel (and simple) iterative application of a

greedy algorithm. This can be found in Section 2 along with the proof of Theorem 2.

In what follows we discuss the proof of Theorem 1. In addition to illustrating the method of [4, 2]

in a little more detail, we hope the reader will get some feeling for why Theorem 2 is so integral to

the problem.

1.1. Discussion of proof. The event ‘Mn is singular’ can, somewhat daftly, be expressed as
⋃
v∈Rn\{0}{Mv = 0}. To reduce the size of this unwieldy union, we notice that it is sufficient to

consider all non-zero v ∈ Zn and then reduce modulo p, for a prime p ≈ exp
(
c(n log n)1/2

)
. Since

the probability that Mv is zero is certainly bounded by the probability Mv is zero modulo p, it is

enough for us to upper bound the probability of the event
⋃
v∈Zn

p\{0}{Mv = 0}, where all operations

are taken over the field of p elements.

Having reduced our event to a union of a finite number of sets, it is temping to greedily apply

the union bound to the events {Mv = 0}, for non-zero v ∈ Znp . Unfortunately in our case, a small

wrinkle arises with vectors for which ρ(v) ≈ 1/p; that is, very close to the “mixing” threshold. To

get around this, we again follow [4, 2] and use a lemma that allows us to safely exclude all v with

ρ(v) < cn/p from our union bound, at the cost of working with a slightly different event which, in

practice, adds little difficulty to our task. In particular, to prove Theorem 1, it will be enough to

establish the following.
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Theorem 3. Let c = 1/800, n ∈ N sufficiently large and p ≤ exp(c
√
n log n) prime. Then for

β = Θ(n/p) we have

(3)
∑

v:ρ(v)≥β

max
w∈Zn

p

P(Mv = w) ≤ e−cn .

To bound the sum on the left hand side of (3), we invoke our inverse Littlewood-Offord result

(Theorem 2, in the form of Lemmas 4 and 7).

We will in fact first sketch a proof of Theorem 3 under the stricter assumption that p ≤ exp(c
√
n)

and then show how to recover the missing
√

log n factor. We do this for two reasons. Firstly, the

proof under the stricter assumption on p already contains the key ideas, and so we feel this is the

clearest way to present the argument. Secondly, the reader can extract a very short proof of the

bound P(det(Mn) = 0) ≤ exp (−c
√
n) if they so desire.

In Section 5, we provide the short derivation of Theorem 1 from Theorem 3 and [2, Lemma 2.1].

Remark: Simultaneously to our work, Jain, Sah and Sawhney [7] obtained an upper bound on

the singularity probability of the form exp(−cn1/2(log n)1/4) and a bound on the lower tail of the

least singular value for symmetric random matrices with subgaussian entries.

2. An inverse Littlewood-Offord lemma

In this section we present one of the key ideas of this paper, namely a greedy algorithm which

furnishes us with a simple yet powerful inverse Littlewood-Offord result.

To go further, we introduce a little notation. Let Z∗p denote the set of all vectors of finite dimen-

sion with entries in Zp. For v = (v1, . . . , vk), w = (w1, . . . , wl) ∈ Z∗p, let vw := (v1, . . . , vk, w1, . . . , wl)

denote the concatenation of v and w and let vk denote the concatenation of k copies of v. For v ∈ Znp
and T ⊆ [n], let vT := (vi)i∈T and say that w is a subvector of v if w = vT for some T ⊆ [n]. We

also define |v| to the be size of the support of v, the number of non-zero coordinates.

Unless specified otherwise, take µ = 1/4 for definiteness. We recall the key definition introduced

in (2). For w ∈ Z∗p, we define the neighbourhood of w as

N(w) := {x ∈ Zp : P(Xµ(w) = x) > 2−1P(Xµ(w) = 0)}.

This is motivated by the fact that for µ ∈ [0, 1/2], the walk Xµ is most likely to be found at 0

(see e.g. [19, Corollary 7.12]), i.e.

(4) ρµ(w) = P(Xµ(w) = 0) .

Hence, we may think of N(w) as the set of all values of the random walk Xµ(w), which are at least

half as likely as the most likely value. We can also easily control the size of N(w) in terms of ρµ(w).
4



Indeed,

1 ≥
∑

x∈N(w)

P(Xµ(w) = x) >
1

2
|N(w)| · P(Xµ(w) = 0) =

1

2
|N(w)|ρµ(w)

and so

(5) |N(w)| ≤ 2

ρµ(w)
.

We now turn to our greedy algorithm which, given a vector v ∈ Z∗p, returns a short subvector

w of v such that each coordinate of v is contained in N(w). The following simple lemma can

be interpreted as an inverse Littlewood-Offord result in its own right, and is almost as good as

Theorem 2, however it only gives a bound of |N(w)| ≤ 1/ρµ(w) ≤ 1/ρµ(v), which is lacking the

crucial factor of k−1/5. For this lemma we use the monotonicity of ρµ [19, Corollary 7.12]: if

w, v ∈ Z∗p where w is a subvector of v, then

(6) ρµ(v) ≤ ρµ(w) .

Lemma 4. For µ ∈ (0, 1/4] and n ∈ N, let v ∈ Znp . Then there exists T ⊆ [n], such that vi ∈ N(vT )

for all i /∈ T , ρµ(vT ) ≤ (1− µ/2)|T | and so

|T | ≤ 2

µ
log

1

ρµ(v)
.

Proof. We build a sequence of sets T1, . . . , Td ⊆ [n] with |Ti| = i via the following greedy process.

Let T1 = {1}. Given Tt ⊆ [n] with |Tt| = t for t ≥ 1, let vTt = (x1, . . . , xt). Pick i ∈ [n]\Tt such

that

ρµ(x1 . . . xtvi) ≤ (1− µ/2)ρµ(x1 . . . xt) .(7)

If no such i exists we terminate the process and set T = Tt. Suppose this process runs for d steps

producing T ⊆ [n] such that vT = (x1, . . . , xd). By the termination condition, we have that for

i ∈ [n]\T
ρµ(x1 . . . xdvi) > (1− µ/2)ρµ(x1 . . . xd) .

Conditioning on the coefficient of vi and using that P(Xµ(x1 . . . xd) = vi) = P(Xµ(x1 . . . xd) = −vi)
by symmetry, we can rewrite the left hand side to obtain

µP(Xµ(x1 . . . xd) = vi) + (1− µ)ρµ(x1 . . . xd) > (1− µ/2)ρµ(x1 . . . xd) .

Rearranging shows vi ∈ N(vT ). For the bound on d = |T |, observe that by (6), inequality (7) and

the fact that ρµ(x1) = (1− µ) we have

ρµ(v) ≤ ρµ(x1 . . . xd) ≤ (1− µ/2)d ≤ e−µd/2 .

�
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3. A weak version of Theorem 3

In this section we sketch how a weak version of Theorem 3 follows from Lemma 4. This section is

not needed for the proof of Theorem 1, but is included to illustrate some of the key ideas. Moreover,

the bound P(det(Mn) = 0) ≤ exp (−c
√
n) follows easily from Theorem 6 and Lemma 9 below and

so we obtain a particularly short proof of this result.

First we need the following strengthening of the monotonicity property (6). This type of lemma

abounds in the literature, first appearing in [9]. Since the proof is a simplification of the Fourier

arguments in the proof Lemma 12 below, we omit the details.

Lemma 5. For α > 0 there is a ν, K > 0 so that for all v with ρµ(v) = Ω(n/p) and |v| ≥ K we

have

ρµ(v) ≤ αρν(v) .

Theorem 6. There exists c > 0 such that for n ∈ N sufficiently large, p ≤ exp(c
√
n) prime and

β = Θ(n/p) we have

(8)
∑

v:ρ(v)≥β

max
w∈Zn

p

P(Mv = w) = e−Ω(n) .

Proof. Let α = 2−16, let ν ∈ (0, 1/4] and K > 0 be given by Lemma 5 and set d = 2
ν log p. Let

c > 0 be a constant taken sufficiently small so that the bounds in the following proof hold. We will

use Lemma 4 to count the number of possible v with ρ(v) ≥ β: for each such v, there must be a

subset T ⊂ [n] so that vi ∈ Nν(vT ) for all i /∈ T . More formally, let V = {v ∈ Znp \ {0} : ρ(v) ≥ β}
and for v ∈ V, let f(v) := (T, vT ) where T ⊂ [n] is the set obtained by applying Lemma 4 to v

(with µ = ν). Let S := f(V).

For a given s = (T, u) ∈ S we have |T | ≤ d and u ∈ Z|T |p . We may therefore bound

(9) |S| ≤ 2n · pd ≤ 2(1+2c2/ν)n .

Further, for a given s = (T, u) ∈ S, we note that for every v ∈ f−1(s) we must have vi ∈ Nν(u) for

every i /∈ T and so

(10) |f−1(s)| ≤ |Nν(u)|n−|T | ≤
(

2

ρν(u)

)n−|T |
.

For each v ∈ f−1(s), let T ⊂ S where |S| = min{|T |+K, |v|} (and vi 6= 0 for all i ∈ S). We may

then bound

(11) P(Mv = w) ≤ max
w′

P(MSc×S(vS) = w′) ≤ ρ(vS)n−|S| ,

where for the second inequality we used that the entries of MSc×S are i.i.d. (see Figure 1). Now if

|T | + K ≤ |v| we apply Lemma 5 to get ρ(vS) ≤ cρν(vS) ≤ cρν(u). Then applying (10) with (11)
6
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for each s = (T, u) yields

∑

v∈f−1(s)
|v|≥|T |+K

max
w∈Zn

p

P(Mv = w) ≤ |f−1(s)|ρ(u)n−|S| ≤
(

2

ρν(u)

)n−|T |
(cρν(u))n−|T |−K ≤ 2−4n ,

where for the final inequality we used that ρν(u) ≥ 1/p, and so ρν(u)K ≥ 2−n.

Combining with (9) shows that

∑

s∈S

∑

v∈f−1(s)
|v|≥|T |+K

max
w∈Zn

p

P(Mv = w) ≤ 2−n .

On the other hand if |T | = t and |v| ≤ t + K we use that ρ(vS) ≤ ρν(vS) ≤ ρν(u) ≤ (1 − ν/2)t

(where the final inequality follows from Lemma 4). In this case there are pt+K
(

n
≤t+K

)
choices for

v. Combining this with (11) we have

∑

s∈S

∑

v∈f−1(s)
|v|≤|T |+K

max
w∈Zn

p

P(Mv = w) ≤
d∑

t=1

pt
(

n

≤ t+K

)
(1− ν/2)t(n−d−K) ≤ (1− ν)n/8.

�

4. The greedy algorithm iterated

In this section we show that we can strengthen Lemma 4 by applying it iteratively. This will be

key to regaining this crucial k−1/5 in Theorem 2, and will ultimately give our
√

log n gain in the

exponent of the singularity probability.
7



For this lemma we need the following property of ρµ, which can be found in [19, Corollary 7.12].

Let w1, . . . , wk ∈ Z∗p and µ ∈ (0, 1/2) then

(12) ρµ(w1 · · ·wk) ≤ max
j∈[k]

ρµ

(
wkj

)
.

Lemma 7. Let µ ∈ (0, 1/4], n ∈ N and v ∈ Znp . Set d = 2
µ log ρµ(v)−1 and let k ∈ N be such that

kd ≤ n. Then there exists T ⊆ S ⊆ [n] with |T | ≤ d, |S| ≤ kd such that vi ∈ N(vT ) for all i 6∈ S
and ρµ(vS) ≤ ρµ(vkT ).

Proof. We will define a sequence of sets [n] = A1 ⊇ · · · ⊇ Ak ⊇ Ak+1. Given vAj , we choose

Tj ⊆ [n] with vTj = (x1, . . . , xd(j)) given by Lemma 4 applied to vAj and let

Aj+1 = Aj \ Tj and S =
k⋃

j=1

Tj .

By Lemma 4, we have that vi ∈ N(vTj ) for all i ∈ Aj+1. In particular, since Sc ⊆ Aj for all

1 ≤ j ≤ k + 1, vi ∈ N(vTj ) for all i 6∈ S and 1 ≤ j ≤ k. Note also that |Tj | ≤ d for all 1 ≤ j ≤ k.

Let T be the Tj for which ρµ(vkTj ) is maximized. The first claim of the lemma follows from the

above. For the second claim note that, by (12) we have

ρµ(vS) ≤ max
1≤j≤k

ρµ(vkTj ) = ρµ(vkT ) .

�

To conclude the proof of our Theorem 2—and to understand the strength of Lemma 7—we

introduce our main Fourier ingredient, the proof of which is found in Section 6.

Lemma 8. Let µ ∈ (0, 1/4], k ∈ N and v ∈ Z∗p such that |v| 6= 0. Then

ρµ(vk) ≤ 64(µk)−1/5ρµ(v) + p−1 .

Proof of Theorem 2. Let k, n ∈ N and v ∈ Znp be as in the theorem statement. By Lemma 7, there

exists T ⊆ S ⊆ [n] with |T | ≤ d, |S| ≤ kd such that vi ∈ N(vT ) for all i 6∈ S and ρµ(vS) ≤ ρµ(vkT ).

Moreover, since |v| ≥ kd, the support of vT is non-zero. Applying Lemma 8 we conclude that

ρµ(vS) ≤ ρµ(vkT ) ≤ 64(µk)−1/5ρµ(vT ) + p−1 .

By (5) and (6) we then have

|Nµ(vT )| ≤ 2

ρµ(vT )
≤ 128

(µk)1/5(ρµ(vS)− p−1)
≤ 256

(µk)1/5ρµ(v)
,

where on the final bound we use that ρµ(v) ≥ 2
p . �

8



5. Proof of Theorem 1

In this section we prove our main theorem, Theorem 1. We first show how Theorem 1 follows

quickly from Theorem 3 and then we switch our focus to proving Theorem 3.

Define

qn(β) := max
w∈Zn

p

P
(
∃ v ∈ Znp \ {0} : Mv = w and ρ(v) ≥ β

)

and note the following lemma from [2] (their Lemma 2.1).

Lemma 9. Let n ∈ N and p > 2 be a prime. Then for every β > 0

P(det(Mn) = 0) ≤ n
2n−3∑

m=n−1

(
β1/8 +

qm(β)

β

)
.

Proof of Theorem 1 assuming Theorem 3. Pick a prime p = t exp(c
√
n log n) with c = 1/800 and

t ∈ [1/2, 1]. Letting β = Θ(n/p), we apply the union bound and Theorem 3 to conclude that for

n− 1 ≤ m ≤ 2n− 3, we have

qm(β) ≤
∑

v:ρ(v)≥β

max
w∈Zm

p

P(Mv = w) ≤ e−cm.

Thus, we apply Lemma 9, to obtain

P(det(Mn) = 0) ≤ e−c(1+o(1))
√
n logn/8 + e−cn(1+o(1)) ≤ e−c

√
n logn/9 ,

for n sufficiently large. �

With this reduction firmly in-hand, we turn to prove Theorem 3.

Proof of Theorem 3. Throughout we assume that n is sufficiently large so that all inequalities in

the proof hold, we let k = n1/4, d = 2
µ log p ≤ 2

µ

√
n log n and define V := {v ∈ Znp\{0} : ρµ(v) ≥ β}.

Our task is to bound

(13) Qn(β) :=
∑

v∈V
max
w

P(Mnv = w).

We start our analysis of (13) by partitioning this sum by way of a function f : V → S. To define

f , let v ∈ Znp and apply Lemma 7 to obtain S, T ⊆ [n]. We then apply Lemma 4 to vS to obtain a

further set T ′ ⊆ [n]. We then define f(v) = (S, T, T ′, vT , vT ′) and put S := f(V). We thus partition

our sum (13) as

(14) Qn(β) =
∑

s∈S

∑

v∈f−1(s)

max
w

P(Mnv = w).

Note that if s = (S, T, T ′, u1, u2) ∈ S, then

(15) |S| ≤ kd, |u1|, |u2| ≤ d, ρµ(u1) ≥ β, ρµ(u2) ≤ (1− µ/2)|u2| and u2 6= 0
9



by Lemmas 4 and 7 together with (6), and note that we have the bound

(16) |S| ≤ 8np2d ,

since there are 8n choices for S, T, T ′ and at most p2d choices for u1, u2.

We now turn to bounding a given term in the sum (14), based on which piece of the partition

it is in. Let s = (S, T, T ′, u1, u2) ∈ S and v ∈ f−1(s). For any w ∈ Znp , we bound P(Mnv = w) by

first revealing the rows indexed by Sc and then revealing the rows indexed by S\T ′,

P(Mv = w) ≤ P
(
M(S\T ′)×[n] · v = wS\T ′ |MSc×[n] · v = wSc

)
· P(MSc×[n] · v = wSc).

Looking only on the off-diagonal blocks (S \ T ′)× T ′ and Sc × S and considering the “worst case”

vectors for these blocks, we have

P(Mv = w) ≤ max
u

P(M(S\T ′)×T ′ · vT ′ = u) ·max
u

P(MSc×S · vS = u).

The crucial point here is that these events can be written as an intersection of independent events

concerning the rows. That is

(17) P(Mv = w) ≤ ρ(vT ′)
|S|−|T ′|ρ(vS)n−|S| ≤ ρµ(vT ′)

|S|−|T ′|ρµ(vS)n−|S|,

where this last inequality follows from the monotonicity of ρ in the parameter µ, noted at (6).

We now bound the size of a piece of our partition |f−1(s)|. By (5) together with Lemmas 4

and 7, the number of choices for vSc and vS\T ′ are (respectively) at most

|N(u1)|n−|S| ≤
(

2

ρµ(u1)

)n−|S|
, |N(u2)||S|−|T ′| ≤

(
2

ρµ(u2)

)|S|−|T ′|
,

so that

|f−1(s)| ≤
(

2

ρµ(u1)

)n−|S|( 2

ρµ(u2)

)|S|−|T ′|
.(18)

By (17) and the fact that |S| ≤ kd = o(n) (by our choice of parameters), we have

(19)
∑

v∈f−1(s)

max
w

P(Mn · v = w) ≤ 2n
(
ρµ(uk1)

ρµ(u1)

)n−|S|
≤ 2n

(
ρµ(uk1)

ρµ(u1)

)24n/25

.

We consider first the case where |u1| 6= 0; then we may apply Lemma 8 to obtain the bound

ρµ(uk1) ≤ 64(µk)−1/5ρµ(u1) +
1

p
.

By the bound ρµ(u1) ≥ β = Θ(n/p), we then have

ρµ(uk1)

ρµ(u1)
≤ 64(µk)−1/5 + Θ(n−1) ≤ n−1/24 .
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Combining this with (16) and (19) shows that

∑

s∈S,
|u1|6=0

∑

v∈f−1(s)

max
w

P(Mnv = w) ≤ |S| · n−n/25 ≤ 8np2dn−n/25

≤ 8n exp

(
4c

µ
n log n− 1

25
n log n

)
≤ e−n ,(20)

provided c ≤ µ/200. Now if |u1| = 0 then there are at most

|f−1(s)| ≤
(

2

ρµ(u2)

)|S|−|T ′|

choices for v. Notice that ρµ(vS) ≤ ρµ(u2) and so

∑

v∈f−1(s)

max
w

P(Mnv = w) ≤ ρµ(u2)n−|T
′|
(

1

ρµ(u2)

)|S|−|T ′|
≤ ρµ(u2)n/2 ≤ (1− µ/2)n|u2|/2 ,

where for the final inequality we used (15). On the other hand, by (15), the number of choices for

s = (S, T, T ′, u1, u2) such that |u1| = 0, |u2| = t is at most

(
n

≤ kd

)3

pt ≤ exp(ct ·
√
n log n+ 3kd log n).

Putting our bounds together, we have

∑

s∈S,
|u1|=0,|u2|=t

∑

v∈f−1(s)

max
w

P(Mnv = w) ≤ exp(ct ·
√
n log n+ 3kd log n− nµt/4) ≤ e−nµt/5 .

Summing over all t ≥ 1 (recalling that u2 6= 0) and using (20), we conclude that

Qn(β) =
∑

s∈S

∑

v∈f−1(s)

max
w

P(Mnv = w) ≤ e−µn/6 ,

as desired. �

6. Proof of Lemma 8

In this section, we pin down one final loose end, the proof of Lemma 8, which is our main Fourier

lemma. For v ∈ Znp , and µ ∈ [0, 1] we note a standard Fourier expression for ρµ(v). Define

(21) fµ,v(ξ) :=

n∏

i=1

((1− µ) + µcp(viξ)),

where we let cp(x) = cos(2πx/p). We then have

(22) ρµ(v) = Eξ∈Zpfµ,v(ξ) .
11



Clearly |fµ,v(ξ)| ≤ 1 and for µ ≤ 1/2 each of the terms in the product fµ,v(ξ) is non-negative. In

this case it is natural to work with log fµ,v. For this, we let ‖x‖T denote the distance from x ∈ R
to the nearest integer and note the following bounds. For µ ∈ [0, 1/4] we have

(23) µ‖x/p‖2T ≤ − log (1− µ+ µcp(x)) ≤ 32µ‖x/p‖2T ,

which are elementary3 and can be found in (7.1) in [19].

For the following lemma, one of the main results of this section, we need the well-known Cauchy-

Davenport inequality which tells us that for A,B ⊆ Zp we have |A + B| ≥ min{|A| + |B| − 1, p}.
Here, as usual, A+B := {a+ b : a ∈ A, b ∈ B}.

A first step towards Lemma 8 is to prove it in the case when ρµ(v) is not too large.

Lemma 10. Let µ ∈ (0, 1/4], v ∈ Z∗p and k ∈ N. Then

ρµ(vk) ≤
(
ρµ(v)

k−1
k +

8√
µk

)
ρµ(v) + p−1.

To prove this lemma, we adopt some temporary notation. Let F = fµ,vk and G = fµ,v, be as

defined in (21) and note that G = F 1/k. We note also that F is non-negative since µ ≤ 1/4. Let

` := 1
8(µk)1/2. For all α ∈ (0, 1), we consider the level sets

Aα := {ξ ∈ Zp : F (ξ) > α} Bα := {ξ ∈ Zp : G(ξ) > α}.

Claim 11. For α ∈ (0, 1), we have ` ·Aα ⊆ Bα.

Proof. To see this, assume ξ1, . . . , ξ` ∈ Aα and so G(ξi) = (F (ξi))
1/k > α1/k for each i ∈ [`]. Taking

logs of both sides and applying (23) gives, for each i ∈ [`],

(24) µ

n∑

j=1

‖ξivj‖2T ≤ − logG(ξi) ≤ k−1 logα−1 .

Thus, using the triangle inequality along with (24) gives




n∑

j=1

‖(ξ1 + · · ·+ ξ`)vj‖2T




1/2

≤
∑̀

i=1




n∑

j=1

‖ξivj‖2T




1/2

≤ `
(

logα−1

µk

)1/2

.

It then follows from the upper bound in (23) that

− logG(ξ1 + · · ·+ ξ`) ≤ 32

n∑

j=1

‖(ξ1 + · · ·+ ξ`)vj‖2T ≤ 32
`2

µk
logα−1.

Thus, using our choice of ` = 1
8(µk)1/2, we have G(ξ1 + · · ·+ ξ`) > α, and so ξ1 + · · ·+ ξ` ∈ Bα. �

3For these explicit constants, note the bounds a ≤ − log(1−a) ≤ (3/2)a for a ∈ [0, 1/4] and x2 ≤ 1−cos(2πx) ≤ 20x2

for |x| ≤ 1/2.
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Proof of Lemma 10. Letting g := EξG = ρµ(v), we want to show that EξF ≤
(
g(k−1)/k + 8√

µk

)
g+

p−1. We do this in two ranges. First we recall that F 1/k = G and so

Eξ [F1(F ≤ g)] ≤ Eξ
[
G · g(k−1)/k

]
= g

2k−1
k .

Next we treat the ξ for which F (ξ) > g. First note that by Markov’s inequality |Bα| < p, for all

α > g. It follows from Claim 11 and the Cauchy-Davenport inequality that |Aα| ≤ `−1|Bα|+ 1 for

all α > g. Thus,

Eξ [F1 (F > g)] =

∫ 1

g
|At|p−1 dt ≤ `−1

∫ 1

g
|Bt|p−1 dt+ 1/p ≤ g/`+ 1/p.

Putting our bounds together we have

ρµ(vk) ≤
(
g(k−1)/k +

8√
µk

)
g + 1/p =

(
ρµ(v)(k−1)/k +

8√
µk

)
ρµ(v) + p−1,

as desired. �

To complete our proof of Lemma 8, we need the following classical result:

Lemma 12. If v ∈ Z∗p with v 6= 0 then ρµ(v) ≤ 64√
µ|v|

+ p−1.

Letting d = |v|, this lemma may be deduced by bounding ρµ(v) ≤ ρµ(vdj ) for some j by (12),

noting that ρµ(vdj ) = ρµ(1d) and bounding the latter either directly or using a standard local central

limit theorem. Alternatively, a stronger statement may be found in [2, Lemma 2.3].

Proof of Lemma 8. If ρµ(v) ≤ (µk)−1/4 then Lemma 10 tells us that ρµ(vk) ≤ 64(µk)−1/5ρµ(v) +

p−1, as desired. On the other hand, if ρµ(v) > (µk)−1/4,

ρµ(vk) =
64√
µk|v|

+ 1/p ≤ 64(µk)−1/4ρµ(v) + 1/p

thus completing the proof. �
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