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Abstract
In this paper we consider the expansion properties and

the spectrum of the combinatorial Laplace operator of a

d-dimensional Linial–Meshulam random simplicial com-

plex, above the cohomological connectivity threshold. We

consider the spectral gap of the Laplace operator and the

Cheeger constant as this was introduced by Parzanchevski,

Rosenthal, and Tessler. We show that with high probabil-

ity the spectral gap of the random simplicial complex as

well as the Cheeger constant are both concentrated around

the minimum co-degree of among all (𝑑 − 1)-faces. Fur-

thermore, we consider a random walk on such a complex,

which generalizes the standard random walk on a graph.

We show that the associated conductance is with high prob-

ability bounded away from 0, resulting in a bound on the

mixing time that is logarithmic in the number of vertices of

the complex.

KEYWORDS

Cheeger constant, conductance, Laplace operator, random

simplicial complexes

1 INTRODUCTION

In this paper will consider the expansion properties of a random binomial simplicial complex past the

threshold for the cohomological connectivity. This model was introduced by Linial and Meshulam [38]

and it is a generalization of the binomial random graph G(n, p). Let Y(n, p; 𝑑) denote the random
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d-dimensional simplicial complex on [n] ∶= {1, … , n} where all possible faces of dimension up to

𝑑−1 are present but each subset of [n] of size 𝑑+1 becomes a face with probability p = p(n) ∈ [0, 1],
independently of every other subset of size 𝑑 + 1. When 𝑑 = 1, the model reduces to the binomial

random graph on [n] with edge probability equal to p.

In their seminal paper, Linial and Meshulam [38] considered the cohomological connectivity of

Y(n, p; 2), that is whether the cohomology group H1(Y(n, p; 𝑑);Z2) over Z2 on dimension 1 is trivial.

They discovered a threshold function for the 2-face probability p:

lim
n→∞

P
(
H1(Y(n, p; 𝑑);Z2) is trivial

)
=

{
1, if p = 2 log n+𝜔(n)

n
0, if p = 2 log n−𝜔(n)

n

,

where 𝜔 ∶ N → R+ is an arbitrary function such that 𝜔(n) → ∞ as n → ∞ and log is the natural

logarithm.

This generalizes the classic theorem of Gilbert [27] and Erdős and Rényi [20] regarding the (graph)

connectivity of G(n, p) (G(n,m), respectively). In particular, let 𝜔 ∶ N → R+ be a function such that

𝜔(n) → ∞ as n → ∞; if p = log n+𝜔(n)
n

, then w.h.p. G(n, p) is connected, whereas if p = log n−𝜔(n)
n

, then

w.h.p. G(n, p) has an isolated vertex.

The theorem of Linial and Meshulam was extended by Meshulam and Wallach [41] to any

dimension 𝑑 ≥ 2, with Z2 replaced by any finite abelian group R:

lim
n→∞

P
(
H𝑑−1(Y(n, p; 𝑑);R) is trivial

)
=

{
1, if p = 𝑑 log n+𝜔(n)

n
0, if p = 𝑑 log n−𝜔(n)

n

,

where 𝜔 is as above. Linial and Meshulam [38] asked whether this can be extended to Z (for random

2-complexes). For 𝑑 = 2, Łuczak and Peled [40] proved a hitting time version of this result considering

the generalization of the random graph process. This is a random process in which one constructs a ran-

dom simplicial complex on n vertices with complete skeleton, where in each step a new 2-dimensional

face is added, selected uniformly at random. They showed that w.h.p. the 1-homology group over Z

becomes trivial the very moment all edges (1-faces) lie in at least one 2-face. This was proved for Z2

by Kahle and Pittel [34]. These results generalize the classic result of Bollobás and Thomason [8] on

the w.h.p. coincidence of the hitting times of connectivity with that of having minimum degree at least

1. For 𝑑 ≥ 3, Hoffman et al. [30] provided a partial answer showing that the 1-statement holds for

H𝑑−1(Y(n, p; 𝑑);Z) provided that np ≥ 80𝑑 log n.

Furthermore, Gundert and Wagner [29] showed that H𝑑−1(Y(n, p; 𝑑);R) is trivial provided that

np ≥ C log n where C is a sufficiently large constant. Their approach was extended by Hoffman,

Kahle, and Paquette [31] who proved this for p such that np ≥ (1 + 𝜀)𝑑 log n (and for the case of

H𝑑−1(Y(n, p; 𝑑);Q) as well). Very recently, Cooley, del Guidice, Kang, and Sprüssel [13] considered

the cohomological connectivity of a generalized version of the Linial–Meshulam model in which

random selection of faces takes place at all levels and not merely at the top level.

Costa and Farber generalized this model in a series of papers [14–17]. Their model creates random

simplicial complexes that do not necessarily have a complete skeleton. At each level, (j + 1)-tuples of

vertices that induce j (j − 1)-faces at the previous level are included as j-faces with some probability

pj, independently of any other such (j + 1)-tuple. In the above series of papers, the authors consider

a number of topological properties of the resulting random complexes. However, in the present work

we shall not be concerned with this model.

In this paper, we will study the expansion properties of Y(n, p; 𝑑) for p as in the supercritical

regime of the Linial–Meshulam–Wallach theorem. To be more precise, we will consider the case
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np = (1+ 𝜀)𝑑 log n, for an arbitrary fixed 𝜀 > 0, and we will deduce sharp concentration results about

the spectral gap of the (combinatorial) Laplace operator as well as the Cheeger constant of Y(n, p; 𝑑).
For a sequence of events (n)n∈N, where n is an event in the probability space of Y(n, p; 𝑑), we say

that they occur with high probability (w.h.p.), if P (n) → 1 as n → ∞. (We will use the same term for

events in the probability space of G(n, p).) If Xn is a random variable defined on the probability space

of Y(n, p; 𝑑) and c ∈ R, we write Xn = c(1 + op(1)), if P (|Xn − c| > 𝜀) → 0 as n → ∞ - so loosely

speaking Xn → c in probability as n → ∞.

1.1 Measures of expansion: The spectral gap and the Cheeger constant

The definition and the use of the discrete Laplace operator in quantifying expansion properties of

graphs dates back to Alon and Milman [3]. For a graph G = (V ,E), the (combinatorial) Laplace

operatorΔ+
G is defined as the difference DG−AG, where DG = diag (deg(v))v∈V and AG is the adjacency

matrix of G. In [3], Alon and Milman showed how the smallest positive eigenvalue of the Laplace

operator of a connected graph is linked to its structure as a metric space and, in particular, to the

distribution of distances between disjoint sets and the diameter of the graph. The Laplace operator had

been considered in graph theory earlier [5,7,22] in relation to the number of spanning trees, the girth

and connectivity of a graph.

Let 𝜆(G) denote the smallest positive eigenvalue of Δ+
G also known as the spectral gap of Δ+

G. It is a

consequence of a more general result in [3] that 𝜆(G) is bounded from above (up to some multiplicative

constant) by the edge expansion of G. This is defined as

c(G) ∶= min
A⊂V ∶ 0<|A|≤|V|∕2

e(A,V ⧵ A)|A| ,

where e(A,V ⧵A) denotes the number of edges with one endpoint in A and the other in V ⧵A; it is called

the Cheeger constant of G. Lemma 2.1 in [3] implies that for any nonempty (proper) subset A ⊂ V we

have

𝜆(G) ≤ n ⋅ e(A,V ⧵ A)|A||V ⧵ A| = h(A;G). (1)

If |A| ≤ |V|∕2, then the above is at most 2c(G). This is the discrete analog of an inequality proved by

Cheeger in [10]. Setting h(G) = minA ∶ 0<|A|≤|V|∕2 h(A;G) one can complete the above inequality with

a lower bound (proved by Dodziuk [18]) and get

h2(G)
8𝑑max(G)

≤ 𝜆(G) ≤ h(G) ≤ 2c(G), (2)

where 𝑑max(G) is the maximum degree of G. Another consequence of this result is that if 𝑑min(G)
denotes the minimum degree of G, then 𝜆(G) ≤ |V||V|−1

𝑑min(G) (this was also proved in [22]). Moreover,

if G is disconnected, then 𝜆(G) = 0. Thus, sometimes 𝜆(G) is called the algebraic connectivity of G.

Further properties of expander graphs in relation to the smallest positive eigenvalue of the Laplace

operator were obtained by Alon in [1].

More generally, the spectrum of the Laplace operator of a graph also determines how the edges

between subsets of vertices are distributed. This is expressed through the well-known Expander-Mixing
Lemma. Roughly speaking, it states that if the entire nontrivial spectrum of the Laplace operator of a

graph G = (V ,E) is close to d, then the density of edges between any two nonempty subsets A,B ⊂ V
is about 𝑑∕n. Such an estimate about the number of edges within any given subset of A ⊂ V was proved
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by Alon and Chung [2], in the case where G is a d-regular graph. It was generalized by Friedman and

Pippenger in [24].

The spectral gap of Δ+(G(n, p)) was considered recently by Kolokolnikov et al. [36]. Kolokolnikov

et al. [36] considered p = c log n∕n, for c > 1 (that is, above the connectivity threshold), and showed

that in this case w.h.p. |𝜆(G(n, p)) − 𝑑min(G(n, p))| < C
√

log n. (3)

One of the results of our paper is to generalize this result to higher dimensions in the context of

the Linial–Meshulam random simplicial complex Y(n, p; 𝑑).

1.2 High-dimensional Laplace operators

Let Y be a d-dimensional simplicial complex on a set V with |V| < ∞. We let Y (j) denote the set

of j-dimensional faces in Y , that is, the faces containing exactly j + 1 vertices, where −1 ≤ j ≤ 𝑑.

It is customary to set Y (−1) = {∅}. Also, note that Y (0) = V . For abbreviation, we will be calling a

j-dimensional face a j-face. If all possible j-faces are present in Y , for j ≤ 𝑑 − 1, then Y is said to have

complete skeleton.

Furthermore, for a (𝑑−1)-face 𝜎 in Y its degree deg(𝜎) is the co-degree of 𝜎 in Y , that is, deg(𝜎) =|{v ∈ Y (0) ∶ {v} ∪ 𝜎 ∈ Y (𝑑)}|. We let 𝛿(Y) = min𝜎∈Y (𝑑−1) deg(𝜎) be the minimum co-degree of a

(𝑑 − 1)-face in Y . If 𝑑 = 1, then 𝛿(Y) coincides with 𝑑min of the associated graph.

In our context a j-face for j ≥ 2 has two orientations which are the two equivalence classes of all

permutations of its vertices which have the same sign. In other words, two permutations correspond to

the same orientation if we can derive one from the other applying an even number of transpositions.

If 𝜎 is an oriented j-face, we denote by 𝜎 the opposite orientation of it (we also write 𝜎 = (−1)𝜎),

and by Y (j)
± we denote the set of oriented j-faces. Finally for an oriented j-face 𝜌 = [v0, … , vj], with

1 ≤ j ≤ 𝑑, we let 𝜕𝜌 denote the boundary of 𝜌, which is the set of oriented (j− 1)-faces (−1)i𝜌 ⧵ vi ∶=
(−1)i[v0, … , vi−1, vi+1, … , vj], for i = 0, … , j.

The space of j-forms, which we denote by Ω(j)(Y;R) is the vector space over R of all

skew-symmetric functions on oriented j-faces. In other words, for j ≥ 2 we define

Ω(j)(Y;R) = {f ∶ Y (j)
± → R ∶ f (𝜎) = −f (𝜎) for all 𝜎 ∈ Y (j)

± },

whereas Ω(0)(Y;R) is just the set of all real-valued functions on V and Ω(−1)(Y;R) is defined as the

set of all functions from Y (−1) = {∅} to R, which can be identified with R. The space Ω(j)(Y;R) is

endowed with the inner product:

⟨f , g⟩ = ∑
𝜎∈Y (j)

w(𝜎)f (𝜎)g(𝜎), for f , g ∈ Ω(j)(Y;R),

where w ∶ Y → (0,∞) is a weight function. Note that the above sum is taken over unoriented faces;

for any 𝜎 ∈ Y (j), f (𝜎) as well as g(𝜎) are the values of f and g on one of the two orientations of 𝜎. The

choice does not matter as both f and g are skew-symmetric.

If 𝜎 = [v0, … , vj] is an oriented j-face and v ∈ V is not a member of 𝜎, then we set v𝜎 =
[v, v0, … , vj]. Furthermore, if v ∈ V and 𝜎 ∈ Y , we write v ∼ 𝜎, if {v} ∪ 𝜎 ∈ Y too. For j = 1, … , 𝑑,

we define the jth boundary operator 𝜕j ∶ Ω(j)(Y;R) → Ω(j−1)(Y;R): for f ∈ Ω(j)(Y;R) and 𝜎 ∈ Y (j−1)

we set

(𝜕jf )(𝜎) =
∑

v∶v∼𝜎
f (v𝜎).
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It is well-known and easy to verify that for j ≥ 1, we have 𝜕j𝜕j+1 = 0, whereby Im 𝜕j+1 ⊆ Ker𝜕j. We

set Zj(Y) = Ker𝜕j and Bj(Y) = Im 𝜕j+1. The set Zj(Y) is the set of j-cycles, whereas Bj(Y) is the set of

j-boundaries.

Note that both Zj,Bj ⊆ Ω(j)(Y;R) and furthermore (Ω(j)(Y;R), 𝜕j)𝑑j=1 is a chain complex. The group

Hj(Y;R) = Zj(Y)∕Bj(Y) is the jth homology group over R.

Similarly, one defines the jth coboundary operator 𝛿j ∶ Ω(j) → Ω(j+1) as follows: if 𝜎 =
[v0, … , vj+1] is an oriented (j + 1)-face and f ∈ Ω(j), then

(𝛿jf )(𝜎) =
1

w(𝜎)

j+1∑
i=0

(−1)iw(𝜎 ⧵ 𝜎i)f (𝜎 ⧵ 𝜎i),

where 𝜎 ⧵ 𝜎i = [v0, … , vi−1, vi+1, … , vj+1]. It is not hard to show that Im 𝛿j−1 ⊆ Ker𝛿j We set

Zj(Y) = Ker𝛿j (the set of closed j-forms) and Bj(Y) = Im 𝛿j−1 and Hj(Y;R) = Zj(Y)∕Bj(Y), the jth
cohomology group over R.

A straightforward calculation shows that 𝛿j−1 is the adjoint operator of 𝜕j: for f1 ∈ Ω(j−1)(Y;R) and

f2 ∈ Ω(j)(Y;R) ⟨𝛿j−1f1, f2⟩ = ⟨f1, 𝜕jf2⟩. (4)

Note that Bj(Y) = Zj(Y)⟂ and Bj(Y) = Zj(Y)⟂ and

Ω(𝑑−1)(Y;R) = B𝑑−1(Y)⊕ Z𝑑−1(Y) = B𝑑−1(Y)⊕ Z𝑑−1(Y). (5)

1.2.1 The Laplace operator and the spectral gap

The Laplace operator associated with Y is the operator Δ ∶ Ω(𝑑−1)(Y;R) → Ω(𝑑−1)(Y;R) defined as

Δ = Δ+ + Δ−,

where

Δ+ = 𝜕𝑑𝛿𝑑−1 (upper Laplacian), and Δ− = 𝛿𝑑−2𝜕𝑑−1 (lower Laplacian).

Note that (4) implies that KerΔ+ = Z𝑑−1(Y) whereas KerΔ− = Z𝑑−1(Y). The partial Laplace operators

decompose the space Ω(𝑑−1)(Y;R) as in (5).

The subspace 𝑑−1(Y) = KerΔ is the called the space of harmonic (d − 1)-forms. Note that for

any f ∈ 𝑑−1(Y), the fact that 𝛿j−1 is the adjoint of 𝜕j implies that

⟨𝜕𝑑−1f , 𝜕𝑑−1f ⟩, ⟨𝛿𝑑−1f , 𝛿𝑑−1f ⟩ = 0,

whereby f ∈ Z𝑑−1(Y)∩Z𝑑−1(Y). Also, note that the definitions of Z𝑑−1(Y),Z𝑑−1(Y) imply that Z𝑑−1(Y)∩
Z𝑑−1(Y) ⊆ KerΔ. Thus, in fact 𝑑−1(Y) = Z𝑑−1(Y) ∩ Z𝑑−1(Y).

The discrete Hodge decomposition is due to Eckmann [19]:

Z𝑑−1(Y)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Ω(𝑑−1)(Y;R) = B𝑑−1(Y)⊕𝑑−1(Y)⊕ B𝑑−1(Y). (6)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Z𝑑−1(Y)
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It can be shown (see [45] p. 203) that

H𝑑−1(Y;R) ≅ 𝑑−1(Y) ≅ H𝑑−1(Y;R). (7)

A quantity that is of interest is the spectral gap 𝜆(Y) of a d-dimensional complex Y . This is defined as

the minimal eigenvalue of the Laplacian or the upper Laplacian over Z𝑑−1 (the set of (𝑑 − 1)-cycles).

(Note that the two operators Δ+ and Δ coincide on Z𝑑−1 = Ker𝜕𝑑−1.) We define

𝜆(Y) ∶= min Spec(Δ|Z𝑑−1(Y)) = min Spec(Δ+|Z𝑑−1(Y)). (8)

Horak and Jost [32] developed the theory of the Laplace operator for general weight functions. We will

focus on special weighting schemes that give rise to generalizations of the well-studied combinatorial

Laplace operator as well as the normalized Laplace operator.

1.2.2 The combinatorial Laplace operator and the Cheeger constant

In the case where w(𝜎) = 1 for all 𝜎 ∈ Y , the operator Δ+ is called the combinatorial (upper) Laplace
operator associated with Y . An algebraic manipulation can give explicitly the combinatorial Laplace

operator: for f ∈ Ω(𝑑−1)(Y) and 𝜎 = [v0, … , v𝑑−1] ∈ Y (𝑑−1)
± , with v𝜎 ⧵ vi = [v, v0, vi−1, vi+1, … , v𝑑−1],

we have (as in (3.1) from [45]),

(Δ+f )(𝜎) =
∑

v∶v𝜎∈Y (𝑑)
±

(𝛿𝑑−1f )(v𝜎) =
∑

v∶v𝜎∈Y (𝑑)
±

𝑑∑
i=0

(−1)if (v𝜎 ⧵ (v𝜎)i)

=
∑

v∶v𝜎∈Y (𝑑)
±

(
f (𝜎) −

𝑑−1∑
i=0

(−1)if (v𝜎 ⧵ vi)

)

= deg(𝜎)f (𝜎) −
∑

v∶v𝜎∈Y (𝑑)
±

𝑑−1∑
i=0

(−1)if (v𝜎 ⧵ vi).

If Y is a finite simplicial complex with |Y (0)| = n vertices, we define

h(Y) = min|Y (0)|=A0⊎···⊎A𝑑

n ⋅ |F(A0, … ,A𝑑)|∏𝑑
i=0|Ai| , (9)

where the minimum is taken over all partitions of Y (0) into 𝑑 + 1 nonempty parts A0, … ,A𝑑 and

F(A0, … ,A𝑑) is the set of d-faces with exactly one vertex in each one of the parts.

The following inequality was first proved by Parzanchevski, Rosenthal, and Tessler [45, Theorem

1.2] for complexes with complete skeleton. It was generalized to arbitrary finite complexes by Gundert

and Szedlák [28], where it was proved in a stronger form.

Theorem 1. For a finite complex Y,

𝜆(Y) ≤ h(Y).

Furthermore, the authors in [45] also derive an expander mixing lemma for complexes with

complete skeleton. This assumption was removed by Parzanchevski [43].
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Also, the authors of [45] discuss the existence of a lower bound in the spirit of the lower bound

in (2). They observe (cf. Section 4.2 in [45]) that a bound of the form C ⋅ h(Y)m ≤ 𝜆(Y), for some

C,m > 0 cannot hold, providing as counterexample the minimal triangulation of a Möbius strip, which

has 𝜆(Y) = 0 but h(Y) > 0.

Parzanchevski et al. [45] conjecture that an inequality of the form C ⋅h(Y)2−c ≤ 𝜆(Y) should hold,

where C, c > depend on the maximum degree of any (𝑑−1)-face of Y as well as on the dimension of Y .

Furthermore, they showed [45] that for D > 0 there exists 𝛾 such that 𝛾 = O(
√

D), as D → ∞,

such that if np = D ⋅ log n, then w.h.p. Spec(Δ+|Z𝑑−1
) ⊂ [(D − 𝛾) log n, (D + 𝛾) log n]. This implies

that w.h.p. 𝜆(Y(n, p; 𝑑)) = (D±O(
√

D)) log n if np = D log n and D is sufficiently large. Knowles and

Rosenthal [35] derived a more detailed result on the distribution of the spectrum when np(1 − p) ≫
log4n.

Our results strengthen the result of Parzanchevski et al. [45], showing that if np = (1+𝜀)𝑑 log n and

𝜀 > 0 is fixed, the upper bound 𝜆(Y(n, p; 𝑑)) ≤ h(Y(n, p; 𝑑)) which follows from Theorem 1 becomes

tight in that 𝜆(Y(n, p; 𝑑)) = h(Y(n, p; 𝑑))(1 + op(1)). Furthermore, we show that 𝜆(Y(n, p; 𝑑))∕np con-

verges in probability as n → ∞ to a certain constant which depends on 𝜀 and d. Recall that 𝛿(Y(n, p; 𝑑))
denotes the minimum co-degree among all 𝑑 − 1-dimensional faces of Y(n, p; 𝑑).

Theorem 2. Let p = (1+𝜀)𝑑 log n
n

, where 𝜀 > 0 is fixed. There exists C > 0 such that w.h.p.

𝛿(Y(n, p; 𝑑)) − C
√

log n ≤ 𝜆(Y(n, p; 𝑑)) ≤ h(Y(n, p; 𝑑)) ≤ (1 + O(1∕n))𝛿(Y(n, p; 𝑑)).

Furthermore, w.h.p. |𝛿(Y(n, p; 𝑑)) − (1 + 𝜀)a𝑑 log n| < C
√

log n,

where a = a(𝜀) is the solution to

𝜀 = (1 + 𝜀)(1 − loga)a.

The above theorem not only strengthens the results of Parzanchevski et al. [45] as far as the range

of p is concerned, but it also gives more precise asymptotics for large 𝜀. Remark 1.2 in [36] states that

as 𝜀 → ∞, a(𝜀) = 1 −
√

2

(1+𝜀)𝑑
+ O

(
1

𝜀

)
. Hence, if we write D = (1 + 𝜀)𝑑, then for any D sufficiently

large we have w.h.p

𝜆(Y(n, p; 𝑑)), h(Y(n, p; 𝑑)) =
(

D −
√

2D + O(1)
)

log n + O(
√

log n).

The proof of the above theorem has three parts. We start with the result on 𝛿(Y(n, p; 𝑑)) in Section 2

(cf. Lemma 2). Thereafter, in Section 3 we show that h(Y(n, p; 𝑑)) ≤ (1 + O(1∕n))𝛿(Y(n, p; 𝑑)) (cf.

Theorem 5). Hence, the upper bound on 𝜆(Y(n, p; 𝑑)) follows from Theorem 1.

For the lower bound on 𝜆(Y(n, p; 𝑑)) in Section 4 we follow an approach similar to that of Gundert

and Wagner [29]. The lower bound is derived through a decomposition, essentially due to Garland [26],

of the Laplace operatorΔ+ of a simplicial complex Y into the sum of the (combinatorial) graph Laplace

operators of the link graphs defined by the (𝑑 − 2)-faces of Y . We show that the positive eigenvalues

of these are bounded from below by 𝛿(Y) and hence the lower bound in Theorem 2.

However, this approximation incurs a term which involves the adjacency matrix of these link

graphs. As we will see in Section 4, in the case where Y is Y(n, p; 𝑑) these graphs are distributed as

G(n − 𝑑 + 1, p). At this point we use sharp results of Feige and Ofek [21] to show that this term has

no essential contribution.
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1.3 The normalized Laplace operator

Under a weighting scheme where

w(𝜎) =

{
1 if 𝜎 ∈ Y ⧵ Y (𝑑−1)

1

deg(𝜎)
if 𝜎 ∈ Y (𝑑−1) , (10)

the operator Δ+ is called the normalized Laplace operator associated with Y . An explicit calculation

as above (cf. (2.6) in [44]) shows that for f ∈ Ω(𝑑−1)(Y;R) and 𝜎 = [v0, … , v𝑑−1] ∈ Y (𝑑−1)
± we have

(Δ+f )(𝜎) = f (𝜎) −
∑

v∶v𝜎∈Y (𝑑)
±

𝑑−1∑
i=0

(−1)if (v𝜎 ⧵ vi)
deg(v𝜎 ⧵ vi)

= f (𝜎) −
∑

𝜎′∶𝜎′∼𝜎

f (𝜎′)
deg(𝜎′)

,

where for two oriented faces 𝜎, 𝜎′ ∈ Y (𝑑−1)
± , we write 𝜎 ∼ 𝜎′ if there exists 𝜌 ∈ Y (𝑑)

± such that

𝜎, 𝜎′ ∈ 𝜕𝜌.

For graphs, the normalized Laplace operator acts on functions on the vertex set of a graph G =
(V ,E) and, if G has no isolated vertices, then it is equal to G = D−1∕2

G Δ+D−1∕2
G = I − D−1∕2

G AGD−1∕2
G ,

where I is the identity operator. However, note that for 𝑑 = 1 the definition of Δ+ yields Δ+ =
I−D−1

G AG. This has the same spectrum as G, provided that deg(𝜎) > 0, for all 𝜎 ∈ Y (0). Furthermore,

if G is connected, the constant function on V is an eigenfunction corresponding to eigenvalue 0, which

has multiplicity 1, whereas all other eigenvalues are positive.

Gundert and Wagner [29] showed that w.h.p. the nontrivial eigenvalues of the normalized Lapla-

cian of Y(n, p; 𝑑) are close to 1, for p such that np ≥ C log n. This implies that H𝑑−1(Y(n, p; 𝑑);R)
is trivial for such p. Hoffman, Kahle and Paquette [31] extended this argument for p such that

np ≥ (1∕2 + 𝛿) log n, showing that w.h.p. all nontrivial eigenvalues are within C∕
√

np from 1.

The argument of Gundert and Wagner [29] relies on proving the sharp concentration of the non-

trivial eigenvalues of the normalized Laplacian of G(n, p) around 1. Hence, the sharpening of Hoffman

et al. [31] follows from their main result about the eigenvalues of the Laplacian of G(n, p) for any p
such that np ≥ (1∕2 + 𝛿) log n, for arbitrary fixed 𝛿 > 0. For the denser regime where np = Ω(log2n),
this was proved by Chung, Lu and Vu [11]. However, for sparser regimes (np bounded) this fact has

been proved by Coja-Oghlan [12] for the Laplace operator restricted on core of G(n, p), although for

G(n, p) itself the spectral gap is op(1).

1.4 Random walks on Y(n, p;𝒅) and expansion

This part of the paper is motivated by the notion of a random walk on Y introduced by Parzanchevski

and Rosenthal [44]. This is in fact a random walk on Y (𝑑−1)
± and, more precisely, on the graph

(Y (𝑑−1)
± ,E(𝑑−1)

± ), where 𝜎𝜎′ ∈ E(𝑑−1)
± if and only if 𝜎 ∼ 𝜎′, for distinct 𝜎, 𝜎′.

For example, if Y is 2-dimensional complex, then this is a walk on the oriented edges (1-faces) of Y .

If [v, u] is such a face, then the walk can move to any edge [v′, u] or [v, v′] provided that [v, u, v′] ∈ Y (2)
± .

This definition of a random walk allowed the authors of [44] to study the expectation process, that

is, the probability of finding the random walk at 𝜎 at a given time, minus the probability of finding

it at the opposite face 𝜎. As one of their main results in [44], Parzanchevski and Rosenthal found a

connection between the rate of time-decay of the expectation process and the homology and spectrum



FOUNTOULAKIS AND PRZYKUCKI 9

of the underlying complex. In particular, they show the existence of a limit for this process and, for

certain parameters of the random walk, they deduce exponential convergence.

However, being interested in the expansion properties of a complex, one may also consider the

projection of such a walk on Y (𝑑−1). For distinct 𝜎, 𝜎′ ∈ Y (𝑑−1), we also write 𝜎 ∼ 𝜎′, if there exists

𝜌 ∈ Y (𝑑) such that both 𝜎, 𝜎′ ⊂ 𝜌. Suppose that for all 𝜎 ∈ Y (𝑑−1) we have deg(𝜎) > 0.

If (X0,X1, …) denotes this Markov chain, then for any n ≥ 1 the transition probabilities are

P
(
Xn = 𝜎′|Xn−1 = 𝜎

)
= 1

𝑑⋅deg(𝜎)
, provided that 𝜎 ∼ 𝜎′; otherwise P

(
Xn = 𝜎′|Xn−1 = 𝜎

)
= 0.

In a more general setting, one may consider a 𝛾-lazy version of this random walk, for 𝛾 ∈ (0, 1),
where P (Xn = 𝜎|Xn−1 = 𝜎) = 𝛾 and P

(
Xn = 𝜎′|Xn−1 = 𝜎

)
= 1−𝛾

𝑑⋅deg(𝜎)
, for 𝜎 ∼ 𝜎′.

In this Markov chain, the stationary distribution on Y (𝑑−1), denoted by 𝜋, is such that 𝜋(𝜎) is

proportional to deg(𝜎). Note that
∑

𝜎∈Y (𝑑−1) deg(𝜎) = (𝑑 + 1) ⋅ |Y (𝑑)|. For any 𝜎 ∈ Y (𝑑−1) we have

𝜋(𝜎) = deg(𝜎)
(𝑑+1)⋅|Y (𝑑)| . Note also that this chain is reversible.

We consider the mixing of such a random walk in the case where Y is Y(n, p; 𝑑) with np ≥

(1 + 𝜀)𝑑 log n. In particular, we will consider the conductance of this Markov chain which we denote

by ΦY . First for any nonempty subset S ⊂ Y (𝑑−1) we define

ΦY (S) =
Q(S, S)
𝜋(S)

,

where S = Y (𝑑−1) ⧵ S and Q(S, S) =
∑

𝜎∈S
∑

𝜎′∈S∶𝜎′∼𝜎 𝜋(𝜎) ⋅
1

𝑑⋅deg(𝜎)
and 𝜋(S) =

∑
𝜎∈S 𝜋(𝜎). The

conductance (also known as the bottleneck ratio) ΦY is defined as

ΦY = min
S⊂Y (𝑑−1)∶0<𝜋(S)≤1∕2

ΦY (S).

Note that if np > (1 + 𝜀)𝑑 log n, then a first moment argument shows that w.h.p. deg(𝜎) > 0, for all

𝜎 ∈ Y (𝑑−1)(n, p; 𝑑). We show that w.h.p. the conductance of Y(n, p; 𝑑) is bounded away from 0.

Theorem 3. Let Y = Y(n, p; 𝑑) where np = (1+𝜀)𝑑 log n and 𝜀 > 0 is fixed. Then there exists 𝛿 > 0

such that w.h.p.

ΦY(n,p;𝑑) > 𝛿.

The first author and Reed [23] showed the analogous result for largest connected component of

G(n, p) when np = Ω(log n).
We prove Theorem 3 in Section 5. Its proof is based on a double counting argument that is facilitated

by a weak version of the Kruskal–Katona theorem (cf. Theorem 11).

This has consequences on the mixing time of the above random walk. A classic result of Jerrum

and Sinclair [33] provides bounds on the spectral gap of the transition matrix of a lazy random walk

through the conductance, and in turn an upper bound on the mixing time of the random walk can be

derived. For 𝜀 ∈ (0, 1), consider the 𝜀-mixing time of the 𝛾-lazy random walk on a complex Y: this

is the number of steps needed in order to be within 𝜀 in total variation distance from the stationary

distribution. Let us denote it by Tmix(Y , 𝛾; 𝜀). If 𝛾 ∈ (0, 1) and ΦY > 0, then

Tmix(Y , 𝛾; 𝜀) ≤ 2 log

(
1

𝜀𝜋min

)
1

Φ2
Y
,

where 𝜋min = min𝜎∈Y (𝑑−1) 𝜋(𝜎). (This bound is Corollary 2.3 in [33].) By Theorem 2, w.h.p. 𝜋min ≥

c log n
n𝑑p

, for some c > 0. Hence, together with the above theorem we deduce the following.
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Theorem 4. For any 𝛾, 𝜀 ∈ (0, 1) w.h.p.

Tmix(Y(n, p; 𝑑), 𝛾; 𝜀) ≤ R ⋅ log n,

for some constant R = R(𝜀, 𝛾, 𝑑) > 0.

1.4.1 Tools: concentration inequalities

In our proofs, we make use of the following variant of the Chernoff bounds (see [42, Chapter 4]).

Lemma 1. Let p ∈ (0, 1), N ∈ N, and 𝜀 > 0. If X is a random variable that follows that binomial
distribution Bin(N, p), then

P (X ≥ (1 + 𝜀)Np) ≤ e−𝜀2Np∕3 (11)

and

P (X ≤ (1 − 𝜀)Np) ≤ e−𝜀2Np∕2. (12)

2 THE MINIMUM (CO)DEGREE OF Y(N,P;D)

The following lemma builds very strongly on the work of Kolokolnikov, Osting, and Von Brecht [36],

who obtained very sharp bounds on the minimum vertex degree in G(n, p), and its relation to the

spectral gap of the graph just above the connectivity threshold, in particular, when p = (1 + 𝜀) log n
n

for

𝜀 > 0. (More specifically, see Lemmas 3.3. and 3.4 in [36].)

Lemma 2. Let p = (1 + 𝜀) 𝑑 log n
n

, and let a = a(𝜀) denote the solution to

𝜀 = (1 + 𝜀)(1 − loga)a. (13)

Let Y = Y(n, p; 𝑑) and let

𝛿(Y) = min
𝜎∈Y (𝑑−1)

|{v ∈ [n] ⧵ 𝜎(0) ∶ 𝜎 ∪ {v} ∈ Y (𝑑)}|
be the minimum co-degree of a (𝑑 − 1)-dimensional face in Y. Then there exists a constant C > 0 such
that w.h.p. we have that |𝛿(Y) − (1 + 𝜀)a𝑑 log n| ≤ C

√
log n.

Proof. For a random variable X following the binomial distribution Bin(n, p) and c > 0, let

fn(p, c) = P (X ≤ cnp) =
⌊cnp⌋∑
i=0

(n
i

)
pi(1 − p)n−i.

For c > 0, set

(c) = c − c log c − 1. (14)

Observe that by (13) and (14) we have that (1 + 𝜀)(a(𝜀)) = −1.
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It can be shown (see Lemma 3.3 in [36]) that for p = Θ(log n∕n) there exist constants c1, c2 > 0

such that

c1enp(c)√
np

≤ fn(p, c) ≤ c2

√
npenp(c). (15)

Recall that for a set 𝜎 ⊂ [n] of d vertices, deg(𝜎) denotes the number of d-dimensional faces in Y
containing 𝜎. Clearly, deg(𝜎) follows the binomial distribution Bin(n − 𝑑, p). The application of (15)

to the random variable deg(𝜎) yields:

c1enp(c)

2
√

np
≤

c1e(n−𝑑)p(c)√
(n − 𝑑)p

≤ fn−𝑑(p, c) ≤ c2

√
(n − 𝑑)pe(n−𝑑)p(c) ≤ c2

√
npenp(c). (16)

Furthermore,

anp ±
√

np = a(n − 𝑑)p ±
√

np + a𝑑p =

(
a ±

√
np

(n − 𝑑)p
+ a𝑑

n − 𝑑

)
(n − 𝑑)p.

Since a(𝜀) ∈ (0, 1) for all 𝜀 > 0 (see Remark 1.3 in [36]), by taking

c±0 = a ±
√

np
(n − 𝑑)p

+ a𝑑
n − 𝑑

we can use (16) to see that

P
(
deg(𝜎) ≤ anp −

√
np
)
≤ c2

√
npenp(c−

0
)

= c2

√
(1 + 𝜀)𝑑 log n ⋅ exp((1 + 𝜀)𝑑 log n(c−0 )).

and

P
(
deg(𝜎) ≤ anp +

√
np
)
≥

c1enp(c+
0
)

2
√

np

=
c1 exp((1 + 𝜀)𝑑 log n(c+0 ))

2
√
(1 + 𝜀)𝑑 log n

.

Since both (c) and ′(c) = −logc are continuous and positive on (0, 1), we have that

(c±0 ) = (a) ± (1 + o(1))′(a)√
(1 + 𝜀)𝑑 log n

.

We start by showing that w.h.p. we have 𝛿(Y) ≥ anp−
√

np. For a fixed subset 𝜎 of size d we have that

P
(
deg(𝜎) ≤ anp −

√
np
)
≤ c2

√
(1 + 𝜀)𝑑 log n exp

(
(1 + 𝜀)𝑑 log n

(
(a) − (1 + o(1))′(a)√

(1 + 𝜀)𝑑 log n

))
= c2

√
(1 + 𝜀)𝑑 log n exp

(
−𝑑 log n − Θ

(√
log n

))
= n−𝑑 exp

(
−Θ

(√
log n

))
.
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Therefore the expected number of d-element sets 𝜎 with deg(𝜎) ≤ anp −
√

np is at most( n
𝑑

)
n−𝑑 exp

(
−Θ

(√
log n

))
= o(1),

and consequently w.h.p. we have 𝛿(Y) ≥ anp −
√

np.

To bound 𝛿(Y) from above, we first find an upper bound on deg(𝜎). Using that (1 + 𝜀)(a) = −1,

we have

P
(
deg(𝜎) ≤ anp +

√
np
)
≥

c1 exp
(
(1 + 𝜀)𝑑 log n

(
(a) + (1+o(1))′(a)√

(1+𝜀)𝑑 log n

))
2
√
(1 + 𝜀)𝑑 log n

= 1

2
√
(1 + 𝜀)𝑑 log n

c1 exp
(
−𝑑 log n + Θ

(√
log n

))
= n−𝑑 exp

(
Θ
(√

log n
))

.

Let X𝜎 = 𝟙{deg(𝜎)≤anp+
√

np} and let N0 =
∑

𝜎∈Y (𝑑−1) X𝜎 denote the number of d-element subsets 𝜎 with

deg(𝜎) ≤ anp +
√

np. Hence, letting 𝜇 = E [|N0|] we have

𝜇 =
( n
𝑑

)
fn−𝑑(p, c+0 ) ≥ exp

(
Θ
(√

log n
))

→ ∞ (17)

as n → ∞.

By Chebyshev’s inequality we then have

P (|N0 − 𝜇| > 𝜇∕2) ≤ 4Var(N0)
𝜇2

. (18)

The co-degrees of two subsets 𝜎, 𝜎′ are independent whenever |𝜎 ∩ 𝜎′| ≠ 𝑑 − 1. Thus the variance of

N0 satisfies

Var(N0) =
∑

𝜎∈Y (𝑑−1)

Var(X𝜎) +
∑

𝜎,𝜎′∈Y (𝑑−1)∶|𝜎∩𝜎′|=𝑑−1

Cov(X𝜎,X𝜎′ )

≤

( n
𝑑

)
fn−𝑑(p, c+0 ) + n𝑑+1Cov(X𝜎,X𝜎′ ),

where 𝜎, 𝜎′ are two fixed sets satisfying |𝜎 ∩ 𝜎′| = 𝑑 − 1. Since

Cov(X𝜎,X𝜎′ ) = P (X𝜎 = X𝜎′ = 1) − (fn−𝑑(p, c+0 ))
2, (19)

we focus on the value of P (X𝜎 = X𝜎′ = 1). Let deg⧵𝜎′ (𝜎) denote the number of d-dimensional faces that

contain a d-subset 𝜎 but do not contain the d-subset 𝜎′. Using the law of total probability, conditioning

on the presence or absence of the unique face that contains both 𝜎 and 𝜎′, and since deg⧵𝜎′ (𝜎) and

deg⧵𝜎(𝜎′) are identically distributed, we have

P (X𝜎 = X𝜎′ = 1) = P
(
deg⧵𝜎′ (𝜎) + 1 ≤ anp +

√
np
)

P
(
deg⧵𝜎(𝜎′) + 1 ≤ anp +

√
np
)

p

+ P
(
deg⧵𝜎′ (𝜎) ≤ anp +

√
np
)

P
(
deg⧵𝜎(𝜎′) ≤ anp +

√
np
)
(1 − p)

≤
[
P
(
deg⧵𝜎′ (𝜎) + 1 ≤ anp +

√
np
)]2p +

[
P
(
deg⧵𝜎′ (𝜎) ≤ anp +

√
np
)]2

. (20)
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In particular, the random variable deg⧵𝜎′ (𝜎) follows the binomial distribution Bin(n − 𝑑 − 1, p) and,

thereby, it is stochastically dominated by Bin(n − 𝑑, p). So

P
(
deg⧵𝜎′ (𝜎) + 1 ≤ anp +

√
np
)
= P

(
Bin(n − 𝑑 − 1, p) ≤ anp +

√
np − 1

)
≤ P

(
Bin(n − 𝑑, p) ≤ anp +

√
np
)
= fn−𝑑(p, c+0 ).

For the second term in (20), we have

P
(
deg⧵𝜎′ (𝜎) ≤ anp +

√
np
)
=

⌊anp+
√

np⌋∑
j=0

(
n − 𝑑 − 1

j

)
pj(1 − p)n−𝑑−1−j

≤

⌊anp+
√

np⌋∑
j=0

(
n − 𝑑

j

)
pj(1 − p)n−𝑑−1−j

=
(

1 + p
1 − p

) ⌊anp+
√

np⌋∑
j=0

(
n − 𝑑

j

)
pj(1 − p)n−𝑑−j

1−p>1∕2

≤ (1 + 2p)fn−𝑑(p, c+0 ).

Hence for n large enough we have

P (X𝜎 = X𝜎′ = 1) ≤ (p + (1 + 2p)2)
(
fn−𝑑(p, c+0 )

)2
≤ (1 + 6p)

(
fn−𝑑(p, c+0 )

)2
,

and consequently

Cov(X𝜎,X𝜎′ ) ≤ 6p(fn−𝑑(p, c+0 ))
2. (21)

Thus by (18), (19), and (21), we obtain

P (|N0 − 𝜇| > 𝜇∕2) ≤
𝜇 + 6pn𝑑+1(fn−𝑑(p, c+0 ))2

𝜇2

= 1

𝜇
+ O(n−𝑑 log n) = o(1),

since we have 𝜇 → ∞. Thus with high probability we have that the minimum co-degree of a d-element

set is at most anp +
√

np and the lemma holds. ▪

For k ∈ Z, let Wk(x) be the k-th branch of the Lambert W function, defined as

Wk(x)eWk(x) = x.

We now discuss some further properties of the function a(𝜀) defined in (13). This lemma shows that for

small 𝜀 the function a(𝜀) is bounded by a linear function on 𝜀. We will use this bound in the next section.

Lemma 3. We have

a = a(𝜀) = exp

(
1 + W−1

(
− 𝜀

e(1 + 𝜀)

))
< min {1, 0.33𝜀} (22)

for all 𝜀 > 0.
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Proof. First, note that we can rewrite (13) as

𝜀

1 + 𝜀
= (1 − loga)a = −e(log a − 1) exp(log a − 1),

so we have that log a − 1 = Wk(− 𝜀

e(1+𝜀)
) for some k ∈ Z, and consequently that

a(𝜀) = exp

(
1 + Wk

(
− 𝜀

e(1 + 𝜀)

))
.

Since only the 0th and (−1)th branch of the Lambert W function are real, we must have k = 0 or k = −1.

Finally, since for −1∕e < x < 0 we have W−1(x) < −1 < W0(x) and we must have a(𝜀) ∈ (0, 1), we

see that we must have k = −1 for all 𝜀 > 0.

We now move on to showing that a(𝜀) < min{1, 0.33𝜀}. The bound a(𝜀) < 1 follows from Remark

1.3 in [36]. Hence we focus on the bound a(𝜀) < 0.33𝜀.

First, using the property that for any branch of the Lambert W function and any z ∈ (−e−1, 0) we

have W ′(z) = W(z)
z(1+W(z))

, and that eW(z) = z∕W(z), we obtain

a′(𝜀) = exp

(
1 + Wk

(
− 𝜀

e(1 + 𝜀)

)) Wk

(
− 𝜀

e(1+𝜀)

)
− 𝜀

e(1+𝜀)

(
1 + Wk

(
− 𝜀

e(1+𝜀)

)) −1

e(1 + 𝜀)2

= −
exp

(
Wk

(
− 𝜀

e(1+𝜀)

))
− 𝜀

e(1+𝜀)

Wk

(
− 𝜀

e(1+𝜀)

)
(

1 + Wk

(
− 𝜀

e(1+𝜀)

)) 1

(1 + 𝜀)2

= − 1

(1 + 𝜀)2
(

1 + Wk

(
− 𝜀

e(1+𝜀)

)) .
It was shown by Chatzigeorgiou [9] that for u > 0 we have

W−1

(
−e−u−1

)
< −1 −

√
2u − 2u

3
.

Taking u = log
1+𝜀
𝜀

leads to the bound

a′(𝜀) < 1

(1 + 𝜀)2
(√

2 log
1+𝜀
𝜀

+ 2

3
log

1+𝜀
𝜀

) .

(Recall that W1(z) < −1, so in absolute value the above inequality has the opposite sign.) Since (1 + 𝜀)2

is increasing in 𝜀, and

√
2 log

1+𝜀
𝜀

+ 2

3
log

1+𝜀
𝜀

is decreasing in 𝜀, for 0 < 𝜀 ≤ 1∕5 we have

a′(𝜀) < 1(√
2 log

1.2

0.2
+ 2

3
log

1.2

0.2

) < 0.33.

Also, a′′(𝜀) is positive for 𝜀 < 𝜀0 < 0.189, and negative for 𝜀 > 𝜀0, so the maximum value of a′(𝜀) is

obtained for some 0 < 𝜀 < 0.189, where a′(𝜀) < 0.33. Since we have W−1

(
− 𝜀

e(1+𝜀)

)
→ −∞ as 𝜀 → 0,

and consequently a(𝜀) → 0 as 𝜀 → 0, we have that a(𝜀) < 0.33𝜀 for all 𝜀 > 0. ▪
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3 CHEEGER CONSTANT

In this section we consider the measure of expansion of a simplicial complex which is called its Cheeger
constant and was defined in (9). As the main result in this section we prove the following theorem.

Theorem 5. For p = (1 + 𝜀) 𝑑 log n
n

, let Y = Y(n, p; 𝑑) and let a = a(𝜀) be as in (13). There exists a
positive constant C > 0 such that w.h.p. we have

(1 + 𝜀)a𝑑 log n − C
√

log n ≤ h(Y) ≤ (1 + O(1∕n))𝛿(Y) ≤ (1 + 𝜀)a𝑑 log n + C
√

log n. (23)

Proof. The upper bound on h(Y) follows immediately from Lemma 2. Indeed, if A = {a0, … , a𝑑−1}
is a d-element set with the minimum co-degree, then w.h.p. taking Ai = {ai} for 0 ≤ i ≤ 𝑑 − 1

and A𝑑 = [n] ⧵ A gives us a partition with the desired value of |F(A0,A1, … ,A𝑑)| = 𝛿(Y). Thus,

h(Y) ≤ (1 + O(1∕n))𝛿(Y).
So now we focus on lower-bounding h(Y). First, observe that for a given set of val-

ues of |A0|, |A1|, … , |A𝑑|, the value of |F(A0,A1, … ,A𝑑)| follows the binomial distribution

Bin(
∏𝑑

i=0|Ai|, p).
Without loss of generality let us assume that |A0| ≤ |A1| ≤ · · · ≤ |A𝑑|; note that this implies that|A𝑑| ≥ n∕(𝑑 + 1). We shall consider three possible cases, depending on the size of the second largest

set A𝑑−1.

First, let us assume that |A𝑑−1| ≥ n∕(log n)1∕2, and set |A𝑑| = 𝛼n for some 𝛼 ∈ [1∕(𝑑 + 1), 1]. In

this case by (12) we have

P

(
n ⋅ |F(A0,A1, … ,A𝑑)| ≤ (1 + 𝜀)

𝑑∏
i=0

|Ai| log n

)

= P

(
Bin

(
𝛼n

𝑑−1∏
i=0

|Ai|, (1 + 𝜀)𝑑 log n
n

)
≤ (1 + 𝜀)𝛼

𝑑−1∏
i=0

|Ai| log n

)

≤ exp

(
−
(
(1 + 𝜀)𝑑 − (1 + 𝜀)

(1 + 𝜀)𝑑

)2

(1 + 𝜀)𝛼𝑑 log n
𝑑−1∏
i=0

|Ai|∕2

)
= exp

(
−Ω

(
n(log n)1∕2

))
,

where the last equality follows from |A𝑑−1| ≥ n∕(log n)1∕2. Since there are at most (𝑑 + 1)n partitions

of V into 𝑑 + 1 disjoint sets, by the union bound we see that with probability 1 − o(1) every partition

with |A𝑑−1| ≥ n∕(log n)1∕2 has

n ⋅ |F(A0,A1, … ,A𝑑)|∏𝑑
i=0|Ai| > (1 + 𝜀) log n > (1 + 𝜀)a(𝜀) log n,

where the last inequality follows from a(𝜀) < 1.

Now, assume that C(𝑑, 𝜀) ≤ |A𝑑−1| < n∕(log n)1∕2 for some constant C(𝑑, 𝜀) > 0 to be determined

later. Note that by the assumption that |A0| ≤ |A1| ≤ · · · ≤ |A𝑑|, this implies that |A𝑑| = (1 − o(1))n.

Observe that, bounding crudely, there are at most n𝑑 possible choices of the sizes |A0|, |A1|, … , |A𝑑|
(after selecting |A0|, |A1|, … , |A𝑑−1|, we have |A𝑑| = n− (|A0|+ |A1|+ · · · + |A𝑑−1|)). For each such

choice of |A0|, |A1|, … , |A𝑑|, there are at most n|A0|+|A1|+···+|A𝑑−1| possible choices of partitions. Hence,
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in total, we will want to show that the probability that for a given partition our lower bound on the

Cheeger constant does not hold is

o
(
n−(𝑑+|A0|+|A1|+···+|A𝑑−1|)) .

We will show that in this case with probability 1 − o
(
n−(𝑑+|A0|+|A1|+···+|A𝑑−1|)) we have

n ⋅ |F(A0,A1, … ,A𝑑)|∏𝑑
i=0|Ai| ≥ (1 + 𝜀)min {1, 0.33𝜀} log n

Lemma 3

≥ (1 + 𝜀)a(𝜀) log n.

Since |A𝑑| = (1 − o(1))n, we have

P

(
n ⋅ |F(A0,A1, … ,A𝑑)| ≤ (1 + 𝜀)min {1, 0.33𝜀}

𝑑∏
i=0

|Ai| log n

)

≤ P

(
Bin

(
(1 − o(1))n

𝑑−1∏
i=0

|Ai|, (1 + 𝜀)𝑑 log n
n

)
≤ (1 + 𝜀)min {1, 0.33𝜀}

𝑑−1∏
i=0

|Ai| log n

)

≤ exp

(
−
(
(1 − o(1))(1 + 𝜀)𝑑 − (1 + 𝜀)min {1, 0.33𝜀}

(1 − o(1))(1 + 𝜀)𝑑

)2

(1 + 𝜀)𝑑 log n
𝑑−1∏
i=0

|Ai|∕2

)

= exp

(
−
(
𝑑 − (1 + o(1))min {1, 0.33𝜀}

𝑑

)2

(1 + 𝜀)𝑑 log n
𝑑−1∏
i=0

|Ai|∕2

)
.

We note that, since 𝑑 ≥ 2, if 𝜀 > 3.01 then for n large enough we can bound(
𝑑 − (1 + o(1))min {1, 0.33𝜀}

𝑑

)2

(1 + 𝜀) ≥
(
𝑑 − (1 + o(1))

𝑑

)2

(1 + 𝜀)

≥

(
1 − o(1)

2

)2

⋅ 4.01 > 1.001.

On the other hand, if 𝜀 ∈ (0, 3.01] then we have that

(
𝑑 − min {1, 0.33𝜀}

𝑑

)2

(1 + 𝜀) − 1 = (1 − 0.33𝜀∕𝑑)2(1 + 𝜀) − 1

≥ (1 − 0.33𝜀∕2)2(1 + 𝜀) − 1.

As a polynomial in 𝜀, this is positive on (0, 3.04). So for any 𝜀 ∈ (0, 3.01], if n is large enough then we

also have
(

𝑑−(1+o(1))min{1,0.33𝜀}
𝑑

)2

(1 + 𝜀) = 1 + 𝛿𝜀 > 1.

Since for all 0 ≤ i ≤ 𝑑−2 we have |Ai| ≥ 1, we can set |A0|+|A1|+· · ·+|A𝑑−1| = 𝑑−1+M for some

M ≥ C(𝑑, 𝜀). Given that, the minimum value of
∏𝑑−1

i=0 |Ai| is attained when |A0| = · · · = |A𝑑−2| = 1

and |A𝑑−1| = M. This gives

min{1.001, 1 + 𝛿𝜀}
𝑑

2

𝑑−1∏
i=0

|Ai| ≥ min{1.001, 1 + 𝛿𝜀}
𝑑M
2

≥ min{1.001, 1 + 𝛿𝜀}M ≥ 2𝑑 + M
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when M ≥ max{2000𝑑, 2𝑑∕𝛿𝜀}. Hence we obtain

P

(
n ⋅ |F(A0,A1, … ,A𝑑)| ≤ (1 + 𝜀)min {1, 0.33𝜀}

𝑑∏
i=0

|Ai| log n

)

≤ exp

(
−

(
𝑑 + 1 +

𝑑−1∑
i=0

|Ai|) log n

)
.

Hence, the union bound completes the proof for this case.

The final remaining case is when |A𝑑−1| < C(𝑑, 𝜀) for C(𝑑, 𝜀) > 0 constant. In this case we

can use Lemma 2. Since we know that w.h.p. the minimum co-degree of a d-element set is at least

(1+ 𝜀)a(𝜀)𝑑 log n−C
√

log n, it follows that w.h.p. for any selection of elements a0 ∈ A0, … , a𝑑−1 ∈
A𝑑−1 there are at least (1 + 𝜀)a(𝜀)𝑑 log n − C

√
log n − 𝑑C(𝑑, 𝜀) faces {a0, … , a𝑑−1, a𝑑} with a𝑑 ∈

A𝑑 = [n]⧵
⋃𝑑−1

i=0 Ai. Thus w.h.p. for any such partition we have

n ⋅ |F(A0,A1, … ,A𝑑)|∏𝑑
i=0|Ai| ≥

n
∏𝑑−1

i=0 |Ai|((1 + 𝜀)a(𝜀)𝑑 log n − C
√

log n − 𝑑C(𝑑, 𝜀))
n
∏𝑑−1

i=0 |Ai|
≥ (1 + 𝜀)a(𝜀)𝑑 log n − 2C

√
log n.

This completes the proof of Theorem 5. ▪

4 ALGEBRAIC EXPANSION

Recall from (8) that for a d-dimensional simplicial complex Y with complete skeleton, the spectral gap
𝜆(Y) is the minimal eigenvalue of the upper Laplacian on (𝑑 − 1)-cycles, that is,

𝜆(Y) = min Spec
(
Δ+|Z𝑑−1

)
.

As our main result in this section, we prove the following theorem about the spectral gap of Y(n, p; 𝑑).

Theorem 6. Let Y = Y(n, p; 𝑑) for 𝑑 ≥ 2 and p = (1+𝜀)𝑑 log n
n

, where 𝜀 > 0. There exists a constant
C > 0 such that w.h.p. the spectral gap of Y satisfies

𝛿(Y) − C
√

log n ≤ 𝜆(Y) ≤ (1 + O(1∕n))𝛿(Y). (24)

Proof. The upper bound in (24) follows immediately from Theorem 5 and through Theorem 1.

Recall that the latter states that 𝜆(Y) ≤ h(Y). Furthermore, at the beginning of the proof of Theorem 5,

we observed that h(Y) ≤ (1 + O(1∕n))𝛿(Y).
We now focus on the lower bound on 𝜆(Y). We will give a lower bound on ⟨Δ+f , f ⟩ for f ∈ Z𝑑−1(Y)

which relies on a decomposition of Δ+ into the Laplace operators of the link graphs of all (𝑑−2)-faces

of Y .

For a (𝑑 − 2)-dimensional face 𝜏 in Y (𝑑−2), let lk𝜏 be the link graph of face 𝜏, that is, the graph

with vertex set Y (0) ⧵ 𝜏, with u, v ∈ Y (0) ⧵ 𝜏 forming an edge if 𝜏 ∪ {u, v} ∈ Y (𝑑). Note that when 𝜏 is a

(𝑑−2)-dimensional face in Y(n, p; 𝑑), then lk𝜏 is a random graph with the G(n−𝑑+1, p) distribution.

For 𝜎 ∈ Y (𝑑−1), we let deg𝜏(𝜎) = |{𝜎′ ∈ Y (𝑑−1) ∶ 𝜎′ ∼ 𝜎, 𝜏 ⊂ 𝜎′}|. For conve-

nience we write Ω(j) for Ω(j)(Y;R). We define the localized (on 𝜏 ∈ Y (𝑑−2)) upper Laplace operator
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Δ+
𝜏 ∶ Ω(𝑑−1) → Ω(𝑑−1); for any f ∈ Ω(𝑑−1) and any 𝜎 ∈ Y (𝑑−1) we set

(Δ+
𝜏 f )(𝜎) =

⎧⎪⎨⎪⎩
deg𝜏(𝜎) −

∑
𝜎′∶𝜎′∼𝜎,𝜏⊂𝜎′

f (𝜎′) if 𝜏 ⊂ 𝜎

0 𝜏 ⊄ 𝜎
. (25)

Furthermore, for a form f ∈ Ω(𝑑−1) and a face 𝜏 ∈ Y (𝑑−2), we define f𝜏 ∶ (lk𝜏)(0) → R as f𝜏(v) = f (v𝜏).
The operator Δ+

𝜏 has the same effect as the Laplace operator associated with lk𝜏 (see 2. in the following

theorem). This is made precise in the following result by Garland [26] (we state it as in Lemma 4.2

in [45]). ▪

Theorem 7. Let X be a d-dimensional simplicial complex and f ∈ Ω(𝑑−1). Then the following hold.

1. Δ+ =
∑

𝜏∈X(𝑑−2) Δ+
𝜏 − (𝑑 − 1)D, where (Df )(𝜎) = deg(𝜎)f (𝜎).

2. For any 𝜏 ∈ X(𝑑−2), ⟨Δ+
𝜏 f , f ⟩ = ⟨Δ+

lk𝜏 f𝜏 , f𝜏⟩.
3. If f ∈ Z𝑑−1(X), then f𝜏 ∈ Z0(lk𝜏).
4.

∑
𝜏∈X(𝑑−2)⟨f𝜏 , f𝜏⟩ = 𝑑⟨f , f ⟩.

For f ∈ Z𝑑−1(Y) with f ≠ 0, we seek a lower bound on ⟨Δ+f , f ⟩. We will use the decomposition

of Δ+ in terms of the local Laplace operators as in 1. of the above theorem. To make use of this,

we will rewrite the operator D as a sum of localized versions of it. In particular, we write Dlk𝜏 ∶
Ω(0)(lk𝜏;R) → Ω(0)(lk𝜏;R) for the operator such that for f ′ ∈ Ω(0)(lk𝜏;R) and v ∈ lk𝜏 (0) we have

(Dlk𝜏 f ′)(v) = deg𝜏(v𝜏)f ′(v). So, in particular, if f ∈ Ω(𝑑−1), then (Dlk𝜏 f𝜏)(v) = deg𝜏(v𝜏)f (v𝜏). The

following holds.

Claim 1. For any f ∈ Ω(𝑑−1)(Y), we have

⟨Df , f ⟩ = 1

𝑑

∑
𝜏∈Y (𝑑−2)

⟨Dlk𝜏 f𝜏 , f𝜏⟩.
Proof. Let f ∈ Ω(𝑑−1)(Y). We write

⟨Df , f ⟩ = ∑
𝜎∈Y (𝑑−1)

deg(𝜎)f 2(𝜎) = 1

𝑑

∑
𝜏∈Y (𝑑−2)

∑
v∈lk𝜏(0)

deg(v𝜏)f 2(v𝜏)

= 1

𝑑

∑
𝜏∈Y (𝑑−2)

∑
v∈lk𝜏(0)

deg𝜏(v)f 2
𝜏 (v)

= 1

𝑑

∑
𝜏∈Y (𝑑−2)

⟨Dlk𝜏 f𝜏 , f𝜏⟩.
▪

Note that if Alk𝜏 is the adjacency matrix of lk𝜏, then

Δ+
lk𝜏 = Dlk𝜏 − Alk𝜏 .

Hence using Theorem 7 parts 1. and 2., for any f ∈ Ω(𝑑−1) we can write

⟨Δ+f , f ⟩ Thm 7 1.
=

∑
𝜏∈Y (𝑑−2)

⟨Δ+
𝜏 f , f ⟩ − (𝑑 − 1)⟨Df , f ⟩ =
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Thm 7 2., Claim 1
=

∑
𝜏∈Y (𝑑−2)

⟨Δ+
lk𝜏 f𝜏 , f𝜏⟩ − 𝑑 − 1

𝑑

∑
𝜏∈Y (𝑑−2)

⟨Dlk𝜏 f𝜏 , f𝜏⟩
=

∑
𝜏∈Y (𝑑−2)

⟨(Dlk𝜏 − Alk𝜏)f𝜏 , f𝜏⟩ − 𝑑 − 1

𝑑

∑
𝜏∈Y (𝑑−2)

⟨Dlk𝜏 f𝜏 , f𝜏⟩
=

∑
𝜏∈Y (𝑑−2)

(⟨(Dlk𝜏 − Alk𝜏)f𝜏 , f𝜏⟩ − 𝑑 − 1

𝑑
⟨Dlk𝜏 f𝜏 , f𝜏⟩)

=
∑

𝜏∈Y (𝑑−2)

(
1

𝑑
⟨Dlk𝜏 f𝜏 , f𝜏⟩ − ⟨Alk𝜏 f𝜏 , f𝜏⟩) . (26)

But note that

⟨Dlk𝜏 f𝜏 , f𝜏⟩ = ∑
v∈lk𝜏0

deg𝜏(v𝜏)f𝜏(v)2 ≥ 𝛿(Y)⟨f𝜏 , f𝜏⟩.
Thereby,

1

𝑑

∑
𝜏∈Y (𝑑−2)

⟨Dlk𝜏 f𝜏 , f𝜏⟩ ≥ 𝛿(Y) ⋅ 1

𝑑

∑
𝜏∈Y (𝑑−2)

⟨f𝜏 , f𝜏⟩ Thm 7 4.
= 𝛿(Y)𝑑

𝑑
⟨f , f ⟩

= 𝛿(Y)⟨f , f ⟩. (27)

Now, we will give an upper bound on
∑

𝜏∈Y (𝑑−2)⟨Alk𝜏 f𝜏 , f𝜏⟩, for Y = Y(n, p; 𝑑) and f ∈ Z𝑑−1. As we

observed above, lk𝜏 is distributed as a G(n − 𝑑 + 1, p) random graph for any 𝜏 ∈ Y (𝑑−2)(n, p; 𝑑). Of

course, these random graphs are not independent.

Hence, the simplest way to bound from above this sum is to give an upper bound on ⟨Alk𝜏 f𝜏 , f𝜏⟩
that holds with probability 1−o(n−(𝑑−1)) and apply the union bound over all 𝜏 ∈ Y (𝑑−2)(n, p; 𝑑), which

there are O(n𝑑−1) of them.

To this end, we will use some results by Feige and Ofek [21] on the spectrum of the adjacency

matrix of G(n, p).

4.1 The adjacency matrix of G(n, p) and its spectral gap

In brief, Feige and Ofek [21] showed that the second largest eignvalue of G(n, p) is O(
√

np), provided

that np = Ω(log n). Let A be the adjacency matrix of G(n, p). If G(n, p) were regular, then the all-1s

vector 1 would span the eigenspace of the leading eigenvalue and the above result would imply that⟨Af , f ⟩ = O(
√

np)⟨f , f ⟩ for any function f on the vertex set of G(n, p) such that f ⟂ 1. However, G(n, p)
is not regular but almost regular in the sense that for any 𝜀 > 0 w.h.p. most vertices have degrees

np(1 ± 𝜀). Feige and Ofek [21] proved that despite this, the bound on this quadratic form still holds

w.h.p.

To state these more precisely, let S = {f ∶ [n] → R ∶ f ⟂ 1, ⟨f , f ⟩ ≤ 1} and fixing 0 < 𝛿 < 1 we let

T = {f ∶ [n] → R ∶ f ∈

{
𝛿√
n

Z

}[n]

, ⟨f , f ⟩ ≤ 1}.

The main theorem in [21] is as follows.
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Theorem 8 (Theorem 2.5 in [21]). Let A be the adjacency matrix on G(n, p), where c0
log n

n
≤ p ≤

n1∕3

n(log n)1∕3
. For every c > 0, there exists c′ > 0 such that with probability at least 1−n−c, for any f , f ′ ∈ T

we have |⟨Af , f ′⟩| ≤ c′
√

np.

More precise results on the spectrum of A for a wider range of p were shown very recently by Alt,

Ducatez, and Knowles [4]. Building on the former works by Füredi and Komlós [25] and Vu [46],

strong results in this direction were obtained by Benaych–Georges, Bordenave, and Knowles [6] and

by Latała, Handel, and Youssef [37], as a special case of their work on the spectra of random matrices.

Furthermore, the authors of [21] state and prove the following claim.

Claim 2 (Claim 2.4 in [21]). Suppose that for some c > 0 we have |⟨Af , f ′⟩| < c
√

np, for any f , f ′ ∈ T .

Then for any f ∈ S, we have ⟨Af , f ⟩ < c
(1−𝛿)2

√
np.

From the above two statements the following result is deduced.

Theorem 9. Let A be the adjacency matrix on G(n, p), where c0
log n

n
≤ p ≤

n1∕3

n(log n)1∕3
. For every

c > 0, there exists c′′ > 0 such that with probability at least 1 − n−c, for any f ∈ S we have

⟨Af , f ⟩ ≤ c′′
√

np.

4.2 Deducing the lower bound on 𝝀(Y(n, p;𝒅)).

We apply this in our setting, recalling that for any 𝜏 ∈ Y (𝑑−2), the link graph lk𝜏 is distributed as

G(n − 𝑑 + 1, p) with p = (1+𝜀)𝑑 log n
n

. Taking c = 𝑑 in Theorem 9, we deduce that for some constant

c′′𝑑 > 0 with probability at least 1 − n−𝑑 for any f𝜏 ∈ Z0(lk𝜏), we have

⟨Alk𝜏 f𝜏 , f𝜏⟩ ≤ c′′𝑑
√

np⟨f𝜏 , f𝜏⟩.
The union bound (over all 𝜏 ∈ Y (𝑑−2)) implies that for any f ∈ Z𝑑−1(Y) we have w.h.p.∑

𝜏∈Y (𝑑−2)

⟨Alkf𝜏 , f𝜏⟩ ≤ c′′𝑑
√

np
∑

𝜏∈Y (𝑑−2)

⟨f𝜏 , f𝜏⟩ Thm 7 4.
= 𝑑c′′𝑑

√
np⟨f , f ⟩. (28)

Using the lower bound of (27) and the upper bound of (28), Equation (26) yields that w.h.p. for any

f ∈ Z𝑑−1(Y) we have ⟨Δ+f , f ⟩ ≥ (
𝛿(Y) − 𝑑c′′𝑑

√
np
) ⟨f , f ⟩.

But Lemma 2 states that 𝛿(Y) ≥ (1 + 𝜀)a𝑑 log n − C
√

log n w.h.p. for some C > 0, where a = a(𝜀) is

the solution of (13). Hence, for some C′ > 0 w.h.p. for any f ∈ Z𝑑−1(Y) such that f ≠ 0 we have

⟨Δ+f , f ⟩⟨f , f ⟩ ≥ 𝛿(Y) − C′
√

log n.

Therefore, w.h.p.

𝜆(Y) ≥ 𝛿(Y) − C′
√

log n.
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5 COMBINATORIAL EXPANSION

Our lower bound on ΦY will rely on a lower bound on the edge expansion of the graph (Y (𝑑−1),E(𝑑−1)),
where the edge set E(𝑑−1) consists of those distinct pairs 𝜎, 𝜎′ ∈ Y (𝑑−1) for which there exists a d-face

𝜌 ∈ Y (𝑑) which contains both 𝜎 and 𝜎′. We write 𝜎 ∼ 𝜎′. Hence, given a subset S ⊂ Y (𝑑−1), we would

like to bound from below the number of d-faces which contain at least one (𝑑 − 1)-face in S and a

(𝑑 − 1)-face not in S. In other words, we would like to provide a lower bound on the number of d-faces

which are potential exits for a random walk that starts inside S.

To express these more precisely, we introduce some relevant notation. For a d-dimensional complex

Y and 0 ≤ k ≤ 𝑑 − 1, given S ⊂ Y (k) let

𝜕+S = {𝜌 ⊂ Y (k+1) ∶ there exists 𝜎 ∈ S such that 𝜎 ⊂ 𝜌}.

Analogously to the oriented case, for 𝜎 ∈ Y (k) where 1 ≤ k ≤ 𝑑 we define

𝜕𝜎 = {𝜏 ∈ Y (k−1) ∶ 𝜏 ⊂ 𝜎}.

For S ⊂ Y (𝑑−1) we let S = Y (𝑑−1) ⧵ S. We write

Q(S, S) =
∑
𝜎∈S

∑
𝜎′∈S∶𝜎′∼𝜎

𝜋(𝜎) ⋅ 1

𝑑 ⋅ deg(𝜎)
= 1

𝑑(𝑑 + 1) ⋅ |Y (𝑑)|∑
𝜎∈S

∑
𝜎′∈S∶𝜎′∼𝜎

deg(𝜎) ⋅ 1

deg(𝜎)

= 1

𝑑(𝑑 + 1) ⋅ |Y (𝑑)|∑
𝜎∈S

∑
𝜎′∈S∶𝜎′∼𝜎

1.

With BS = {𝜎 ∈ 𝜕+S ∶ 𝜕𝜎 ⊂ S}, we bound∑
𝜎∈S

∑
𝜎′∈S∶𝜎′∼𝜎

1 ≥ |𝜕+S ⧵ BS|.
The latter is the number of d-faces that are exits out of the set S.

Furthermore,

𝜋(S) =
∑

𝜎∈S deg(𝜎)
𝑑 ⋅ |Y (𝑑)| ≤

𝑑 ⋅ |𝜕+S|
(𝑑 + 1) ⋅ |Y (𝑑)| < |𝜕+S||Y (𝑑)| .

Hence,

ΦY (S) =
Q(S, S)
𝜋(S)

≥
1

𝑑(𝑑 + 1)
⋅
|𝜕+S ⧵ BS||𝜕+S| ,

whereby

ΦY ≥
1

𝑑(𝑑 + 1)
⋅ min

S⊂Y (𝑑)∶0<𝜋(S)≤ 1

2

|𝜕+S ⧵ BS||𝜕+S| . (29)

In our proof, we will in fact use an upper bound on the number of d-faces in 𝜕+S which are not

exits. These are d-faces whose (𝑑 − 1)-subsets are all faces belonging to S. To bound their number

from above, we will use a weak version of the Kruskal–Katona theorem. This provides an upper bound

on the number of complete subgraphs on a hypergraph with a given number of hyperedges. To apply

this to our context, we consider the hypergraph spanned by the (𝑑 − 1)-faces in S. The number of the
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complete 𝑑 + 1-subhypergraphs of this hypergraph is an upper bound on the number of d-faces in 𝜕+S
which are not exits.

Note that two (𝑑−1)-faces 𝜎, 𝛾 ∈ Y (𝑑−1) which are neighbors, that is, 𝜎 ∼ 𝜎′, satisfy |𝜎∩𝛾| = 𝑑−1.

Given X ⊆ Y (𝑑−1), we say that X is tightly connected if for any distinct 𝜎, 𝜎′ ∈ X there exists m ≥ 1 and

a sequence 𝜎 = 𝛿0, … , 𝛿m = 𝜎′ ∈ X such that 𝛿i ∼ 𝛿i+1 for all 0 ≤ i ≤ m − 1. As we observed earlier,

the random walk we consider walks over tightly connected sets. To bound the quantity on the right-hand

side of (29), we start with the following theorem, which considers only subsets S ⊂ Y (𝑑−1) which are

tightly connected and 𝜋(S) ≤ 1∕2. In fact, it suffices to consider those subsets S with |S| ≤ 1

2

(
n
𝑑

)
. To

see this, recall Lemma 2 implies that w.h.p. deg(𝜎) ≥ 𝑑 + 1. Hence, if 𝜋(S) ≤ 1∕2, then

(𝑑 + 1)|S| ≤ ∑
𝜎∈S

deg(𝜎) ≤ 𝑑 + 1

2
|Y (𝑑)| ≤ 𝑑 + 1

2

( n
𝑑

)
.

This directly implies that |S| ≤ 1

2

(
n
𝑑

)
.

Theorem 10. Let Y = Y(n, p; 𝑑) where np = (1 + 𝜀)𝑑 log n for 𝜀 > 0 fixed. There exists 𝛿 > 0 such
that w.h.p. the following holds. For any tightly connected set S ⊂ Y (𝑑−1) with |S| ≤ 1

2

(
n
𝑑

)
and

BS = {𝜎 ∈ 𝜕+S ∶ 𝜕𝜎 ⊂ S}

we have |(𝜕+S ⧵ BS) ∩ Y (𝑑)| ≥ 𝛿|𝜕+S ∩ Y (𝑑)|. (30)

Proof. We shall assume that n is large enough for the estimates in the proof to hold. Given S ⊂ Y (𝑑−1)

and 1 ≤ i ≤ 𝑑 + 1, let

Fi(S) = {𝜌 ∈ 𝜕+S ∶ |𝜕𝜌 ∩ S| = i},

and set fi(S) = |Fi(S)|. Denoting |S| = m, by double counting, we have that

𝑑+1∑
i=1

ifi(S) = m(n − 𝑑). (31)

For any t ≥ 2, let K(t)
t+1 be the complete t-uniform hypergraph on t + 1 vertices, and for a t-uniform

hypergraph G, let K(t)
t+1(G) denote the number of copies of K(t)

t+1 in G. Note that in fact we have f𝑑+1(S) =
K(𝑑)
𝑑+1(S), that is, f𝑑+1(S) = |BS|. Hence, we shall use the following weak form of Kruskal–Katona

theorem (see Lovász [39]).

Theorem 11. Suppose r ≥ 1 and G is an r-uniform hypergraph with

m =
(xm

r

)
= xm(xm − 1) … (xm − r + 1)

r!

hyperedges, for some real number xm ≥ r. Then K(r)
r+1(G) ≤

(
xm

r+1

)
, with equality if and only if xm is

an integer and G = K(r)
xm .



FOUNTOULAKIS AND PRZYKUCKI 23

Note that we can rewrite (31) to get

𝑑∑
i=1

fi(S) ≥
1

𝑑
(m(n − 𝑑) − (𝑑 + 1)f𝑑+1(S)) =

nm
𝑑

(
1 − 𝑑

n
− (𝑑 + 1)f𝑑+1(S)

nm

)
. (32)

Observe that |𝜕+S⧵BS| follows the binomial distribution Bin(
∑𝑑

i=1fi(S), p). By Theorem 11 we have

f𝑑+1(S)
nm

≤
1

n

(
xm
𝑑+1

)
(

xm
𝑑

) = xm − 𝑑

n(𝑑 + 1)
.

However, by assumption xm satisfies m =
(

xm
𝑑

)
≥

(xm−𝑑)𝑑

𝑑!
; thus, we obtain xm − 𝑑 ≤ (m𝑑!)1∕𝑑 . This

yields

f𝑑+1(S)
nm

≤
(m𝑑!)1∕𝑑
n(𝑑 + 1)

. (33)

By (32) and (33) we obtain

𝑑∑
i=1

fi(S) ≥
nm
𝑑

(
1 − 𝑑

n
− (m𝑑!)1∕𝑑

n

)
= nm

𝑑

(
1 − (m𝑑!)1∕𝑑

n
− o(1)

)
. (34)

For a fixed S with |S| = m we will bound from above the probability of the event that |𝜕+S ⧵BS| ≤
𝛿|𝜕+S|. It can be easily seen that |𝜕+S∩Y (𝑑)| is stochastically dominated by a random variable that has

the Bin(nm, p) distribution. So by (11) we have that

P
(|𝜕+S ∩ Y (𝑑)| ≤ 3nmp

)
≥ P (Bin(nm, p) ≤ 3nmp)

≥ 1 − exp

(
−4nmp

3

)
= 1 − exp

(
−(1 + 𝜀)4𝑑m log n

3

)
. (35)

Hence, we will now aim to bound the probability that |𝜕+S ⧵ BS| ≤ 𝛿3nmp. We are interested in sets S
of (𝑑 − 1)-dimensional faces of size

m ≤
1

2

( n
𝑑

)
≤

n𝑑

2𝑑!
,

which implies that

nm
𝑑

(
1 − (m𝑑!)1∕𝑑

n
− o(1)

)
≥

nm
𝑑

(
1 − 2−1∕𝑑 − o(1)

)
.

Hence by (34), the random variable |(𝜕+S ⧵ BS) ∩ Y (𝑑)| is stochastically bounded from below by a

random variable distributed as Bin
(⌈ nm

𝑑

(
1 − 2−1∕𝑑 − o(1)

)⌉, p). Thus,

P
(|(𝜕+S ⧵ BS) ∩ Y (𝑑)| ≤ 𝛿3nmp

)
≤ P

(
Bin

(⌈nm
𝑑

(
1 − 2−1∕𝑑 − o(1)

)⌉
, p
)
≤ 𝛿3nmp

)
.
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Let

𝜇 =
⌈nm
𝑑

(
1 − 2−1∕𝑑 − o(1)

)⌉
p ≥ (1 + 𝜀)

(
1 − 2−1∕𝑑 − o(1)

)
m log n.

We have

𝜇 − 𝛿3nmp
𝜇

≥ 1 − 3𝛿𝑑

1 − 2−1∕𝑑 − o(1) > 0

for

𝛿 <
1 − 2−1∕𝑑

3𝑑
.

Hence, by the Chernoff bound (12) we obtain

P
(|(𝜕+S ⧵ BS) ∩ Y (𝑑)| ≤ 𝛿3nmp

)
≤ exp

(
−
(
1 − 2−1∕𝑑 − 3𝛿𝑑 − o(1)

)2

2
𝜇

)
. (36)

We shall consider two cases: 1. n𝑑(1−𝛼) ≤ m ≤
1

2

(
n
𝑑

)
, and 2. m < n𝑑(1−𝛼), for some 0 < 𝛼 < 1 to

be specified later.

Let us consider the case m ≥ n𝑑(1−𝛼) first. The number of sets S of size m is then at most

((
n
𝑑

)
m

)
≤

⎛⎜⎜⎝
e
(

n
𝑑

)
m

⎞⎟⎟⎠
m

≤ exp

(
m + m log

n𝑑

m

)
≤ exp

(
m + m log n𝛼𝑑

)
= exp ((1 + o(1))𝛼𝑑m log n) .

There are at most n𝑑 possible values of m in that region. Hence, if

𝛼 <
(1 + 𝜀)

(
1 − 2−1∕𝑑 − o(1)

) (
1 − 2−1∕𝑑 − 3𝛿𝑑 − o(1)

)2

2𝑑
,

then by (35), (36), and the union bound, we have that (30) holds with probability 1 − o(1) for all sets

S of size at least n𝑑(1−𝛼).

Next, we consider the case when m < n𝑑(1−𝛼), that is, when m1∕𝑑∕n < n−𝛼 . By (33) we have

|BS| = f𝑑+1(S) ≤ mn (m𝑑!)1∕𝑑
(𝑑 + 1)n

≤ mn1−𝛼 𝑑

𝑑 + 1
≤ mn1−𝛼.

So |BS ∩ Y (𝑑)| is stochastically bounded from above by a random variable that distributed as

Bin(⌊mn1−𝛼⌋, p). Let k0 = ⌈3mn1−𝛼∕2p⌉. By the Chernoff bound (11) we have that

P
(|BS ∩ Y (𝑑)| ≥ k0

)
≤ P

(
Bin(⌊mn1−𝛼⌋, p) ≥ (1 + 2n𝛼∕2)mn1−𝛼p

)
≤ exp

(
−4n𝛼n1−𝛼mp

3

)
= exp

(
−(1 + 𝜀)4𝑑m log n

3

)
. (37)
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By (34) and the fact that m = o(n𝑑) we obtain

𝑑∑
i=1

fi(S) ≥ (1 − o(1)) nm
𝑑

,

which implies that |(𝜕+S⧵BS)∩Y (𝑑)| stochastically dominates the Bin
(

nm
𝑑
(1 − o(1)) , p

)
distribution.

Since

k0 = o
(
E
[
Bin

(nm
𝑑

(1 − o(1)) , p
)])

,

we then have that

P
(|(𝜕+S ⧵ BS) ∩ Y (𝑑)| ≤ k0

)
≤ P

(
Bin

(nm
𝑑

(1 − o(1)) , p
)
≤ k0

)
=

k0∑
k=0

P
(

Bin
(nm

𝑑
(1 − o(1)) , p

)
= k

)
≤ 2k0P

(
Bin

(nm
𝑑

(1 − o(1)) , p
)
= k0

)
≤ 2k0

( nm
𝑑
(1 − o(1))

k0

)
pk0(1 − p)

nm
𝑑
(1−o(1))−k0

≤ 2k0

(
3nmp
𝑑k0

)k0

(1 − p)
nm
𝑑
(1−o(1))−k0

≤ 2k0

(
3nmp
𝑑k0

)k0

exp
(
−nmp

𝑑
(1 − o(1)) + k0p

)
= 2k0

(
3nmp
𝑑k0

)k0

exp (−(1 − o(1))(1 + 𝜀)m log n) . (38)

Now, (
3nmp
𝑑

)k0

= exp

(
k0 log

3nmp
𝑑

)
≤ exp

(
4𝑑m log n

n𝛼∕2
log(m log n)

)
= exp (o(m log n)) . (39)

Combining (37)–(39) together we obtain

P
(|(𝜕+S ⧵ BS) ∩ Y (𝑑)| ≥ |𝜕+S|∕2

)
≥ P

(|BS ∩ Y (𝑑)| ≤ k0 and |(𝜕+S ⧵ BS) ∩ Y (𝑑)| ≥ k0

)
≥ 1 − exp (−(1 − o(1))(1 + 𝜀)m log n) . (40)

The bound in (40) is not strong enough to apply it with the union bound over all sets S of size m.

However, we assumed that S is tightly connected and we will now exploit this assumption. We bound

the number of tightly connected sets S ∈ Y (𝑑−1) with |S| = m as follows. Order the set Y (𝑑−1) of

(𝑑 − 1)-faces in an arbitrary way; for example, identifying every face 𝜎 with an ordered tuple
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(v0, … , v𝑑−1), where v0 < · · · < v𝑑−1, we could order the faces increasingly in the lexicographic

order. We can pick the first face 𝜎 ∈ S in
(

n
𝑑

)
many ways. We then perform a breadth-first-search on

S: we first find all neighbors of 𝜎, that is, faces that share 𝑑 − 1 vertices with 𝜎. Exploring these faces

according to the selected order, we then find all yet unexplored faces that share 𝑑 − 1 vertices with

consecutive neighbors of 𝜎. Then, we move to the second neighborhood of 𝜎 and find all of their still

unexplored neighbors. Since, having picked 𝜎, we have to discover a total of m−1 faces and these will

be first found as one of the offspring of one of m faces, we see that there are at most
(

2m−2

m−1

)
≤ 4m many

ways to assign the numbers of offspring to consecutive faces (a collection of m nonnegative integers

which sum up to m − 1).

Any (𝑑 − 1)-dimensional face 𝜎 has at most 𝑑n neighbors, as we have d vertices in 𝜎 we can drop,

and at most n vertices not in 𝜎 can be added to form the neighbor. Hence, for any choice of the numbers

of neighbors first explored by consecutive faces, there are at most (𝑑n)m ways to pick these neighbors.

Thus, the number of tightly connected sets of size m is at most

4m(𝑑n)m = exp((1 + o(1))m log n).

As again the number of values of m we have to consider is at most n𝑑 , by (40) and the union bound we

see that with probability 1− o(1), (30) holds for all sets S with |S| ≤ n𝑑(1−𝛼). This completes the proof

of Theorem 10. ▪

We can now easily show that the assumption that S is tightly connected can be dropped in

Theorem 10 yielding a lower bound on ΦY(n,p;𝑑) and completing the proof of Theorem 3.

Corollary 1. Let Y = Y(n, p; 𝑑) with np = (1 + 𝜀)𝑑 log n for 𝜀 > 0 fixed. There exists 𝛿 > 0 such
that w.h.p. the following holds. For any set S ⊂ Y (𝑑−1) we have

|(𝜕+S ⧵ BS) ∩ Y (𝑑)| ≥ 𝛿|𝜕+S ∩ Y (𝑑)|. (41)

Proof. First, observe that if U,V are distinct maximal tightly connected sets in Y (𝑑−1) then 𝜕+U ∩
𝜕+V = ∅. Indeed, if 𝜌 ∈ 𝜕+U ∩ 𝜕+V then there exist 𝜎1 ∈ U, 𝜎2 ∈ V such that |𝜌∩ 𝜎1| = |𝜌∩ 𝜎2| = 𝑑,

but that implies |𝜎1 ∩ 𝜎2| = 𝑑 − 1, so 𝜎1, 𝜎2 are incident; a contradiction.

Hence, let S be a union of maximal tightly connected sets S1, … , Sp. For 1 ≤ i ≤ p, let

Bi = {𝜌 ∈ 𝜕+Si ∶ 𝜕𝜌 ⊂ Si}

and B = ∪p
i=1Bi. Set 𝛼i = |(𝜕+Si ∩ Y (𝑑)) ⧵ Bi| and 𝛽i = |𝜕+Si ∩ Y (𝑑)|. By Theorem 10 with probability

1 − o(1) we have 𝛼i∕𝛽i ≥ 𝛿 for all i.
Now observe that a, b, c, 𝑑 > 0 and a∕b > c∕𝑑 implies a > cb∕𝑑 and therefore

a + c
b + 𝑑

>
c b
𝑑
+ c

b + 𝑑
=

c b+𝑑
𝑑

b + 𝑑
= c

𝑑
.

Thus by the disjointness of the sets 𝜕+S1, … , 𝜕+Sp we deduce that with probability 1 − o(1) we have

|(𝜕+S ∩ Y (𝑑)) ⧵ B||𝜕+S ∩ Y (𝑑)| ≥ min
1≤i≤p

𝛼i
𝛽i

≥ 𝛿.

This completes the proof. ▪
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6 CONCLUSIONS

This paper is a study of various measures of expansion in the Linial–Meshulam random complex

Y(n, p; 𝑑) past the cohomological connectivity threshold. We considered the spectral gap of the combi-

natorial Laplace operator and showed that w.h.p. it is very close to the the Cheeger constant associated

with the simplicial complex. Furthermore, we showed that both quantities are w.h.p. very close to the

minimum co-degree of the random simplicial complex. We determined explicitly the latter using the

large deviations theory of the binomial distribution.

Finally, we considered a random walk on the (𝑑−1)-faces of the random simplicial complex, which

generalizes the standard random walk on graphs. In particular, we considered the conductance of such

a random walk and showed that w.h.p. it is bounded away from zero.

The above results were obtained for p such that np = (1+𝜀)𝑑 log n, for any 𝜀 > 0 fixed. Our proofs

seem to work when 𝜀 = 𝜀(n) → 0 as n → ∞ slowly enough. A natural next step would be to consider

these quantities for p that is closer to the threshold 𝑑 log n∕n. Indeed, the supercritical regime is for

p such that np = 𝑑 log n + 𝜔(n), where 𝜔(n) → ∞ as n → ∞ arbitrarily slowly. We believe it would

be interesting to extend the analysis to this range of p as well. This would complete the picture of the

evolution of the expansion properties of Y(n, p; 𝑑).
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20. P. Erdős and A. Rényi, On the evolution of random graphs, Bull. Int. Stat. Inst. Tokyo 38 (1961), 343–347.

21. U. Feige and E. Ofek, Spectral techniques applied to sparse random graphs, Random Struct. Algorithms 27 (2005),

251–275.

22. M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973), 298–305.

23. N. Fountoulakis and B. Reed, The evolution of the mixing rate of a simple random walk on the giant component of
a random graph, Random Struct. Algorithms 33 (2008), 68–86.

24. J. Friedman and N. Pippenger, Expanding graphs contain all small trees, Combinatorica 7 (1987), 71–76.

25. Z. Füredi and J. Komlós, The eigenvalues of random symmetric matrices, Combinatorica 1 (1981), 233–241.

26. H. Garland, p-Adic curvature and the cohomology of discrete subgroups of p-adic groups, Ann. Math. 97 (1973),

375–423.

27. E. N. Gilbert, Random graphs, Ann. Math. Stat. 30 (1959), 1141–1144.

28. A. Gundert and M. Szedlák, Higher dimensional Cheeger inequalities, J. Comput. Geom. 6 (2015), 54–71.

29. A. Gundert and U. Wagner, On eigenvalues of random complexes, Israel J. Math. 216 (2016), 545–582.

30. C. Hoffman, M. Kahle, and E. Paquette, The threshold for integer homology in random 𝑑-complexes, Discrete

Comput. Geometr. 57 (2017), 810–823.

31. C. Hoffman, M. Kahle, and E. Paquette, Spectral gaps of random graphs and applications, Int. Math. Res. Notice

2021 (2021), 8353–8404.

32. D. Horak and J. Jost, Spectra of combinatorial Laplace operators on simplicial complexes, Adv. Math. 244 (2013),

303–336.

33. M. Jerrum and A. Sinclair, Approximating the permanent, SIAM J. Comput. 18 (1989), 1149–1178.

34. M. Kahle and B. Pittel, Inside the critical window for cohomology of random k-complexes, Random Struct.

Algorithms 48 (2016), 102–124.

35. A. Knowles and R. Rosenthal, Eigenvalue confinement and spectral gap for random simplicial complexes, Random

Struct. Algorithms 51 (2017), 506–537.

36. T. Kolokolnikov, B. Osting, and J. Von Brecht. Algebraic connectivity of Erdős-Rényi graphs near the connectivity
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