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Predicative Aspects of Order Theory in
Univalent Foundations
Tom de Jong #Ñ

University of Birmingham, UK

Martín Hötzel Escardó #Ñ

University of Birmingham, UK

Abstract
We investigate predicative aspects of order theory in constructive univalent foundations. By predicat-
ive and constructive, we respectively mean that we do not assume Voevodsky’s propositional resizing
axioms or excluded middle. Our work complements existing work on predicative mathematics by
exploring what cannot be done predicatively in univalent foundations. Our first main result is that
nontrivial (directed or bounded) complete posets are necessarily large. That is, if such a nontrivial
poset is small, then weak propositional resizing holds. It is possible to derive full propositional
resizing if we strengthen nontriviality to positivity. The distinction between nontriviality and
positivity is analogous to the distinction between nonemptiness and inhabitedness. We prove our
results for a general class of posets, which includes directed complete posets, bounded complete
posets and sup-lattices, using a technical notion of a δV -complete poset. We also show that nontrivial
locally small δV -complete posets necessarily lack decidable equality. Specifically, we derive weak
excluded middle from assuming a nontrivial locally small δV -complete poset with decidable equality.
Moreover, if we assume positivity instead of nontriviality, then we can derive full excluded middle.
Secondly, we show that each of Zorn’s lemma, Tarski’s greatest fixed point theorem and Pataraia’s
lemma implies propositional resizing. Hence, these principles are inherently impredicative and a
predicative development of order theory must therefore do without them. Finally, we clarify, in
our predicative setting, the relation between the traditional definition of sup-lattice that requires
suprema for all subsets and our definition that asks for suprema of all small families.
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1 Introduction

We investigate predicative aspects of order theory in constructive univalent foundations.
By predicative and constructive, we respectively mean that we do not assume Voevodsky’s
propositional resizing axioms [26, 27] or excluded middle. Our work is situated in our
larger programme of developing domain theory constructively and predicatively in univalent
foundations. In previous work [12], we showed how to give a constructive and predicative
account of many familiar constructions and notions in domain theory, such as Scott’s
D∞ model of untyped λ-calculus and the theory of continuous dcpos. The present work
complements this and other existing work on predicative mathematics (e.g. [2, 21, 6]) by
exploring what cannot be done predicatively, as in [7, 8, 9, 10, 11]. We do so by showing
that certain statements crucially rely on resizing axioms in the sense that they are equivalent
to them. Such arguments are important in constructive mathematics. For example, the
constructive failure of trichotomy on the real numbers is shown [4] by reducing it to a
nonconstructive instance of excluded middle.
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8:2 Predicative Aspects of Order Theory in UF

Our first main result is that nontrivial (directed or bounded) complete posets are ne-
cessarily large. In [12] we observed that all our examples of directed complete posets have
large carriers. We show here that this is no coincidence, but rather a necessity, in the
sense that if such a nontrivial poset is small, then weak propositional resizing holds. It is
possible to derive full propositional resizing if we strengthen nontriviality to positivity in
the sense of [19]. The distinction between nontriviality and positivity is analogous to the
distinction between nonemptiness and inhabitedness. We prove our results for a general class
of posets, which includes directed complete posets, bounded complete posets and sup-lattices,
using a technical notion of a δV -complete poset. We also show that nontrivial locally small
δV -complete posets necessarily lack decidable equality. Specifically, we can derive weak
excluded middle from assuming the existence of a nontrivial locally small δV -complete poset
with decidable equality. Moreover, if we assume positivity instead of nontriviality, then we
can derive full excluded middle.

Secondly, we prove that each of Zorn’s lemma, Tarski’s greatest fixed point theorem
and Pataraia’s lemma implies propositional resizing. Hence, these principles are inherently
impredicative and a predicative development of order theory in univalent foundations must
thus forgo them.

Finally, we clarify, in our predicative setting, the relation between the traditional definition
of sup-lattice that requires suprema for all subsets and our definition that asks for suprema
of all small families. This is important in practice in order to obtain workable definitions of
dcpo, sup-lattice, etc. in the context of predicative univalent mathematics.

Our foundational setup is the same as in [12], meaning that our work takes places in
intensional Martin-Löf Type Theory and adopts the univalent point of view [24]. This means
that we work with the stratification of types as singletons, propositions (or subsingletons
or truth values), sets, 1-groupoids, etc., and that we work with univalence. At present,
higher inductive types other than propositional truncation are not needed. Often the only
consequences of univalence needed here are functional and propositional extensionality. An
exception is Section 2.3. Full details of our univalent type theory are given at the start
of Section 2.

Related work

Curi investigated the limits of predicative mathematics in CZF [2] in a series of papers [7, 8,
9, 10, 11]. In particular, Curi shows (see [7, Theorem 4.4 and Corollary 4.11], [8, Lemma 1.1]
and [9, Theorem 2.5]) that CZF cannot prove that various nontrivial posets, including
sup-lattices, dcpos and frames, are small. This result is obtained by exploiting that CZF is
consistent with the anti-classical generalized uniformity principle GUP [25, Theorem 4.3.5].
Our related Theorem 35 is of a different nature in two ways. Firstly, our theorem is in the
spirit of reverse constructive mathematics [18]: Instead of showing that GUP implies that
there are no non-trivial small dcpos, we show that the existence of a non-trivial small dcpo
is equivalent to weak propositional resizing, and that the existence of a positive small dcpo
is equivalent to full propositional resizing. Thus, if we wish to work with small dcpos, we
are forced to assume resizing axioms. Secondly, we work in univalent foundations rather
than CZF. This may seem a superficial difference, but a number of arguments in Curi’s
papers [9, 10] crucially rely on set-theoretical notions and principles such as transitive set,
set-induction, weak regular extension axiom wREA, which cannot even be formulated in the
underlying type theory of univalent foundations. Moreover, although Curi claims that the
arguments of [7, 8] can be adapted to some version of Martin-Löf Type Theory, it is presently
not known whether there is any model of univalent foundations which validates GUP.
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Organization

Section 2: Foundations and size matters, including impredicativity, relation to excluded
middle, univalence and closure under embedded retracts. Section 3: Nontrivial and positive
δV -complete posets and reductions to impredicativity and excluded middle. Section 4:
Predicative invalidity of Zorn’s lemma, Tarski’s fixed point theorem and Pataraia’s lemma.
Section 5: Comparison of completeness w.r.t. families and w.r.t. subsets. Section 6: Conclusion
and future work.

2 Foundations and Size Matters

We work with a subset of the type theory described in [24] and we mostly adopt the
terminological and notational conventions of [24]. We include + (binary sum), Π (dependent
products), Σ (dependent sum), Id (identity type), and inductive types, including 0 (empty
type), 1 (type with exactly one element ⋆ : 1), N (natural numbers). We assume a universe
U0 and two operations: for every universe U a successor universe U+ with U : U+, and
for every two universes U and V another universe U ⊔ V such that for any universe U , we
have U0 ⊔ U ≡ U and U ⊔ U+ ≡ U+. Moreover, (−) ⊔ (−) is idempotent, commutative,
associative, and (−)+ distributes over (−) ⊔ (−). We write U1 :≡ U+

0 , U2 :≡ U+
1 , . . . and

so on. If X : U and Y : V, then X + Y : U ⊔ V and if X : U and Y : X → V, then the
types Σx:XY (x) and Πx:XY (x) live in the universe U ⊔ V ; finally, if X : U and x, y : X, then
IdX(x, y) : U . The type of natural numbers N is assumed to be in U0 and we postulate
that we have copies 0U and 1U in every universe U . We assume function extensionality and
propositional extensionality tacitly, and univalence explicitly when needed. Finally, we use a
single higher inductive type: the propositional truncation of a type X is denoted by ∥X∥
and we write ∃x:XY (x) for ∥

∑
x:X Y (x)∥.

2.1 The Notion of Size
We introduce the fundamental notion of a type having a certain size and specify the
impredicativity axioms under consideration (Section 2.2). We also note the relation to
excluded middle (Section 2.2) and univalence (Section 2.3). Finally in Section 2.4 we review
embeddings and sections and establish our main technical result on size, namely that having
a certain size is closed under retracts whose sections are embeddings.

▶ Definition 1 (Size, UF-Slice.html in [16]). A type X in a universe U is said to have size V
if it is equivalent to a type in the universe V. That is, X has-size V :≡

∑
Y :V(Y ≃ X).

2.2 Impredicativity and Excluded Middle
We consider various impredicativity axioms and their relation to (weak) excluded middle.
The definitions and propositions below may be found in [15, Section 3.36], so proofs are
omitted here.

▶ Definition 2 (Impredicativity axioms).
(i) By Propositional-ResizingU,V we mean the assertion that every proposition P in a

universe U has size V.
(ii) The type of all propositions in a universe U is denoted by ΩU . Observe that ΩU : U+.

We write Ω -ResizingU,V for the assertion that the type ΩU has size V.

FSCD 2021
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(iii) The type of all ¬¬-stable propositions in a universe U is denoted by Ω¬¬
U , where a

proposition P is ¬¬-stable if ¬¬P implies P . By Ω¬¬ -ResizingU,V we mean the
assertion that the type Ω¬¬

U has size V.
(iv) For the particular case of a single universe, we write Ω -ResizingU and Ω¬¬ -ResizingU

for the respective assertions that ΩU has size U and Ω¬¬
U has size U .

▶ Proposition 3.
(i) The principle Ω -ResizingU,V implies Propositional-ResizingU,V for every two universes

U and V.
(ii) The conjunction of Propositional-ResizingU,V and Propositional-ResizingV,U implies

Ω -ResizingU,V+ for every two universes U and V.
It is possible to define a weaker variation of propositional resizing for ¬¬-stable propositions
only (and derive similar connections), but we don’t have any use for it in this paper.

▶ Definition 4 ((Weak) excluded middle).
(i) Excluded middle in a universe U asserts that for every proposition P in U either

P or ¬P holds.
(ii) Weak excluded middle in a universe U asserts that for every proposition P in U either

¬P or ¬¬P holds.
We note that weak excluded middle says precisely that ¬¬-stable propositions are decidable
and is equivalent to de Morgan’s Law.

▶ Proposition 5. Excluded middle implies impredicativity. Specifically,
(i) Excluded middle in U implies Ω -ResizingU,U0 .
(ii) Weak excluded middle in U implies Ω¬¬ -ResizingU,U0 .

2.3 Size and Univalence
Assuming univalence we can prove that Propositional-ResizingU,V and Ω -ResizingU,V are
subsingletons. More generally, univalence allows us to prove that the statement that X has
size V is a proposition, which is needed in Section 3.5.

▶ Proposition 6 (cf. has-size-is-subsingleton in [15]). If V and U ⊔ V are univalent
universes, then X has-size V is a proposition for every X : U .

The converse also holds in the following form.

▶ Proposition 7. The type X has-size U is a proposition for every X : U if and only if U is
a univalent universe.

Proof. Note that X has-size U is
∑

Y :U Y ≃ X, so this can be found in [15, Section 3.14]. ◀

2.4 Size and Retracts
We show our main technical result on size here, namely that having a size is closed under
retracts whose sections are embeddings.

▶ Definition 8 (Sections, retractions and embeddings).
(i) A section is a map s : X → Y together with a left inverse r : Y → X, i.e. the maps

satisfy r ◦ s ∼ id. We call r the retraction and say that X is a retract of Y .
(ii) A function f : X → Y is an embedding if the map apf : (x = y) → (f(x) = f(y)) is an

equivalence for every x, y : X. (See [24, Definition 4.6.1(ii)].)
(iii) A section-embedding is a section s : X → Y that moreover is an embedding. We also

say that X is an embedded retract of Y .
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We recall the following facts about embeddings and sections.

▶ Lemma 9.
(i) A function f : X → Y is an embedding if and only if all its fibres are subsingletons,

i.e.
∏

y:Y is-subsingleton(fibf (y)). (See [24, Proof of Theorem 4.6.3].)
(ii) If every section is an embedding, then every type is a set. (See [22, Remark 3.11(2)].)
(iii) Sections to sets are embeddings. (See [15, lc-maps-into-sets-are-embeddings].)

In phrasing our results it is helpful to extend the notion of size from types to functions.

▶ Definition 10 (Size (for functions), UF-Slice.html in [16]). A function f : X → Y is said
to have size V if every fibre has size V.

▶ Lemma 11 (cf. UF-Slice.html in [16]).
(i) A type X has size V if and only if the unique map X → 1U0 has size V.
(ii) If f : X → Y has size V and Y has size V, then so does X.
(iii) If s : X → Y is a section-embedding and Y has size V, then s has size V too, regardless

of the size of X.

Proof. The first two claims follow from the fact that for any map f : X → Y we have an
equivalence X ≃

∑
y:Y fibf (y) (see [24, Lemma 4.8.2]). For the third claim, suppose that

s : X → Y an embedding with retraction r : Y → X. By the second part of the proof of
Theorem 3.10 in [22], we have fibs(y) ≃ ∥s(r(y)) = y∥, from which the claim follows. ◀

▶ Lemma 12.
(i) If X is an embedded retract of Y and Y has size V, then so does X.
(ii) If X is a retract of a set Y and Y has size V, then so does X.

Proof. The first statement follows from (ii) and (iii) of Lemma 11. The second follows from
the first and item (iii) of Lemma 9. ◀

3 Large Posets Without Decidable Equality

We show that constructively and predicatively many structures from order theory (directed
complete posets, bounded complete posets, sup-lattices) are necessarily large and necessarily
lack decidable equality. We capture these structures by a technical notion of a δV -complete
poset in Section 3.1. In Section 3.2 we define when such structures are nontrivial and introduce
the constructively stronger notion of positivity. Section 3.3 and Section 3.4 contain the two
fundamental technical lemmas and the main theorems, respectively. Finally, Section 3.5
considers alternative formulations of being nontrivial and positive that ensure that these
notions are properties, as opposed to data and shows how the main theorems remain valid,
assuming univalence.

3.1 δV-complete Posets
We start by introducing a class of weakly complete posets that we call δV -complete posets.
The notion of a δV -complete poset is a technical and auxiliary notion sufficient to make our
main theorems go through. The important point is that many familiar structures (dcpos,
bounded complete posets, sup-lattices) are δV -complete posets (see Examples 15).
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▶ Definition 13 (δV -complete poset, δx,y,P ,
∨
δx,y,P ). A poset is a type X with a subsingleton-

valued binary relation ⊑ on X that is reflexive, transitive and antisymmetric. It is not
necessary to require X to be a set, as this follows from the other requirements. A poset (X,⊑)
is δV -complete for a universe V if for every pair of elements x, y : X with x ⊑ y and every
subsingleton P in V, the family

δx,y,P : 1 + P → X

inl(⋆) 7→ x;
inr(p) 7→ y;

has a supremum
∨
δx,y,P in X.

▶ Remark 14 (Every poset is δV -complete, classically). Consider a poset (X,⊑) and a pair of
elements x ⊑ y. If P : V is a decidable proposition, then we can define the supremum of
δx,y,P by case analysis on whether P holds or not. For if it holds, then the supremum is y,
and if it does not, then the supremum is x. Hence, if excluded middle holds in V, then the
family δx,y,P has a supremum for every P : V. Thus, if excluded middle holds in V, then
every poset (in any universe) is δV -complete.
The above remark naturally leads us to ask whether the converse also holds, i.e. if every
poset is δV -complete, does excluded middle in V hold? As far as we know, we can only get
weak excluded middle in V, as we will later see in Proposition 18. This proposition also
shows that in the absence of excluded middle, the notion of δV -completeness isn’t trivial.
For now, we focus on the fact that, also constructively and predicatively, there are many
examples of δV -complete posets.

▶ Examples 15.
(i) Every V-sup-lattices is δV -complete. That is, if a poset X has suprema for all families

I → X with I in the universe V, then X is δV -complete.
(ii) The V-sup-lattice ΩV is δV -complete. The type ΩV of propositions in V is a V-sup-lattice

with the order given by implication and suprema by existential quantification. Hence,
ΩV is δV-complete. Specifically, given propositions Q, R and P , the supremum of
δQ,R,P is given by Q ∨ (R× P ).

(iii) The V-powerset PV(X) :≡ X → ΩV of a type X is δV-complete. Note that PV(X) is
another example of a V-sup-lattice (ordered by subset inclusion and with suprema given
by unions) and hence δV -complete.

(iv) Every V-bounded complete posets is δV-complete. That is, if (X,⊑) is a poset with
suprema for all bounded families I → X with I in the universe V, then (X,⊑) is
δV-complete. A family α : I → X is bounded if there exists some x : X with α(i) ⊑ x

for every i : I. For example, the family δx,y,P is bounded by y.
(v) Every V-directed complete poset (dcpo) is δV -complete, since the family δx,y,P is directed.

We note that [12] provides a host of examples of V-dcpos.

3.2 Nontrivial and Positive Posets
In Remark 14 we saw that if we can decide a proposition P , then we can define

∨
δx,y,P by

case analysis. What about the converse? That is, if δx,y,P has a supremum and we know
that it equals x or y, can we then decide P? Of course, if x = y, then

∨
δx,y,P = x = y, so

we don’t learn anything about P . But what if add the assumption that x ̸= y? It turns
out that constructively we can only expect to derive decidability of ¬P in that case. This
is due to the fact that x ̸= y is a negated proposition, which is rather weak constructively,
leading us to later define (see Definition 20) a constructively stronger notion for elements of
δV -complete posets.
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▶ Definition 16 (Nontrivial). A poset (X,⊑) is nontrivial if we have designated x, y : X with
x ⊑ y and x ̸= y.

▶ Lemma 17. Let (X,⊑, x, y) be a nontrivial poset. We have the following implications for
every proposition P : V:

(i) if the supremum of δx,y,P exists and x =
∨
δx,y,P , then ¬P is the case.

(ii) if the supremum of δx,y,P exists and y =
∨
δx,y,P , then ¬¬P is the case.

Proof. Let P : V be an arbitrary proposition. For (i), suppose that x =
∨
δx,y,P and assume

for a contradiction that we have p : P . Then y ≡ δx,y,P (inr(p)) ⊑
∨
δx,y,P = x, which is

impossible by antisymmetry and our assumptions that x ⊑ y and x ̸= y. For (ii), suppose
that y =

∨
δx,y,P and assume for a contradiction that ¬P holds. Then x =

∨
δx,y,P = y,

contradicting our assumption that x ̸= y. ◀

▶ Proposition 18 (cf. Section 4 of [12]). Let 2 be the poset with exactly two elements 0 ⊑ 1.
If 2 is δV -complete, then weak excluded middle in V holds.

Proof. Suppose that 2 were δV -complete and let P : V be an arbitrary subsingleton. We
must show that ¬P is decidable. Since 2 has exactly two elements, the supremum

∨
δ0,1,P

must be 0 or 1. But then we apply Lemma 17 to get decidability of ¬P . ◀

That the conclusion of the implication in Lemma 17(ii) cannot be strengthened to say that
P is the case is shown by the following observation.

▶ Proposition 19. Recall Examples 15, which show that ΩV is δV -complete. If for every two
propositions Q and R with Q ⊑ R and Q ̸= R we have that the equality R =

∨
δQ,R,P in ΩV

implies P for every proposition P : V, then excluded middle in V follows.

Proof. Assume the hypothesis in the proposition. We are going to show that ¬¬P → P for
every proposition P : V , from which excluded middle in V holds. Let P be a proposition in V
and assume that ¬¬P . This yields 0 ̸= P , so by assumption the equality P =

∨
δ0,P,P implies

P . But, recalling item (ii) of Examples 15, we have exactly this equality
∨
δ0,P,P = P . ◀

We have seen that having a pair of elements x, y with x ⊑ y and x ̸= y is very weak con-
structively. As promised in the introduction of this section, we now introduce a constructively
stronger notion.

▶ Definition 20 (Strictly below, x ⊏ y). Let (X,⊑) be a δV-complete poset and x, y : X.
We say that x is strictly below y if x ⊑ y and, moreover, for every z ⊒ y and every proposition
P : V, the equality z =

∨
δx,z,P implies P .

Note that with excluded middle, x ⊏ y is equivalent to the conjunction of x ⊑ y and x ̸= y.
But constructively, the former is much stronger, as the following example and proposition
illustrate.

▶ Example 21 (Strictly below in ΩV). Recall from Examples 15 that ΩV is δV -complete. Let
P : V be an arbitrary proposition. Observe that 0V ̸= P precisely when ¬¬P holds. However,
0V is strictly below P if and only if P holds.

▶ Proposition 22. For a δV -complete poset (X,⊑) and x, y : X, we have that x ⊏ y implies
both x ⊑ y and x ̸= y. However, if the conjunction of x ⊑ y and x ̸= y implies x ⊏ y for
every x, y : ΩV , then excluded middle in V holds.

FSCD 2021
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Proof. Note that x ⊏ y implies x ⊑ y by definition. Now suppose that x ⊏ y and assume
x = y for a contradiction. Since we assumed x ⊏ y, the equality y =

∨
δx,y,0V implies that

0V holds. But this equality holds since x = y by our other assumption, so x ̸= y, as desired.
For P : ΩV we observed that 0V ̸= P is equivalent to ¬¬P and that 0V ⊏ P is equivalent

to P , so if we had ((x ⊑ y) × (x ̸= y)) → x ⊏ y in general, then we would have ¬¬P → P

for every proposition P in V, which is equivalent to excluded middle in V. ◀

▶ Lemma 23. Let (X,⊑) be a δV -complete poset and x, y, z : X. The following hold:
(i) If x ⊑ y ⊏ z, then x ⊏ z.
(ii) If x ⊏ y ⊑ z, then x ⊏ z.

Proof. For (i), assume x ⊑ y ⊏ z, let P be an arbitrary proposition in V and suppose that
z ⊑ w. We must show that w =

∨
δx,w,P implies P . But y ⊏ z, so we know that the

equality w =
∨
δy,w,P implies P . Now observe that

∨
δx,w,P ⊑

∨
δy,w,P , so if w =

∨
δx,w,P ,

then w =
∨
δy,w,P , finishing the proof. For (ii), assume x ⊏ y ⊑ z, let P be an arbitrary

proposition in V and suppose that z ⊑ w. We must show that w =
∨
δx,w,P implies P . But

x ⊏ y and y ⊑ w, so this follows immediately. ◀

▶ Proposition 24. Let (X,⊑) be a V-sup-lattice and let y : X. The following are equivalent:
(i) the least element of X is strictly below y;
(ii) for every family α : I → X with I : V and y ⊑

∨
α, there exists some element i : I.

(iii) there exists some x : X with x ⊏ y.

Proof. Write ⊥ for the least element of X. By Lemma 23 we have:

⊥ ⊏ y ⇐⇒ ∃x:X(⊥ ⊑ x ⊏ y) ⇐⇒ ∃x:X(x ⊏ y),

which proves the equivalence of (i) and (iii). It remains to prove that (i) and (ii) are equivalent.
Suppose that ⊥ ⊏ y and let α : I → X with y ⊑

∨
α. Using ⊥ ⊏ y ⊑

∨
α and Lemma 23, we

have ⊥ ⊏
∨
α. Hence, we only need to prove

∨
α ⊑

∨
δ⊥,

∨
α,∃i:I , but αj ⊑

∨
δ⊥,

∨
α,∃i:I for

every j : I, so this is true indeed. For the converse, assume that y satisfies (ii), suppose z ⊒ y

and let P : V be a proposition such that z =
∨
δ⊥,z,P . We must show that P holds. But

notice that y ⊑ z =
∨
δ⊥,z,P =

∨
((p : P ) 7→ z), so P must be inhabited as y satisfies (ii). ◀

Item (ii) in Proposition 24 says exactly that y is a positive element in the sense of [19, p. 98].
We note that item (iii) in Proposition 24 makes sense even when (X,⊑) is not a V-sup-lattice,
but just a δV -complete poset. Accordingly, we make the following definition.

▶ Definition 25 (Positive element). An element of a δV -complete poset is positive if it satisfies
item (iii) in Proposition 24.

An element of a V-dcpo is called compact if it is inaccessible by directed joins of families
indexed by types in V [12, Definition 44].

▶ Proposition 26. A compact element x of a V-dcpo with least element ⊥ is positive if and
only if x ̸= ⊥.

Proof. One implication is taken care of by Proposition 22. For the converse, suppose that
x ̸= ⊥. We show that ⊥ is strictly below x. For if x ⊑ y =

∨
δ⊥,y,P , then by compactness of

x, there must exist i : 1 + P such that x ⊑ δ⊥,y,P (i) already. But i can’t be equal to inl(⋆),
since x is assumed to be different from ⊥. Hence, i = inr(p) and P must hold. ◀

Looking to strengthen the notion of a nontrivial poset, we make the following definition,
whose terminology is inspired by Definition 25.
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▶ Definition 27 (Positive poset). A δV-complete poset X is positive if we have designated
x, y : X with x strictly below y.

▶ Examples 28.
(i) Consider an element P of the δV-complete poset ΩV . The pair (0V , P ) witnesses

nontriviality of ΩV if and only if ¬¬P holds, while it witnesses positivity if and only if
P holds.

(ii) Consider the V-powerset PV(X) on a type X as a δV -complete poset (recall Examples 15).
We write ∅ : PV(X) for the map x 7→ 0V . Say that a subset A : PV(X) is nonempty
if A ̸= ∅ and inhabited if there exists some x : X such that A(x) holds. The pair
(∅, A) witnesses nontriviality of PV(X) if and only if A is nonempty, while it witnesses
positivity if and only if A is inhabited. In particular, PV(X) is positive if and only if
X is an inhabited type.

3.3 Retract Lemmas
We show that the type of propositions in V is a retract of any positive δV -complete poset and
that the type of ¬¬-stable propositions in V is a retract of any nontrivial δV -complete poset.

▶ Definition 29 (∆x,y : ΩV → X). Suppose that (X,⊑, x, y) is a nontrivial δV-complete
poset. We define ∆x,y : ΩV → X by the assignment P 7→

∨
δx,y,P .

We will often omit the subscripts in ∆x,y when it is clear from the context.

▶ Definition 30 (Locally small). A δV -complete poset (X,⊑) is locally small if its order has
values of size V, i.e. we have ⊑V : X → X → V with (x ⊑ y) ≃ (x ⊑V y) for every x, y : X.

▶ Examples 31.
(i) The V-sup-lattices ΩV and PV(X) (for X : V) are locally small.
(ii) All examples of V-dcpos in [12] are locally small.

▶ Lemma 32. A locally small δV -complete poset (X,⊑) is nontrivial, witnessed by elements
x ⊑ y, if and only if the composite Ω¬¬

V ↪→ ΩV
∆x,y−−−→ X is a section.

Proof. Suppose first that (X,⊑, x, y) is nontrivial and locally small. We define

r : X → Ω¬¬
V

z 7→ z ̸⊑V x.

Note that negated propositions are ¬¬-stable, so r is well-defined. Let P : V be an
arbitrary ¬¬-stable proposition. We want to show that r(∆x,y(P )) = P . By propositional
extensionality, establishing logical equivalence suffices. Suppose first that P holds. Then
∆x,y(P ) ≡

∨
δx,y,P = y, so r(∆x,y(P )) = r(y) ≡ (y ̸⊑V x) holds by antisymmetry and our

assumptions that x ⊑ y and x ̸= y. Conversely, assume that r(∆x,y(P )) holds, i.e. that we
have

∨
δx,y,P ̸⊑V x. Since P is ¬¬-stable, it suffices to derive a contradiction from ¬P . So

assume ¬P . Then x =
∨
δx,y,P , so r(∆x,y(P )) = r(x) ≡ x ̸⊑V x, which is false by reflexivity.

For the converse, assume that Ω¬¬
V ↪→ ΩV

∆x,y−−−→ X has a retraction r : Ω¬¬
V → X. Then

0V = r(∆x,y(0V)) = r(x) and 1V = r(∆x,y(1V)) = r(y), where we used that 0V and 1V are
¬¬-stable. Since 0V ̸= 1V , we get x ̸= y, so (X,⊑, x, y) is nontrivial, as desired. ◀

The appearance of the double negation in the above lemma is due to the definition of
nontriviality. If we instead assume a positive poset X, then we can exhibit all of ΩV as a
retract of X.
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▶ Lemma 33. A locally small δV-complete poset (X,⊑) is positive, witnessed by elements
x ⊑ y, if and only if for every z ⊒ y, the map ∆x,z : ΩV → X is a section.

Proof. Suppose first that (X,⊑, x, y) is positive and locally small and let z ⊒ y be arbitrary.
We define

rz : X 7→ ΩV

w 7→ z ⊑V w.

Let P : V be arbitrary proposition. We want to show that rz(∆x,z(P )) = P . Because of
propositional extensionality, it suffices to establish a logical equivalence between P and
rz(∆x,z(P )). Suppose first that P holds. Then ∆x,z(P ) = z, so rz(∆x,z(P )) = rz(z) ≡
(z ⊑V z) holds as well by reflexivity. Conversely, assume that rz(∆x,z(P )) holds, i.e. that we
have z ⊑V

∨
δx,z,P . Since

∨
δx,z,P ⊑ z always holds, we get z =

∨
δx,z,P by antisymmetry.

But by assumption and Lemma 23, the element x is strictly below z, so P must hold.
For the converse, assume that for every z ⊒ y, the map ∆x,z : ΩV → X has a retraction

rz : X → ΩV . We must show that the equality z = ∆x,z(P ) implies P for every z ⊒ y

and proposition P : V. Assuming z = ∆x,z(P ), we have 1V = rz(∆x,z(1V)) = rz(z) =
rz(∆x,z(P )) = P , so P must hold indeed. Hence, (X,⊑, x, y) is positive, as desired. ◀

3.4 Reductions to Impredicativity and Excluded Middle
We present our main theorems here, which show that, constructively and predicatively,
nontrivial δV -complete posets are necessarily large and necessarily lack decidable equality.

▶ Definition 34 (Small). A δV-complete poset is small if it is locally small and its carrier
has size V.

▶ Theorem 35.
(i) There is a nontrivial small δV -complete poset if and only if Ω¬¬ -ResizingV holds.
(ii) There is a positive small δV -complete poset if and only if Ω -ResizingV holds.

Proof. (i) Suppose that (X,⊑, x, y) is a nontrivial small δV -complete poset. By Lemma 32,
we can exhibit Ω¬¬

V as a retract of X. But X has size V by assumption, so by Lemma 12
and the fact that Ω¬¬

V is a set, the type Ω¬¬
V has size V as well. For the converse, note that

(Ω¬¬
V ,→, 0V , 1V) is a nontrivial V-sup-lattice with

∨
α given by ¬¬∃i:Iαi. And if we assume

Ω¬¬ -ResizingV , then it is small.
(ii) Suppose that (X,⊑, x, y) is a positive small poset. By Lemma 33, we can exhibit

ΩV as a retract of X. But X has size V by assumption, so by Lemma 12 and the fact that
ΩV is a set, the type ΩV has size V as well. For the converse, note that (ΩV ,→, 0V , 1V) is a
positive V-sup-lattice. And if we assume Ω -ResizingV , then it is small. ◀

▶ Lemma 36 (retract-is-discrete and subtype-is-¬¬-separated in [16]).
(i) Types with decidable equality are closed under retracts.
(ii) Types with ¬¬-stable equality are closed under retracts.

▶ Theorem 37. There is a nontrivial locally small δV -complete poset with decidable equality
if and only if weak excluded middle in V holds.

Proof. Suppose that (X,⊑, x, y) is a nontrivial locally small δV -complete poset with decidable
equality. Then by Lemmas 32 and 36, the type Ω¬¬

V must have decidable equality too. But
negated propositions are ¬¬-stable, so this yields weak excluded middle in V. For the
converse, note that (Ω¬¬

V ,→, 0V , 1V) is a nontrivial V-sup-lattice that has decidable equality
if and only if weak excluded middle in V holds. ◀

https://www.cs.bham.ac.uk/~mhe/agda-new/DiscreteAndSeparated.html#retract-is-discrete
https://www.cs.bham.ac.uk/~mhe/agda-new/DiscreteAndSeparated.html#subtype-is-%C2%AC%C2%AC-separated
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▶ Theorem 38. The following are equivalent:
(i) There is a positive locally small δV -complete poset with ¬¬-stable equality.
(ii) There is a positive locally small δV -complete poset with decidable equality.
(iii) Excluded middle in V holds.

Proof. Note that (ii) ⇒ (i), so we are left to show that (iii) ⇒ (ii) and that (i) ⇒ (iii). For
the first implication, note that (ΩV ,→, 0V , 1V) is a positive V-sup-lattice that has decidable
equality if and only if excluded middle in V holds. To see that (i) implies (iii), suppose
that (X,⊑, x, y) is a positive locally small δV -complete poset with ¬¬-stable equality. Then
by Lemmas 33 and 36 the type ΩV must have ¬¬-stable equality. But this implies that
¬¬P → P for every proposition P in V which is equivalent to excluded middle in V. ◀

Lattices, bounded complete posets and dcpos are necessarily large and necessarily lack
decidable equality in our predicative constructive setting. More precisely,

▶ Corollary 39.
(i) There is a nontrivial small V-sup-lattice (or V-bounded complete poset or V-dcpo)

if and only if Ω¬¬ -ResizingV holds.
(ii) There is a positive small V-sup-lattice (or V-bounded complete poset or V-dcpo)

if and only if Ω -ResizingV holds.
(iii) There is a nontrivial locally small V-sup-lattice (or V-bounded complete poset or V-dcpo)

with decidable equality if and only if weak excluded middle in V holds.
(iv) There is a positive locally small V-sup-lattice (or V-bounded complete poset or V-dcpo)

with decidable equality if and only if excluded middle in V holds.

3.5 Unspecified Nontriviality and Positivity
The above notions of non-triviality and positivity are data rather than property. Indeed, a
nontrivial poset (X,⊑) is (by definition) equipped with two designated points x, y : X such
that x ⊑ y and x ̸= y. It is natural to wonder if the propositionally truncated versions of
these two notions yield the same conclusions. In this section we show that this is indeed the
case if we assume univalence. The need for the univalence assumption comes from the fact
that the notion of having a given size is property precisely if univalence holds, as shown in
Propositions 6 and 7.

▶ Definition 40 (Nontrivial/positive in an unspecified way). A poset (X,⊑) is nontrivial
in an unspecified way if there exist some elements x, y : X such that x ⊑ y and x ̸= y,
i.e. ∃x:X∃y:X((x ⊑ y) × (x ̸= y)). Similarly, we can define when a poset is positive in an
unspecified way by truncating the notion of positivity.

▶ Theorem 41. Suppose that the universes V and V+ are univalent.
(i) There is a small δV -complete poset that is nontrivial in an unspecified way if and only

if Ω¬¬ -ResizingV holds.
(ii) There is a small δV -complete poset that is positive in an unspecified way if and only if

Ω -ResizingV holds.

Proof. (i) Suppose that (X,⊑) is a δV -complete poset that is nontrivial in an unspecified
way. By Proposition 6 and univalence of V and V+, type Ω¬¬

V has-size V is a proposition.
By the universal property of the propositional truncation, in proving that Ω¬¬

V has-size V we
can therefore assume that are given points x, y : X with x ⊑ y and x ̸= y. The result then
follows from Theorem 35. (ii) By reduction to item (ii) of Theorem 35. ◀
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Similarly, we can prove the following theorems by reduction to Theorems 37 and 38.

▶ Theorem 42.
(i) There is a locally small δV -complete poset with decidable equality that is nontrivial in

an unspecified way if and only if weak excluded middle in V holds.
(ii) There is a locally small δV -complete poset with decidable equality that is positive in an

unspecified way if and only if excluded middle in V holds.

4 Maximal Points and Fixed Points

In this section we construct a particular example of a V-sup-lattice that will prove very useful
in studying the predicative validity of some well-known principles in order theory.

▶ Definition 43 (Lifting, cf. [14]). Fix a proposition PU in a universe U . Lifting PU with
respect to a universe V is defined by

LV(PU ) :≡
∑

Q:ΩV

(Q → PU ).

This is a subtype of ΩV and it is closed under V-suprema (in particular, it contains the
least element).

▶ Examples 44.
(i) If PU :≡ 0U , then LV(PU ) ≃

(∑
Q:ΩV

¬Q
)

≃
(∑

Q:ΩV
Q = 0V

)
≃ 1.

(ii) If PU :≡ 1U , then LV(PU ) ≡
(∑

Q:ΩV
(Q → 1U )

)
≃ ΩV .

What makes LV(PU ) useful is the following observation.

▶ Lemma 45. Suppose that the poset LV(PU ) has a maximal element Q : ΩV . Then PU
is equivalent to Q, which is the greatest element of LV(PU ). In particular, PU has size V.
Conversely, if PU is equivalent to a proposition Q : ΩV , then Q is the greatest element
of LV(PU ).

Proof. Suppose that LV(PU ) has a maximal element Q : ΩV . We wish to show that Q ≃ PU .
By definition of LV(PU ), we already have that Q → PU . So only the converse remains.
Therefore suppose that PU holds. Then, 1V is an element of LV(PU ). Obviously Q → 1V ,
but Q is maximal, so actually Q = 1V , that is, Q holds, as desired. Thus, Q ≃ PU .
It is then straightforward to see that Q is actually the greatest element of LV(PU ), since
LV(PU ) ≃

∑
Q′:ΩV

(Q′ → Q). For the converse, assume that PU is equivalent to a proposition
Q : ΩV . Then, as before, LV(PU ) ≃

∑
Q′:ΩV

(Q′ → Q), which shows that Q is indeed the
greatest element of LV(PU ). ◀

▶ Corollary 46. Let PU be a proposition in U . The V-sup-lattice LV(PU ) has all V-infima if
and only if PU has size V.

Proof. Suppose first that LV(PU ) has all V-infima. Then it must have a infimum for the
empty family 0V → LV(PU ). But this infimum must be the greatest element of LV(PU ). So
by Lemma 45 the proposition PU must have size V.

Conversely, suppose that PU is equivalent to a proposition Q : V . Then the infimum of a
family α : I → LV(PU ) with I : V is given by (Q× Πi:Iαi) : V. ◀

▶ Definition 47 (Zorn’s-LemmaV,U,T ). Let U , V and T be universes. Zorn’s-LemmaV,U,T
asserts that every pointed V-dcpo with carrier in U and order taking values in T (cf. [12])
has a maximal element.
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It important to note that Zorn’s lemma does not imply the Axiom of Choice in the absence
of excluded middle [3]. If it did, then the following would be useless, since the Axiom of
Choice implies excluded middle, which in turn implies propositional resizing.

▶ Theorem 48. Zorn’s-LemmaV,V+⊔U,V implies Propositional-ResizingU,V .

In particular, Zorn’s-LemmaV,V+,V implies Propositional-ResizingV+,V .

Proof. Suppose that Zorn’s-LemmaV,V+⊔U,V were true. Then LV(P ) : V+ ⊔U has a maximal
element for every P : ΩU . Hence, by Lemma 45, every P : ΩU has size V. ◀

We can also use Lemma 45 to show that the following version of Tarski’s fixed point
theorem [23] is not available predicatively.

▶ Definition 49 (Tarski’s-TheoremV,U,T ). The assertion Tarski’s-TheoremV,U,T says that
every monotone endofunction on a V-sup-lattice with carrier in a universe U and order taking
values in a universe T has a greatest fixed point.

▶ Theorem 50. Tarski’s-TheoremV,V+⊔U,V implies Propositional-ResizingU,V .

In particular, Tarski’s-TheoremV,V+,V implies Propositional-ResizingV+,V .

Proof. Suppose that Tarski’s-TheoremV,V+⊔U,V were true and let P : ΩU be arbitrary.
Consider the V-sup-lattice LV(P ) : V+ ⊔ U . By assumption, the identity map on this poset
has a greatest fixed point, but this must be the greatest element of LV(P ), which implies
that P has size V by Lemma 45. ◀

Another famous fixed point theorem, for dcpos this time, is due to Pataraia [20, 13]
which says that every monotone endofunction on a pointed dcpo has a least fixed point.
(A dcpo is called pointed if it has a least element.) A crucial step in proving Pataraia’s
theorem is the observation that every dcpo has a greatest monotone inflationary endofunction.
(An endomap f : X → X is inflationary when x ⊑ f(x) for every x : X.) We refer to this
intermediate result as Pataraia’s lemma.

▶ Definition 51 (Pataraia’s-LemmaV,U,T , Pataraia’s-TheoremV,U,T ).
(i) Pataraia’s-TheoremV,U,T says that every monotone endofunction on a pointed V-dcpo

with carrier in a universe U and order taking values in a universe T has a least
fixed point.

(ii) Pataraia’s-LemmaV,U,T says that every V-dcpo with carrier in a universe U and order
taking values in a universe T has a greatest monotone inflationary endofunction.

A careful analysis of the proof in [13, Section 2] shows that in our predicative setting we
can still prove that Pataraia’s-LemmaV,U⊔T ,U⊔T implies Pataraia’s-TheoremV,U,T . However,
Pataraia’s lemma is not available predicatively.

▶ Theorem 52. Pataraia’s-LemmaV,V+⊔U,V implies Propositional-ResizingU,V .

In particular, Pataraia’s-LemmaV,V+,V implies Propositional-ResizingV+,V .

Proof. Suppose that Pataraia’s-LemmaV,V+⊔U,V were true and let P : ΩU be arbitrary.
Consider the V-dcpo LV(P ) : V+ ⊔U . By assumption, it has a greatest monotone inflationary
endomap g : LV(P ) → LV(P ). We claim that g(0V) is a maximal element of LV(P ), which
would finish the proof by Lemma 45. So suppose that we have Q : LV(P ) with g(0V) ⊑ Q.
Then we must show that Q ⊑ g(0V). Define fQ : LV(P ) → LV(P ) by Q′ 7→ Q′ ∨ Q. Note
that fQ is monotone and inflationary, so that fQ ⊑ g. Hence, Q = fQ(0V) ⊑ g(0V), as
desired. ◀
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▶ Remark 53. For a single universe U , the usual proofs (see resp. [23] and [13, Section 2])
of Tarski’s-TheoremU,U,U , Pataraia’s-LemmaU,U,U and (hence) Pataraia’s-TheoremU,U,U are
also valid in our predicative setting. However, in light of Theorem 35, these statements are
not useful predicatively, because one would never be able to find interesting examples of
posets to apply the statements to.

Finally, we note that Zorn’s lemma implies Pataraia’s lemma with the following universe
parameters. Together with Theorem 52 this yields another proof that Zorn’s-LemmaV,V+,V
implies Propositional-ResizingV+,V .

▶ Lemma 54. Zorn’s-LemmaV,U⊔T ,U⊔T implies Pataraia’s-LemmaV,U,T .

Proof. Assume Zorn’s-LemmaV,U⊔T ,U⊔T and let D : U be V-dcpo with order taking values
in T . Consider the type MID of monotone and inflationary endomaps on D. We can order
these maps pointwise to get a V-dcpo with carrier and order taking values in U ⊔ T . Finally,
MID has a least element: the identity map. Hence, by our assumption, it has a maximal
element g : D → D. It remains to show that g is in fact the greatest element. To this end,
let f : D → D be an arbitrary monotone inflationary endomap on D. We must show that
f ⊑ g. Since f is inflationary, we have g ⊑ f ◦ g. So by maximality of g, we get g = f ◦ g.
But f is monotone and g is inflationary, so f ⊑ f ◦ g = g, finishing the proof. ◀

The answer to the question whether Pataraia’s theorem (or similarly, a least fixed point
theorem version of Tarki’s theorem) is inherently impredicative or (by contrast) does admit
a predicative proof has eluded us thus far.

5 Families and Subsets

In traditional impredicative foundations, completeness of posets is usually formulated using
subsets. For instance, dcpos are defined as posets D such that every directed subset D has
a supremum in D. Examples 15 are all formulated using small families instead of subsets.
While subsets are primitive in set theory, families are primitive in type theory, so this could
be an argument for using families above. However, that still leaves the natural question of
how the family-based definitions compare to the usual subset-based definitions, especially
in our predicative setting, unanswered. This section aims to answer this question. We first
study the relation between subsets and families predicatively and then clarify our definitions
in the presence of impredicativity. In our answers we will consider sup-lattices, but similar
arguments could be made for posets with other sorts of completeness, such as dcpos.

All Subsets

We first show that simply asking for completeness w.r.t. all subsets is not satisfactory from a
predicative viewpoint. In fact, we will now see that even asking for all subsets X → ΩT for
some fixed universe T is problematic from a predicative standpoint.

▶ Theorem 55. Let U and V be universes and fix a proposition PU : U . Recall LV(PU )
from Definition 43, which has V-suprema. Let T be any type universe. If LV(PU ) has
suprema for all subsets LV(PU ) → ΩT , then PU has size V independently of T .

Proof. Let T be a type universe and consider the subset S of LV(PU ) given by Q 7→ 1T .
Note that S has a supremum in LV(PU ) if and only if LV(PU ) has a greatest element, but
by Lemma 45, the latter is equivalent to PU having size V. ◀
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All Subsets Whose Total Spaces Have Size V

The proof above illustrates that if we have a subset S : X → ΩT , then there is no reason why
the total space

∑
x:X x ∈ S :≡

∑
x:X(S(x) holds) should have size T . In fact, for S(x) :≡ 1T

as above, the latter is equivalent to asking that X has size T .

▶ Definition 56 (Total space of a subset, T). Let T be a universe, X a type and S : X → ΩT
a subset of X. The total space of S is defined as T(S) :≡

∑
x:X x ∈ S.

A naive attempt to solve the problem described in Theorem 55 would be to stipulate
that a V-sup-lattice X should have suprema for all subsets S : X → ΩV for which T(S)
has size V. Somewhat less naively, we might be more liberal and ask for suprema of subsets
S : X → ΩU⊔V for which T(S) has size V . Here the carrier of X is in a universe U . Perhaps
surprisingly, even this more liberal definition is too weak to be useful as the following example
shows.

▶ Example 57 (Naturally occurring subsets whose total spaces are not necessarily small). Let X
be a poset with carrier in U and suppose that it has suprema for all (directed) subsets
S : X → ΩU⊔V for which T(S) has size V. Now let f : X → X be a Scott continuous
endofunction on X. We would want to construct the least fixed point of f as the supremum
of the directed subset S :≡ {⊥, f(⊥), f2(⊥), . . . }. Now, how do we show that its total space
T(S) ≡

∑
x:X(∃n:N x = fn(⊥)) has size V? A first guess might be that N ≃ T(S), which

would do the job. However, it’s possible that fm(⊥) = fm+1(⊥) for some natural number m,
which would mean that T(S) ≃ Fin(m) for the least such m. The problem is that in the
absence of decidable equality on X we might not be able to decide which is the case. But X
seldom has decidable equality, as we saw in Theorems 37 and 38.

▶ Remark 58. The example above also makes clear that it is undesirable to impose an
injectivity condition on families, as the family N → X,n 7→ fn(⊥) is not necessarily injective.
In fact, for every type X : U there is an equivalence between embeddings I ↪→ X with I : V
and subsets of X whose total spaces have size V, cf. [16, Slice.html].

All V-covered Subsets

The point of Example 57 is analogous to the difference between Bishop finiteness and
Kuratowski finiteness. Inspired by this, we make the following definition.

▶ Definition 59 (V-covered subset). Let X be a type, T a universe and S : X → ΩT a subset
of X. We say that S is V-covered for a universe V if we have a type I : V with a surjection
e : I ↠ T(S).

In the example above, the subset S :≡ {⊥, f(⊥), f2(⊥), . . . } is U0-covered, because
N ↠ T(S).

▶ Theorem 60. For X : U and any universe V we have an equivalence between V-covered
subsets X → ΩU⊔V and families I → X with I : V.

Proof. The forward map φ is given by (S, I, e) 7→ (I, pr1 ◦e). In the other direction, we
define ψ by mapping (I, α) to the triple (S, I, e) where S is the subset of X given by
S(x) :≡ ∃i:I x = α(i) and e : I ↠ T(S) is defined as e(i) :≡ (α(i), |(i, refl)|). The composite
φ ◦ ψ is easily seen to be equal to the identity. To show that ψ ◦ φ equals the identity, we
need the following intermediate result, which is proved using function extensionality and
path induction.
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▷ Claim. Let S, S′ : X → ΩU⊔V , e : I → T(S) and e′ : I → T(S′). If S = S′ and
pr1 ◦ e ∼ pr1 ◦ e′, then (S, e) = (S′, e′).

The result then follows from the claim using function extensionality and propositional
extensionality. ◀

▶ Corollary 61. Let X be a poset with carrier in U and let V be any universe. Then X has
suprema for all V-covered subsets X → ΩU⊔V if and only if X has suprema for all families
I → X with I : V.

Families and Subsets in the Presence of Impredicativity

Finally, we compare our family-based approach to the subset-based approach in the presence
of impredicativity.

▶ Theorem 62. Assume Ω -ResizingT ,U0 for every universe T . Then the following are
equivalent for a poset X in a universe U :

(i) X has suprema for all subsets;
(ii) X has suprema for all U-covered subsets;
(iii) X has suprema for all subsets whose total spaces have size U ;
(iv) X has suprema for all families I → X with I : U .

Proof. Clearly (i) ⇒ (ii) ⇒ (iii). We show that (iii) implies (i), which proves the equivalence
of (i)–(iii). Assume that X has suprema for all subsets whose total spaces have size U and
let S : X → ΩT be any subset of X. Using Ω -ResizingT ,U0 , the total space T(S) has size U .
So X has a supremum for S by assumption, as desired. Finally, (ii) and (iv) are equivalent
by Corollary 61. ◀

Notice that (iv) in Theorem 62 implies that X has suprema for all families I → X with
I : V and V such that V ⊔ U ≡ U . Typically, in the examples of [12] for instance, U :≡ U1
and V :≡ U0, so that V ⊔ U ≡ U holds. Thus, our V-families-based approach generalizes the
traditional subset-based approach.

6 Conclusion

Firstly, we have shown, constructively and predicatively, that nontrivial dcpos, bounded
complete posets and sup-lattices are all necessarily large and necessarily lack decidable
equality. We did so by deriving a weak impredicativity axiom or weak excluded middle
from the assumption that such nontrivial structures are small or have decidable equality,
respectively. Strengthening nontriviality to the (classically equivalent) positivity condition,
we derived a strong impredicativity axiom and full excluded middle.

Secondly, we proved that Zorn’s lemma, Tarski’s greatest fixed point theorem and
Pataraia’s lemma all imply impredicativity axioms. Hence, these principles are inherently
impredicative and a predicative development of order theory (in univalent foundations) must
thus do without them.

Thirdly, we clarified, in our predicative setting, the relation between the traditional
definition of a lattice that requires completeness with respect to subsets and our definition
that asks for completeness with respect to small families.

In future work, we wish to study the predicative validity of Pataraia’s theorem and Tarski’s
least fixed point theorem. Curi [9, 10] develops predicative versions of Tarki’s fixed point
theorem in some extensions of CZF. It is not clear whether these arguments could be adapted
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to univalent foundations, because they rely on the set-theoretical principles discussed in the
introduction. The availability of such fixed-point theorems would be especially useful for
application to inductive sets [1], which we might otherwise introduce in univalent foundations
using higher inductive types [24]. In another direction, we have developed a notion of
apartness [5] for continuous dcpos [12] that is related to the notion of being strictly below
introduced in this paper. Namely, if x ⊑ y are elements of a continuous dcpo, then x is
strictly below y if x is apart from y. In upcoming work, we give a constructive analysis of
the Scott topology [17] using this notion of apartness.
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Development. Springer, 2011. doi:10.1007/978-3-642-22415-7.

6 Thierry Coquand, Giovanni Sambin, Jan Smith, and Silvio Valentini. Inductively generated
formal topologies. Annals of Pure and Applied Logic, 124(1–3):71–106, 2003. doi:10.1016/
s0168-0072(03)00052-6.

7 Giovanni Curi. On some peculiar aspects of the constructive theory of point-free spaces.
Mathematical Logic Quarterly, 56(4):375–387, 2010. doi:10.1002/malq.200910037.

8 Giovanni Curi. On the existence of Stone-Čech compactification. The Journal of Symbolic
Logic, 75(4):1137–1146, 2010. doi:10.2178/jsl/1286198140.

9 Giovanni Curi. On Tarski’s fixed point theorem. Proceedings of the American Mathematical
Society, 143(10):4439–4455, 2015. doi:10.1090/proc/12569.

10 Giovanni Curi. Abstract inductive and co-inductive definitions. The Journal of Symbolic Logic,
83(2):598–616, 2018. doi:10.1017/jsl.2018.13.

11 Giovanni Curi and Michael Rathjen. Formal Baire space in constructive set theory. In
Ulrich Berger, Hannes Diener, Peter Schuster, and Monika Seisenberger, editors, Logic,
Construction, Computation, volume 3 of Ontos Matematical Logic, pages 123–136. De Gruyter,
2012. doi:10.1515/9783110324921.123.

12 Tom de Jong and Martín Hötzel Escardó. Domain theory in constructive and predicative
univalent foundations. In Christel Baier and Jean Goubault-Larrecq, editors, 29th EACSL
Annual Conference on Computer Science Logic (CSL 2021), volume 183 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 28:1–28:18. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.CSL.2021.28.

13 Martín H. Escardó. Joins in the frame of nuclei. Applied Categorical Structures, 11:117–124,
2003. doi:10.1023/A:1023555514029.

14 Martín H. Escardó and Cory M. Knapp. Partial elements and recursion via dominances in
univalent type theory. In Valentin Goranko and Mads Dam, editors, 26th EACSL Annual
Conference on Computer Science Logic (CSL 2017), volume 82 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 21:1–21:16. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.CSL.2017.21.

15 Martín Hötzel Escardó. Introduction to univalent foundations of mathematics with Agda,
November 2020. arXiv:1911.00580.

FSCD 2021

https://doi.org/10.1016/S0049-237X(08)71120-0
https://www1.maths.leeds.ac.uk/~rathjen/book.pdf
https://doi.org/10.2307/2275642
https://doi.org/10.1007/978-3-642-22415-7
https://doi.org/10.1016/s0168-0072(03)00052-6
https://doi.org/10.1016/s0168-0072(03)00052-6
https://doi.org/10.1002/malq.200910037
https://doi.org/10.2178/jsl/1286198140
https://doi.org/10.1090/proc/12569
https://doi.org/10.1017/jsl.2018.13
https://doi.org/10.1515/9783110324921.123
https://doi.org/10.4230/LIPIcs.CSL.2021.28
https://doi.org/10.1023/A:1023555514029
https://doi.org/10.4230/LIPIcs.CSL.2017.21
http://arxiv.org/abs/1911.00580


8:18 Predicative Aspects of Order Theory in UF

16 Martín Hötzel Escardó. Various new theorems in constructive univalent mathematics written in
Agda. https://github.com/martinescardo/TypeTopology, June 2020. Agda development.

17 G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. Continu-
ous Lattices and Domains, volume 93 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2003. doi:10.1017/CBO9780511542725.

18 Hajime Ishihara. Reverse mathematics in Bishop’s constructive mathematics. Philosophia
Scientiæ, CS 6:43–59, 2006. doi:10.4000/philosophiascientiae.406.

19 Peter T. Johnstone. Open locales and exponentiation. In J. W. Gray, editor, Mathematical
Applications of Category Theory, volume 30 of Contemporary Mathematics, pages 84–116.
American Mathematical Society, 1984. doi:10.1090/conm/030/749770.

20 Dito Pataraia. A constructive proof of Tarski’s fixed-point theorem for dcpos. Presented at
the 65th Peripatetic Seminar on Sheaves and Logic, 1997.

21 Giovanni Sambin. Intuitionistic formal spaces – a first communication. In Mathematical logic
and its applications, pages 187–204. Springer, 1987. doi:10.1007/978-1-4613-0897-3_12.

22 Michael Shulman. Idempotents in intensional type theory. Logical Methods in Computer
Science, 12(3):1–24, 2016. doi:10.2168/LMCS-12(3:9)2016.

23 Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5(2):285–309, 1955. doi:10.2140/pjm.1955.5.285.

24 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

25 Benno van den Berg. Predicative topos theory and models for constructive set theory. PhD
thesis, Utrecht University, 2006. URL: http://dspace.library.uu.nl/handle/1874/8850.

26 Vladimir Voevodsky. Resizing rules – their use and semantic justification. Slides from a talk at
TYPES, Bergen, 11 September, 2011. URL: https://www.math.ias.edu/vladimir/sites/
math.ias.edu.vladimir/files/2011_Bergen.pdf.

27 Vladimir Voevodsky. An experimental library of formalized mathematics based on the univalent
foundations. Mathematical Structures in Computer Science, 25(5):1278–1294, 2015.

https://github.com/martinescardo/TypeTopology
https://doi.org/10.1017/CBO9780511542725
https://doi.org/10.4000/philosophiascientiae.406
https://doi.org/10.1090/conm/030/749770
https://doi.org/10.1007/978-1-4613-0897-3_12
https://doi.org/10.2168/LMCS-12(3:9)2016
https://doi.org/10.2140/pjm.1955.5.285
https://homotopytypetheory.org/book
http://dspace.library.uu.nl/handle/1874/8850
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2011_Bergen.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2011_Bergen.pdf

	1 Introduction
	2 Foundations and Size Matters
	2.1 The Notion of Size
	2.2 Impredicativity and Excluded Middle
	2.3 Size and Univalence
	2.4 Size and Retracts

	3 Large Posets Without Decidable Equality
	3.1 delta_V-complete Posets
	3.2 Nontrivial and Positive Posets
	3.3 Retract Lemmas
	3.4 Reductions to Impredicativity and Excluded Middle
	3.5 Unspecified Nontriviality and Positivity

	4 Maximal Points and Fixed Points
	5 Families and Subsets
	6 Conclusion

