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Abstract

We show that the Cantor—Schroder—Bernstein Theorem for homotopy types, or co-
groupoids, holds in the following form: For any two types, if each one is embedded
into the other, then they are equivalent. The argument is developed in the language of
homotopy type theory, or Voevodsky’s univalent foundations (HoTT/UF), and requires
classical logic. It follows that the theorem holds in any boolean co-topos.

Keywords Cantor—Schroder—Bernstein Theorem - co-groupoid - Homotopy type
theory - Univalent foundations - co-topos

1 Introduction

The classical Cantor—Schroder—Bernstein Theorem of set theory, formulated by Cantor
and first proved by Bernstein, states that for any pair of sets, if there is an injection of
each one into the other, then the two sets are in bijection. There are proofs that use the
principle of excluded middle but not the axiom of choice. That the principle excluded
middle is absolutely necessary has been recently established Pradic and Brown [5].

The appropriate principle of excluded middle for HOTT/UF [8] says that every
subsingleton (or proposition, or truth value) is either empty or pointed. The statement
that every type is either empty or pointed is much stronger, and amounts to the axiom
of global choice, which is incompatible with univalence [8, Theorem 3.2.2]. In fact, in
the presence of global choice, every type is a set by Hedberg’s Theorem, but univalence
gives types that are not sets. The principle of excluded middle, however, is known to
be compatible with univalence, and is validated in Voevodsky’s model of simplicial
sets. And so is the axiom of (non-global) choice, but it is not needed for our purposes.

Even assuming the principle of excluded middle, it may seem unlikely at first sight
that the Cantor—Schroder—Bernstein Theorem can be generalized from sets to arbitrary
homotopy types, or co-groupoids:
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1. The Cantor—Schroder—Bernstein property fails for 1-categories. In fact, it already
fails for posets. For example, the intervals (0, 1) and [0, 1] are order-embedded
into each other, but they are not order isomorphic, or equivalent as categories.

2. The known proofs of the Cantor-Schroder—Bernstein Theorem for sets rely on
deciding equality of elements of sets, but, in the presence of of the principle of
excluded middle, the types that have decidable equality are precisely the sets, by
Hedberg’s Theorem.

In set theory, amap f : X — Y is an injection if and only if it is left-cancellable,
in the sense that f(x) = f(x) implies x = x’. But, for types X and Y that are not
sets, this notion is too weak, and, moreover, is not a proposition as the identity type
x = x’ has multiple elements in general. The appropriate notion of embedding for a
function f of arbitrary types X and Y is given by any of the following two equivalent
conditions:

1. The canonical map ap(f, x,x’) : x = x’ — f(x) = f(x') is an equivalence for
any x, x' : X.
2. The fibers of f are all subsingletons.

A map of sets is an embedding if and only if it is left-cancellable. However, for
example, any map 1 — Y that picks a point y : Y is left-cancellable, but it is an
embedding if and only if the point y is homotopy isolated, which amounts to saying
that the identity type y = y is contractible. This fails, for instance, when the type Y
is the homotopical circle S!, for any point y, or when Y is a univalent universe and
y : Y is the two-point type, or any type with more than one automorphism.

Example 1.1 (Pradic [4]) There is a pair of left-cancellable maps between the types
Nx §'and 1 + N x S! (taking inl going forward and, going backward, mapping inl(x)
to (0, base) and shifting the indices of the circles by one), but no equivalence between
these two types.

2 Cantor-Schréder-Bernstein for co-groupoids

As explained in the introduction, our argument is in the language of HoTT/UF and
requires the principle of excluded middle. The following theorem holds in all boolean
oo-toposes, because HoOTT/UF with the principle of excluded middle can be interpreted
in them [6]. We assume the terminology and notation of the HoTT book [8].

Theorem 2.1 From given embeddings of two types into each other, we can construct
an equivalence between them using the principle of excluded middle.

We adapt the proof for sets presented in Halmos’ book [3]. We need to reformulate
the argument so that the principle of excluded middle is applied to truth-valued, rather
than arbitrary type-valued, mathematical statements, and this is the contribution in this
note (see Remark 2.3 below). We don’t need to invoke univalence, the existence of
propositional truncations or any other higher inductive type for our construction. But
we do rely on function extensionality. An version of the following argument formalized
in Agda [7] is available at [1,2].
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Proof Let f : X — Y and g : Y — X be embeddings of arbitrary types X and Y.
We say that x : X is a g-point if for any xo : X and n : N with (g o f)"(xg) = x,
the g-fiber of x is pointed. Using the assumption that g is an embedding, we see that
being a g-point is property rather than data, because subsingletons are closed under
products by function extensionality.

Considering xo = x and n = 0, we see that if x is a g-point then the g-fiber of x
is pointed, and hence we get a function g~! of g-points of X into Y. By construction,
we have that g(g~!(x)) = x. In particular, if g(y) is a g-point for a given y : Y,
we conclude that g(g_l(g(y))) = g(y), and because g, being an embedding, is left-
cancellable, we get g~ (g(y)) = .

Now definez : X — Y by

g_l(x) if x is a g-point,
h(x) = .
f(x) otherwise.

To conclude the proof, it is enough to show that # is left-cancellable and split-surjective,
as any such map is an equivalence.

To see that £ is left-cancellable, it is enough to show that the images of f and g~
in the definition of / are disjoint, because f and g~! are left-cancellable. For that
purpose, let x be a non-g-point and x’ be a g-point, and, for the sake of contradiction,
assume f(x) = g~ '(x"). Then g(f(x)) = g(g~'(x)) = x’. Now, because if g( f(x))
were a g-point then so would be x, we conclude that it isn’t, and hence neither is x’,
which contradicts the assumption.

To see that A is a split surjection, say that x : X is an f-point if there are designated
x0 : X andn : Nwith (go f)"(x9) = x and the g-fiber of xo empty. This is data rather
than property, and so this notion could not have been used for the construction of 4.
But every non- f-point is a g-point, as we see by applying the principle of excluded
middle to the g-fiber of x¢ in the definition of g-point.

1

Claim 2.2 Ifg(y) is not a g-point, then there is a designated point (x, p) of the f-fiber
of y, withx : X and p : f(x) =y, such that x is not a g-point either.

To prove the claim, first notice that it is impossible that g(y) is not an f-point, by
the above observation. But this is not enough to conclude that it is an f-point, because
the principle of excluded middle applies to subsingletons only, which the notion of
f-point isn’t. However, it is readily seen that if g(y) is an f-point, then there is a
designated point (x, p) in the f-fiber of y. From this it follows that it is impossible
that the subtype of the fiber consisting of the elements (x, p) with x not a g-point is
empty. But the f-fiber of y is a subsingleton because f is an embedding, and hence so
is the subtype, and therefore the claim follows by double-negation elimination, which
is a standard consequence of the principle of excluded middle.

We can now resume the proof that % is a split surjection. For any y : Y, we check
whether g(y) is a g-point. If it is, we map y to g(y), and if it isn’t we map y to the
point x : X given by the claim, which concludes the proof of the theorem. O

Remark 2.3 So, in this argument we don’t apply the principle of excluded middle to
equality directly, which we wouldn’t be able to as the types X and Y are not necessarily
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sets. We instead apply it to (1) the property of being a g-point, defined in terms of
the fibers of g, to define 4, (2) a fiber of g, and (3) a subtype of a fiber of f. These
three types are propositions because the functions f and g are embeddings rather than
merely left-cancellable maps.

Remark 2.4 If the type X in the proof is connected, then every map of X into a set
is constant. In particular, the property of being a g-point is constant, because the
type of truth values is a set (assuming univalence for subsingletons). Hence, by the
principle of excluded middle, it is constantly true or constantly false, and so h = g~!
or h = f, which means that one of the embeddings f and g is already an equivalence.
Mike Shulman (personal communication) observed that this is true even without the
principle of excluded middle: If X is connected and we have anembedding g : ¥ — X
and any function at all f : X — Y, then g is an equivalence. For any x : X, we have
llg(f(x)) = x| since X is connected; thus g is (non-split) surjective. But a surjective
embedding is an equivalence.
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