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Statement of significance 42 
Understanding why the number of species in a given area increases across space is crucial to 43 
determining the current and future states of biodiversity. We review and analyze data from the 44 
literature on the ants, one of the best-studied invertebrate ecosystem engineers in insular systems. 45 
We find that ant diversity scales faster across space in mainland versus insular systems. We also 46 



find that precipitation and areas with unique evolutionary histories (e.g. the Neotropics) 47 
influence the rate at which diversity scales across space. Finally, we identify knowledge gaps and 48 
solutions, extendable to other taxa, to better understand the scaling of biodiversity. 49 
 50 
Abstract 51 
Aim: The positive relationship between species richness and area – the species–area relationship 52 
(SAR) – is a key principle in ecology. Previous studies show large variation in the SAR across 53 
taxa, collectively indicating the necessity of a taxon-focused approach to accurately evaluate 54 
biodiversity scaling patterns. Ants are ideal for this given their global distribution, and role in 55 
ecosystem functioning. Using data from insular ant communities, this study quantified and 56 
investigated various attributes of ant SARs and reviewed the SAR literature for ant faunas, 57 
world-wide, to identify specific areas for improvement. 58 
 59 
Location: Islands around the world 60 
 61 
Taxon: Ants (Hymenoptera: Formicidae) 62 
 63 
Methods: We aggregated data on species richness and island characteristics from previous 64 
studies on ant SARs to evaluate effects of climate, biogeographic realm and latitude on slope 65 
values from these studies. A multi-model inference approach was used to determine the form of 66 
the different SARs, and whether there were any differences between mainland and insular SARs. 67 
We also assessed differences between mainland and insular SAR slopes and intercepts. To seek a 68 
general slope coefficient for ants, we used a mixed-effect model. Finally, we tested for potential 69 
thresholds in the global insular SAR using piecewise regression models. 70 
 71 
Results: There was a negative relationship between SAR slopes and precipitation in both 72 
mainland and insular SARs, while SAR slopes and intercept values were lower and higher, 73 
respectively, in mainland compared to insular systems. Strong evidence of thresholds emerged in 74 
the global insular SAR. Finally, a general slope of 0.16 was observed for insular systems, which 75 
is lower than found in previous studies.  76 
 77 
Main conclusions: A taxon-focused approach proves to showcase unexpected patterns in the 78 
SAR. Ant diversity increases faster across area in mainland areas compared to true islands. The 79 
influences of climate and biogeographic realms on the ant SAR warrant deeper study. Our 80 
review highlights knowledge gaps in the ant SAR that also extend to other taxa, such as the 81 
effects of non-native species on the SAR. 82 
 83 
Key words 84 
Ants, Biodiversity, Fragmentation, Invasive species, Islands, Island biogeography, Species–area 85 
relationship 86 
 87 
Introduction 88 
The Theory of Island Biogeography (MacArthur & Wilson, 1967), a foundational framework for 89 
ecology and biogeography, was motivated in part by consideration of the species–area 90 
relationship (SAR). This relationship was first noted by Forster (1778) and brought to light by 91 
Wallace (1914), and has played a central role in biogeography up to the present (Matthews et al., 92 



2020, In Press). A SAR describes the tendency for species richness to increase with increasing 93 
area (Mittelbach & McGill, 2019) and is one of the few patterns in ecology that has been called a 94 
general “law” (Lomolino, 2000; Whittaker & Fernandez-Palacios, 2007). SARs have been 95 
instrumental in the field of conservation biogeography (Whittaker et al., 2005), including in the 96 
design of nature reserves, extinction forecasting, and gauging the effects of habitat fragmentation 97 
(Halley et al., 2014; Suarez et al., 1998; Whittaker & Fernandez-Palacios, 2007). 98 
 In this study, we focus on the island species–area relationship (hereafter referred to as the 99 
ISAR), which utilizes distinct islands or distinctly bounded patches within larger regions 100 
(Matthews et al., 2016; Rosenzweig, 1995; Scheiner, 2003). ISARs in both mainland and insular 101 
systems were investigated to better understand how biodiversity changes across different-sized 102 
independent areas and in relation to various environmental and biogeographical conditions. Here, 103 
we define insular ISARs as those that focus on species richness and areas of true islands, 104 
landforms completely surrounded by water. We define mainland ISARs as those that focus on 105 
“islands” (i.e. habitat islands) found within the boundaries of continents, such as discrete patches 106 
created by geomorphological processes (e.g., outcrops of granite or patches of serpentine), or by 107 
anthropogenic processes of habitat destruction and habitat fragmentation.  108 

Most often, the ISAR is fit with a power function (Arrhenius, 1920b)(eq 1.1), 109 
 110 

𝑆 = 𝑐𝐴     (1.1) 111 
 112 
where S is species richness, A is area, and c and z are fitted constants. Different mathematical 113 
models with different forms for describing ISARs have been proposed, and in some cases these 114 
other forms (e.g. linear, sigmoidal) provide a better fit to the ISAR than does the convex power 115 
law (Scheiner, 2003; Even Tjørve, 2003). When expression (1.1) is linearized by logarithmic 116 
transformations of S and A (see (1.2.)) z is the slope of the resulting log-log relationship, and c 117 
represents the intercept (eq 1.2) (Scheiner, 2003): 118 

 119 
log(𝑆) = log (𝑐) + 𝑧𝑙𝑜𝑔(𝐴)    (1.2) 120 

 121 
The meaning of z (called the z-value hereafter) holds a place of great interest as it 122 

captures the scaling of species richness with increasing area (Arrhenius, 1920a; Kylin, 1923). 123 
The z-value has been observed to approach unity when the spatial areas under consideration are 124 
considerably larger than entire species’ ranges (Mittelbach & McGill, 2019), as seen in the tri-125 
phasic ISAR where, at large provincial scales, the z-value increases compared to smaller scales 126 
(Rosenzweig, 1995; Shmida & Wilson, 1985). The intercept log(c) (called the c-value hereafter) 127 
represents the species richness of an island of unit area and can be influenced by the study taxon 128 
and biogeographic region (MacArthur & Wilson, 1967). It has also been used to indicate the 129 
biotic richness of an insular system and hence the degree of island impoverishment (Whittaker & 130 
Fernandez-Palacios, 2007).  131 

There are several proposed explanations for the ISAR. Three of the more well-developed 132 
hypotheses center on habitat diversity, sampling effects, and colonization-extinction dynamics. 133 
The habitat diversity hypothesis assumes that habitat variety increases as area increases, resulting 134 
in greater niche space and species richness (Lack, 1976; Williams, 1964). The sampling effect 135 
posits that larger areas include more individuals than smaller areas, hence representing a larger 136 
‘sample’, in effect drawn from a regional species pool (Arrhenius, 1921; Connor & McCoy, 137 
1979). Finally, the colonization and extinction dynamics hypothesis posits that a homogenous 138 



area’s increasing size supports larger populations with lower chance of extinction and higher 139 
chance of colonization (MacArthur & Wilson, 1967; Mittelbach & McGill, 2019).  140 

One challenge to exploring the mechanisms underpinning ISARs is that multiple taxon 141 
groups are often analyzed together. By contrast, using a single-taxon (e.g. mammals, birds, frogs, 142 
or ants) approach to evaluating ISARs removes known variation in ISAR form and z-values due 143 
to taxon effects (Nilsson et al., 1988). Previous studies have found that the z-value of the ISAR 144 
can vary between systems, across climatic (Kalmar & Currie, 2007) and latitudinal gradients 145 
(Drakare et al., 2006), and by island type (Matthews et al., 2016). These studies document wide 146 
variation in the ISAR, possibly resulting from multiple mechanisms that vary depending upon 147 
environmental context and ecologically heterogeneous taxa. Differences in z-values by taxa are 148 
widespread. For example, a study of ISARs in a mixture of both oceanic and continental islands 149 
in the Lesser Antilles found birds to have a z-value of 0.21, bats 0.23, butterflies 0.27, and 150 
reptiles and amphibians 0.17 (Ricklefs & Lovette, 1999). Even within lower taxa such as 151 
invertebrates, differences in both c and z-values are observed. For example, in the Mediterranean 152 
islands centipedes, isopods, and tenebrionid beetles range in z-values (0.24-0.31, 0.20-0.26, 0.27, 153 
respectively) and c-values (0.24,-0.31, 0.59-0.80, 0.61-0.94) (Fattorini et al., 2017). Taxon-based 154 
differences in both z and c values are likely to be influenced by each taxon’s traits such as 155 
dispersal capacity or life history strategies. This is observed in butterflies where higher z-values 156 
are associated with butterflies with smaller ranges and lower reproductive potential (Franzen et 157 
al., 2012). Therefore, an ideal taxon for studying ISARs would be a geographically widespread, 158 
taxonomically resolved, species-rich group, with a wide range of well-defined traits and 159 
ecosystem roles (e.g. granivores, predators, omnivores) that can be separately analyzed.  160 

According to these criteria, ants provide an ideal and important taxon to use for exploring 161 
ISARs. With over 13,800 species distributed globally, ants are one of the world’s most dominant 162 
arthropod groups (Bolton, 2020; Hölldobler & Wilson, 1990). They are also one of the most 163 
well-sampled invertebrates in insular systems. Their diversity is immense but well-studied; 164 
authoritative taxonomic keys and identification materials permit accurate species identification 165 
even in remote areas of the world. Ant trait variation has been well studied and defined (Gibb et 166 
al., 2015; Sosiak & Barden, 2020), allowing for the opportunity to disentangle variation in the 167 
SAR due to trait diversity. Ants also have the ability to structure entire ecosystems (Lach et al., 168 
2010) and can make up to 15-20% of terrestrial animal biomass (Schultz, 2000). Importantly, 169 
ants show high levels of island endemicity. Ant island endemicity is known to vary greatly 170 
across the globe (0% to 96% endemicity) and has been linked to the size, location, and isolation 171 
of islands (Morrison, 2016). For example, over 70% (187 total species) of the ant fauna of the 172 
island of Fiji is endemic (Sarnat & Economo, 2012), while in contrast, very few species are 173 
endemic to the Bahamas (Morrison, 2003).  174 

Based on the extensive literature on ant biogeography, a number of observations on ant 175 
ISARs can be made. First, studies of biogeographical histories (Choi et al., 1993; Ranta et al., 176 
1983; Trainor & Andersen, 2010) and speciation processes on islands illustrate the variability of 177 
the ant ISAR across the globe (Economo et al., 2017; Economo & Sarnat, 2012; Wilson, 1961). 178 
Second, habitat diversity exerts a persistent and significant influence (Boomsma et al., 1987; 179 
Goldstein, 1975; Torres & Snelling, 1997;. Wilson, 1961) as does elevation on insular (Morrison, 180 
1997) or mainland (Sanders, 2002) ant diversity. Third, while dispersal is known to be an 181 
important driver of ISAR form (MacArthur & Wilson, 1967), its effect is less well studied in ants 182 
compared to other taxa. Fourth, and linked to the third point, anthropogenic transport breaks 183 
down natural barriers which has resulted in the colonization of many remote islands by non-184 



native ants (Espadaler & Bernal, 2003; Rica et al., 2005; Wetterer & O’Hara, 2002). The 185 
resulting presence of non-native ants on many islands (Espadaler & Bernal, 2003; Rica et al., 186 
2005; Wetterer & O’Hara, 2002) can directly influence the ISAR (Wilson & Taylor, 1967).  187 

Based on this previous literature, we can make certain predictions of how ant ISARs may 188 
differ based on a series of extrinsic variables. Research across both vertebrates and invertebrates 189 
show that mainland SARs often have lower z-values and higher c-values compared to insular 190 
systems (Matthews et al., 2016). This is attributed to the greater isolation of insular systems. 191 
Given an ant’s ability to take advantage of human-assisted dispersal (Pyšek et al., 2017) and to 192 
establish in impoverished areas we expect more similar patterns in z and c-values between 193 
mainland and insular systems than for other taxa. Ant ISARs are also heavily influenced by 194 
habitat structure and diversity (Goldstein, 1975; Morrison, 2016). As such, we expect habitat 195 
diversity to be a bigger driver of ant richness than area per se. Therefore, we expect certain 196 
climatic variables that track habitat diversity to negatively affect the rate of which ant diversity 197 
increases with area. Finally, competitive interactions (Wilson & Taylor, 1967) and microhabitat 198 
diversity (Goldstein, 1975; Torres & Snelling, 1997) could constrain the species richness of ants 199 
on small islands, while processes such as speciation are more likely to influence diversity on 200 
larger islands (Economo et al., 2017; Economo & Sarnat, 2012; Wilson, 1961). The shift in 201 
importance of these different mechanisms of island community assembly along the area gradient 202 
could result in points of inflection in the ant ISAR. While ant ISARs have been well investigated, 203 
no research has synthesized all known information on ant ISARs and doing so would help 204 
highlight consistent findings and identify knowledge gaps. 205 

This study aims to provide a general synthesis of ant ISARs by i) reviewing the ant ISAR 206 
literature in order to identify significant data gaps, and ii) quantifying global patterns of ant 207 
ISARs through the synthetic analysis of mainland and insular ant ISAR studies. We summarized 208 
and compared ant ISAR c-values and z-values across multiple datasets to derive results that can 209 
be compared to previous research on ISARs. Specifically, we answered the questions: (1) how do 210 
insular and mainland c-values and z-values differ for ants? (2) do climatic variables or isolation 211 
influence the z-value of the ISAR for ants? (3) are z-values associated with latitude? (4) are there 212 
thresholds in ant ISARs? and (5) is there a general z-value for ants when accounting for variables 213 
such as biogeographic realm?  214 

 215 
 216 
Methods 217 
 218 
Data Collection 219 
We acquired species-level datasets on ants from published articles, primarily species checklists, 220 
insular or mainland studies of the ISAR, and island biogeography studies. These data were used 221 
to create two ‘datasets’ (datasets 1 and 2) that formed the basis of the analyses. Dataset 1 was 222 
constructed to assess the ant ISAR at the archipelago level which permits the analyses of z and c 223 
values. Dataset 2 was constructed to include all individual islands from all datasets to seek 224 
general patterns of the ant ISAR. For dataset 1 (see below), a total of 36 studies and 41 datasets 225 
were collected (Figure 1A). While dataset 2 comprised a total of 44 studies and 51 datasets. 226 
Datasets were recovered using the Web of Science repository, FORMIS (A Master Bibliography 227 
of Ant Literature, USDA), scanning of supplementary data of review papers assessing the SAR 228 
in multiple taxa (Drakare et al., 2006; Matthews et al., 2016), and unpublished manuscripts 229 
(James Wetterer, pers comm.). The following variables were collected from each dataset when 230 



available: species richness per island, total species richness of all islands, island/fragment area 231 
size, z-value of the SAR, standardized errors of the slope coefficient, R2 values from the log–log 232 
power model, locality of island/fragment, types of island/fragment, island/fragment area ranges 233 
(m2), biogeographic realm, latitude, longitude, climate, percentage of non-native ants, and 234 
isolation (distance to the nearest continent for true island datasets) (Table 1). Percentages of non-235 
native ants were limited to 25 datasets that provided full species checklists or explicitly stated 236 
non-native ant richness in the publication. If a given true island dataset was comprised of both 237 
oceanic and continental islands, then the dataset was assigned the island type comprising the 238 
majority. If full datasets from publications were not available, the corresponding author(s) of the 239 
study were contacted for access to the original raw data. The supplementary material (Appendix 240 
2 and 3) includes both datasets and a list of literature citations. 241 
 242 
Species-Area Slopes and Intercepts 243 
Whenever possible, z-values were recalculated using a study’s raw data (natural logs were used). 244 
Island/fragment areas and species richness values from the studies were used to calculate the z-245 
value using the log–log form of the power model (equation 1.2) with ordinary least squares 246 
(OLS) regression. However, if raw data were unavailable then the reported z-value was used. In 247 
total, 30 out of 41 z-values were recalculated. For non-recalculated z-values, only z-values of the 248 
log–log model was used, as the majority of the data collected from the literature utilized that 249 
model form. We used a paired t-test to assess the robustness of recalculated z-values compared to 250 
reported z-values (8 paired values). However, we also undertook multi-model analyses of 251 
competing SAR models to discern the best-fitting SAR model (outlined below). None of the 252 
studies contained zero values; as such, no added constants were necessary for log-253 
transformations. If island/fragment areas were not provided, data were recovered from online 254 
sources or manually calculated using the Google Earth engine. ISARs fitted with log–log axes 255 
have intercepts that are not independent of the units in which area is measured. In order to 256 
mitigate this issue, c-values were recalculated after standardizing area across datasets to the same 257 
units (1-km2), which resulted in 30 comparable intercepts.  258 
 259 
Abiotic data 260 
Climate data, including mean annual temperature (MAT) and mean annual precipitation (MAP), 261 
were extracted from coordinates of study locations using the Worldclim database (1 km2 262 
resolution) (Fick & Hijmans, 2017). If climate data were unavailable at specific coordinates then 263 
data were collected using island climate data from Weigelt et al. (2013). For studies that spanned 264 
islands across large latitudinal or longitudinal gradients (e.g. New Guinea to the Hawaiian 265 
Islands), an averaged value of the MAT and MAP from the individual study islands available 266 
from Weigelt et al. (2013) was assigned. This approach was considered more accurate than 267 
choosing coordinates at a midpoint and extracting the MAP/MAT using the Worldclim database. 268 
Isolation for the true islands was calculated by measuring the distance of the island closest to a 269 
continent from a dataset. Not all studies included island location or names and therefore isolation 270 
values were limited to 29 datasets. 271 
 272 
Final Datasets for Analysis 273 
As stated above, two datasets were collated for the analyses: Dataset 1 was used to assess the 274 
best fitting model for ant ISARs using a multi-model inference approach, the c and z-values of 275 
each study, and the effects of isolation and climate on z-values. Dataset 2 was used to calculate a 276 



general z-value from all islands and evaluate the potential for thresholds or points of inflection in 277 
the ant ISAR. Dataset 1 included c and z-values for each study, isolation, biogeographic realm, 278 
difference in order of magnitude in island area range per study (calculated as: Log10(Maximum 279 
Area / Minimum Area)), general latitude and longitude, MAP, MAT, standard errors of the 280 
slope, R2 of the log-log model, and ISAR type. The ISAR type variable specifies whether the 281 
study was done on the mainland or in an insular system (true islands). Dataset 2 focused on 282 
individual islands and included data from each island in studies that provided areas and species 283 
richness values for each island. Dataset 2 included studies not in dataset 1 as some studies only 284 
inventoried ants on a single island. If any duplicate islands appeared in dataset 2 (multiple 285 
studies sampling the same island) then the most recent study and values were used. Variables 286 
included with this dataset were: island area, species richness, SAR type, and biogeographic realm 287 
of the island.   288 
 289 
Analysis 290 
 291 
Dataset 1 292 
Dataset 1 comprised 41 datasets and their z-values. Only datasets with positive z-values were 293 
considered. Four formats of dataset 1 were used for four different questions. The first format of 294 
dataset 1 included the individual islands areas and species richness values. This format was used 295 
to assess the robustness of the power model in fitting the datasets, and to determine whether 296 
other model forms better represent ant ISARs. The second format used each dataset’s z-value and 297 
abiotic data to determine differences between mainland and insular ISARs, as well as the effects 298 
of abiotic variables on z-values. The third format used only true island (insular) studies with 299 
isolation values to assess the effects of isolation on z-values. The final format used only the 300 
datasets where c-values were recalculated using the same measurement units (km2). This dataset 301 
was used to determine potential differences in c-values between mainland and insular studies.  302 

To assess the robustness of the power model, a multi-model inference approach was 303 
executed utilizing 20 different ISAR models (including the power model in its non-linear form) 304 
using the “sars” R package (Matthews et al., 2019) and following the approach outlined in 305 
Matthews et al. (2016) and Triantis et al. (2012). The 20 models represented a range of ISAR 306 
forms including linear, convex, and sigmoidal. During maintenance of the ‘sars’ package while 307 
preparing these analyses, it was discovered that the He & Legendre logistic model and the mmf 308 
model were equivalent (see also Williams et al., 2009). Thus, as an alternative to the mmf model, 309 
we used the standard logistic model (see Tjørve, 2003). Models were fitted to each study’s 310 
distinct dataset and compared using AICc (Akaike’s Information Criterion corrected for small 311 
sample sizes). The models were fitted twice to each dataset (areas were all first converted to 312 
km2): once when implementing model residuals validation checks (for normality using a 313 
Lilliefors test, and homogeneity of variance using a Pearson’s correlation of the squared 314 
residuals with the area values) and once with no checks. For the former, if a model failed one or 315 
both of the two checks it was removed from the model comparison for that dataset (see Matthews 316 
et al., 2019). When fitting models, we used a grid search procedure (setting the grid_search 317 
argument to ‘exhaustive’ in the sar_average function) to test a large number of starting parameter 318 
values (5000 combinations for each model) in the non-linear regression optimization algorithm; 319 
this increases the likelihood that optimum parameter estimates are found. 320 
 The performance of individual models across datasets was calculated by comparing the 321 
mean AICc weight and the mean rank (i.e. a model’s rank in the model comparison for each 322 



dataset) (Triantis et al., 2012). When model residuals tests were used, the mean rank and weight 323 
of a model across datasets were calculated after removing the cases where the model did not pass 324 
the tests. It was necessary to remove datasets with fewer than seven observations, the minimum 325 
number required to calculate AICc for models with four parameters. This resulted in 25 datasets 326 
being analyzed. All models were fitted using untransformed data. 327 
 To assess differences between the z-values of insular and mainland datasets a generalized 328 
linear model (GLM) with a Gamma (link = log) error distribution was run using the z-values as 329 
the response variable, and study type as a predictor. The Gamma distribution was chosen as z-330 
values were not normally distributed and error distributions used for skewed data such as the 331 
Poisson or negative binomial assume a discrete error distribution. In addition, because mainland 332 
islands were smaller than the majority of true islands across the dataset, a secondary model (with 333 
the same specifications) including a covariate of mean area of the datasets was run with a 334 
reduced dataset of 30 observations (Number of data sets with a mean area). Model assumptions 335 
were checked using residual diagnostic plots.  336 

To assesses the potential effects of climate or latitude on z-values, GLMs with a Gamma 337 
(link = log) error distribution were used. Two model structures were used to incorporate two 338 
different covariates. The first model used the order of magnitude in island size range per dataset 339 
as a covariate, as potential variation in slope values corresponding to different ranges in areas 340 
among different datasets should be considered (Martin, 1981). We included interaction terms 341 
between the covariate and climate variables because of the non-linearity that is observed in how 342 
biodiversity increases across space (Keil & Chase, 2019). As such, the effect of climatic factors 343 
on the rate at which species richness increases with area is not constant across scales. Seven of 344 
the 41 datasets had no island area ranges (only z-values were provided with no island area data), 345 
and as such the final modeling dataset here used a total sample size of 35.  346 

The second model structure utilized the SAR type (insular or mainland) as a covariate, as 347 
z-values were observed to significantly vary by this category. Models used with this structure 348 
had a sample size of 41 as all datasets had a specified SAR type. With this model structure, 349 
interactions between the covariate and climate variables were not included because the effects of 350 
climate were presumed to be the same in mainland and insular systems. Both covariates could 351 
not be used in the same model because the low sample size would have resulted in lower 352 
statistical power and an increased risk of model overfitting. Mixed-effect models were not used 353 
because the low sample size resulted in singularity in the models.  354 

Other predictors in the two model structures included MAP, MAT, latitude, and 355 
biogeographical realm. Models never included MAP and MAT variables together due to 356 
collinearity. Specific model structures are detailed in Table 3. The maximum number of 357 
predictors allowed in a model was three to avoid overfitting. All models were assessed using 358 
generalized variance inflation factors (VIFs), with a particular focus on models with both 359 
biogeographical realm and climate variables. All continuous variables were scaled (to a mean of 360 
zero and unit variance) prior to running models. Model comparison was conducted using AICc 361 
for each set of models corresponding to the two different covariates. Pseudo-R2 values were 362 
calculated using the piecewiseSEM package in R.  363 

Isolation values were measured for 29 insular datasets. To assess the impacts of isolation 364 
on z-values, a GLM with a Gamma (link = log) error distribution was used. Thirty of the 41 365 
datasets had re-calculated c-values. OLS regression was used to test for differences in these c-366 
values between insular and mainland studies. The Gamma distribution was not implemented 367 
because it does not accommodate negative values. Data were not transformed because c-values 368 



were already on a log-scale. Similar to the second GLM used to account for mean area when 369 
assessing differences between the z-values of insular and mainland datasets, a second model was 370 
run on c-values with a covariate of mean area per c-value dataset. To verify that all model 371 
assumptions were met, model residuals were evaluated for normality and homogeneity of 372 
variance.  373 

Finally, we re-ran models with datasets that contained 10 or more islands. This was done 374 
in an effort to reduce the impact of datasets that did not survey enough islands and to offer a 375 
potentially more biologically meaningful perspective on c and z-values. All analyses were 376 
implemented in R (version 4.0.0) (R Development Core Team, 2018). 377 
  378 
Dataset 2 379 
Dataset 2 comprised all individual islands with area and species richness values. This dataset 380 
permitted us to provide broad assessments of ISARs, utilizing information from singleton islands 381 
not themselves part of an explicit SAR study. Linear mixed-effect models were used to seek a 382 
general power model (based on the log(SR) ~ log(Area) form) slope coefficient. Natural logs 383 
were used to calculate both log(SR) and log(Area). Not all studies provided island-specific data, 384 
but a total of 481 islands (both mainland and true islands) with species richness observations 385 
were collected. There was a distinct difference in species richness and area between mainland 386 
islands and true islands (Figure 2B); the two types of island are also likely affected, to different 387 
degrees, by different biogeographical processes (e.g. dispersal, speciation). Furthermore, 388 
mainland islands spanned a distinctly smaller area gradient compared to true islands. Therefore, 389 
dataset 2 was further divided into mainland (n = 161) and true island (n = 320) subsets, which 390 
were analyzed separately with two different mixed-effect models. In both models, log species 391 
richness was assessed as a function of log area with biogeographic realm used as a random 392 
effect.  393 

The model implemented with the mainland subset failed to meet model assumptions 394 
based on visual diagnostics of residuals and therefore results and discussion of this model are not 395 
included in this study. Failure to meet assumptions was likely due to an absence of a linear trend 396 
between log(SR) and log(Area).  397 
 All mixed-effects models were run using the lme4 package (Bates et al., 2015). 398 
Visualization of fixed and random effects were conducted using the ‘R’ packages “ggeffects” 399 
(Lüdecke, 2018) and “ggplot2” (Wickham, 2009). Pseudo-R2 values (Marginal and conditional 400 
R2) were calculated using the “MuMin” package (Barton, 2019). AICc values were calculated 401 
using the package “bbmle” (Bolker & R Development Core Team, 2020).  402 
 In a separate analysis, threshold models were fitted to the insular and mainland subsets to 403 
identify any potential points of inflection in their ISARs. We fitted two piecewise models (the 404 
continuous and left-horizontal one-threshold models) using new functionality in the “sars” R 405 
package (Matthews & Rigal, 2021). Both models have two segments. The continuous model 406 
allows both segments to vary in slope, while the left-horizontal model assumes the first segment 407 
to have a slope of zero, which is characteristic of the classic small island-effect (MacArthur & 408 
Wilson, 1967; Whitehead & Jones, 1969), where there is a lack of relationship between area and 409 
richness on smaller islands. The models were fitted in both log–log space (area and richness log 410 
transformed; natural logarithms) and semi–log space (area log transformed) as the choice of log-411 
transformation has been found to influence the fit of threshold models (Burns et al., 2009; 412 
Matthews et al., 2014). In both cases, the two threshold models were compared (using AICc) 413 
with a linear model (i.e. either the logarithmic or power SAR models depending on 414 



transformation) and an interecept-only null model. Following Matthews et al. (2014), we 415 
checked for influential observations in the threshold model fits using Cook’s distance and a 416 
threshold of one. Threshold models were not fit to individual datasets (i.e. those in dataset 1) due 417 
to the smaller sample sizes involved. Finally, to determine whether the observed piecewise 418 
relationships were driven by biome effects, we fitted a mixed-effects piecewise regression model 419 
using functions written by the author of the ‘segmented’ R package (Muggeo, 2016; Muggeo et 420 
al., 2014). For ease, we focused on the continous one-threshold model (semi-log transformation) 421 
for the insular subset. Log-transformed area was the fixed effect, and biogeographic realm was 422 
used as a random effect. We fitted two variants of this model: i) a model with just a random 423 
intercept for biogeographic realm, and ii) a model with both a random intercept and a random 424 
breakpoint for biogeographic realm. An identity regression model for the changepoint was used 425 
(Muggeo, 2016). As we were interested in the random effects and were not comparing models, 426 
we fitted the models using restricted maximum likelihood. 427 
 428 
Results 429 
 430 
Dataset 1 431 
Of the 41 total datasets examined for this study, z and c values were recalculated for 30 of them. 432 
Of the 11 remaining datasets, all reported z-values (log–log power model slopes) in their 433 
associated papers, none reported standard errors of z-values, and 7 reported R2 values and c-434 
values (not used for analyses). The paired t-test showed no significant differences between 435 
recalculated and reported z-values. In total, 30 datasets were from insular systems and 11 were 436 
from mainland systems. The majority of the mainland datasets (7 of 11 datasets) were from 437 
fragments due to anthropogenic activities. The biogeographical realm with the most studies was 438 
the Palearctic (13) and the realm with the fewest was the Afrotropics (2) (Table 2, Figure 2A). 439 
Non-native ant percentage ranged from 0 to 87% and the average percentage of non-native ants 440 
in mainland and insular datasets was 2.82% and 29.90% respectively. Continental and oceanic 441 
island datasets had an average non-native percentage of 18.7% and 34.6% respectively. The 442 
biogeographical realms with the highest non-native ant percentage in mainland and insular 443 
systems were the Palearctic (5%, one dataset) and Oceania (average 51%, 3 datasets) 444 
respectively.  445 
 When no residual checks were used, the power model was the best overall model across 446 
datasets, according to both mean model rank and mean AICc weight (see Fig. S1 in Appendix 1). 447 
The model provided the best fit (lowest AICc) to 11 of 25 datasets and was ranked in the top five 448 
for 20. When model validation was implemented, the power model rank shifted slightly (Fig. 449 
S1). It was the second-ranked model according to mean rank (behind the Kobayashi model; also 450 
a convex non-asymptotic model) but was still the top-ranked model according to mean AICc 451 
weight. With model validation, the power model provided the best fit to eight datasets and was 452 
ranked in the top five for 15; for seven datasets it did not pass validation checks. Overall, these 453 
results indicate that power model represents a generally robust model for characterizing ant 454 
ISARs and allow us to confidently analyze power model z-values across our datasets. 455 

Mainland islands had the highest variance in log–log power model z-values (Figure 2C). 456 
The number of islands or fragments used to generate a slope value from a study ranged from 3 to 457 
81. The range in difference in order of magnitude between the smallest and largest island areas 458 
was 0.70 to 6.17. The minimum z-value was 0.04, the maximum was 0.89, and the average was 459 
0.28. z-values varied by biogeographic realm and by ISAR type (insular or mainland). The mean 460 



z-value for mainland studies (0.38 ± 0.08) was significantly higher than insular studies (0.25 ± 461 
0.02). This was verified with a GLM (effect size of mainland studies relative to insular studies: 462 
0.43 ± 0.20, p < 0.05, Pseudo-R2 = 0.07).  The second GLM run on the reduced dataset showed 463 
no significant effects from either covariate (mean area) or SAR type on z-values. While the 464 
covariate of mean area did not significantly impact z-values, its inclusion reduced the available 465 
degrees of freedom. This coupled with the reduction of observations for this model (11 less 466 
observations) resulted in lower statistical power to potentially detect a difference between 467 
mainland and insular z-values.  468 
 Nine competing GLMs, including a null model, were fitted to evaluate effects of climate 469 
and latitude on z-values while accounting for the order of magnitude in island area range. 470 
Latitude effects were not observed in any of the models. The most plausible model based on 471 
AICc was a model evaluating z-values as a function of the additive effects of order of magnitude 472 
in island area (covariate) and MAP (Pseudo-R2 = 0.11). The covariate had a non-significant 473 
effect, but MAP had a significant negative effect on z-values (-0.24 ± 0.11). It’s important to 474 
note that the second ranked model (a model with only the covariate as the predictor) was within a 475 
ΔAICc of 2 suggesting that both models were commensurate with one another. While the second 476 
ranked model had one less parameter, the top-ranked model was still designated as most 477 
plausible given the higher pseudo-R2. However, we still exercised caution when interpreting this 478 
model.  479 
 Seven models were run to assess the effects of climate and latitude on z-values while 480 
accounting for ISAR type (Table 3). The most plausible model based on AICc was one that 481 
evaluated z-values as a function of the additive effects of ISAR type (covariate) and MAP 482 
(Pseudo-R2 = 0.18). There was a non-significant effect from the covariate but a significant effect 483 
of MAP on z-values (-0.26 ± 0.09).  484 
 Mainland ISARs had significantly higher c-values compared to insular ISARs (effect size 485 
of mainland studies relative to insular studies: 2.71 ± 0.66, p < 0.05, Adjusted-R2 = 0.35). 486 
Average c-values for mainland and insular ISARs were 4.55 ± 0.86 and 1.44 ± 0.26, 487 
respectively. The second model that accounted for mean area when assessing differences 488 
between insular and mainland datasets showed a significant effect of the covariate but no 489 
significant effect of SAR type. Across biogeographical realms that had both insular and mainland 490 
ISAR types (Afrotropics, Nearctic, Neotropic, Palearctic), c-values were lower in mainland 491 
systems only in the Nearctic (see Table S1 in Appendix 1). Finally, no significant effects of 492 
isolation on z-values were observed. 493 
 Models re-run on datasets with 10 or more islands showed no difference between 494 
mainland and insular z-values and no effect of isolation on z-values. There was a significant 495 
difference between mainland and insular c-values with mainland c-values being on average 496 
higher than insular c-values (effect size of mainland studies relative to insular studies: 3.07 ± 0.9, 497 
p < 0.05, Adjusted-R2 = 0.43). AICc rankings of GLMs assessing the effect of climate and 498 
latitude with two different covariates showed the top ranked models both included a significant 499 
and negative effect of MAT on z-values. However, both models were within a ΔAICc of 2 of the 500 
null models (z-slope ~ 1). As such these models are not discussed further but their model outputs 501 
and AICc rankings have been made available in the supplementary materials (see Tables S2-S4 502 
in Appendix 1). 503 
 504 
Dataset 2 505 



Of the 481 islands in dataset 2, 161 were mainland islands, and 320 were true islands. True 506 
islands types were made up of 160 oceanic and 160 continental islands. The linear-mixed effect 507 
model evaluating the ISAR for insular data showed a significant effect of area on species 508 
richness (model coefficient: 0.16 ± 0.03) (Figures 1B & 1C). Based on marginal and conditional 509 
R2 values, area explained 29% of the variation in species richness. However, when including the 510 
random effects of biogeographic realm, the model explained 60% of the variation (difference = 511 
31%). The lowest random intercepts were from Oceania and the Palearctic while the highest 512 
intercepts were from Indomalaya and the Afrotropics (Figure 1C). The steepest random slopes 513 
were found in the Nearctic and Oceania while the lowest random slopes were in the Indomalaya 514 
and Afrotropics. 515 
 Based on AICc, when using both the log–log and semi-log transformations, the two 516 
threshold models both provided a better fit to the global insular dataset than the linear (log–log 517 
power and logarithmic model, respectively) and intercept-only null models (Table 4), with the 518 
continuous one-threshold model providing the best fit in both cases. The R2 value of the best 519 
threshold model for the insular dataset ranged from 0.36 to 0.54, depending on the 520 
transformation. Figure 5 shows the best threshold model fits to the insular dataset, using both the 521 
log–log and semi-log transformations. There was one threshold model fit (left-horizontal model 522 
fit to the insular data in semi-log space) with a Cook’s distance greater than one. However, we 523 
left the data point in as it was only slightly greater than one (1.09) and removing it did not 524 
change the overall results or general model fit. More generally, the insular semi-log threshold 525 
model fits should be viewed tentatively as their residuals deviated from normality and/or plots of 526 
the fitted values against the residuals tended to show that the magnitude of the residuals was not 527 
constant along the fitted values. For the global mainland dataset, the continuous one-threshold 528 
model provided the best fit to the log–log data, while the left-horizontal model provided the best 529 
fit to the semi-log data (Appendix 1 Table S5). However, the mainland threshold model fits were 530 
harder to interpret, with the R2 value of the best threshold model ranging between 0.20 and 0.23, 531 
some of the model residuals deviating from normality and exhibiting heteroscedasticity, and the 532 
relationships seemingly driven by biome effects (see Figure S2). As such, these model fits are 533 
not discussed further. 534 

The mixed-effects piecewise models fitted to the insular subset revealed that the 535 
population estimate (i.e., the fixed effect piecewise relationship) provided a good rough 536 
approximation for all the biogeographic realms except for the Nearctic, and to a lesser extent the 537 
Afrotropics (the plots of these model fits are provided in Figure S3-S4 in Appendix 1). In the 538 
case of the Nearctic, the lack of an obvious threshold relationship was likely due to the limited 539 
range in island area, that is, there were no islands near or above the breakpoint value(s) observed 540 
for the other biogeographic realms (Fig. S3). For the model where the breakpoint varied by 541 
biogeographic realm, the standard deviation of the random breakpoint was 2.6 (on the log-scale). 542 
This variation was affected by the value for the Nearctic realm, where the breakpoint is much 543 
lower and is likely a statistical artefact (again due to the lack of large islands in our dataset for 544 
this realm). In addition, the random breakpoints for the Afrotropics and Indomalaya were 545 
considerably larger than the population estimate (Fig. S4). Overall, these results indicate that, 546 
although the intercept and the exact breakpoint value do vary to a degree between realms, the 547 
observed threshold relationship in the insular ISAR is not simply driven by islands from one or 548 
two realms. 549 
 550 
 551 



Discussion 552 
Studies of the ISAR in ants extend over the past 60 years, spanning all biogeographical realms, 553 
except Antarctica. Here, we demonstrate that the scaling of ant species richness with area can 554 
differ between mainland and insular systems, and along precipitation gradients. We also show 555 
that incorporating biogeographical realm types into analyses provides a better explanation of this 556 
scaling pattern than does area alone, suggesting a macroevolutionary perspective on species–area 557 
relationships.  558 
 559 
Dataset 1: Mainland vs. Insular Systems 560 
We found that z-values, the rate at which log species richness increases with log area, vary 561 
widely across studies of ant communities, highlighting the extent of variation in the z-value of 562 
the ISAR within a single taxonomic group. An intriguing finding from our analyses is the 563 
significant difference in average z-values between mainland and insular systems, a result which 564 
contrasts with results of an extensive meta-analysis which did not detect differences in z-values 565 
(Drakare et al. 2006). Whereas past studies reported steeper z-values in insular systems than in 566 
mainland systems (MacArthur & Wilson, 1967; Matthews et al., 2016; Triantis et al., 2012; 567 
Whittaker & Fernandez-Palacios, 2007), in this study mainland ant ISARs have steeper z-values 568 
compared to insular systems (Figure 2B). While area effects can influence z-values given that the 569 
majority of mainland islands were smaller than true islands in our data, we found a lack of 570 
significant effect of mean area as a covariate, when analyzing a reduced dataset. Higher z-values 571 
in mainland systems may reflect a biological pattern or could be explained by sampling bias in 572 
our dataset, as a higher proportion of mainland studies (50%) were conducted in the Neotropics, 573 
a biogeographical realm considered to include the world’s highest ant diversity (Hölldobler & 574 
Wilson, 1990). If species geographical ranges are typically smaller in species rich faunas, one 575 
would expect richness to tend to increase more strongly with area, for studies that span much of 576 
biogeographical provinces. However, mainland datasets in our study only focused on habitat 577 
patches or fragments where dispersal is likely not as limited as in insular systems (Storch, 2016), 578 
and this range size effect would not likely be evident at small spatial scales.  579 

Another possible reason for higher z-values in mainland systems is the differences in ant 580 
dispersal success and propagule pressure between mainland and insular systems. Insular systems 581 
often have higher levels of isolation for longer periods of time. As a result, when compared to 582 
true islands, mainland islands often hold a larger portion of the regional species pool (Flantua et 583 
al., 2020). Furthermore, ant species that successfully disperse and colonize insular systems are 584 
usually generalists and are likely to be excellent dispersers (Morrison, 2016). Insular studies 585 
often gauge dispersal possibilities of ants based on isolation distance between sampled islands 586 
(Woinarski et al., 1998); other studies view dispersal to be a hidden variable that cannot be 587 
quantified accurately (Badano et al., 2005). While one study showed that increasing isolation 588 
actually led to higher aboveground ant species richness in naturally fragmented landscapes 589 
(Cuissi et al., 2015), this relationship was not observed with arboreal ants, suggesting that 590 
isolation may affect ants in various strata differently. Moreover, natural dispersal may be 591 
irrelevant in some insular systems where human colonization of islands has led to human-592 
assisted dispersal of ants and dominance of local ant communities by introduced species 593 
(Holway et al., 2002; Pyšek et al., 2017; Wilson & Taylor, 1967). Although dispersal is likely a 594 
key element underlying ISARs, the sparse literature on dispersal effects on ISARs points to the 595 
difficulty in quantifying this factor (Hakala et al., 2019). Clearly, more sampling in mainland 596 



islands across different biogeographical realms is needed to fully understand the observed 597 
differences between mainland and insular slopes.   598 

We observed lower c-values in insular systems than mainland systems indicating higher 599 
degrees of island impoverishment or lower biotic richness in local communities on true islands 600 
(Whittaker & Fernandez-Palacios, 2007). This was also observed in datasets with only 10 or 601 
more islands. When accounting for mean area of the islands per dataset, mean area significantly 602 
affected c-values while differences between mainland and insular studies became statistically 603 
negligible. This suggests that area differences between mainland and true islands contributes to 604 
differences in c-values. Island impoverishment levels likely impact the colonization process of 605 
insular ants compared to ant dispersal which often relies on the capitalization of habitat resources 606 
(Morrison, 2016). For example, impoverished true islands may have less habitat heterogeneity or 607 
food resources specifically for ants due to lower plant biotic richness which can result in a lower 608 
likelihood of successful colonization, less opportunity for speciation or higher extinction rate.  609 
Identifying the causal underpinnings of the differences in c (local richness) and z (spatial scaling 610 
of richness) between continental and insular systems is an important challenge for future work.  611 

Higher z and c-values found with the mostly anthropogenically created mainland 612 
fragments from this study potentially opens exciting avenues of future research, such as the 613 
effect of fragment age on the mainland ISAR. Such research could develop a continental analog 614 
of the general dynamic model of island equilibrium theory (Whittaker et al., 2008), which links 615 
the temporal development of volcanic islands to the equilibrium theory of island biogeography. 616 
Previous research has already utilized landscape histories (e.g., how a landscape becomes 617 
fragmented over time) to develop models capable of predicting species extinctions and 618 
biodiversity in fragmented landscapes (Ewers et al., 2013). However, we still lack a general 619 
framework for understanding how fragment age affects different biodiversity properties. Any 620 
framework would need to account for extinction debts, especially those in smaller fragments, and 621 
the quality of habitats within different-sized fragments. Differences in how gradual 622 
fragmentation versus pulse fragmentation events influence biodiversity patterns, similar to the 623 
differences observed between continental and oceanic islands, could also be incorporated. 624 
Perhaps, the integration of these different phenomena into a single framework could lead to the 625 
development of a general dynamic model of anthropogenic landscapes. 626 
 627 
Dataset 1: Climatic drivers of the ISAR  628 
Another clear result from this study is the finding that higher precipitation levels lead to a 629 
significant decrease in z-values. This was observed from the results of generalized linear models 630 
that predicted z-values as a function of a covariate (either ISAR type or order of magnitude 631 
island range) and precipitation (Figure 3). Precipitation is known to influence aboveground plant 632 
biomass, habitat diversity (e.g., more vegetation strata and litter with increasing precipitation), 633 
and net primary productivity (NPP) (Yan et al., 2015; Zhu et al., 2014). Considering 634 
precipitation as a proxy for NPP, our results are similar to those reported in Storch et al. (2005), 635 
who identified a negative relationship between productivity and the ISAR z-value. Lower R2 636 
values are present at higher levels of precipitation (see Figure 4), illustrating that area effects 637 
explain less of the variation in ant species richness as precipitation increases. Our results also 638 
agree with other studies on insular ants that show the effect of habitat diversity as being as 639 
important as area when predicting species richness (Goldstein, 1975; Torres & Snelling, 1997).  640 

One mechanism through which increased precipitation could weaken area effects would 641 
be a boost in overall abundance, per species, which could lower extinction rates or heighten 642 



colonization rates in habitat patches or islands. Another mechanism would be that increased 643 
precipitation can yield a higher diversity of microhabitats for ants at a local scale; the diversity 644 
and available biomass of plants is crucial, providing a diversity of resources through both plant-645 
ant interactions and heterogeneity in the range of suitable nesting sites (Hölldobler & Wilson, 646 
1990; Lach et al., 2010). Unraveling the effects of precipitation on both macro- and microhabitat 647 
diversity in insular systems that vary in spatial areas will help us understand the scales at which 648 
abiotic conditions significantly impact biodiversity.  649 

Morrison (2016) indicated that isolation may provide only weak effects on ant species 650 
richness at small scales but may be more important at larger ones. This would be logical as 651 
dispersal distance among habitat islands in a continental setting is likely modest compared to the 652 
distances relevant to (most) oceanic islands. While our analyses show that isolation had no 653 
significant effect on the z-value despite isolation distances spanning from 0.348 to 4,820 654 
kilometers, isolation cannot be discounted as an important component to ant community 655 
assembly in all true island systems. Further discussion on the potentially weakening effects of 656 
isolation as a barrier to dispersal in ants are provided later in this discussion.  657 

Overall, two clear results emerged from the analyses of dataset 1. First, z-values of 658 
mainland ISARs appear to be significantly higher than insular ISARs. Second, increases in 659 
precipitation lead to lower z-values in ant ISARs. Therefore, the extent of area effects on ant 660 
ISARs is dependent on both abiotic conditions and whether or not one is considering ‘true’ 661 
islands, or habitat islands (influences that have been noted in previous studies, e.g. Drakare et al., 662 
2006; Kalmar & Currie, 2007).  663 
 664 
Dataset 2: A general species–area relationship in ants  665 
To arrive at a global-scale z-value for ants, we implemented a linear mixed-effect model with 666 
320 true islands and their respective ant species richness and found a global and general z-value 667 
of 0.16 for ants. This value is lower than what is expected from general ISARs observed in other 668 
taxa, especially in true islands at regional scales (Rosenzweig, 1995). However, the random 669 
slopes for the 7 biogeographical realms ranged from 0.06 (Indomalaya) to 0.25 (Oceania). This 670 
variation in random slopes across realms and the improvement of explanatory power when 671 
accounting for biogeographical realms as a random effect, implies that the ant ISAR is not 672 
constant, but varies according to different realms (Figure 1C). Differences between 673 
biogeographic realms are expected to influence the ant ISAR as each realm has a unique 674 
geological and evolutionary history with different aged ant faunas and historical pattern of 675 
speciation, which could lead to  different ISAR patterns (Choi et al., 1993; Ranta et al., 1983; 676 
Trainor & Andersen, 2010). The low random slope in the Afrotropics may be an artifact of small 677 
sample size as only 15 of the 320 islands come from this realm (this realm has relatively few true 678 
islands), while lower random intercepts for Oceania and the Palearctic suggest systematically 679 
lower alpha diversity in those regions. In Figure 2, the outlier among realms is Oceania, which 680 
has considerably steeper ISARs than the other realms. In the Nearctic, all islands that were 681 
sampled were continental islands (n = 23) while 57% of islands (n = 65) in the Neotropics were 682 
oceanic islands but both realms held similar random slope values (Nearctic 0.20, Neotropics 683 
0.19). However, the majority of islands from the Neotropics come from areas close to the 684 
northern limits of this realm (e.g. Sea of Cortez, West Indies) which may explain the similarity in 685 
slope values. 686 

In regard to the threshold in the global true island ISAR (Fig. 5), the threshold (excluding 687 
the left-horizontal model in log–log space) was identified at roughly 133-163 km2. The mixed-688 



effects piecewise model fit revealed that the observed threshold did vary between biogeographic 689 
realms (e.g., being larger for Indomalaya), but, with the exception of the Nearctic and possibly 690 
the Afrotropics, the general pattern was consistent. This finding does not mean such a threshold 691 
does not exist for Nearctic islands, but simply that our data did not include a wide enough range 692 
of island areas to test this proposition. These thresholds, or points of inflection, can indicate 693 
specific spatial scales at which species richness accumulates at different rates across areas, 694 
reflecting processes such as the “small-island effect” (MacArthur and Wilson 1967; a 695 
distinctiveness of habitats on small islands, e.g. edge effects in habitat fragments). The high 696 
threshold observed for insular systems here could indicate an important role for speciation in 697 
driving ant diversity on large true islands. Speciation events can strongly influence the ISAR in 698 
larger true islands compared to smaller-sized island systems in ants (Economo et al., 2017; 699 
Economo & Sarnat, 2012; Wilson, 1961). Speciation rates are positively correlated with island 700 
area and, above a certain threshold, in-situ speciation can be a richer source of new species 701 
within an island than establishment from colonizing species (Losos & Schluter, 2000). 702 
Speciation in natural true insular systems likely affects ant ISAR patterns because eco-703 
evolutionary specialization in colonizing generalists can lead to in situ speciation, a pattern 704 
consistent with the taxon cycle hypothesis (Economo & Sarnat, 2012; Wilson, 1961). These 705 
speciation events within island systems can yield high levels of endemism in ants, levels that in 706 
some cases are higher than those observed in birds or vascular plants (Andersen et al., 2013).   707 
 708 
Gaps in the ant species–area relationship 709 
 710 
Sampling gaps and data deficiencies 711 
The rich history of research in ant biodiversity has resulted in a significant body of species-level 712 
data on ant communities. Our analyses of these data clearly illustrate that different island 713 
systems exhibit different species–area relationships. However, as Figure 1A illustrates, the  714 
studies are unevenly distributed across the globe, with scant studies from Africa and tropical 715 
mainland Asia. These gaps highlight the regions of the world from which additional ant 716 
biodiversity data would be especially valuable. It would be valuable to expand the range of 717 
studies in anthropogenically generated islands (resulting from habitat fragmentation).  Especially 718 
now that forests in particular are becoming increasingly fragmented around the globe, creating 719 
multiple new continental ‘islands’ (Haddad et al., 2015) for examination of species-area 720 
relationships. 721 
 722 
Incorporation of habitat diversity & other variables 723 
Future research aiming to understand the drivers of variation in the ant ISAR will need to 724 
incorporate variables beyond area, a point extensively discussed in the literature (Chase et al., 725 
2019; Triantis et al., 2003; Whittaker & Fernandez-Palacios, 2007). One clear way forward with 726 
ants is to consider variables such as habitat diversity in the context of competing hypotheses. It is 727 
unarguable that habitat diversity is an influential factor affecting ant ISARs (Torres & Snelling, 728 
1997; Wilson, 1961) and, in some cases, habitat diversity measures have been incorporated as 729 
covariates within the log-log ISAR model (e.g. as variables quantifying soil clay content) 730 
(Goldstein, 1975). Future investigations of ant ISARs should use ISAR models that implement 731 
habitat diversity, such as the choros model, which utilizes habitat diversity indices within the 732 
power function by multiplying a habitat diversity index with area. This model has led to a better 733 
fit of the ISAR when compared with conventional models (Triantis et al., 2003).  Moreover, our 734 



finding that higher precipitation leads to a shallower ISAR (see also Storch et al. 2005) suggests 735 
broad-scale ecosystem drivers of the spatial scaling of species richness, a pattern that warrants a 736 
clear mechanistic interpretation.  737 
 738 
Sample size 739 
The average number of islands used per study from this paper in insular and mainland systems 740 
was 16 and 15 respectively. However, recent work indicates that a minimum of sample size of 25 741 
is often necessary to identify significant trends of variation when there is high variance in the 742 
data (Jenkins & Quintana-Ascencio, 2020). That same study reported that 79% of 217 island 743 
biogeography studies constructed species–area curves with fewer than 25 observations. While 744 
acquiring insular data can be difficult, it is important that future studies aim to sample enough 745 
islands to reach a minimum sample size that can effectively quantify the ISAR.  Although this 746 
can be problematic in studies of true archipelagos that contain few islands (i.e. the small sample 747 
size is intrinsic to the system, not a sampling issue), it should not be a problem in continental 748 
regions, where anthropogenic habitat fragmentation is creating an abundance of fragments 749 
varying greatly in area and isolation.  750 
 751 
Impacts of non-native ants on the SAR 752 
Our ability to understand and predict the effects of non-native species on the ISAR is limited by 753 
a paucity of knowledge of the interactions between non-native and native ants within insular 754 
systems. However, observational evidence does exist of specific non-native and invasive ants, 755 
called “plague ants”, completely displacing native ant populations in insular systems (Morrison, 756 
2016; Wilson, 2005). Multiple studies have previously demonstrated that slope values of ISARs 757 
can be different when native or non-native status of species are taken into account (Rica et al., 758 
2005; Wilson & Taylor, 1967). Well-sampled areas like the Florida keys show specific non-759 
native species as being dominant on certain islands while native species remain dominant on 760 
others (Wetterer & O’Hara, 2002). Such systems raise questions as to why certain islands may be 761 
more susceptible to the establishment of non-native ants and how non-native ants influence the 762 
ISAR both empirically and theoretically.  763 

In our study, we show that non-native ants can comprise anywhere from 0% (Boomsma 764 
et al., 1987; Dean & Bond, 1990; Leal et al., 2012; Vasconcelos et al., 2006) to 87% (Sugiura, 765 
2010) of the ant fauna. We also observed higher percentages of non-native ants in insular 766 
systems compared to mainland systems, likely as a result of human-assisted dispersal often 767 
favoring non-native species with generalist tendencies (Morrison, 2016). Generalist ant species 768 
often have traits such as a broad range of nesting habitats (Fournier et al., 2019) that aid in 769 
surviving human-assisted dispersal and subsequent island colonization. In fact, Rizali et al. 770 
(2010) clearly shows that non-native species track human settlements on the islands of West 771 
Java, Indonesia. Human-assisted dispersal allows species to move over much greater distances 772 
than feasible by natural dispersal, resulting in colonization of more remote islands (often distant 773 
oceanic islands) which may have impoverished native faunas. This is reflected in our data where 774 
we observe almost double the non-native ant percentage in oceanic islands compared to 775 
continental islands. While many ants can produce thousands of reproductive alates for dispersal, 776 
the chance of any one successful colonization is extremely low. For example, Levins et al. 777 
(1973) estimated the rate of successful colonization by queen ants to islands near Puerto Rico to 778 
be ~4%. In terrestrial mainland systems, the red-imported fire ant is reported to have queen 779 
survival rates as low as 0.5% in field conditions (Tschinkel & King, 2017). However, this may 780 



be offset by higher propagule pressure from human-assisted dispersal. Ultimately, a better 781 
understanding of the trade-offs in ant dispersal and colonization will shed more light on the 782 
effects of non-native ants on the SAR. 783 
  784 
Conclusions 785 
Our study presents exciting and unexpected results of analyses on ISARs for ants and offers the 786 
most definitive evidence to date that ant communities on mainland islands tend to have steeper 787 
relationships, with diversity increasing more rapidly over area, than do true islands. We also 788 
demonstrate that precipitation is a major factor influencing ISAR z-values, leading to a 789 
weakening of area effects on the scaling of biodiversity in localities with likely high primary 790 
productivity and/or habitat diversity. Further research is needed to broaden our understanding of 791 
the ISAR in ants. Based on a review of ~60 years of literature we have identified major gaps in 792 
ISAR knowledge as it pertains to ants, highlighted priority areas for future research and 793 
suggested approaches to fill these gaps of knowledge. Immediate areas of potential improvement 794 
lie in further developing testable models based on habitat diversity hypotheses and further efforts 795 
into better understanding the trade-offs in dispersal and colonization in ants.  796 

While our study focuses on ants, the implications and suggestions from this study extend 797 
well beyond a single taxon. This is especially important at a time where human impacts on  798 
biodiversity patterns from local to global scales show conflicting trends in the scientific literature 799 
(Primack et al., 2018). The remaining pockets of biodiversity in minimally disturbed systems are 800 
rapidly disappearing. Therefore, now more than ever, there is a need to further understand the 801 
scaling properties of biodiversity. Research conducted on taxonomically well-resolved and 802 
globally distributed organisms, like ants, can provide this much needed and time-sensitive 803 
information. 804 

 805 
Data Availability Statement 806 
Datasets 1 and 2 which were used for all formal analyses from this study are available in the 807 
supplementary materials (Appendix 2 and 3). 808 
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Figures 1154 
 1155 

 1156 
Figure 1. (A) A global map showcasing the variety of datasets used in modeling ant species 1157 

richness as a function of area across all biogeographical realms. Size of each circle 1158 
represents species richness from each individual study/dataset. Biogeographical realms are 1159 
represented by different colors with the same color scheme applied to (B) and (C). Both (B) 1160 
and (C) show the fixed and random effects of a linear mixed-effect model for only true 1161 
islands. (B) Fixed effect (solid black line) of area on species richness from the linear mixed-1162 
effect model predicting log species richness as a function of log area with a random slope 1163 
for biogeographical realm. Grey shading represents the 95% confidence intervals of the 1164 
fixed effect. Points represent the data color coded by biogeographic realm. (C) Random 1165 
effects (colored-lines) from the same linear-mixed effect model from (B). Points represent 1166 
the data color coded by biogeographic realm. Natural logarithms are used and the area unit 1167 
is km2. Map uses Mollweide projection. 1168 

 1169 
 1170 



 1171 
 1172 
Figure 2. Boxplots showing the distribution of slope values (Z) across studies (n = 41) for ants 1173 

across all biogeographic realms. (A) Boxplots of z by biogeographic realms. (B) Boxplots 1174 
of z by insular or mainland studies. (C) Boxplots of z-values by the types of islands in the 1175 
study. 1176 
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 1178 
 1179 
Figure 3. Predictions of the most plausible model of ant z-values across all biogeographical 1180 

realms when accounting for the covariate ISAR type (insular or mainland studies). The y-1181 
axis represents slope values (Z) and the x-axis represents mean annual precipitation 1182 
(scaled). Lines represent model predictions. Shaded regions represent 95% confidence 1183 
intervals. Points represent actual data. Green points and shading indicate mainland studies 1184 
while blue indicates insular studies.  1185 
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 1187 



 1188 
Figure 4. Plot showing both R2 values and slope values (Z) of ant studies across all 1189 

biogeographical realms (both mainland and insular) used in the analysis. The y-axis 1190 
represents precipitation (in mm). The x-axis represents both R2 values and z-values from 0 1191 
to 1 going in both left and right directions. Colors represent the biogeographic realm of the 1192 
study.  1193 
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 1195 
 1196 
Figure 5. Plot showing the best threshold model for ants across biogeographical realms 1197 

(continuous one-threshold model; black lines) fitted to dataset 2 for true islands (n = 320) in 1198 
(A) log-log and (B) semi-log space. Points are coloured by biogeographic realm, and the 1199 
colours are consistent across plots (i.e. the legend in (b) applies to both plots). Natural 1200 
logarithms are used and the area unit is km2. 1201 
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Tables 1210 
 1211 
Table 1. All variables and a description of each, collected from studies to build the datasets used 1212 
in the analyses.  1213 

Variables collected from studies Description 
Slope value (z) Slope coefficient of the log-log species area relationship 
Standard error of slope value Error attributed to the slope coefficient estimate 
Coefficient of correlation (R2) Amount of variation in richness explained by area 
Biogeographic realm of study Afrotropic, Australasia, Indomalaya, Nearctic, 

Neotropic, Oceania, Palearctic 
Island types used in the study Habitat-patches, Continental islands, Oceanic islands 
Number of sampling methods The number of unique sampling methods used in 

collecting ants for the study 



Coordinates of study Latitude and longitude of study. If study was done 
across large spatial areas, a midpoint coordinate was 
calculated. 

Island area  Areas for islands/fragments used in the studies if 
disclosed 

Species richness per island Species richness values for each island/fragment if 
disclosed 

Non-native ant percentage Calculated as the species richness of non-native ants 
divided by total species richness for each dataset 
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 1231 
 1232 
 1233 
 1234 
 1235 
 1236 
 1237 
 1238 
Table 2. A summary table showing the number of datasets used in datatset 1, by biogeographic 1239 

realm, species–area relationship type, island type, and citation. Second column indicates 1240 
specific citation by number-code in parentheses. Note datasets focused on only single 1241 
islands used in dataset 2 are cite at the bottom but not listed in the table. 1242 

Biogeographic 
Realm 

Number 
and 

Citation 

Species-area 
relationship type 

# of 
datasets 

Island type 
# of 

datasets 

Afrotropic 2 (1) 
Insular 1 

Continental: 0 

Mainland Islands: 1 

Mainland 1 Oceanic: 1 

Australasia 4 (2) Insular 4 Continental: 2 



Mainland Islands: 0 

Mainland 0 Oceanic: 2 

Indomalaya 2 (3) 
Insular 2 

Continental: 1 

Mainland Islands: 0 

Mainland 0 Oceanic: 1 

Nearctic 6 (5) 
Insular 2 

Continental: 2 

Mainland Islands: 4 

Mainland 4 Oceanic: 0 

Neotropic 10 (6) 
Insular 5 

Continental: 3 

Mainland Islands: 5 

Mainland 5 Oceanic: 2 

Oceania 4 (7) 
Insular 4 

Continental: 0 

Mainland Islands: 0 

Mainland 0 Oceanic: 4 

Palearctic 13 (8) 
Insular 12 

Continental: 5 

Mainland Islands: 1 

Mainland 1 Oceanic: 7 

Total: 41 
Total Insular: 30 

Total Continental: 13 
Total Mainland 

Islands: 11 

Total Mainland: 11 
Total Mixed: 0 

Total Oceanic: 17 
Citations: 1. (Dean & Bond, 1990, Wetterer et al., unpublished), 2. (E. Sarnat et al., 2013; E. 
Wilson, 1961; Woinarski et al., 1998), 3. (Rizali et al., 2010; Trainor & Andersen, 2010), 4. 
(Clark et al., 2011; Goldstein, 1975), 5. (Clark et al., 2011; Goldstein, 1975; Sanders, 2002; 
Suarez et al., 1998), 6. (Badano et al., 2005; Boulton & Ward, 2002; Cole, 1983; Cuissi et al., 
2015; Leal et al., 2012; Schoereder et al., 2004; Vasconcelos et al., 2006; Wetterer & O’Hara, 
2002; Edward O. Wilson, 1988) 7. (L. W. Morrison, 1997; Wetterer, 2002; Edward O. Wilson 
& Taylor, 1967), 8. (Baroni-Urbani, 1968, 1971, 1974; Boomsma et al., 1987; Choi et al., 
1993; Collingwood, 1993; Menozzi, 1936; Sugiura, 2010; Wetterer et al., 2004, 2007; Zhao et 
al., 2020) 
Papers with single island records used in dataset 2: (Baroni-Urbani, 1976; Borowiec & Salata, 
2018b, 2018a; Legakis, 2011; Mühlenberg et al., 2016; Poldi et al., 1995; Terayama, 1992; 
Wetterer, 2006, Wetterer, unpublished) 

 1243 
 1244 
Table 3. A table showing the competing models under two different covariates, island range 1245 
(order of magnitude) (n = 35) and species–area relationship type (mainland or insular) (n = 42), 1246 
assessing slope values (z) as a function of abiotic variables based on AICc (Akaike Information 1247 
Criterion with correction for small sample sizes) rankings. Predictor variables for each model are 1248 
shown along with each model's AICc score, the change in AICc for every lower ranked model, 1249 



AICc weights, and the adjusted R2. 1250 
 1251 

Model with island order of magnitude range (OMR) covariate ΔAICc Weight (wi) Pseudo-R2 
z ~ OMR + Precipitation 0.0 0.415 0.11 

z ~ OMR  1.2 0.223 0.03 
z ~ OMR + Temperature 2.5 0.122 0.05 
z ~ OMR * Precipitation 2.6 0.115 0.11 
z ~ OMR + Latitude 3.7 0.066 0.03 
z ~ OMR * Temperature 4.9 0.036 0.05 
Null Model 5.9 0.021 0 
z ~ OMR + Biogeographic realm + Precipitation 11.1 0.0016 0.26 
z ~ OMR + Biogeographic realm + Temperature 20.9 < 0.001 0.07 

Model with ISAR type covariate ΔAICc Weight (wi) Pseudo-R2 
z ~ ISAR type + Precipitation 0.0 0.631 0.18 

z ~ ISAR type + Temperature 2.3 0.200 0.12 
z ~ ISAR type  4.0 0.085 0.07 
z ~ ISAR type + Latitude 4.1 0.083 0.10 
z ~ ISAR type + Biogeographic realm + Precipitation 14.3 < 0.001 0.12 
Null Model 18.3 < 0.001 0 
z ~ ISAR type + Biogeographic realm + Temperature 19.4 < 0.001 0.12 
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 1261 
 1262 
 1263 
 1264 
 1265 
Table 4. Threshold models comparison summary. Results are presented for the insular global 1266 
dataset, for both the log–log and semi-log transformations. For each model, the AICc and R2 1267 
values are provided, and for the threshold models the area value (km2) where the inflexion point 1268 
is located (on a log scale) is provided (Th1). For each comparison, the intercept-only model is 1269 
not included to save space as it was always the worst model. ContOne is the continuous one-1270 
threshold model, and ZslopeOne the left-horizontal one-threshold model. In log–log space the 1271 
linear model is the power model, and in semi-log space it is the logarithmic model. 1272 
 1273 
Model AICc R2 Th1 
Insular: log–log    
ContOne 867.31 0.36 4.895 
ZslopeOne 882.15 0.32 1.695 



Linear 889.79 0.30 NA 
Insular: semi-log 

   

ContOne 2751.14 0.54 5.095 
ZslopeOne 2753.08 0.54 4.995 
Linear 2887.31 0.29 NA 
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