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Abstract 9 

Climate change, increasing populations, competing demands on land for production of biofuels, and 10 

declining soil quality are challenging global food security. Finding sustainable solutions requires bold 11 

new approaches and integration of knowledge from diverse fields, such as materials science and 12 

informatics. The convergence of precision agriculture, whereby farmers respond in real-time to changes 13 

in crop growth, with nanotechnology and artificial intelligence offers exciting opportunities for 14 

sustainable food production. Coupling existing models for nutrient cycling and crop productivity with 15 

nanoinformatics approaches to optimize targeting, uptake, delivery nutrient capture and long term 16 

impacts on soil microbial communities will allow design of nanoscale agrochemcials that combine 17 

optimal safety and functionality profiles.   18 

 19 

 20 

 21 

 22 

 23 

 24 
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Introduction  25 

The Green Revolution, i.e. the 3rd  Agricultural Revolution, which occurred between the 1950s and 26 

1960s, dramatically increased global agriculture productions yield thereby avoiding the spread of 27 

famine and malnutrition. However, the world population has also grown by more than 5 billion since 28 

the beginning of the Green Revolution, entailing a continuous growth of crop production. The global 29 

agriculture and food security sector is facing a wide spectrum of challenges such as low crop yields, 30 

declining soil health and fertility, low use efficiency of agrochemicals due mainly to excessive use of 31 

fertilizes and pesticides, shrinking arable land per capita and diminishing freshwater availability for 32 

irrigation1. Moreover, climate change, as arising from increasing atmospheric CO2 concentration 33 

leading to rising temperature, is likely to further affect the resilience of agricultural soils and their 34 

ability to sustain productivity and ensure food security for an increasing human population2. 35 

Nanotechnology offers great potential to enable precision and sustainable agriculture, the opportunities 36 

and challenges of which have been discussed in several recent reviews covering strategies to enhance 37 

crop nutrition and smart plant sensors3, 4, 5. Using nanotechnology, the delivery of fertilizer6 can be 38 

tailored by targeting to specific tissues / organisms and stimuli-responsive release, as well as 39 

potentially improving nutrient use efficiency (NUE) by releasing the nutrient slowly for plant uptake7. 40 

Nano-enabled agriculture is expected to target pests more efficiently using lower amounts of pesticide8 41 

thereby avoiding widespread impacts on soil health and biodiversity, and improving soil function and 42 

nutrient cycling via soil microbiome enhancement (optimization of nitriying/denitrifying bacterial 43 

communities). Longer term applications include development of smart “sensor” plants, whereby the 44 

plant itself is adapted, using targeted delivery of nanomaterials (NMs), for sensing abiotic stress9. As 45 

with all new technologies however, the risks must be evaluated in parallel with the benefits, and indeed 46 

several NMs have been identified to cause negative changes in soil community structure, e.g, TiO2 47 

NMs cascading negative effects on denitrification enzyme activity and a deep modification of the 48 
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bacterial community structure after just 90 days of exposure to a realistic concentration of NPs (1 mg 49 

kg−1 dry soil)10, while studies with Ag NMs, which are well-known for their antimicrobial activity have 50 

shown that the extent of impact on soil community composition over 90 days are affected by exposure 51 

time and physicochemical composition of soil as well as the type and coating of the NMs11.  Thus, an 52 

important caveat at the outset of this review is that NMs represent a very broad spectrum of 53 

chemistries, compositions and physicochemical properties, which are dynamic and evolving as the 54 

NMs interact with their surroundings, and as such generalisations regarding their applications in 55 

agriculture are difficult, and predictions of long-term effects are challenging currently. 56 

However, as noted in the aforementioned reviews3, 4, 5, the development of nanotechnology for 57 

agricultural applications is still at an early stage and is moving forward quite slowly. Significant 58 

differences may exist between nanotechnology-based pesticides and conventional pesticides, including 59 

altered  bioavailability, sensitivity, dosimetry, and pharmacokinetics12, 13. Challenges and barriers 60 

include limited understanding of plant-NMs interactions, limited methods for efficient delivery of NMs 61 

to plants and soil, risks of potentially hazardous effects of NMs to human health from accumulation of 62 

NMs and active ingredient residues in edible portions of plants4, and to long term soil quality and soil 63 

health from accumulation of NMs and their degradation products in soil and resultant potential 64 

alterations in microbial biodiversity14. There is an urgent need to address these barriers and achieve a 65 

true win-win scenario, whereby improved agricultural production, reduced environmental pollution 66 

from agriculture and lower costs for farmers can be achieved synergistically. A one-health approach to 67 

nano-agriculture was proposed by Lombi et al., that requires interdisciplinarity and the bridging of 68 

human and environmental health research15. Computational approaches including artificial intelligence 69 

(A.I.) and machine learning (M.L.) modelling will undoubtedly play critical roles in the progess of 70 

nano-enabled agriculture, and are already starting to gain regulatory acceptance for NMs safety 71 

assessment.  72 
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The application of computers and artificial intelligence (A.I.) in agriculture is not new – for 73 

example, articles addressing software for integrated resource management16, image digitization for soil 74 

and crop science16, and light and temperature monitoring and control for plants17 were published 35 75 

years ago! The rise of remote sensing and integration of remote sensing data into decision support tools 76 

for contemporary farming systems is expected to improve yield production and management while 77 

reducing operating costs and environmental impact18. Agricultural systems models have emerged over 78 

the last 50 years, spanning field, farm, landscape, regional, and global spatial scales and engaging 79 

questions in past, current, and future time periods. Integrated agricultural systems models combining 80 

grasslands and cropping models, livestock models, pest and disease models and risk behaviour models 81 

are also emerging, although data gaps exist across all aspects, hampering their implementation19. 82 

However, the comvergence of A.I. approaches and nano-enabled agriculture is in its infancy and as 83 

such the current perspective aims to stimulate the development of this important area.   84 

The rapid pace of the development of nanotechnologies, the enormous diversity of physico-85 

chemical properties of NMs and their dynamic interactions with, and transformations, by their 86 

surrroundings (e.g., corona formation, dissolution, sulfidation etc.20, 21) leads to the need for in silico 87 

approaches to predict and assess their safety22. Nanoinformatics is a powerful way of relating the 88 

nanostrucutural features with functional properties based on data-driven A.I. and M.L. approaches22, 23, 89 

24. Nanoinformatics emerged a decade ago in the context that development and implementation of 90 

nanotechnology in the real world requires the harnessing of information at the nexus of environmental 91 

and human safety, risk assessment and management, physiochemical properties and function. With A.I. 92 

and M.L. enabled in silico risk assessment25, NMs grouping and classification26, and safe-by-design27 93 

NMs design, as well as for predictions of NMs corona formation28 and consequences for cellular 94 

attachment and uptake29, 30, 31, nanoinformatics has played significnt roles in the area of nanosafety and 95 

nanomedicine, while there is also ample scope of nanoinformatics in nano-enabled agriculture that has 96 
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not been explored, including for prediction of NMs interactions with and impacts on rhizosphere 97 

secretions, NMs transformations before and during uptake and translocation, NMs impacts on soil 98 

microbial communities and for predictions up plant uptake following foliar application. Experimetnal 99 

data are emerging in all these areas32, 33, 34, and a dedicated effort to integrate and curate this data, and 100 

present it in a format suitable for modelling is currently underway by the authors in the scope of their 101 

nanoinformatics e-infrastructure projects NanoCommons and NanoSolveIT35. Coupling these 102 

approaches with existing models for nutrient cycling36, NUE37 and crop productivity38 and the 103 

aforementioned agricultural systems models into an overall Integrated Approach for Testing and 104 

Assessment (IATA) will allow co-optimisation of NMs for use in agricultural systems that combine 105 

safety and functionality profiles enabling precision agriculture.  106 

In this perspective, emerging applications of nanotechnology and nanoinformatics in agriculture 107 

and gaps in current understanding are outlined. Key research areas are identified where the application 108 

of A.I. will support the effective implementation of nanotechnology in agriculture, with a view to 109 

enhancing productivity and protecting or improving environmental quality. Current applications of A.I. 110 

in agriculture, in nanotechnology broadly, and in nano-enabled agriculture are also outlined, along with 111 

identification of key areas where their convergence and integration can accelerate the development of 112 

sustainable nano-enabled precision agriculture. 113 

 114 

Current challenges in agriculture  115 

With an ever increasing human population under a decreasing per capita agricultural land 116 

globally39, a key challenge is to optimize productivity whilst ensuring the conservation of soil health 117 

and the protection of environmental quality. Agrochemicals (fertilizers and pesticides) enabled an 118 

increase in productivity such that half of us are alive today due to the invention of industrial ammonia 119 

production and its use as a fertilizer globally. However, the intensification of agriculture for enhanced 120 
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productivity resulted in extremely poor NUE globally (<50%)40, 41. Poor NUE under an excessive 121 

fertilizer use culture thus poses a serious threat to environmental quality as large amounts of nutrients 122 

are lost into water and air causing eutrophication and greenhouse effects. For example, agriculture 123 

contributes nearly 11% of global greenhouse gas emissions42. Nitrogen (N) and phosphorus (P) 124 

fertilizer use in agriculture is one of the main drivers behind the breach of the safe planetary boundaries 125 

for these elements that could trigger irreparable damage to the environment43. Rockstrom et al. 126 

recommended a reduction of reactive N use in agriculture from 150 Mt N y-1 to about 35 Mt N y-1 127 

globally to ensure sustainability43. Such a reduction can only be achieved through a combination of 128 

approaches including targeted nano-enabled delivery of fertilizer to match plant demands to avoid 129 

excessive losses, development and availability of low-cost in situ nutrient sensing technology to help 130 

farmers plan fertilization efficiently, introduce rotations into agriculture to recover the health and 131 

fertility of soils, utilize farm yard manure and slurries for meeting nutrient demands and identifying 132 

crop breed that are efficient in nutrient uptake and even fixing atmospheric N2 directly or thorugh 133 

enhance symbiosis are some of the key measures to enhance NUE, reduce excessive fertilization and 134 

the subsequent losses of reactive N from cultivated soil44. Unlike N, available terrestrial P reserves are 135 

non-renewable and the current losses of available P from agriculture to water (rivers and oceans) is 10 136 

times the pre-industrial and agricultural intensification era43. This unsustainable use of P fertilizer in 137 

agriculture is thus posing a risk to global food security45, while causing eutrophication of fresh and 138 

coastal water bodies, together with N41.  139 

The grand challenge in agriculture is therefore that of optimizing usage efficiences, timing and 140 

targeting of fertilizer use to enhance and sustain crop production and while simultaneously reducing 141 

amounts of fertilizers used and losses to environments external to agricultural catchments. While 142 

regulatory and voluntary fertilizer use policies in Europe and USA have resulted in reduction of losses 143 

to water, an overall enhancement in NUE was not achieved46. Recent efforts to enhance NUE include 144 



7 
 

utilization of biofertilization to enhance microbial biodiversity47, and application of a range of N 145 

management tools across the growing season including soil testing, plant tissue testing, spectral 146 

response, fertilizer placement and timing and vegetative indexes (leaf area index, and Normalized 147 

Difference Vegetation Index (NDVI)) through A.I. enabled drones, handheld sensors, and satellite 148 

imagery48. Rockstrom et al. suggested that substantial N and P fertilizer use reduction can protect the 149 

planet from breaching resilence thresholds, if such reductions can still ensure productivity43.  150 

Gobal agricultural yields are also impacted by crop loss due to competition from weeds, insect 151 

damage and plant diseases. Weed competition causes 34% of crop loss on a global scale, while 152 

microbial diseases and pest damage also cause 34% of crop loss 49. The application of synthetic 153 

herbicides and pesticides thus increases yields (reduces crop loss) and, in the case of herbicides 154 

containing N, P and K, improves food quality through enhanced nutrient uptake and retention50; 155 

however, these agrochemicals, which are designed to kill, also cause severe adverse impacts on the 156 

health of human and non-targeted organisms and soil fertility, and result in contamination of water, soil 157 

and air51. Mis-use of agrichemicals on poor quality soils, soil degradation as a result of farming 158 

intensification, shrinking water availability and decreasing water quality, and globalization of diseases 159 

have led to low resilience of agriculture systems.52 Moreover, climate changes such as elevated 160 

atmospheric CO2 levels and increasing temperatures also potentially impact the future of agriculture.53  161 

Nanotechnology applications in the agricultural sector have great potential to improve all 162 

aspects of crop production, that is, to increase crop production yields and resource use efficiency whilst 163 

reducing agriculture-related environmental pollution, thereby ensuring global food security whilst 164 

ensuring future agricultural sustainability. Coupling existing models for nutrient cycling and crop 165 

productivity with A.I. and machine learning to optimize targeting, uptake, delivery, nutrient capture 166 

and soil microbial composition  will allow design of nanoscale agrochemcials that combine optimal 167 
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safety and functionality profiles and implementation of nano-agrichemicals into mainstream 168 

agricultural systems management.   169 

 170 

Current applications of nanotechnology in agriculture 171 

Nanotechnology offers the benefit of reducing costs of fertilization at farm level directly and at global 172 

level, indirectly, through reduction in environmental damage and environmental clean up costs 173 

associated with agriculture-derived pollution. More importantly, enhancing NUE through 174 

nanotechnology application in agriculture is a promising intervention technology that could 175 

revolutionize and modernize agriculture making it precise and targeted. Figure 1 summarises 4 key 176 

areas where nanotechnology is, and will continue to, improve the precision and sustainability of 177 

agriculture. 178 
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 179 

Figure 1. Applications of nanotechnology in agriculture, focusing specifically on crop production 180 

(agronomy). Most are still at research stage, due to uncertainties regarding safety, and complex and 181 

emerging regulatory processes for approval of agricultural chemicals, including plant protecton 182 

products, biocides and fertilizing products or plant biostimulants. 183 

 184 

Increasing crop yields and production rates 185 

The Green Revolution relied highly on the traditional agronomic factors including use of synthetic 186 

fertilizer and pesticide coupled to rainfall patterns or irrigation, and breeding technology. Instead of 187 
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increasing intensity and doses of those activities, improving the “efficiency” in agriculture is a more 188 

realistic strategy to realise significant enhancement of crop yield and production rates whilst avoiding 189 

overuse of natural resources and reducing agricultural pollution, ensuring a win-win-win future. 190 

Nanotechnology is undoubtedly one of the most promising approaches that can achieve this goal. 191 

One promising way to enhance crop yield is using ‘plant nanobionics’, a recently coined term 192 

referring to the approach of designing NMs to interact with plants in order to enhance native functions 193 

or to give the plant non-native functions9. A key focus is to improve the efficiency of photosynthesis, 194 

an essential process occurring in plant leaves which uses solar energy to produce sugar from CO2 and 195 

water for plant growth. Photosynthesis efficiency can be enhanced by improving the efficiency of the 196 

photosynthetic enzyme ribulose-1,5-bisphos-phate carboxylase/oxygenase (RuBisCO). A pioneering 197 

study found that TiO2 NMs promote the photosynthesis rate by activating the RuBisCO carboxylation 198 

process, potentially the result of the photocatalytic activity of TiO2 NMs54. More recently, root 199 

application of carbon dots (CDs) was found to enhance RuBisCO activity thus improving the 200 

photosynthesis efficiency and carbonhydrate production in Arabidopsis thaliana55, leading to 20% 201 

increase of plant yield; this enhancement of plant growth was also demonstrated for several other plant 202 

species such as soybean, tomato and eggplant. The overlapping adsorption of CDs with chloroplasts at 203 

420 ~ 700 nm and the photo-induced electron donating and accepting properties of CDs are considered 204 

to contribute to the enhanced photosynthesis efficiency. Other NMs, such as multiwalled carbon 205 

nanotubes (MWCNTs)56 and CeO2 NMs have also shown potential for improving plant phtosynthesis 206 

under stress conditions57, 58. CeO2 NMs can scavenge free radicals such as hydroxyls in mesophyll cells 207 

thereby improving plant tolerance to stress and photosynthesis. 208 

Enhanced photosynthesis can also be achieved by broadening the range of solar light that can be 209 

absorbed by plant leaves. Plants can naturally only absorb visible light in the range 400 ~ 700 nm with 210 

energy conversion efficiency less than 4%. Single walled carbon nanotubes (SWCNTs) are capable of 211 
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capturing a broad range of solar light covering ultraviolet, green and near-infrared. Seminal work by 212 

Giraldo et al. found that SWCNTs can insert into the thylakoid membrane, and that the formed 213 

assemblies enabled a higher rate of electron transport and augmentation of photosynthesis in leaves due 214 

to the semi-conductive nature and wide light absorption ability of SWCNTs9. Using SWCNTs as a 215 

carrier also enabled gene-delivery into chloroplast, a structure that is hard to target using current (often 216 

liposome-based) methods59, to improve light capture efficiency. The nanotubes also prevented the non-217 

native DNA from integrating into the plant genome thus avoiding consumer concerns over genetically 218 

modified crops. Importantly, the delivery efficiency is plant species independent and may help with 219 

high-throughput screening of plants to identify phenotypes with desired functions, e.g., optimised 220 

photosynthesis efficiency. For example, it could facilitate the engineering of C3 crops (e.g., rice, wheat) 221 

to use the C4 pathway (e.g., maize), which have nearly 50% higher light use efficiency and higher N 222 

and water use efficiency than C3 pathway plants.  223 

 224 

Improving resource use efficiency and soil health 225 

As discussed by Lowry et al.4, NMs and nanotechnolgy could also improve the use efficiency of natural 226 

resources whilst reducing agricultural derived environmental pollution, which is one of the main pillars 227 

of the sustainable vision. Crop yield is highly dependent on external inputs of N, P and potassium (K) 228 

and micronutrients (e.g., B, Fe, Mn, Cu, Zn) into the agricultural land. The overall NUE by plants 229 

currently stands at less than 50% globaly40, with the rest retained in soil, leached into water, or emited 230 

into air, causing detrimental environmental impacts. Engineered NMs offers great opportunity to 231 

improve NUE via nano-based smart delivery platforms, i.e. so-called controlled release and targeted 232 

delivery for efficient plant uptake60, or through NM influence on microbial communities and their 233 

nitrogen fixing abilities55. For example, using hydroxyapatite nanoneedles as carriers of urea can 234 

remarkably slow the release rate of urea from the nanohybrid surface, which can lead to better yields at 235 
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50% lower application rate and reduced hydrolysis of urea and hence lower emission of ammonia into 236 

the air.6 Such a system could also deliver pesticide active ingredients more efficiently thus reducing the 237 

amount of pesticides needed. For example, nano copper pesticides show four orders higher efficacy 238 

against bacterial blight on pomegranate at 104 times lower concentrations than that recommended for 239 

copper oxychloride61. Nanotechnology also allows the nutrients or pesticides to be delivered only at the 240 

target position, such as the plant rhizosphere. These strategies reduce the use of fertilizers and 241 

pesticides which would reduce the waste of natural resources and synthetic agrochemicals whilst also 242 

protecting soil health by lowering the input of contaminants. In addition to avoiding emissions from 243 

agrochemicals, Lowry et al.4 also pointed out that selective removal or recovery of nutrients from 244 

contaminant water and waste streams using nanotechnology provide additional opportunities for 245 

improving NUE. NMs applied to soil have been shown to alter the microbiome activity and 246 

abundance62, thus could potentially be used to intentionally alter the singaling and community structure 247 

of microbiome (e.g., N fixating bacteria) to enhance the availability of nutrients to plants. It is also 248 

possible to increase the population of beneficial symbiotic bacteria (endophyte) to enhance crop 249 

productivity; however, as noted by Lowry et al., achieving this requires better understanding of the 250 

connection of soil and plant microbiome and the plant physiology involved63. One primising approach 251 

to address these knowledge gaps, and facilitate development of initial A.I. models, could be soilless 252 

growth systems such as hydroponics64, where introduction plant growth-promoting rhizobacteria and 253 

use of multi-element sensors and interpretation algorithms based on machine learning logic to monitor 254 

the availability of nutrients/elements in the hydroponic solution and to modify its composition in 255 

realtime65, are feasible in the near team and the lessons learned can then be translated to more complex 256 

soil systems. 257 

 258 

 Improving management of soil health and plant growth 259 
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Nanotechnology can also enable smart sensing of undesirable ambient biotic (plant pathogens, weed 260 

competition, insect damage) and abiotic (drought or flooding, high salanity, extreme climate) stressors, 261 

thus improving management effectiveness to reduce crop loss, which is a major challenge in global 262 

agronomy. Nanotechnology based approaches for monitoring plant stress and resource deficiencies has 263 

been recently reviewed by Giraldo et al5. For example, the secretome of microbes, fungi, rhizosphere 264 

and plants are rich in information about the organisms adaption to their environment, and offer a means 265 

to probe changes in the environment, or stress responses via secretion of biomarkers63, 66. Developed 266 

inventories of secreted proteins under normal, biotic and abiotic stress conditions revealed several 267 

different types of novel secreted proteins, such as leaderless secretory proteins potentially involved in 268 

the defense/stress responses, which could be explored (including computationally, see later sections for 269 

details) for use as biomarkers63. Molecule specific NMs-based sensors could be designed to detect 270 

metabolites and root exudates to monitor crop growth status. Remote and real time detection of plant 271 

pathogens or pests is also possible using NMs sensors, which could greatly reduce the use of pesticides, 272 

especially if coupled with stimuli-responsive release67, 68. Stimuli responsive sensing systems can 273 

deliver agrochemicals only when it is necessary in response to environmental changes such as shortage 274 

of nutrients, extreme pH conditions, elevated temperature or CO2. These strategies will greatly improve 275 

agronomic management and resilience of agroecosystems to stress, especially under changing climate 276 

conditions.  277 

In order to maximise the use of NMs in agriculture and agronomy, however, there are some 278 

concerns that need to be addressed, including the potential toxicity of the NMs to non-target organisms 279 

and adverse impacts on ecosystems69, 70, their persistence and mobility in the environment and that of 280 

their break-down or transformation products. As with all agrochemicals, concerns about potential 281 

residues in edible portions of plants also need to be addressed, as part of an overall risk assessment of 282 

nano-enabled agrochemicals68. Since the use of NMs in farmland will require large quantities of NMs, 283 
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the synthesis of which requires high energy input, evaluating the cost of NMs production and the 284 

benefit trade-offs should be considered in the development of NMs for application in agriculture. 285 

While in terms of both risk and application of NMs, current studies in the lab, mesocosms and 286 

field are expensive, time-consuming and complicated, limiting the range of conditions that can be 287 

varied systematically. Results are often hard to conclude because the interpretation of the results is 288 

influenced by factors such as experimental procedures, protocols, duration, NMs types, doses, soil 289 

types and plant species. Integrating of the existing data, albeit with gaps and limitations, and 290 

supplementation with predictive modelling and machine learning approaches, including Bayesian 291 

networks71, 72, for example, which can be dynamically updated as new knowledge emerges, into IATA 292 

offer exciting new directions; development of a nano-agriculture IATA case study utilsiing the OECD 293 

IATA case study approach73 to seems like a logical next step (Figure 2).   294 

 295 
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Figure 2. Application of machine learning in risk assessment and safe-by-design of NMs and their 296 

extension to support nano-enabled agriculture, building on advances in both nanoinformatics and 297 

agricultural systems modelling.  Integrating different modelling and experimental approaches, via an 298 

IATA, will lead to enhanced prediction power and faster and safer implementation of precision nano-299 

enabled agriculture. 300 

 301 

A.I. and machine learning for agronomy  302 

A.I. and machine learning approaches 303 

As computer power increases, and the value of data as knowledge to be exploited is realized more and 304 

more, A.I. and machine or deep learning approaches are emerging as means to identify patterns in large 305 

datasets that are predicitve of future outcomes. One of the most widely used approaches involves neural 306 

networks algorithms, which use an unbiased subset of the total available data as the training set to 307 

develop a model that makes predictions using the rest of the data and the validity of the predictions are 308 

evaluated to ensure that they could not arise randomly. The size and range of the dataset used to train 309 

the model provides the limits to its predictive power, or its domain of applicability – models cannot 310 

predict reliably outside their range of data. Box 1 describes the various types of data-driven machine 311 

learning models, among which are models that link structure or properties (e.g. of a chemical) to 312 

specific effects or impacts on the environment, so called Quantitative Structure Activity (or Property) 313 

Relationship models (QSARs / QPARs)74, and Bayesian Networks (BNs) which are a powerful tool for 314 

incorporating uncertainty into decision support systems75, by providing a basis for probabilistic 315 

inference and facilitating assessment of changes in probabilistic belief as new evidence is entered into 316 

the model. The larger the dataset available to train a machine learning model, the more powerful it will 317 

be – typically in drug discovery or chemoinformatics for example, models will utilize data from 318 

thousands of different chemicals to develop a prediction. Similarly, genomics and related approaches, 319 
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where hundreds of thousands of datapoints are available, allow generation of strong gene interaction 320 

networks and assessment of effects of specific genetic perturbations, for example used to understand 321 

gene regulation networks in plants76. 322 
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Box 1. The main types of Machine Learning algorithms, and examples of their application in 
agriculture and/or nanomaterials design and safety assessment77  
• Supervised Learning. This algorithm consists of a target outcome (dependent variable) to be predicted 

from a given set of predictors (independent variables), generating a function that maps inputs to desired 
outputs. The training process continues until the model achieves the desired level of accuracy on the 
training dataset, and is then tested on the test dataset that was not involved in the training procedure. 
Examples of Supervised Learning: Regression, Decision Tree, Random Forest, K nearest neighbours 
(KNN), Logistic Regression 
Applications in agriculture and agronomy:  A KNN algorithm was used to predict water retention at -33- 
and -1500-kPa matric potentials, using a hierarchical set of inputs (soil texture, bulk density, and organic 
matter content).  
Applications in NMs design, safety and interactions78: KNN algorithms have been applied to develop 
a  predictive  QSAR  model for NMs cellular  association based on their physico-chemcial properties and 
adsorbed protein corona, as a means to understand the drivers of NMs toxicity79.  
Potential applications in nano-enabled agriculture: could be applied to prediction of acquired 
biomolecule coronas (rhiozosphere secretions, foliar sections and biont) and their evolution during NMs 
uptake into plants; for prediction of NMs trasnformations and impacts on soil or foliar bionts.  As part of 
IATA could be integrated with water retention models to predict NMs mobility in soil. 

• Unsupervised Learning. In this algorithm, there is no target or outcome variable to predict. It is used for 
clustering data into different groups.  
Examples of Unsupervised Learning: A priori algorithm, K-means.  
Applications in agriculture and agronomy:  A segmentation algorithm, inspired from an image-
processing region-merging algorithm, for delineation of discrete contiguous management zones has been 
developed that is applicable to high- or low-density irregular data sets, such as yield data80, and can 
identify coherent management units to facilitate differential crop management. 
Applications in NMs design, safety and interactions: K-means clustering has been applied to signal 
processing of spICP-MS raw data (used for characterisation of NMs size and to distinguish particulate 
versus ionic fractions for quantification of NMs dissolution, uptake etc.) to discriminate particle signals 
from background signals, leading to a sophisticated, statistically based method to quantitatively resolve 
different size groups contained within a NM suspension81. 
Potential applications in nano-enabled agriculture: could be applied to predction of NMs transformations 
under different soil and climate conditions; for prediction and clustering of efficacy of nano-enabled 
agrichemcials and NUE of fertilisers. Integration with crop management approaches could be applied to 
determine optimal nano-agrichemical application strategies. 

• Reinforcement Learning. The machine is trained to make specific decisions. Using trial and error, the 
machine learns from past experience and tries to capture the best possible knowledge to make accurate 
decisions.  
Example of Reinforcement Learning: Markov Decision Process. 
Applications in agriculture and agronomy: A smart agriculture Internet of Things system based on deep 
reinforcement learning has been developed to increase food production using deep reinforcement learning 
in the cloud layer to make immediate smart decisions such as determining the amount of water needed for 
irrigation to improve the crop growth environment82. 
Applications in NMs deisgn, safety and interactions:  A recent example used  Kohonen networks83, or 
self-organising maps (SOMs), to visualise sets of silver and platinum NMs based on structural similarity 
and overlay functional properties to reveal hidden patterns and structure/property relationships. Visual 
inspection of the SOMs revealed a strong structure/property relationship between the shape of silver NMs 
and the energy of their Fermi level, and a weaker relationship between shapes with a high fraction of 
(111) surface area and the ionisation potential, electron affinity and electronic band gap.  Both energy 
levels and crystal structure or exposed crysal face are linked to NMs reactivity and toxicity84. 
Potential applications in nano-enabled agriculture: initial applications in hydroponics as part of realtime 
responsiveness to changes in nutrient and microbial compositions and integration with NMs structure-
property relationships under different environmental and local conditions to optimize release rates and 
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NUE. 
 

 323 

Current A.I. and machine learning in agriculture  324 

A 2018 review of the use of machine learning in agriculture has classified the application areas into (a) 325 

crop management, including applications on yield prediction, disease detection, weed detection crop 326 

quality, and species recognition; (b) livestock management, including applications on animal welfare 327 

and livestock production; (c) water management (daily, weekly, or monthly evapotranspiration rates); 328 

and (d) soil management such as prediction-identification of agricultural soil properties85 . Application 329 

of Bayesian Networks to agricultural systems has been a challenge to date however, as there is often 330 

insufficient data for computing the prior and conditional probabilities required for the network75.   331 

In terms of the key areas identified for improvements in crop production, process based 332 

machine learning models (e.g., the SPACSYS model86) for plant growth, incorporating assimilation, 333 

respiration, water and N uptake, partitioning of photosynthate and N, N-fixation for legume plants and 334 

root growth87, are emerging and being constantly improved. With increased understanding of the 335 

processes, and the availability of intervention strategies such as precision nanoagrochemicals, the 336 

potential of machine learning for optimisaiton of agroecosystems has never been higher; integrating 337 

machine learning, simulation, and portfolio optimization can inform decisions and support selection of 338 

optimal seed (e.g., soybean) varieties to grow with resolution at the level of a specific farm with its 339 

individual crop rotation history rather than at regional scale based on soil type and quality 88. Indeed, a 340 

very recent review of the potential impacts of A.I. on the achievement of the UN sustainable 341 

development goals (SDGs) suggested that A.I. will be an enabler for SDG2 on sustainable agriculture, 342 

but highlights generally that the pace of development of A.I. may have implications in terms of a lack 343 

of regulatory oversight and insight, which could potentially result in gaps in transparency, safety, and 344 

ethical standards89. 345 
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Nanoinformatics models applicable to nano-enabled agriculture  346 

The application of machine learning in NM risk assessment, and for design of “safe” and 347 

environmentally friendly NMs, is also an area of intensive research in the last few years. For example, 348 

nanoQSAR models linking specific NMs properties to uptake by, and impacts on, cells or organisms 349 

are emerging, as well as models that allow determination of surface functionalizations that enhance (or 350 

decrease), for example, protein binding and/or cellular association (as a pre-requisite for 351 

internalization79), and can be applied for design of targeting strategies in precision nano-agriculture. 352 

Similarly, extending advances in nanomedicine to precision nanoagriculture will facilitate the design of 353 

optimized controlled release agrochemicals90, 91.  For example, deep learning employing an automatic 354 

data splitting algorithm and the evaluation criteria suitable for pharmaceutical formulation data was 355 

developed for the prediction of optimal pharmaceutical formulations and doses92. From an agricultural 356 

perspective, understanding the factors (NM, plant, soil, climate etc.) that control the release rate of 357 

active ingredients, and the factors driving transport of the carrier can influence selection of formulation 358 

parameters. Such data-driven models require significant amounts of data to train and validate them, 359 

which is certainly a barrier to their current development, although significant work is underway in the 360 

nanosafety arena broadly to develop optimized workflows for data and metadata generation (e.g. 361 

utilizing Elecronic Laboratory Notebooks), annotation with relevant ontological terms mapped to the 362 

data schema of the receiving databases and automated upload to nanosafety knowledgebases93, which 363 

in the medium term will facilitate the aggregation, integration and re-use of nanosafety and nano-364 

agriculture related datasets.      365 

As noted above however, there are significant concerns regarding the safety and risk of NMs 366 

that must be addressed before their widespread intentional application to the environment can be 367 

sanctioned, and there are tight regulatory processes for approval of agrochemicals94. A recent review 368 

has assessed the regulation of pesticides for risk assessment and the potential use of in silico computer-369 
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based chemical modeling technologies to facilitate risk assessment of nano-enabled pesticides92. This 370 

review concluded that while quantum chemistry is an appropriate tool to characterize the structure and 371 

relative stabilities of organic compounds isomers, for studying degradation processes pathways, and via 372 

use of quantum descriptors for QSAR development, a reevaluation for their suitability for nano-enabled 373 

agriculture is needed.  374 

 375 

Challenges and barriers to precision nano-agriculture 376 

Although nanotechnology demonstrates high potential in a wide range of applications in agriculture, it 377 

is still primarily at the research stage. There are many challenges to be overcome to move this area 378 

forward from basic research to full commercial scale application. This includes lack of mechanistic 379 

understanding of the interaction at NM-plant-soil interface and NM uptake and translocation in plant 380 

vascular structure and organells; insufficient understanding of the environmental safety and human 381 

health risks of intentional NM application; lack of soil and large scale field study to demonstrate the 382 

efficacy of NMs under realistic scenarios; and an unclear balance between adoption of a new 383 

technology and the low profit margin in agriculture, and the aforementioned challenges regarding 384 

collection and harmonization of the datasets needed for development of A.I models. 385 

Long term studies at ecosystem level under environmentally relevant conditions are currently 386 

lacking. For example, silver-, zinc- and copper-based NMs show the potential to be applied as efficient 387 

pesticides or fungicide; however, the potential impact on non-target organisms (e.g., beneficial plant 388 

rhizosphere bacteria, worms) and long term impacts on soil quality are not known. Although 389 

nanofertilizers may enhance the NUE, effects (e.g., alteration of the content of carbonhydrates, macro- 390 

or micro- nutrient) of NMs on the nutritional quality of food have been reported95 and need to be 391 

assessed systematically and predictive models need to be established. NMs might accumulate in seeds 392 

and the potential to cause transgeneration effects96, 97 are largely unknown. The presence of NMs may 393 
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cause enhanced uptake of contaminants by plants, e.g. by binding to the NM surface and co-transport, 394 

and may amplify their adverse effects98, 99. Such co-effects need to be fully understood.  395 

NMs undergo numerous transformations (physically, chemically or biologically) in soils and 396 

plants. For example, many metal based NMs such as ZnO, Cu and Ag tend to dissolve and release 397 

metal ions, which can further react with soil and plant components such as phosphate, sulfur, chloride 398 

etc. The original NM properties that are designed for specifc application purpose might not be 399 

maintained due to these processes. For example, antifungal NMs such as Ag NMs can be oxidized, 400 

dissolve and sufildized in soil environments either by interaction with the soil microbiome or within 401 

plants, and the antifungal property of the Ag NMs could be reduced or diminished100. Some 402 

transformations might release toxic components, for example, graphene oxide was reported to degrade 403 

under sunlight and relase PAH (polycyclic aromatic hydrocarbon) -like compounds which are likely to 404 

exhibt toxic properties and persist in the environment101.  405 

Computational tools that can predict NM transformation processes will favour the design to 406 

manipulate or even simulate directly the transformation in order to maintain the NM function or modify 407 

their impacts. However, the complexity of soil chemistry and the high responsivity of plants and their 408 

secretions into the rhizosphere increase the variability and diversty of potential NM transformations 409 

(Figure 3). Many factors are interlinked. For example, NM transformations are affected by the soil and 410 

plant microbiome and the excreted extracellular polymeric substances (EPS) and plant root exudates 411 

around the rhizosphere. However, plant root exudate composition and microbiome can affect each 412 

other and both may be altered due to NM exposure, which can in-turn affect the NM transformation 413 

processes. Changes to the microbiome will affect the N cycling processes in soil. Foliar applied NMs 414 

can translocated downwards to root and interact with phyllosphere components such as microorganism 415 

and leaf exudates. All of the above are also subject to further change and disruption as a result of 416 

climate changes, e.g., altered CO2 and temperatures can shift nutrient cycling, alter rates of reactions / 417 
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trasnformations, change plant susceptibility to NMs and more. Therefore, the dynamic nature of the 418 

whole system needs to be considered making this a perfect candidate for A.I. and machine learning 419 

solutions.   420 

Compared to small molecules toxicity prediction, nanoinformaticians are used to working with 421 

smaller datasets (sometimes just a few NM variants), and use exposure concentrations and timepoints 422 

as a means to expand the dataset. Thus, evaluation of the impact of NMs on NUE in a hydrophnic 423 

system for example could evaluate a panel of 8-10 NMs and evaluate their effect alone and in 424 

combination with fertilizer at different ratios and over different timescales, and determine the N 425 

concentrations in the water, plant mass and emitted to air under controlled temperatures and CO2 426 

levels, which would provide a multi-factorial dataset for establishment of machine learning models to 427 

predict the NUE of a new NM, as long as its physicochemical characteristics fell within the domain of 428 

applicability of the model, i.e. at least one of the NMs in the training and test set had some overlap with 429 

the properties of the “new” NM. If the NMs were characterisered over time under the different 430 

conditions, e.g., in terms of their size, dissolution, acquired corona composition, further models 431 

predicting corona composition and NMs fate and behaviour could be build, identifying the key NMs 432 

properties and environmental factors driving the specific effect.  If data on plant growth (roots, shoots) 433 

or localization of the NMs in the plants were determined, increasingly complete models of NUE versus 434 

localsiation in plants could be developed. System complexity can then be build by moving to soils for 435 

example, where the NM characterization challenges increase, but where models for the NMs 436 

environmental fate already exist, such as the NanoFASE soil-water-organism model, which predict the 437 

fate of NMs in the environment21. Thus, the steps will be small initially, but as the datasets and models 438 

emerge, their integration with other models and tools into overall IATA and agricultural systems 439 

models will become feasible and achievable.  440 
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 441 

Figure 3. Schematic illustration of the complexity of NM behavior in the soil-plant environment and 442 

the potential impacts in soil-plant systems. Understanding and predicting these translocation, 443 

transformations, and identifying the optimal NMs forms to retain bioavailable N species in the soil will 444 

facilitate design of sustainably functional NMs for agriculture, enhancing NUE while simultaneously 445 

reducing pollution and the need for fertlizers. Coupling this with enhanced targeting and sustained, 446 

controlled release of pesticides can be facilitated using A.I. to design optimal nano-agrichemicals.   447 

 448 

A roadmap for progress 449 

Smart and nano-enabled agriculture, combined with A.I. and machine learning capability offer an 450 

exciting convergence of technologies with the unique capability to address the overarching UN SDGs, 451 

the “improved nutrition and promotion of sustainable agriculture”. The impetus for smart agriculture is 452 

thus multi-pronged: from enhancing and sustaining productivity through nano-enabled (responsive) 453 

delivery of agrochemicals to crops, through to reduction in environmental pollution and negative 454 

human health impacts from agriculture. Agriculture’s grand challenges can only be solved if the power 455 
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of NMs can be harnessed safely, responsibly and sustainably. Nanoinformatics will play a vital role in 456 

probing the design parameters, the plant and ecosystem responses, and their co-optimising for safe and 457 

sustainable agriculture. For example, A.I. may predict NM impacts on the agricultural ecosystem and 458 

their performance in improving agricultural production (NUE, reduction in air and water pollution 459 

forms of key elements), by integrating experimental data from across different soil conditions and 460 

different plant species/climate change conditions and NM physicochemical properties, which enables 461 

safer-by-design development of nanoagricultural chemicals. Future reseach directions are outlined here 462 

to address these challenges – a summary of the future research needs is given in Box 2.  463 

Box 2 Future research needs 

• Determine the long term fate of NMs including transformation, transport 
in soil, uptake and translocation in plants, curate this data and its 
accompanying metadata into NMs-KnowledgeBases and enrich it with 
global soil and weather characteristics, plant biology knowledge and 
microbial community characteristics to facilitate development of deep 
learing models tailored to specific NMs being developed for nano-
agriculture and the local environmental conditions. 

• Assess the long term life cycle impacts of NMs in agricultural ecosystems 
including the trophic transfer of NMs along food chains and the potential 
for transgenerational impacts. Integration of these datasets into the 
aforementioned KnoweldgeBases will enable further iteration of the 
models, including development of Integrated Approaches to Testing and 
Assessment (IATA) and integrated agricultural systems models. 

• Take a systems levels  approach (as illustrated in Figure 3) since the 
whole ecosystem is interlinked with numerous co-variances, and feed this 
enhanced understanding into emerging regulatory frameworks.   

• Utilise A.I. and machine learning to identify key nanospecific properties 
that initiate the adverse effects or beneficial function of NMs from large 
dataset obtained, thereby facilitating design of optimalised (safe-by-
design) nano-agrochemicals that are fully compliant with emerging 
regulations.  

• Integrate models addressing different aspects of the overall challenge 
(physics-based, process based and data driven) through alignment of input 
and output parameters and development of an IATA, as shown 
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schematically in Figure 2. 

1) Understand the long term fate of NMs in agricultural environment including transport, 464 

transformation in soil, and uptake and translocation in plant. Transformation of NMs will change their 465 

original designed properties, which may defunctionalize their use as fertilizers, pesticides, carriers, or 466 

sensors. The transformation could occur in soil, at plant interface (e.g., root or leaf surface) and inside 467 

plant. In soil, the transformation could be driven by soil texture and chemistry, and by interaction with 468 

soil microorganisms and animals. Plant interfaces, including the rhizosphere and phyllosphere (surface 469 

of plant leaves and stems), are critical locations for NMs transformation. The dynamic and complex 470 

composition at the these regions, including plant metabolites and microorganisms, drive the 471 

transformation. NMs may also transform during their translocation in plant vascular structure by 472 

interacting with plant fluids. All these area are largely unknown.  473 

Another critical question is how to effectively deliver NMs to target places in plant. This 474 

requires a clear understanding of the uptake and translocation of NM in plants. Both plant leaf and root 475 

have physiological barriers to prevent the entry of unwanted substances, while the structure of these 476 

two organs are very different. NMs that enter into leaf will translocate downward in phloem, while 477 

NMs entering into roots translocate upward in the xylem. The fluid composition and flow rate in xylem 478 

and phloem may greatly affect the translocation and accumulation of NMs in plant. Data and predictive 479 

models for these questions are all required urgently.  480 

2) Assess the long term life cycle impact of NMs in agricultural ecosystem. Given the fact that 481 

repeated application of nanotechnology in agriculture is possible in the future, long term retention of 482 

NMs in agriculture soil is inevitable. The majority of the current studies regarding the plant-NMs 483 

interaction are phenomenological observations of NMs toxicity under short term, high dose conditions; 484 

long term low dose effects of NMs on agroecosystem therefore need to be studied, addressing NM 485 

impacts on plant growth, microbial acitivity and community structure, soil health (e.g., soil enzyme 486 

activity, nutrient cycling), trophic transfer of NMs and transgeneration effects. 487 
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3) Take a systems level approach to nano-enabled agriculture. The behavior, fate and impact of 488 

NMs in soil-plant system, and plant and microorganisms are all interconnected. As shown in Figure 3 489 

and described above, change of one factor may induce a change of the whole system. Given the power 490 

of A.I., and the complexity of the optimization challenges facing nano-agriculture, it is clear that their 491 

convergence offers exciting new directions (Figure 4). Utilising extensive existing models and datasets 492 

for soil quality, crop yield and NUE, for example, and combining these with models and datasets 493 

related to plant and microbial secretomes, and nanomaterials physicochemical properties, 494 

trasnformations and bioavailability, and release of active ingredients, could enable important new 495 

insights into (1) the likely transformation pathways for the NMs and their resulting environmental 496 

transport and bioavailablity; (2) the potential impact of the NM and their associated active ingredients 497 

(in cases where the NMs are carriers) on crop yield and NUE; and (3) potential identification of 498 

biomarkers of crop health / diseasae that can be utilized as early warning systems. Identification of data 499 

gaps can also drive the design of focused experiments to gap-fill or to develop sub-models to integrate 500 

into an overall model framework allowing design of NMs and active ingredient combinations that 501 

optimize NUE and minimize pollution whilst enhancing crop yield and potentially even nutritional 502 

(calorific) value. Integration of safe-by-design approaches, and feeding forward the emerging 503 

knowledge into updating of regulatory process for advanced nano-enabled agricultural applications, 504 

both in fertilization and in plant protection is essential also. 505 

  506 
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 507 

Figure 4. Approach to integration of A.I. models needed to assess ENMs behavior, fate and impact in 508 

agriculture based on the interplay between ENM and environmental factors including the crop type and 509 

soil characteristics.  Integration of automated tools for harvesting data from public databases, 510 

preprocessing and curation of the data for direct input into the AI/ML models, for example via the 511 

Enalos Tools102 in KNIME, ensures that the output data from one model can serve as the input data for 512 

subsequent models, thereby facilitating model integration and development of increasingly multiplexed 513 

predictions for nano-enabled precision agriculture.  514 

 515 

4) Utilise A.I. and machine learning to identify key nanospecific properties that initiate the 516 

adverse effects or beneficial function of NMs from large datasets obtained through use of automated 517 

data retrieval from public databases, data pre-processing and gap-fillling, and data splitting into tets and 518 

validateion sets for modelling102 (Figure 4). There are multiple physicochemical properties of NMs 519 

such as size, shape, surface charge, surface area, surface reactivity and crystal structure that can 520 

influence their transformations and toxicity. A.I. and machine learning will enable the selection of the 521 

most critical parameters that determine the behavior and and the prediction of the behavior of NMs in 522 
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soil and plant systems and facilitate the design of NMs that can be delivered to plants efficiently. NM 523 

transformation in different soil conditions and different root rhizosphere compositions under changing 524 

climate conditions, could be also predicted by integrating predictive models which allowing 525 

optimization of NMs for agricultural application in a range of climatic and local conditions. Wider 526 

ecosystems effects, and prediction of tripartite (NMs-soil-plant) behaviours under future climate 527 

scenarios can also be predicted, utilizing for example Baysian networks. Such models are especially 528 

important as they can operate under data scarcity, yet can easily incorporate new data as it emerges. 529 

Application of such models to address the broader issues of food security, and to tacking thhe 530 

sustainable development goal of “improved nutrition and promote sustainable agriculture” (SDG2) will 531 

provide important new intersectional insights and suggestions for ways forward.  532 
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Abstract 9 

Climate change, increasing populations, competing demands on land for production of biofuels, and 10 

declining soil quality are challenging global food security. Finding sustainable solutions requires bold 11 

new approaches and integration of knowledge from diverse fields, such as materials science and 12 

informatics. The convergence of precision agriculture, whereby farmers respond in real-time to changes 13 

in crop growth, with nanotechnology and artificial intelligence offers exciting opportunities for 14 

sustainable food production. Coupling existing models for nutrient cycling and crop productivity with 15 

nanoinformatics approaches to optimize targeting, uptake, delivery nutrient capture and long term 16 

impacts on soil microbial communities will allow design of nanoscale agrochemcials that combine 17 

optimal safety and functionality profiles.   18 

 19 

 20 

 21 

 22 

 23 

 24 
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Introduction  25 

The Green Revolution, i.e. the 3rd  Agricultural Revolution, which occurred between the 1950s and 26 

1960s, dramatically increased global agriculture productions yield thereby avoiding the spread of 27 

famine and malnutrition. However, the world population has also grown by more than 5 billion since 28 

the beginning of the Green Revolution, entailing a continuous growth of crop production. The global 29 

agriculture and food security sector is facing a wide spectrum of challenges such as low crop yields, 30 

declining soil health and fertility, low use efficiency of agrochemicals due mainly to excessive use of 31 

fertilizes and pesticides, shrinking arable land per capita and diminishing freshwater availability for 32 

irrigation1. Moreover, climate change, as arising from increasing atmospheric CO2 concentration 33 

leading to rising temperature, is likely to further affect the resilience of agricultural soils and their 34 

ability to sustain productivity and ensure food security for an increasing human population2. 35 

Nanotechnology offers great potential to enable precision and sustainable agriculture, the opportunities 36 

and challenges of which have been discussed in several recent reviews covering strategies to enhance 37 

crop nutrition and smart plant sensors3, 4, 5. Using nanotechnology, the delivery of fertilizer6 can be 38 

tailored by targeting to specific tissues / organisms and stimuli-responsive release, as well as 39 

potentially improving nutrient use efficiency (NUE) by releasing the nutrient slowly for plant uptake7. 40 

Nano-enabled agriculture is expected to target pests more efficiently using lower amounts of pesticide8 41 

thereby avoiding widespread impacts on soil health and biodiversity, and improving soil function and 42 

nutrient cycling via soil microbiome enhancement (optimization of nitriying/denitrifying bacterial 43 

communities). Longer term applications include development of smart “sensor” plants, whereby the 44 

plant itself is adapted, using targeted delivery of nanomaterials (NMs), for sensing abiotic stress9. As 45 

with all new technologies however, the risks must be evaluated in parallel with the benefits, and indeed 46 

several NMs have been identified to cause negative changes in soil community structure, e.g, TiO2 47 

NMs cascading negative effects on denitrification enzyme activity and a deep modification of the 48 
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bacterial community structure after just 90 days of exposure to a realistic concentration of NPs (1 mg 49 

kg−1 dry soil)10, while studies with Ag NMs, which are well-known for their antimicrobial activity have 50 

shown that the extent of impact on soil community composition over 90 days are affected by exposure 51 

time and physicochemical composition of soil as well as the type and coating of the NMs11.  Thus, an 52 

important caveat at the outset of this review is that NMs represent a very broad spectrum of 53 

chemistries, compositions and physicochemical properties, which are dynamic and evolving as the 54 

NMs interact with their surroundings, and as such generalisations regarding their applications in 55 

agriculture are difficult, and predictions of long-term effects are challenging currently. 56 

However, as noted in the aforementioned reviews3, 4, 5, the development of nanotechnology for 57 

agricultural applications is still at an early stage and is moving forward quite slowly. Significant 58 

differences may exist between nanotechnology-based pesticides and conventional pesticides, including 59 

altered  bioavailability, sensitivity, dosimetry, and pharmacokinetics12, 13. Challenges and barriers 60 

include limited understanding of plant-NMs interactions, limited methods for efficient delivery of NMs 61 

to plants and soil, risks of potentially hazardous effects of NMs to human health from accumulation of 62 

NMs and active ingredient residues in edible portions of plants4, and to long term soil quality and soil 63 

health from accumulation of NMs and their degradation products in soil and resultant potential 64 

alterations in microbial biodiversity14. There is an urgent need to address these barriers and achieve a 65 

true win-win scenario, whereby improved agricultural production, reduced environmental pollution 66 

from agriculture and lower costs for farmers can be achieved synergistically. A one-health approach to 67 

nano-agriculture was proposed by Lombi et al., that requires interdisciplinarity and the bridging of 68 

human and environmental health research15. Computational approaches including artificial intelligence 69 

(A.I.) and machine learning (M.L.) modelling will undoubtedly play critical roles in the progess of 70 

nano-enabled agriculture, and are already starting to gain regulatory acceptance for NMs safety 71 

assessment.  72 
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The application of computers and artificial intelligence (A.I.) in agriculture is not new – for 73 

example, articles addressing software for integrated resource management16, image digitization for soil 74 

and crop science16, and light and temperature monitoring and control for plants17 were published 35 75 

years ago! The rise of remote sensing and integration of remote sensing data into decision support tools 76 

for contemporary farming systems is expected to improve yield production and management while 77 

reducing operating costs and environmental impact18. Agricultural systems models have emerged over 78 

the last 50 years, spanning field, farm, landscape, regional, and global spatial scales and engaging 79 

questions in past, current, and future time periods. Integrated agricultural systems models combining 80 

grasslands and cropping models, livestock models, pest and disease models and risk behaviour models 81 

are also emerging, although data gaps exist across all aspects, hampering their implementation19. 82 

However, the comvergence of A.I. approaches and nano-enabled agriculture is in its infancy and as 83 

such the current perspective aims to stimulate the development of this important area.   84 

The rapid pace of the development of nanotechnologies, the enormous diversity of physico-85 

chemical properties of NMs and their dynamic interactions with, and transformations, by their 86 

surrroundings (e.g., corona formation, dissolution, sulfidation etc.20, 21) leads to the need for in silico 87 

approaches to predict and assess their safety22. Nanoinformatics is a powerful way of relating the 88 

nanostrucutural features with functional properties based on data-driven A.I. and M.L. approaches22, 23, 89 

24. Nanoinformatics emerged a decade ago in the context that development and implementation of 90 

nanotechnology in the real world requires the harnessing of information at the nexus of environmental 91 

and human safety, risk assessment and management, physiochemical properties and function. With A.I. 92 

and M.L. enabled in silico risk assessment25, NMs grouping and classification26, and safe-by-design27 93 

NMs design, as well as for predictions of NMs corona formation28 and consequences for cellular 94 

attachment and uptake29, 30, 31, nanoinformatics has played significnt roles in the area of nanosafety and 95 

nanomedicine, while there is also ample scope of nanoinformatics in nano-enabled agriculture that has 96 
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not been explored, including for prediction of NMs interactions with and impacts on rhizosphere 97 

secretions, NMs transformations before and during uptake and translocation, NMs impacts on soil 98 

microbial communities and for predictions up plant uptake following foliar application. Experimetnal 99 

data are emerging in all these areas32, 33, 34, and a dedicated effort to integrate and curate this data, and 100 

present it in a format suitable for modelling is currently underway by the authors in the scope of their 101 

nanoinformatics e-infrastructure projects NanoCommons and NanoSolveIT35. Coupling these 102 

approaches with existing models for nutrient cycling36, NUE37 and crop productivity38 and the 103 

aforementioned agricultural systems models into an overall Integrated Approach for Testing and 104 

Assessment (IATA) will allow co-optimisation of NMs for use in agricultural systems that combine 105 

safety and functionality profiles enabling precision agriculture.  106 

In this perspective, emerging applications of nanotechnology and nanoinformatics in agriculture 107 

and gaps in current understanding are outlined. Key research areas are identified where the application 108 

of A.I. will support the effective implementation of nanotechnology in agriculture, with a view to 109 

enhancing productivity and protecting or improving environmental quality. Current applications of A.I. 110 

in agriculture, in nanotechnology broadly, and in nano-enabled agriculture are also outlined, along with 111 

identification of key areas where their convergence and integration can accelerate the development of 112 

sustainable nano-enabled precision agriculture. 113 

 114 

Current challenges in agriculture  115 

With an ever increasing human population under a decreasing per capita agricultural land 116 

globally39, a key challenge is to optimize productivity whilst ensuring the conservation of soil health 117 

and the protection of environmental quality. Agrochemicals (fertilizers and pesticides) enabled an 118 

increase in productivity such that half of us are alive today due to the invention of industrial ammonia 119 

production and its use as a fertilizer globally. However, the intensification of agriculture for enhanced 120 
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productivity resulted in extremely poor NUE globally (<50%)40, 41. Poor NUE under an excessive 121 

fertilizer use culture thus poses a serious threat to environmental quality as large amounts of nutrients 122 

are lost into water and air causing eutrophication and greenhouse effects. For example, agriculture 123 

contributes nearly 11% of global greenhouse gas emissions42. Nitrogen (N) and phosphorus (P) 124 

fertilizer use in agriculture is one of the main drivers behind the breach of the safe planetary boundaries 125 

for these elements that could trigger irreparable damage to the environment43. Rockstrom et al. 126 

recommended a reduction of reactive N use in agriculture from 150 Mt N y-1 to about 35 Mt N y-1 127 

globally to ensure sustainability43. Such a reduction can only be achieved through a combination of 128 

approaches including targeted nano-enabled delivery of fertilizer to match plant demands to avoid 129 

excessive losses, development and availability of low-cost in situ nutrient sensing technology to help 130 

farmers plan fertilization efficiently, introduce rotations into agriculture to recover the health and 131 

fertility of soils, utilize farm yard manure and slurries for meeting nutrient demands and identifying 132 

crop breed that are efficient in nutrient uptake and even fixing atmospheric N2 directly or thorugh 133 

enhance symbiosis are some of the key measures to enhance NUE, reduce excessive fertilization and 134 

the subsequent losses of reactive N from cultivated soil44. Unlike N, available terrestrial P reserves are 135 

non-renewable and the current losses of available P from agriculture to water (rivers and oceans) is 10 136 

times the pre-industrial and agricultural intensification era43. This unsustainable use of P fertilizer in 137 

agriculture is thus posing a risk to global food security45, while causing eutrophication of fresh and 138 

coastal water bodies, together with N41.  139 

The grand challenge in agriculture is therefore that of optimizing usage efficiences, timing and 140 

targeting of fertilizer use to enhance and sustain crop production and while simultaneously reducing 141 

amounts of fertilizers used and losses to environments external to agricultural catchments. While 142 

regulatory and voluntary fertilizer use policies in Europe and USA have resulted in reduction of losses 143 

to water, an overall enhancement in NUE was not achieved46. Recent efforts to enhance NUE include 144 
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utilization of biofertilization to enhance microbial biodiversity47, and application of a range of N 145 

management tools across the growing season including soil testing, plant tissue testing, spectral 146 

response, fertilizer placement and timing and vegetative indexes (leaf area index, and Normalized 147 

Difference Vegetation Index (NDVI)) through A.I. enabled drones, handheld sensors, and satellite 148 

imagery48. Rockstrom et al. suggested that substantial N and P fertilizer use reduction can protect the 149 

planet from breaching resilence thresholds, if such reductions can still ensure productivity43.  150 

Gobal agricultural yields are also impacted by crop loss due to competition from weeds, insect 151 

damage and plant diseases. Weed competition causes 34% of crop loss on a global scale, while 152 

microbial diseases and pest damage also cause 34% of crop loss 49. The application of synthetic 153 

herbicides and pesticides thus increases yields (reduces crop loss) and, in the case of herbicides 154 

containing N, P and K, improves food quality through enhanced nutrient uptake and retention50; 155 

however, these agrochemicals, which are designed to kill, also cause severe adverse impacts on the 156 

health of human and non-targeted organisms and soil fertility, and result in contamination of water, soil 157 

and air51. Mis-use of agrichemicals on poor quality soils, soil degradation as a result of farming 158 

intensification, shrinking water availability and decreasing water quality, and globalization of diseases 159 

have led to low resilience of agriculture systems.52 Moreover, climate changes such as elevated 160 

atmospheric CO2 levels and increasing temperatures also potentially impact the future of agriculture.53  161 

Nanotechnology applications in the agricultural sector have great potential to improve all 162 

aspects of crop production, that is, to increase crop production yields and resource use efficiency whilst 163 

reducing agriculture-related environmental pollution, thereby ensuring global food security whilst 164 

ensuring future agricultural sustainability. Coupling existing models for nutrient cycling and crop 165 

productivity with A.I. and machine learning to optimize targeting, uptake, delivery, nutrient capture 166 

and soil microbial composition  will allow design of nanoscale agrochemcials that combine optimal 167 
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safety and functionality profiles and implementation of nano-agrichemicals into mainstream 168 

agricultural systems management.   169 

 170 

Current applications of nanotechnology in agriculture 171 

Nanotechnology offers the benefit of reducing costs of fertilization at farm level directly and at global 172 

level, indirectly, through reduction in environmental damage and environmental clean up costs 173 

associated with agriculture-derived pollution. More importantly, enhancing NUE through 174 

nanotechnology application in agriculture is a promising intervention technology that could 175 

revolutionize and modernize agriculture making it precise and targeted. Figure 1 summarises 4 key 176 

areas where nanotechnology is, and will continue to, improve the precision and sustainability of 177 

agriculture. 178 
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 179 

Figure 1. Applications of nanotechnology in agriculture, focusing specifically on crop production 180 

(agronomy). Most are still at research stage, due to uncertainties regarding safety, and complex and 181 

emerging regulatory processes for approval of agricultural chemicals, including plant protecton 182 

products, biocides and fertilizing products or plant biostimulants. 183 

 184 

Increasing crop yields and production rates 185 

The Green Revolution relied highly on the traditional agronomic factors including use of synthetic 186 

fertilizer and pesticide coupled to rainfall patterns or irrigation, and breeding technology. Instead of 187 
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increasing intensity and doses of those activities, improving the “efficiency” in agriculture is a more 188 

realistic strategy to realise significant enhancement of crop yield and production rates whilst avoiding 189 

overuse of natural resources and reducing agricultural pollution, ensuring a win-win-win future. 190 

Nanotechnology is undoubtedly one of the most promising approaches that can achieve this goal. 191 

One promising way to enhance crop yield is using ‘plant nanobionics’, a recently coined term 192 

referring to the approach of designing NMs to interact with plants in order to enhance native functions 193 

or to give the plant non-native functions9. A key focus is to improve the efficiency of photosynthesis, 194 

an essential process occurring in plant leaves which uses solar energy to produce sugar from CO2 and 195 

water for plant growth. Photosynthesis efficiency can be enhanced by improving the efficiency of the 196 

photosynthetic enzyme ribulose-1,5-bisphos-phate carboxylase/oxygenase (RuBisCO). A pioneering 197 

study found that TiO2 NMs promote the photosynthesis rate by activating the RuBisCO carboxylation 198 

process, potentially the result of the photocatalytic activity of TiO2 NMs54. More recently, root 199 

application of carbon dots (CDs) was found to enhance RuBisCO activity thus improving the 200 

photosynthesis efficiency and carbonhydrate production in Arabidopsis thaliana55, leading to 20% 201 

increase of plant yield; this enhancement of plant growth was also demonstrated for several other plant 202 

species such as soybean, tomato and eggplant. The overlapping adsorption of CDs with chloroplasts at 203 

420 ~ 700 nm and the photo-induced electron donating and accepting properties of CDs are considered 204 

to contribute to the enhanced photosynthesis efficiency. Other NMs, such as multiwalled carbon 205 

nanotubes (MWCNTs)56 and CeO2 NMs have also shown potential for improving plant phtosynthesis 206 

under stress conditions57, 58. CeO2 NMs can scavenge free radicals such as hydroxyls in mesophyll cells 207 

thereby improving plant tolerance to stress and photosynthesis. 208 

Enhanced photosynthesis can also be achieved by broadening the range of solar light that can be 209 

absorbed by plant leaves. Plants can naturally only absorb visible light in the range 400 ~ 700 nm with 210 

energy conversion efficiency less than 4%. Single walled carbon nanotubes (SWCNTs) are capable of 211 
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capturing a broad range of solar light covering ultraviolet, green and near-infrared. Seminal work by 212 

Giraldo et al. found that SWCNTs can insert into the thylakoid membrane, and that the formed 213 

assemblies enabled a higher rate of electron transport and augmentation of photosynthesis in leaves due 214 

to the semi-conductive nature and wide light absorption ability of SWCNTs9. Using SWCNTs as a 215 

carrier also enabled gene-delivery into chloroplast, a structure that is hard to target using current (often 216 

liposome-based) methods59, to improve light capture efficiency. The nanotubes also prevented the non-217 

native DNA from integrating into the plant genome thus avoiding consumer concerns over genetically 218 

modified crops. Importantly, the delivery efficiency is plant species independent and may help with 219 

high-throughput screening of plants to identify phenotypes with desired functions, e.g., optimised 220 

photosynthesis efficiency. For example, it could facilitate the engineering of C3 crops (e.g., rice, wheat) 221 

to use the C4 pathway (e.g., maize), which have nearly 50% higher light use efficiency and higher N 222 

and water use efficiency than C3 pathway plants.  223 

 224 

Improving resource use efficiency and soil health 225 

As discussed by Lowry et al.4, NMs and nanotechnolgy could also improve the use efficiency of natural 226 

resources whilst reducing agricultural derived environmental pollution, which is one of the main pillars 227 

of the sustainable vision. Crop yield is highly dependent on external inputs of N, P and potassium (K) 228 

and micronutrients (e.g., B, Fe, Mn, Cu, Zn) into the agricultural land. The overall NUE by plants 229 

currently stands at less than 50% globaly40, with the rest retained in soil, leached into water, or emited 230 

into air, causing detrimental environmental impacts. Engineered NMs offers great opportunity to 231 

improve NUE via nano-based smart delivery platforms, i.e. so-called controlled release and targeted 232 

delivery for efficient plant uptake60, or through NM influence on microbial communities and their 233 

nitrogen fixing abilities55. For example, using hydroxyapatite nanoneedles as carriers of urea can 234 

remarkably slow the release rate of urea from the nanohybrid surface, which can lead to better yields at 235 
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50% lower application rate and reduced hydrolysis of urea and hence lower emission of ammonia into 236 

the air.6 Such a system could also deliver pesticide active ingredients more efficiently thus reducing the 237 

amount of pesticides needed. For example, nano copper pesticides show four orders higher efficacy 238 

against bacterial blight on pomegranate at 104 times lower concentrations than that recommended for 239 

copper oxychloride61. Nanotechnology also allows the nutrients or pesticides to be delivered only at the 240 

target position, such as the plant rhizosphere. These strategies reduce the use of fertilizers and 241 

pesticides which would reduce the waste of natural resources and synthetic agrochemicals whilst also 242 

protecting soil health by lowering the input of contaminants. In addition to avoiding emissions from 243 

agrochemicals, Lowry et al.4 also pointed out that selective removal or recovery of nutrients from 244 

contaminant water and waste streams using nanotechnology provide additional opportunities for 245 

improving NUE. NMs applied to soil have been shown to alter the microbiome activity and 246 

abundance62, thus could potentially be used to intentionally alter the singaling and community structure 247 

of microbiome (e.g., N fixating bacteria) to enhance the availability of nutrients to plants. It is also 248 

possible to increase the population of beneficial symbiotic bacteria (endophyte) to enhance crop 249 

productivity; however, as noted by Lowry et al., achieving this requires better understanding of the 250 

connection of soil and plant microbiome and the plant physiology involved63. One primising approach 251 

to address these knowledge gaps, and facilitate development of initial A.I. models, could be soilless 252 

growth systems such as hydroponics64, where introduction plant growth-promoting rhizobacteria and 253 

use of multi-element sensors and interpretation algorithms based on machine learning logic to monitor 254 

the availability of nutrients/elements in the hydroponic solution and to modify its composition in 255 

realtime65, are feasible in the near team and the lessons learned can then be translated to more complex 256 

soil systems. 257 

 258 

 Improving management of soil health and plant growth 259 
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Nanotechnology can also enable smart sensing of undesirable ambient biotic (plant pathogens, weed 260 

competition, insect damage) and abiotic (drought or flooding, high salanity, extreme climate) stressors, 261 

thus improving management effectiveness to reduce crop loss, which is a major challenge in global 262 

agronomy. Nanotechnology based approaches for monitoring plant stress and resource deficiencies has 263 

been recently reviewed by Giraldo et al5. For example, the secretome of microbes, fungi, rhizosphere 264 

and plants are rich in information about the organisms adaption to their environment, and offer a means 265 

to probe changes in the environment, or stress responses via secretion of biomarkers63, 66. Developed 266 

inventories of secreted proteins under normal, biotic and abiotic stress conditions revealed several 267 

different types of novel secreted proteins, such as leaderless secretory proteins potentially involved in 268 

the defense/stress responses, which could be explored (including computationally, see later sections for 269 

details) for use as biomarkers63. Molecule specific NMs-based sensors could be designed to detect 270 

metabolites and root exudates to monitor crop growth status. Remote and real time detection of plant 271 

pathogens or pests is also possible using NMs sensors, which could greatly reduce the use of pesticides, 272 

especially if coupled with stimuli-responsive release67, 68. Stimuli responsive sensing systems can 273 

deliver agrochemicals only when it is necessary in response to environmental changes such as shortage 274 

of nutrients, extreme pH conditions, elevated temperature or CO2. These strategies will greatly improve 275 

agronomic management and resilience of agroecosystems to stress, especially under changing climate 276 

conditions.  277 

In order to maximise the use of NMs in agriculture and agronomy, however, there are some 278 

concerns that need to be addressed, including the potential toxicity of the NMs to non-target organisms 279 

and adverse impacts on ecosystems69, 70, their persistence and mobility in the environment and that of 280 

their break-down or transformation products. As with all agrochemicals, concerns about potential 281 

residues in edible portions of plants also need to be addressed, as part of an overall risk assessment of 282 

nano-enabled agrochemicals68. Since the use of NMs in farmland will require large quantities of NMs, 283 
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the synthesis of which requires high energy input, evaluating the cost of NMs production and the 284 

benefit trade-offs should be considered in the development of NMs for application in agriculture. 285 

While in terms of both risk and application of NMs, current studies in the lab, mesocosms and 286 

field are expensive, time-consuming and complicated, limiting the range of conditions that can be 287 

varied systematically. Results are often hard to conclude because the interpretation of the results is 288 

influenced by factors such as experimental procedures, protocols, duration, NMs types, doses, soil 289 

types and plant species. Integrating of the existing data, albeit with gaps and limitations, and 290 

supplementation with predictive modelling and machine learning approaches, including Bayesian 291 

networks71, 72, for example, which can be dynamically updated as new knowledge emerges, into IATA 292 

offer exciting new directions; development of a nano-agriculture IATA case study utilsiing the OECD 293 

IATA case study approach73 to seems like a logical next step (Figure 2).   294 

 295 
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Figure 2. Application of machine learning in risk assessment and safe-by-design of NMs and their 296 

extension to support nano-enabled agriculture, building on advances in both nanoinformatics and 297 

agricultural systems modelling.  Integrating different modelling and experimental approaches, via an 298 

IATA, will lead to enhanced prediction power and faster and safer implementation of precision nano-299 

enabled agriculture. 300 

 301 

A.I. and machine learning for agronomy  302 

A.I. and machine learning approaches 303 

As computer power increases, and the value of data as knowledge to be exploited is realized more and 304 

more, A.I. and machine or deep learning approaches are emerging as means to identify patterns in large 305 

datasets that are predicitve of future outcomes. One of the most widely used approaches involves neural 306 

networks algorithms, which use an unbiased subset of the total available data as the training set to 307 

develop a model that makes predictions using the rest of the data and the validity of the predictions are 308 

evaluated to ensure that they could not arise randomly. The size and range of the dataset used to train 309 

the model provides the limits to its predictive power, or its domain of applicability – models cannot 310 

predict reliably outside their range of data. Box 1 describes the various types of data-driven machine 311 

learning models, among which are models that link structure or properties (e.g. of a chemical) to 312 

specific effects or impacts on the environment, so called Quantitative Structure Activity (or Property) 313 

Relationship models (QSARs / QPARs)74, and Bayesian Networks (BNs) which are a powerful tool for 314 

incorporating uncertainty into decision support systems75, by providing a basis for probabilistic 315 

inference and facilitating assessment of changes in probabilistic belief as new evidence is entered into 316 

the model. The larger the dataset available to train a machine learning model, the more powerful it will 317 

be – typically in drug discovery or chemoinformatics for example, models will utilize data from 318 

thousands of different chemicals to develop a prediction. Similarly, genomics and related approaches, 319 
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where hundreds of thousands of datapoints are available, allow generation of strong gene interaction 320 

networks and assessment of effects of specific genetic perturbations, for example used to understand 321 

gene regulation networks in plants76. 322 
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Box 1. The main types of Machine Learning algorithms, and examples of their application in 
agriculture and/or nanomaterials design and safety assessment77  
• Supervised Learning. This algorithm consists of a target outcome (dependent variable) to be predicted 

from a given set of predictors (independent variables), generating a function that maps inputs to desired 
outputs. The training process continues until the model achieves the desired level of accuracy on the 
training dataset, and is then tested on the test dataset that was not involved in the training procedure. 
Examples of Supervised Learning: Regression, Decision Tree, Random Forest, K nearest neighbours 
(KNN), Logistic Regression 
Applications in agriculture and agronomy:  A KNN algorithm was used to predict water retention at -33- 
and -1500-kPa matric potentials, using a hierarchical set of inputs (soil texture, bulk density, and organic 
matter content).  
Applications in NMs design, safety and interactions78: KNN algorithms have been applied to develop 
a  predictive  QSAR  model for NMs cellular  association based on their physico-chemcial properties and 
adsorbed protein corona, as a means to understand the drivers of NMs toxicity79.  
Potential applications in nano-enabled agriculture: could be applied to prediction of acquired 
biomolecule coronas (rhiozosphere secretions, foliar sections and biont) and their evolution during NMs 
uptake into plants; for prediction of NMs trasnformations and impacts on soil or foliar bionts.  As part of 
IATA could be integrated with water retention models to predict NMs mobility in soil. 

• Unsupervised Learning. In this algorithm, there is no target or outcome variable to predict. It is used for 
clustering data into different groups.  
Examples of Unsupervised Learning: A priori algorithm, K-means.  
Applications in agriculture and agronomy:  A segmentation algorithm, inspired from an image-
processing region-merging algorithm, for delineation of discrete contiguous management zones has been 
developed that is applicable to high- or low-density irregular data sets, such as yield data80, and can 
identify coherent management units to facilitate differential crop management. 
Applications in NMs design, safety and interactions: K-means clustering has been applied to signal 
processing of spICP-MS raw data (used for characterisation of NMs size and to distinguish particulate 
versus ionic fractions for quantification of NMs dissolution, uptake etc.) to discriminate particle signals 
from background signals, leading to a sophisticated, statistically based method to quantitatively resolve 
different size groups contained within a NM suspension81. 
Potential applications in nano-enabled agriculture: could be applied to predction of NMs transformations 
under different soil and climate conditions; for prediction and clustering of efficacy of nano-enabled 
agrichemcials and NUE of fertilisers. Integration with crop management approaches could be applied to 
determine optimal nano-agrichemical application strategies. 

• Reinforcement Learning. The machine is trained to make specific decisions. Using trial and error, the 
machine learns from past experience and tries to capture the best possible knowledge to make accurate 
decisions.  
Example of Reinforcement Learning: Markov Decision Process. 
Applications in agriculture and agronomy: A smart agriculture Internet of Things system based on deep 
reinforcement learning has been developed to increase food production using deep reinforcement learning 
in the cloud layer to make immediate smart decisions such as determining the amount of water needed for 
irrigation to improve the crop growth environment82. 
Applications in NMs deisgn, safety and interactions:  A recent example used  Kohonen networks83, or 
self-organising maps (SOMs), to visualise sets of silver and platinum NMs based on structural similarity 
and overlay functional properties to reveal hidden patterns and structure/property relationships. Visual 
inspection of the SOMs revealed a strong structure/property relationship between the shape of silver NMs 
and the energy of their Fermi level, and a weaker relationship between shapes with a high fraction of 
(111) surface area and the ionisation potential, electron affinity and electronic band gap.  Both energy 
levels and crystal structure or exposed crysal face are linked to NMs reactivity and toxicity84. 
Potential applications in nano-enabled agriculture: initial applications in hydroponics as part of realtime 
responsiveness to changes in nutrient and microbial compositions and integration with NMs structure-
property relationships under different environmental and local conditions to optimize release rates and 
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NUE. 
 

 323 

Current A.I. and machine learning in agriculture  324 

A 2018 review of the use of machine learning in agriculture has classified the application areas into (a) 325 

crop management, including applications on yield prediction, disease detection, weed detection crop 326 

quality, and species recognition; (b) livestock management, including applications on animal welfare 327 

and livestock production; (c) water management (daily, weekly, or monthly evapotranspiration rates); 328 

and (d) soil management such as prediction-identification of agricultural soil properties85 . Application 329 

of Bayesian Networks to agricultural systems has been a challenge to date however, as there is often 330 

insufficient data for computing the prior and conditional probabilities required for the network75.   331 

In terms of the key areas identified for improvements in crop production, process based 332 

machine learning models (e.g., the SPACSYS model86) for plant growth, incorporating assimilation, 333 

respiration, water and N uptake, partitioning of photosynthate and N, N-fixation for legume plants and 334 

root growth87, are emerging and being constantly improved. With increased understanding of the 335 

processes, and the availability of intervention strategies such as precision nanoagrochemicals, the 336 

potential of machine learning for optimisaiton of agroecosystems has never been higher; integrating 337 

machine learning, simulation, and portfolio optimization can inform decisions and support selection of 338 

optimal seed (e.g., soybean) varieties to grow with resolution at the level of a specific farm with its 339 

individual crop rotation history rather than at regional scale based on soil type and quality 88. Indeed, a 340 

very recent review of the potential impacts of A.I. on the achievement of the UN sustainable 341 

development goals (SDGs) suggested that A.I. will be an enabler for SDG2 on sustainable agriculture, 342 

but highlights generally that the pace of development of A.I. may have implications in terms of a lack 343 

of regulatory oversight and insight, which could potentially result in gaps in transparency, safety, and 344 

ethical standards89. 345 



19 
 

Nanoinformatics models applicable to nano-enabled agriculture  346 

The application of machine learning in NM risk assessment, and for design of “safe” and 347 

environmentally friendly NMs, is also an area of intensive research in the last few years. For example, 348 

nanoQSAR models linking specific NMs properties to uptake by, and impacts on, cells or organisms 349 

are emerging, as well as models that allow determination of surface functionalizations that enhance (or 350 

decrease), for example, protein binding and/or cellular association (as a pre-requisite for 351 

internalization79), and can be applied for design of targeting strategies in precision nano-agriculture. 352 

Similarly, extending advances in nanomedicine to precision nanoagriculture will facilitate the design of 353 

optimized controlled release agrochemicals90, 91.  For example, deep learning employing an automatic 354 

data splitting algorithm and the evaluation criteria suitable for pharmaceutical formulation data was 355 

developed for the prediction of optimal pharmaceutical formulations and doses92. From an agricultural 356 

perspective, understanding the factors (NM, plant, soil, climate etc.) that control the release rate of 357 

active ingredients, and the factors driving transport of the carrier can influence selection of formulation 358 

parameters. Such data-driven models require significant amounts of data to train and validate them, 359 

which is certainly a barrier to their current development, although significant work is underway in the 360 

nanosafety arena broadly to develop optimized workflows for data and metadata generation (e.g. 361 

utilizing Elecronic Laboratory Notebooks), annotation with relevant ontological terms mapped to the 362 

data schema of the receiving databases and automated upload to nanosafety knowledgebases93, which 363 

in the medium term will facilitate the aggregation, integration and re-use of nanosafety and nano-364 

agriculture related datasets.      365 

As noted above however, there are significant concerns regarding the safety and risk of NMs 366 

that must be addressed before their widespread intentional application to the environment can be 367 

sanctioned, and there are tight regulatory processes for approval of agrochemicals94. A recent review 368 

has assessed the regulation of pesticides for risk assessment and the potential use of in silico computer-369 
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based chemical modeling technologies to facilitate risk assessment of nano-enabled pesticides92. This 370 

review concluded that while quantum chemistry is an appropriate tool to characterize the structure and 371 

relative stabilities of organic compounds isomers, for studying degradation processes pathways, and via 372 

use of quantum descriptors for QSAR development, a reevaluation for their suitability for nano-enabled 373 

agriculture is needed.  374 

 375 

Challenges and barriers to precision nano-agriculture 376 

Although nanotechnology demonstrates high potential in a wide range of applications in agriculture, it 377 

is still primarily at the research stage. There are many challenges to be overcome to move this area 378 

forward from basic research to full commercial scale application. This includes lack of mechanistic 379 

understanding of the interaction at NM-plant-soil interface and NM uptake and translocation in plant 380 

vascular structure and organells; insufficient understanding of the environmental safety and human 381 

health risks of intentional NM application; lack of soil and large scale field study to demonstrate the 382 

efficacy of NMs under realistic scenarios; and an unclear balance between adoption of a new 383 

technology and the low profit margin in agriculture, and the aforementioned challenges regarding 384 

collection and harmonization of the datasets needed for development of A.I models. 385 

Long term studies at ecosystem level under environmentally relevant conditions are currently 386 

lacking. For example, silver-, zinc- and copper-based NMs show the potential to be applied as efficient 387 

pesticides or fungicide; however, the potential impact on non-target organisms (e.g., beneficial plant 388 

rhizosphere bacteria, worms) and long term impacts on soil quality are not known. Although 389 

nanofertilizers may enhance the NUE, effects (e.g., alteration of the content of carbonhydrates, macro- 390 

or micro- nutrient) of NMs on the nutritional quality of food have been reported95 and need to be 391 

assessed systematically and predictive models need to be established. NMs might accumulate in seeds 392 

and the potential to cause transgeneration effects96, 97 are largely unknown. The presence of NMs may 393 
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cause enhanced uptake of contaminants by plants, e.g. by binding to the NM surface and co-transport, 394 

and may amplify their adverse effects98, 99. Such co-effects need to be fully understood.  395 

NMs undergo numerous transformations (physically, chemically or biologically) in soils and 396 

plants. For example, many metal based NMs such as ZnO, Cu and Ag tend to dissolve and release 397 

metal ions, which can further react with soil and plant components such as phosphate, sulfur, chloride 398 

etc. The original NM properties that are designed for specifc application purpose might not be 399 

maintained due to these processes. For example, antifungal NMs such as Ag NMs can be oxidized, 400 

dissolve and sufildized in soil environments either by interaction with the soil microbiome or within 401 

plants, and the antifungal property of the Ag NMs could be reduced or diminished100. Some 402 

transformations might release toxic components, for example, graphene oxide was reported to degrade 403 

under sunlight and relase PAH (polycyclic aromatic hydrocarbon) -like compounds which are likely to 404 

exhibt toxic properties and persist in the environment101.  405 

Computational tools that can predict NM transformation processes will favour the design to 406 

manipulate or even simulate directly the transformation in order to maintain the NM function or modify 407 

their impacts. However, the complexity of soil chemistry and the high responsivity of plants and their 408 

secretions into the rhizosphere increase the variability and diversty of potential NM transformations 409 

(Figure 3). Many factors are interlinked. For example, NM transformations are affected by the soil and 410 

plant microbiome and the excreted extracellular polymeric substances (EPS) and plant root exudates 411 

around the rhizosphere. However, plant root exudate composition and microbiome can affect each 412 

other and both may be altered due to NM exposure, which can in-turn affect the NM transformation 413 

processes. Changes to the microbiome will affect the N cycling processes in soil. Foliar applied NMs 414 

can translocated downwards to root and interact with phyllosphere components such as microorganism 415 

and leaf exudates. All of the above are also subject to further change and disruption as a result of 416 

climate changes, e.g., altered CO2 and temperatures can shift nutrient cycling, alter rates of reactions / 417 
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trasnformations, change plant susceptibility to NMs and more. Therefore, the dynamic nature of the 418 

whole system needs to be considered making this a perfect candidate for A.I. and machine learning 419 

solutions.   420 

Compared to small molecules toxicity prediction, nanoinformaticians are used to working with 421 

smaller datasets (sometimes just a few NM variants), and use exposure concentrations and timepoints 422 

as a means to expand the dataset. Thus, evaluation of the impact of NMs on NUE in a hydrophnic 423 

system for example could evaluate a panel of 8-10 NMs and evaluate their effect alone and in 424 

combination with fertilizer at different ratios and over different timescales, and determine the N 425 

concentrations in the water, plant mass and emitted to air under controlled temperatures and CO2 426 

levels, which would provide a multi-factorial dataset for establishment of machine learning models to 427 

predict the NUE of a new NM, as long as its physicochemical characteristics fell within the domain of 428 

applicability of the model, i.e. at least one of the NMs in the training and test set had some overlap with 429 

the properties of the “new” NM. If the NMs were characterisered over time under the different 430 

conditions, e.g., in terms of their size, dissolution, acquired corona composition, further models 431 

predicting corona composition and NMs fate and behaviour could be build, identifying the key NMs 432 

properties and environmental factors driving the specific effect.  If data on plant growth (roots, shoots) 433 

or localization of the NMs in the plants were determined, increasingly complete models of NUE versus 434 

localsiation in plants could be developed. System complexity can then be build by moving to soils for 435 

example, where the NM characterization challenges increase, but where models for the NMs 436 

environmental fate already exist, such as the NanoFASE soil-water-organism model, which predict the 437 

fate of NMs in the environment21. Thus, the steps will be small initially, but as the datasets and models 438 

emerge, their integration with other models and tools into overall IATA and agricultural systems 439 

models will become feasible and achievable.  440 
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 441 

Figure 3. Schematic illustration of the complexity of NM behavior in the soil-plant environment and 442 

the potential impacts in soil-plant systems. Understanding and predicting these translocation, 443 

transformations, and identifying the optimal NMs forms to retain bioavailable N species in the soil will 444 

facilitate design of sustainably functional NMs for agriculture, enhancing NUE while simultaneously 445 

reducing pollution and the need for fertlizers. Coupling this with enhanced targeting and sustained, 446 

controlled release of pesticides can be facilitated using A.I. to design optimal nano-agrichemicals.   447 

 448 

A roadmap for progress 449 

Smart and nano-enabled agriculture, combined with A.I. and machine learning capability offer an 450 

exciting convergence of technologies with the unique capability to address the overarching UN SDGs, 451 

the “improved nutrition and promotion of sustainable agriculture”. The impetus for smart agriculture is 452 

thus multi-pronged: from enhancing and sustaining productivity through nano-enabled (responsive) 453 

delivery of agrochemicals to crops, through to reduction in environmental pollution and negative 454 

human health impacts from agriculture. Agriculture’s grand challenges can only be solved if the power 455 
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of NMs can be harnessed safely, responsibly and sustainably. Nanoinformatics will play a vital role in 456 

probing the design parameters, the plant and ecosystem responses, and their co-optimising for safe and 457 

sustainable agriculture. For example, A.I. may predict NM impacts on the agricultural ecosystem and 458 

their performance in improving agricultural production (NUE, reduction in air and water pollution 459 

forms of key elements), by integrating experimental data from across different soil conditions and 460 

different plant species/climate change conditions and NM physicochemical properties, which enables 461 

safer-by-design development of nanoagricultural chemicals. Future reseach directions are outlined here 462 

to address these challenges – a summary of the future research needs is given in Box 2.  463 

Box 2 Future research needs 

• Determine the long term fate of NMs including transformation, transport 
in soil, uptake and translocation in plants, curate this data and its 
accompanying metadata into NMs-KnowledgeBases and enrich it with 
global soil and weather characteristics, plant biology knowledge and 
microbial community characteristics to facilitate development of deep 
learing models tailored to specific NMs being developed for nano-
agriculture and the local environmental conditions. 

• Assess the long term life cycle impacts of NMs in agricultural ecosystems 
including the trophic transfer of NMs along food chains and the potential 
for transgenerational impacts. Integration of these datasets into the 
aforementioned KnoweldgeBases will enable further iteration of the 
models, including development of Integrated Approaches to Testing and 
Assessment (IATA) and integrated agricultural systems models. 

• Take a systems levels  approach (as illustrated in Figure 3) since the 
whole ecosystem is interlinked with numerous co-variances, and feed this 
enhanced understanding into emerging regulatory frameworks.   

• Utilise A.I. and machine learning to identify key nanospecific properties 
that initiate the adverse effects or beneficial function of NMs from large 
dataset obtained, thereby facilitating design of optimalised (safe-by-
design) nano-agrochemicals that are fully compliant with emerging 
regulations.  

• Integrate models addressing different aspects of the overall challenge 
(physics-based, process based and data driven) through alignment of input 
and output parameters and development of an IATA, as shown 
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schematically in Figure 2. 

1) Understand the long term fate of NMs in agricultural environment including transport, 464 

transformation in soil, and uptake and translocation in plant. Transformation of NMs will change their 465 

original designed properties, which may defunctionalize their use as fertilizers, pesticides, carriers, or 466 

sensors. The transformation could occur in soil, at plant interface (e.g., root or leaf surface) and inside 467 

plant. In soil, the transformation could be driven by soil texture and chemistry, and by interaction with 468 

soil microorganisms and animals. Plant interfaces, including the rhizosphere and phyllosphere (surface 469 

of plant leaves and stems), are critical locations for NMs transformation. The dynamic and complex 470 

composition at the these regions, including plant metabolites and microorganisms, drive the 471 

transformation. NMs may also transform during their translocation in plant vascular structure by 472 

interacting with plant fluids. All these area are largely unknown.  473 

Another critical question is how to effectively deliver NMs to target places in plant. This 474 

requires a clear understanding of the uptake and translocation of NM in plants. Both plant leaf and root 475 

have physiological barriers to prevent the entry of unwanted substances, while the structure of these 476 

two organs are very different. NMs that enter into leaf will translocate downward in phloem, while 477 

NMs entering into roots translocate upward in the xylem. The fluid composition and flow rate in xylem 478 

and phloem may greatly affect the translocation and accumulation of NMs in plant. Data and predictive 479 

models for these questions are all required urgently.  480 

2) Assess the long term life cycle impact of NMs in agricultural ecosystem. Given the fact that 481 

repeated application of nanotechnology in agriculture is possible in the future, long term retention of 482 

NMs in agriculture soil is inevitable. The majority of the current studies regarding the plant-NMs 483 

interaction are phenomenological observations of NMs toxicity under short term, high dose conditions; 484 

long term low dose effects of NMs on agroecosystem therefore need to be studied, addressing NM 485 

impacts on plant growth, microbial acitivity and community structure, soil health (e.g., soil enzyme 486 

activity, nutrient cycling), trophic transfer of NMs and transgeneration effects. 487 
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3) Take a systems level approach to nano-enabled agriculture. The behavior, fate and impact of 488 

NMs in soil-plant system, and plant and microorganisms are all interconnected. As shown in Figure 3 489 

and described above, change of one factor may induce a change of the whole system. Given the power 490 

of A.I., and the complexity of the optimization challenges facing nano-agriculture, it is clear that their 491 

convergence offers exciting new directions (Figure 4). Utilising extensive existing models and datasets 492 

for soil quality, crop yield and NUE, for example, and combining these with models and datasets 493 

related to plant and microbial secretomes, and nanomaterials physicochemical properties, 494 

trasnformations and bioavailability, and release of active ingredients, could enable important new 495 

insights into (1) the likely transformation pathways for the NMs and their resulting environmental 496 

transport and bioavailablity; (2) the potential impact of the NM and their associated active ingredients 497 

(in cases where the NMs are carriers) on crop yield and NUE; and (3) potential identification of 498 

biomarkers of crop health / diseasae that can be utilized as early warning systems. Identification of data 499 

gaps can also drive the design of focused experiments to gap-fill or to develop sub-models to integrate 500 

into an overall model framework allowing design of NMs and active ingredient combinations that 501 

optimize NUE and minimize pollution whilst enhancing crop yield and potentially even nutritional 502 

(calorific) value. Integration of safe-by-design approaches, and feeding forward the emerging 503 

knowledge into updating of regulatory process for advanced nano-enabled agricultural applications, 504 

both in fertilization and in plant protection is essential also. 505 

  506 
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 507 

Figure 4. Approach to integration of A.I. models needed to assess ENMs behavior, fate and impact in 508 

agriculture based on the interplay between ENM and environmental factors including the crop type and 509 

soil characteristics.  Integration of automated tools for harvesting data from public databases, 510 

preprocessing and curation of the data for direct input into the AI/ML models, for example via the 511 

Enalos Tools102 in KNIME, ensures that the output data from one model can serve as the input data for 512 

subsequent models, thereby facilitating model integration and development of increasingly multiplexed 513 

predictions for nano-enabled precision agriculture.  514 

 515 

4) Utilise A.I. and machine learning to identify key nanospecific properties that initiate the 516 

adverse effects or beneficial function of NMs from large datasets obtained through use of automated 517 

data retrieval from public databases, data pre-processing and gap-fillling, and data splitting into tets and 518 

validateion sets for modelling102 (Figure 4). There are multiple physicochemical properties of NMs 519 

such as size, shape, surface charge, surface area, surface reactivity and crystal structure that can 520 

influence their transformations and toxicity. A.I. and machine learning will enable the selection of the 521 

most critical parameters that determine the behavior and and the prediction of the behavior of NMs in 522 
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soil and plant systems and facilitate the design of NMs that can be delivered to plants efficiently. NM 523 

transformation in different soil conditions and different root rhizosphere compositions under changing 524 

climate conditions, could be also predicted by integrating predictive models which allowing 525 

optimization of NMs for agricultural application in a range of climatic and local conditions. Wider 526 

ecosystems effects, and prediction of tripartite (NMs-soil-plant) behaviours under future climate 527 

scenarios can also be predicted, utilizing for example Baysian networks. Such models are especially 528 

important as they can operate under data scarcity, yet can easily incorporate new data as it emerges. 529 

Application of such models to address the broader issues of food security, and to tacking thhe 530 

sustainable development goal of “improved nutrition and promote sustainable agriculture” (SDG2) will 531 

provide important new intersectional insights and suggestions for ways forward.  532 
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