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Abstract: The Sporadic-E (Es) layer is an often-observed phenomenon at high latitudes; however,
our understanding of the polar cap Es layer is severely limited due to the scarce number of measure-
ments. Here, the first comprehensive study of the polar cap Es layer associated with Global Position-
ing System (GPS) Total Electron Content (TEC) variations and scintillations is presented with multiple
measurements at Resolute, Canada (Canadian Advanced Digital Ionosonde (CADI), Northward-
looking face of Resolute Incoherent-Scatter Radar (RISR-N), and GPS receiver). According to the joint
observations, the polar cap Es layer is a thin patch structure with variously high electron density,
which gradually develops into the lower E region (~100 km) and horizontally extends >200 km.
Moreover, the TEC variations produced by the polar cap Es layer are pulse-like enhancements
with a general amplitude of ~0.5 TECu and are followed by smaller but rapid TEC perturbations.
Furthermore, the possible scintillation effects likely associated with the polar cap Es layer are also
discussed. As a consequence, the results widely expand our understanding on the polar cap Es layer,
in particular on TEC variations.

Keywords: polar cap; the sporadic-E layer; Resolute Bay; spatial structures; TEC variations;
scintillations

1. Introduction

The Sporadic-E (Es) layer is normally a thin layer with quite variable peak density at
an altitude range of 90−120 km and is predominately composed of metallic ions (such as
Fe+ and Mg+) deposited by meteor ablation into the ionosphere [1–7]. These metallic ions
have a longer lifetime than NO+ and O2

+ (the main ion species in the lower E region) due
to a lower recombination rate; therefore, they can accumulate into a thin layer that can
last several hours. The Es layer is produced by the compression of these ion populations
through the complicated mechanisms of neutral winds and/or electric fields and/or gravity
waves [3,4,8–11].

Referring to the formation mechanism of the Es layer at mid-latitudes, it is a widely
accepted view that the vertical convergence of the metal ions is primarily driven by the
wind shears [12–16]; however, at high latitudes the formation of the polar cap Es layer is
not simply explained only by wind shears, as the almost vertical direction of magnetic field
relegates this mechanism to a secondary formation source; as such, strong electric fields
have been proposed as the dominate effect on drifting metallic ions [17,18]. This primary
function has then been generally checked, suggesting that two necessary conditions should
be satisfied to produce Es layers, namely: a magnetically westward electric field and an
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abundance of metallic ions [17–20]. Meanwhile, gravity waves are also considered a more
important factor than the neutral wind on the distribution of metallic ions [21–25]. Due to
these complicated formation processes of the polar cap Es layer and also the limitation of
observation measurements at high latitudes, measurements from more instruments are
therefore urgently required to deeply understand this thin layer.

In recent decades, the characteristics of these thin layers have been generally investi-
gated by using a series of instruments, incompletely including ionosondes, ground-based
radars, radio-occultation techniques, as well as GPS receivers [9,16,22,26–31]; however,
due to the spatial and temporal limitations of measurements of Es layers, there is much we
do not understand about the Es layer, especially over the polar region, e.g., the horizontal
scale, the formation mechanism, the corresponding GPS Total Electron Content (TEC)
variations, as well as scintillations. Fortunately, Resolute provides a very good opportunity
to extensively study the polar cap Es layer through joint observations of measurements,
including a Canadian Advanced Digital Ionosonde (CADI), the northward-looking face of
Resolute Incoherent-Scatter Radar (RISR-N), and a ground-based GPS receiver.

In this study, we will first detail the various specifications, advantages, and shortcom-
ings of the involved instruments. Through the simultaneous measurements of the CADIs at
Resolute Bay/Eureka/Pond Inlet and RISR-N, an interesting example of polar cap Es layer
is then presented in detail, examining its vertical and horizontal scale. Moreover, benefiting
from the combined data of the GPS receiver, the phenomena of TEC variations associated
with the polar cap Es layer are firstly investigated. At last, the sections of discussions and
conclusions are carried out.

2. Instruments and Data Sets

The Canadian High Arctic Ionospheric Network (CHAIN) currently consists of
9 CADIs and 25 GPS receivers distributed in the Canadian Arctic. In this paper, only
four CADIs from CHAIN are involved, which are respectively sited at Eureka (EU, geo-
graphic: 79.99◦N, 85.9◦W; geomagnetic latitude: 87.87◦N), Resolute Bay (RB, geographic:
74.73◦N, 94.91◦W; geomagnetic latitude: 82.43◦N), Pond Inlet (PO, geographic: 72.69◦N,
77.96◦W; geomagnetic latitude: 81.30◦N), and Cambridge Bay (CA, geographic: 69.10◦N,
105.12◦W; geomagnetic latitude: 77.02◦N). The locations of these CADIs are specified in
Figure 1a by yellow stars under the geographical latitude/longitude coordinate system.
Note that three supportive CADIs from EU, PO, and CA are the nearest ground-based
instruments around the RB. Two tracks of GPS Pseudo-Random Noise (PRN) 18 and GPS
PRN19 (coded by the light and dark blue colors, respectively) were superimposed on the
Ionospheric Pierce Point (IPP) at an altitude of 110 km during the conducted period.

Meanwhile, a number of instruments were deployed to Resolute Bay (RB) to si-
multaneously and comprehensively monitor the ionosphere over the central polar cap.
In this study, only CHAIN CADI, RISR-N, and GPS receivers were examined. The relative
positions of these instruments, as well as their viewing geometry, are shown in Figure 1b as
a function of elevation and azimuth, in which the CADI and GPS receiver are highlighted
by the black bold square in the center and the phased-array beams of RISR-N are marked
by black crosses with each beam number. Note that the CADI is almost collocating with
the beam 8 of RISR-N, both detecting along the vertical direction. Two GPS satellite tracks
of GPS PRN19 (dark blue) and PRN18 (light blue) were simultaneously examined during
the period of interest and are discussed in the next section.

The CADI instrument is run by CHAIN [32] and provides both ionograms (1-min time
resolution; not shown here) and the virtual altitude of echoes reflected from the ionosphere
at a number of fixed frequencies (e.g., 4 MHz) every 30 s. RISR-N is a phased array system
that can deploy a large number of beams simultaneously (as shown in Figure 1b), offering
multiple profiles of electron density (Ne), electron temperature (Te), ion temperature (Ti),
and ion velocity (Vi) along each line-of-sight direction [33]. When RISR-N is operating
with an Alternating Code (AC 16-30) mode, the instrument can provide high resolution
measurements in the lower E region, which can be used to study Es layers. For this
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particular period below the altitude of 120 km, its range and time resolutions are ~4 km and
~3 min, respectively. Taking advantage of the fixed pattern of multiple beams of RISR-N,
it presents us with a unique opportunity to examine polar cap Es layers in 3-dimension.
Moreover, the Novatel GSV4004B GPS receiver, also operated by CHAIN, provides raw
phase and amplitudes sampled at 50 Hz and phase-levelled TEC at 1 Hz. The GPS TEC
data we used are the slant relative TEC with elevation angles greater than 10◦, which are
sufficient to examine TEC variations.
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Figure 1. (a) The locations of four involved Canadian Advanced Digital Ionosonde (CADI) of the Canadian High Arctic
Ionospheric Network (CHAIN) in the Canadian arctic marked by the yellow stars in geographic coordinate, at where EU
stands for Eureka, RB for Resolute Bay, PO for Pond Inlet, and CA for Cambridge Bay. Simultaneously, two conducted GPS
tracks of PRN18 (light blue) and PRN19 (dark blue) at the Ionospheric Pierce Point (IPP) altitude of 110 km in relation to RB
were superimposed during a period of 16:00–18:30 UT on 5 September 2012; (b) the location of adopted instruments at RB
as a function of elevation and azimuth, including CADI (the black square in the center), GPS receiver (sharing the same
location with CADI), and the phased-array beams of the north incoherent scatter radar (RISR-N, the black crosses with a
number). The black concentric circles respectively represent the elevations of 10◦ and 30◦ and 60◦. Within the interested
period, two ray paths of GPS PRN18 (light blue) and GPS PRN19 (dark blue) are marked by closed dots with Universal
Time (UT), highlighting the change of locations to the observation instruments. The black arrow in the right-bottom corner
is pointing to the higher magnetic latitude (MLat) for the period of interest.

In this paper, the data provided by the CADI and GPS receiver were all collected
from CHAIN (ftp://chain.physics.unb.ca/gps/data/raw/resc/2012/09/ (accessed on
18 February 2021)), which is run by researchers in the Physics Department of University
of New Brunswick (UNB). The RISR-N data were obtained from the Madrigal online
database (http://cedar.openmadrigal.org/listExperiments?isGlobal=on&categories=1&
instruments=91&showDefault=on&start_date_0=2012-01-01&start_date_1=00%3A00%3A0
0&end_date_0=2012-12-31&end_date_1=23%3A59%3A59 (accessed on 18 February 2021)),
which was established by the Haystack Observatory of Massachusetts Institute of Technol-
ogy (MIT).

3. Results

In this study, a number of experiments corresponding to the polar cap Es layer were
collected since 2010, all including observations from these instruments at the RB simultane-

ftp://chain.physics.unb.ca/gps/data/raw/resc/2012/09/
http://cedar.openmadrigal.org/listExperiments?isGlobal=on&categories=1&instruments=91&showDefault=on&start_date_0=2012-01-01&start_date_1=00%3A00%3A00&end_date_0=2012-12-31&end_date_1=23%3A59%3A59
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ously. As an example, a common experiment during the period of 16:00–21:00 Universal
Time (UT) on 5 September 2012 was presented to study the characteristics of polar cap Es
layer and then investigate the corresponding TEC variations, as well as the scintillations of
amplitude and phase.

3.1. Solar Wind and IMF Conditions and Geomagnetic Indices

During the period of 15:00–22:00 UT on 5 September 2012, Figure 2 presents the solar
wind and Interplanetary Magnetic Field (IMF) conditions as well as the geomagnetic indices.
Parameters are: (a) the Geocentric Solar Magnetic (GSM) Interplanetary Magnetic Field
(IMF) components; (b) the solar wind velocity, VSW, and the solar wind number density,
NP; (c) the solar wind dynamic pressure, PDyn; (d) the auroral electrojet (AE/AU/AL)
indices; and (e) the SYM-H index. Accounting for the travel from nose of bow shock to
the polar ionosphere, the IMF and solar wind data were delayed 7 min. The IMF and
solar wind conditions were weak (Figure 2a–c), resulting in quiet and stable geomagnetic
conditions (Figure 2e). During the period of interest (highlighted by two vertical dashed
lines), the IMF By/Bz components were decreasing from weak positive to stable negative
(above −5 nT) at ~18:00 UT; on the contrary, the Bx was increasing from weak negative
to around 0 at ~18:00 UT. Meanwhile, the solar wind velocity slowed from ~500 km/s to
450 km/s but the number density enhanced from ~18:00 UT, giving an increased but still
weak PDyn (~4 nPa). The AE/AL indices reached ±500 nT from quiet conditions after
~18:00 UT, probably suggesting the occurrence of a moderate substorm at nightside.
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Figure 2. An overview of the solar wind and Interplanetary Magnetic Field (IMF) conditions as well as the geomagnetic
indices during a period of 15:00–22:00 UT on 5 September 2012. From top to bottom: (a) the IMF Bx (blue), By (black),
Bz (red) components; (b) the solar wind velocity (black), the solar wind number density (red); (c) the solar wind dynamic
pressure, PDyn; (d) the auroral electrojet (AE/AU/AL) indices; and (e) the SYM-H index. Considering the propagation
time from the nose of bow shock to the polar ionosphere, the IMF and solar wind data lagged by 7 min. Two vertical dashed
lines highlight the conducted period in this study.

3.2. The Characteristics of Polar Cap Es Layer

Figure 3 presents a group range of echoes on 4 MHz from CADI (CADI panel) and
electron density profiles along multiple beams of RISR-N (RISR-N panels) at Resolute Bay
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(RB) during the interval of 16:00–21:00 UT on 5 September 2012 as a function of UT and
altitude [34,35]. A grey dashed vertical line is marked at 16:20 UT on all panels. In the
CADI panel, a cloud of echoes (centered at 16:20 UT) rapidly penetrated down to virtual
heights below 120 km from up to ~220 km and then disappeared instantly (highlighted
by the grey dashed vertical line), which is a clear phenomenon of particle precipitation.
Soon after, a clear band of strong echoes (up to 36 dB) emerged and then gently fell from
the virtual height of 130 km to 95 km during a long period between 16:30 and 20:50 UT,
which are classic signatures of a polar cap Es layer [22]. Above the virtual height of 200 km,
a second band of echoes is seen, corresponding to the second hop reflection from the layer.
Note that the virtual heights in the CADI panel of Figure 3 are slightly higher than their
corresponding real height values.

Moreover, the spatial structures of the polar cap Es layer in 2-dimensions can be
examined through the use of Ne profiles from the many phased-array beams of RISR-N.
Considering the location of RB (MLT ≈ UT−7 h), the experiment of interest was happening
during daytime conditions, extending from the morning to noon sector. The RISR-N panels
in Figure 3 present a number of Ne profiles observed by beams of 8, 3–1, 5–7, and 9–11
during the period of 16:00–21:00 UT on 5 September 2012, which were placed following
the column of beams of RISN-N, as shown in Figure 1b (except the noise condition of
beam 4 due to the lowest elevation). A color bar is located at the right-side of each panel,
all representing the same scale. In the RISR-N panels of Figure 3, there were similar
high-density structures rapidly penetrating from >150 km to ~100 km at around 16:20 UT
(marked by the grey dashed vertical line), which are considered the particle precipitation
and are consistent with the observations in the CADI panel. After this particle precipitation,
a clear band with great electron density was seen gradually decreasing in altitude from
110 km to 95 km before dissipating into the background in each RISR-N panel, which
almost simultaneously occurred from 16:30 UT to ~20:50 UT. This high Ne in the lower E
region is likely the same structure seen in the CADI panel, all highlighting the appearance
of the polar cap Es layer. Note that in the beam 3 panel of RISR-N, both the particle
precipitation and initial section of the polar cap Es layer were much weaker than in other
beams, probably due to its location at the highest MLat. Around 17:50 UT, a second
formation of the polar cap Es layer was observed.

Furthermore, noting the period when the polar cap Es layer was observed in all
RISR-N beams and taking advantage of the spatial distribution of RISR-N beams, the
2-dimensional scale of polar cap Es layer was roughly estimated (probably >200 km in
horizontal), which was calculated at an assumed altitude of 100 km at where it is frequently
emerging. Below, the adopted method to roughly estimate the horizontal scale is basically
introduced, predominately relying on trigonometric functions. Based on four corner beams
of 3, 1, 9, and 11 (Figure 1b), the corresponding intersection points of these beams to the
Es layer at the assumed altitude (100 km) were projected to the ground vertically. Then,
the horizontal distance from the mapped points to the RISR-N radar (the location of beam
8) was easily calculated by using their elevation angles and the assumed altitude. Lastly,
after that the horizontal distances between these four mapped points were simply figured
out by referring to their azimuth angles. This horizontal size of the polar cap Es layer was
much greater than that of 250 × 20 km in mid-latitude regions [29,30], probably indicating
the different formation mechanisms at high latitudes.
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Figure 3. A time series of group range at 4 MHz by CADI (CADI panel) and electron density
(Ne) profiles along multiple beams of RISR-N (RISR-N panels) at Resolute Bay (RB) during a time
interval of 16:00–21:00 UT on 5 September 2012. The CADI panel possessed a virtual height range of
90–240 km and RISR-N panels employed an altitude range of 80–150 km. At the top-right corner of
each RISR-N panel, the numbers of every displayed beam of RISR-N are suggested, together with
their elevation and azimuth. A grey dashed vertical line is marked at 16:20 UT.



Remote Sens. 2021, 13, 1324 7 of 14

Additionally, there were three more CADI stations from CHAIN near the RB, provid-
ing more evidence to investigate the polar cap Es layer, which was at the EU, PO, and CA.
In this experiment, the data from EU and PO were available. Figure 4 shows a group range
of echoes on 4 MHz from CADI at Eureka (EU, top) and Pond Inlet (PO, bottom) as a
function of UT and virtual height. Similar to the CADI panel of Figure 3 at RB, a clear band
of echoes with weaker intensity appeared at the bottom range (~100 km) on both the EU
and PO panels of Figure 4, which is the polar cap Es layer. In the EU panel, the polar cap
Es layer occurred during the interval of 16:00-21:30 UT (almost interrupted in the interval
of 17:30–17:50 UT), which obviously started earlier than in the RB (~16:30 UT). On the con-
trary, in the PO panel the initial time of the polar cap Es layer (around at 18:00 UT) lagged
behind evidently, likely corresponding to the second part of polar cap Es layer in Figure 3
(RB) and also in Figure 4 (EU). In fact, in order to entirely determine the appearance of the
polar cap Es layer in this experiment, the ionograms in a cadence of 5 min (not shown here)
from these three CADIs (RB, EU, and PO) were also checked, presenting almost the same
behaviors of the polar cap Es layer mentioned above.

Then, for the second section of the polar cap Es layer during the time period of
18:00–21:00 UT, these three stations (RB, EU, and PO) observed the polar cap Es layer
simultaneously, possibly suggesting the horizontal scale of the polar cap Es layer is much
greater than that only from the RB observation. It may be noted that one more key step
is needed to completely determining that these three stations capture only one polar cap
Es layer at the same time, however, which is beyond the scope of this paper. In the future,
an accurate imaging technique in 2-dimensions is still required to solidly investigate the
full structure of the polar cap Es layer. Meanwhile, for the first section of the polar cap
Es layer during the interval of 16:00–18:00 UT, the appearance of polar cap Es layer was
completely different compared with the second section, which was firstly shown in EU and
then in RB, but without PO. As a consequence, the different behaviors of these two sections
of the polar cap Es layer probably suggest that the generation mechanism to forming these
two parts of the polar cap Es layer is possibly different. Regarding the IMF conditions
(Figure 2a), their polarities were obviously changing at around 18:00 UT, possibly linking
the IMF conditions and the generation of the polar cap Es layer, which requires much more
investigations in near future.
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As mentioned, 11 more RISR-N experiments with the polar cap Es layer were ex-
amined which predominately demonstrate similar behavior as this example. In practice,
we have carefully checked another example by using RISR-N at RB during a period of
03:00–08:00 UT on 8 August 2012 (not shown here), clearly suggesting the occurrence of
polar cap Es layer by almost all beams at the same time. Meanwhile, the group range of
echoes at 4 MHz provided by three available CADIs of CHAIN located at RB and CA and
PO, respectively, were obviously presenting the appearance of polar cap Es layer. Next,
the TEC variations in relation to the polar cap Es layer are investigated in detail.

3.3. TEC Variations

If a ray path from a GPS satellite to a ground-based receiver intersects an Es layer
with a smooth F region, the derived GPS TEC will be slightly enhanced, as reported at
the mid-latitude region [29–31]. Referring to these published results, at high latitudes the
corresponding TEC variations are firstly discussed in the context of both RISR-N- and GPS
receiver-derived TEC. The RISR-N TEC roughly estimates the contribution of polar cap
Es layer to the GPS receiver-derived TEC of GPS satellite-to-receiver ray. In purpose of
exactly comparing the TEC enhancement contributed from the polar cap Es layer provided
by RISR-N and GPS receiver in future, the ray path from satellite to GPS receiver should be
almost along the line-of-sight of the beams of radar.

Figure 5 shows the time series of RISR-N TEC during the concerned period of
16:30–21:00 UT, 5 September 2012, which were integrated from Ne profiles observed by
the beams of 3–1, 5–8, and 9–11 of RISR-N in an altitude range of ~110–95 km correspond-
ing to the altitude of the polar cap Es layer. The red dashed horizontal lines represent
0.5 TECu (1 TECu = 1016 electron/m2). Note that these RISR-N TECs are slant TECs along
the corresponding beams under their specific directions. From Figure 5, the RISR-N TEC is
found to have a peak value of ~1.7 TECu in beam 7 (but generally ~0.5 TECu). During the
specific period of 16:30–20:00 UT that the polar cap Es layer clearly happened, the RISR-
N TEC was usually a strong enhancement followed by smaller and rapid variations in
Figure 5. Note that the temporal cadence of RISR-N in this experiment was ~3 min, likely
requiring much higher time resolution from GPS TEC observations. Close to the end of this
period without the clear Es layer (after 20:00 UT), the background of RISR-N TEC within
the same altitude range was calculated as <0.1 TECu. Furthermore, the TEC enhancements
of the bottom row (at the lowest MLat) of Figure 5 are generally greater than the middle
row and then the top (at the highest MLat), except the panels of beams 2 and 7. In addi-
tion, regarding the very high peak density of the polar cap Es layer (~1012.1 electron/m3,
even greater than the peak of F2 layer) in the beam 7, it is perhaps reasonably surprising
that the peak value of TEC enhancement associated with the Es layer in the central polar
cap is often lower than 1.7 TECu. In practice, after checking 11 experiments of polar cap Es
layers, the normal peak of RISR-N TEC is usually at ~0.5 TECu.

Figure 6 provides a time series of data collected by the ground-based receiver to the
GPS PRN19 and GPS PRN18 satellites during a period of 16:00–18:30 UT on 5 September
2012, including (a)/(g) TEC, (b)/(h) TEC variations, (c)/(i) detrended amplitude, and
(d)/(j) detrended phase, as well as the calculated (e)/(k) amplitude scintillation indices
and (f)/(l) phase scintillation indices. A grey vertical dashed line is located at 16:30 UT.
Here, the GPS PRN18 and PRN19 were chosen due to their crossing time coinciding with
the emerging period of the polar cap Es layer exactly and the nearest distance of their
ray paths to the multiple beams of RISR-N radar simultaneously. In Figure 6a,g, the red
solid and black dashed lines respectively represent the slant TEC and the smooth TEC
obtained from a moving average method with a time window of 4 min. Here, the smooth
method was used to filter out the lower frequency fluctuations of GPS TEC that were
possibly generated by larger-scale irregularities. The key parameter of the time window
was selected deliberately, not only making the smooth TEC fit the slant TEC precisely,
but also featuring the concerned TEC variations apparently. In practice, we have tested
a range of time windows from 0.1 min to 20 min to meet the strict criterions. The TEC
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variations in Figure 6b,h were derived from subtracting the smooth TEC (black dashed line)
to the slant TEC (red solid line). Figure 6c,d,i,j are respectively the detrended amplitude
and phase from GPS raw data, which were all calculated by a wavelet method within a
cutoff frequency range of 0.19–10.7 Hz [36–38]. Figure 6e,f,k,l are scintillation indices in a
cadence of 10 s calculated from the detrended amplitude and phases, respectively, which
are discussed in the next section. Note that the trajectories of the GPS PRN19 and PRN18
ray paths in relation to the phased-array beams of RISR-N have been clearly demonstrated
in Figure 1b, which were respectively coded by the dark and light blue colors.
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Figure 6. An overview of a large number of parameters obtained from the ground-based GPS receiver at Resolute Bay
(RB) to GPS PRN19 (a–f) and GPS PRN18 (g–l) during an interval of 16:00–18:30 UT on 5 September 2012. From top to
bottom: (a/g) slant TEC (red solid line), smooth TEC (black dashed line) modelled by a smooth method with a time span of
4 min; (b/h) TEC variations, subtracting the smooth TEC from the slant TEC; (c/i) and (d/j) are the detrended amplitude
and detrended phase, which were processed from GPS raw data by the wavelet method; (e/k) and (f/l) are the calculated
amplitude scintillation indices and phase scintillation indices in a time resolution of 10 s from the detrended raw data. A
grey dashed vertical line is highlighted at 16:30 UT.

In Figure 6, at around 16:20 UT (slightly before the grey dashed vertical line), a sharp
TEC enhancement is clearly seen at GPS PRN19 (Figure 6a,b) and PRN18 (Figure 6g,h)
simultaneously, which corresponds well with the particle precipitation centered at 16:20
UT, as shown in Figure 3 (indicated by the grey dashed vertical line). The TEC variations
experienced by GPS PRN19 were stronger than those seen by GPS PRN18, probably due
to the stronger part of particle precipitation being encountered by the former. At this
moment, the corresponding Ne of beam 11 of RISR-N experienced by GPS PRN19 was



Remote Sens. 2021, 13, 1324 11 of 14

clearly stronger than that in the beam 3 related to GPS PRN18 (Figures 1b and 2). Moreover,
from Figure 6c–f,i–l, weak scintillation occurred at this time (~16:20 UT), manifesting as
increases in both the amplitude and phase indices of GPS PRN19 and PRN18, which was
probably induced by this particle precipitation.

After 16:30 UT (marked by the grey dashed vertical line in Figure 6), the TEC variations
are pulse-like enhancements followed by rapid but smaller TEC perturbations with the
magnitude around ±0.5 TECu (the maximum amplitude less than 1.8 TECu even at the
lower elevation) particularly observed by GPS PRN19 (Figure 6b). Referring to the locations
of GPS PRN19 and GPS PRN18 in Figure 1a,b during the whole interval, the TEC variations
experienced by GPS PRN19 (Figure 6b) were generally stronger than that by GPS PRN18
(Figure 6h) due to the stronger polar cap Es layers in the lower MLat, which were clearly
presented by beams of 1, 7, and 11 of RISR-N in Figures 3 and 5. Furthermore, it is also
inferred from that the GPS PRN19 was at a higher elevation than GPS PRN18 and so should
have a shorter ray path through the structures. Additionally, comparing the period of
16:30–17:30 UT with the interval after 17:30 UT, the TEC variations by GPS PRN19 in the
former period were obviously stronger than in the latter interval (Figure 6b), which also
experienced a stronger polar cap Es layer in the lower MLat. These characteristics are
consistent with the mentioned point that the level of activity experienced by GPS PRN19
was generally higher than that by GPS PRN18, associated with the intensity distribution of
the polar cap Es layer. On the other hand, the assertion is further confirmed by the Rate of
TEC (ROT) and ROT Index (ROTI) comparison, which were calculated from the time series
of TEC provided by the beam 8 and beam 9 of RISR-N (Figure 5) and GPS PRN19 and
PRN18 (Figure 6a,g). Generally speaking, the ROTs from beam 8 and beam 9 of RISR-N
were fluctuating between ±0.5 TECu/3 min, which were similar with the ROTs from GPS
PRN19 and PRN18. Meanwhile, the ROTIs were also close (almost ~0.15), which presented
one more supportive piece of evidence. Consequently, it can be concluded that these TEC
variations experienced by GPS PRN19 and also PRN18 were likely induced by the observed
polar cap Es layer.

In addition, these pulse-like TEC enhancements (in a time period of ~4 min) are fun-
damentally different from the platform-like TEC variations created by the polar cap patch
(the F region irregularities in [39–41]). Therefore, these long-term pulse-like enhancements,
followed by rapid but smaller TEC perturbations, are reasonably linked to the polar cap Es
layer rather than the particle precipitation or polar cap patch. Note that the TEC and TEC
variations were interrupted at 17:13 UT and 17:19 UT due to cycle slips of the phase of GPS
signal, suggesting that propagation conditions may have been particularly troubled during
this period plagued by polar cap Es activity.

4. Discussions and Conclusions

In this paper, a case study of polar cap Es layers together with the induced TEC
variations and scintillations has been firstly addressed by using combined instruments
mainly on Resolute Bay, Eureka, and Pond Inlet, including CADI and multiple beams of
RISR-N, as well as a GPS receiver. From these joint observations, the structures of polar cap
Es layers were investigated, revealing that the horizontal scale of the polar cap Es layer was
extending >200 km, probably due to different formation mechanisms at the mid-latitude
region. In order to accurately capture the 2-dimensional structure of the polar cap Es
layer and further study the possible mechanisms, the coordinated E region observations
of RISR-N and Resolute Bay Incoherent-Scatter Radar-Canada (RISR-C) and CADI all at
Resolute, Canada will be carried out soon by taking advantage of 10 more Ne profiles from
the twin RISR-C radar, which are looking to the southward directions.

Moreover, the TEC variations caused by the polar cap Es layer have been definitely
determined from the RISR-N- and GPS receiver-derived TEC, all following the behavior
of a series of pulse-like enhancements (predominately <1.7 TECu, usually ~0.5 TECu)
followed by rapid but smaller TEC perturbations. In the future, more experiments of polar
cap Es layers are also required to further check our results on the TEC variations.
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Furthermore, the corresponding scintillations should be carefully investigated be-
cause the scintillations cannot only be used to further understanding the features of plasma
irregularities of Es layers in scientific research but can also affect the application of com-
munication/navigations in practice. In this study, from Figure 6c–f on GPS PRN19 and
Figure 6i–l on GPS PRN18, after 16:30 UT the scintillation activities of both amplitude
and phase became lively, in particular on GPS PRN19, possibly suggesting the capability
of the polar cap Es layer to produce scintillations on the L-band signal. Consequently,
it reminds us that more attention should be paid to the global Es layer, in particular at
mid-latitudes where the Es layer more frequently occurs. However, the difficult point is
how to fundamentally separate the scintillation effects produced by the thin polar cap
Es layer from the much thicker E/F region plasma irregularities, such as the polar cap
patch (or F region irregularities) or particle precipitation. In the near future, much effort is
needed to completely decouple it.
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