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Graphical Structural Biology Reviews 

Desmosomal protein structure and function and the impact of 
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A B S T R A C T   

In this graphical review we focus on the structural characteristics of desmosomal proteins, their interactions with 
each other and with the intermediate filament cytoskeleton. The wealth of structural information that is now 
available allows predictions to be made about the pathogenic effect of disease-causing mutations. We have 
selected representative examples of missense mutations that are buried, semi-buried or surface exposed, and 
demonstrate how such variants could affect the structural fold of desmosomal proteins that are expressed in the 
heart. We explain how such alterations could compromise desmosomal adhesion, resulting in life threatening 
diseases including arrhythmogenic right ventricular cardiomyopathy.   

1. Introduction 

Desmosomes are intercellular junctions that anchor cell cytoskeletal 
intermediate filaments (IFs) and are responsible for maintaining tissue 
integrity, particularly in tissues that undergo mechanical stress such as 
the myocardium and epidermis (Fig. 1A-C). They associate with desmin 
IFs in cardiomyocytes, keratin IFs in epithelial cells and vimentin IFs in 
follicular dendritic cells. When desmosomal adhesion is compromised, 
as in some genetically inherited and autoimmune diseases, tissues lose 
their structural cohesion. For strong intercellular adhesion five core 
desmosomal proteins, namely a desmocollin (DSC), a desmoglein (DSG), 
plakoglobin, a plakophilin (PKP) and desmoplakin (Fig. 1D), are 
required. Mutations in genes encoding these proteins are often associ
ated with a translational frameshift, resulting in unstable truncated 
proteins and haploinsufficiency. Other mutations induce single residue 
substitutions in the translated protein, raising the question of whether 
such alterations invoke neutral or disease-causing effects on protein 
function. This review examines the structural effects of disease-related 
missense mutations in desmosomal proteins, and considers their 
impact on protein structure, stability and intercellular junction assem
bly. We focus on those mutations that affect desmosomal genes that are 
expressed in the heart (i.e. DSC2, DSG2, JUP, PKP2 and DSP). For mu
tations in desmosomal genes (such as DSG1, DSG4, DSC3 and PKP1) that 
lead to skin and hair related disorders, we refer readers to a recent re
view (Lee and McGrath, 2021). 

2. Desmocollins and desmogleins 

DSCs and DSGs are members of the cadherin superfamily and 
mediate calcium-dependent adhesion at desmosomal junctions. The 
human genome contains three DSC (DSC1-DSC3) and four DSG 
(DSG1–DSG4) genes. The DSCs/DSGs are single-pass membrane span
ning proteins (Fig. 2A, B) which exhibit complex tissue- and 
differentiation-specific expression profiles (Garrod and Chidgey, 2008). 
Their ectodomains are comprised of five tandem extracellular cadherin 
(EC) domains with each composed of seven β-strands arranged as two 
opposed β-sheets (Fig. 2C, D). Both homophilic (i.e. DSC-DSC and DSG- 
DSG) and heterophilic (i.e. DSC-DSG) interactions have been detected 
(Spindler et al., 2009, Lowndes et al., 2014, Harrison et al., 2016, Sha
fraz et al., 2018), and the nature of desmosomal cadherin interactions 
remains a matter of some dispute (Vielmuth et al., 2018). Regardless the 
underlying mechanism of dimerization is likely to involve strand ex
change between EC1 domains of opposed molecules (Harrison et al., 
2016). An atomic model of the desmosome architecture has recently 
been generated using cryo-electron tomography and molecular dy
namics. The model demonstrates that desmosomal cadherins associate 
at the midline generating a sieve-like pattern with the cadherins 
engaging in cis and trans interactions (Sikora et al., 2020). 

Desmosomal cadherin cytoplasmic regions can be subdivided into a 
number of distinct domains based on their sequence (Fig. 2A, B). The 
DSC cytoplasmic tail consists of an intracellular anchor and catenin 
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binding domain (CBD). All DSC genes undergo alternative splicing, 
resulting in longer ‘a’, and shorter ‘b’ forms with a truncated CBD that 
abolishes binding of most ligands. The E-cadherin cytoplasmic domain is 
intrinsically disordered (Huber et al., 2001) and its CBD interacts with 
β-catenin and plakoglobin at multiple points, wrapping around their arm 
repeats (Choi et al., 2009). It is envisaged that the DSC/DSG-CBDs 
engage with plakoglobin in a similar manner given their predicted 
structural similarity to the E-cadherin-CBD (Fig. 2E, F). DSG cytoplasmic 
regions are substantially longer than those of DSCs encompassing 
additional intrinsically disordered segments (Fig. 2B). The function of 
these extreme C-terminal DSG regions is unclear although they mediate 
weak binding to other desmosomal proteins (Kami et al., 2009) and may 
enhance adhesion by inhibiting internalisation (Chen et al., 2012). 

The genes encoding desmosomal cadherins expressed in the heart, 
namely DSC2 and DSG2, are targeted by numerous mutations that result 
in cardiac-related disorders (Fig. 2G, H). Using structural information 
available for DSC2/DSG2-EC domains we have identified multiple 
mechanisms by which disease-causing mutations could adversely affect 
desmosomal cadherin function (Fig. 2I–K). For example, missense mu
tation I345T in DSC2-EC2 contributes to arrhythmogenic right ventric
ular cardiomyopathy (ARVC). The DSC2-EC2 structure shows that I345 
maps to the hydrophobic core region mediating multiple non-polar in
teractions, supporting the EC2 fold. The DSC2-EC2 model encompassing 
the I345T mutation reveals that these interactions would be abolished, 

creating structural vulnerabilities within the EC2 domain. Consistent 
with this, I345T was predicted to destabilise the DSC2-EC fold using 
DynaMut, a web server that analyses the effects of amino acid substi
tution on protein stability by calculating the value of ΔΔG (a metric for 
predicting how point mutations affect protein stability) (Rodrigues 
et al., 2018). Other ARVC-causing mutations such as E230G/N266S/ 
D297G map to the EC2-EC3 interface of DSG2 and are predicted to 
compromise calcium binding and interfere with the extended confor
mations adopted by EC domains that are essential for intercellular in
teractions. Interestingly, only two of these mutations were classified as 
destabilising using DynaMut highlighting the challenges associated with 
accurately predicting the effect of point mutations on protein stability. 
Finally, although the R146H mutation in DSG2-EC1 was classified as 
stabilising, such a change may compromise DSC2/DSG2 heterodimeric 
interactions leading to impaired desmosome assembly. 

3. Plakoglobin and plakophilins 

The armadillo proteins plakoglobin and PKP serve as linkers in the 
desmosome-intermediate filament complex (Garrod and Chidgey, 2008) 
(Fig. 1D). They are characterised by a variable number of imperfect 42- 
residue arm repeats. Plakoglobin is found in both desmosomes and 
adherens junctions and in the latter engages with the E-cadherin-CBD. 
Each PKP (PKP1-PKP3) exists in two different splice variants and 
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Fig. 1. Visualisation of desmosome ultrastructure. A) Whole embryo in situ hybridisation showing the location of desmosomes incorporating desmocollin 3 in nasal 
epidermis, vibrissa hair follicles, whisker pad epithelium and the tactile hair follicles above the eye (arrowhead) at mouse embryonic day of development 13.5. Bar, 1 
mm. B) Immunohistochemistry showing desmoplakin containing desmosomes at cell–cell borders in mouse epidermis. The spot-like appearance of the staining in the 
basal layer keratinocytes shows the location of individual desmosomes. Desmosomes are not present on the basal surface of basal layer keratinocytes. HF, hair follicle; 
B, basal layer; S,G, spinous, granular layers; SC, stratum corneum. Bar, 25 μm. C) Electron microscopy showing desmosome ultrastructure. Bar, 0.1 μm. D) Archi
tecture of the desmosome showing the approximate location of desmosomal proteins. Heterophilic interactions are shown between the desmosomal cadherins in the 
intercellular space, and for simplicity desmoplakin is depicted as a monomer. Structured domains are coloured whereas intrinsically disordered domains are depicted 
as thin black lines. The intrinsically disordered head and tail domains of plakoglobin and plakophilin are omitted for clarity. PM, plasma membrane. 
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Fig. 2. Desmocollin 2a (DSC2a) and desmoglein 2 (DSG2) structures and mapping of disease-related missense mutations. A) Domain architecture of DSC2a showing 
the five extracellular cadherin (EC) domains, a membrane spanning domain and an intrinsically disordered cytoplasmic domain consisting of an intracellular anchor 
(IA) and a catenin binding domain (CBD) (also known as the intracellular cadherin-like sequence or ICS). Leader and pro-peptides, which are cleaved during 
maturation of the protein, are not shown. B) Domain architecture of DSG2 is similar to DSC2 but with the addition of an intrinsically disordered C-terminal region 
consisting of a linker domain (LD), a repeat unit domain (RUD) and a desmoglein terminal domain (DTD). Note that the linker domain is sometimes referred to as the 
intracellular proline-rich linker (IPL), a misnomer as the domain is not proline rich in DSGs 2, 3 and 4. C) Crystal structure of DSC2 EC domains 1–5 (PDB: 5J5J and 
5ERP). D) Crystal structure of the DSG2 EC domains 1–5 (PDB: 5ERG). E) I-TASSER derived model of the DSC2-CBD showing an extended conformation, and 
electrostatic map revealing its negatively charged surface. The model is derived from the E-cadherin CBD in its bound form with plakoglobin. F) I-TASSER derived 
model of the DSG2-CBD demonstrating an extended conformation, and electrostatic map revealing its negatively charged surface. The model is derived from the E- 
cadherin CBD in its bound state with plakoglobin. G) Mapping of DSC2 missense mutations (derived from the HGMD database) that result in heart diseases (such as 
ARVC and dilated cardiomyopathy) and sudden death. H) Mapping of DSG2 missense mutations that result in heart disease. I) Impact of disease-linked variant I345T 
on the crystal structure of DSC2-EC. Ribbon diagram of DSC2-EC demonstrating that the side chain of I345 mediates multiple non-polar contacts that stabilise the EC2 
core region (top panel). The loss of these interactions with T345 are predicted to destabilise this region (bottom panel). J). Impact of disease-related variants E230G, 
N266S and D297G on the DSG2-EC crystal structure. Ribbon diagram of DSG2-EC showing that the side chains of E230, N266 and D297 co-ordinate calcium ions (top 
panel). The disease-associated variants can no longer bind calcium and are predicted to result in a less extended conformation (bottom panel). K) Impact of disease- 
linked variant R145H on DSC2-DSG2 model. Ribbon diagram of DSC2-DSG2 model demonstrating that the side chain of R145 in DSG2 may mediate multiple polar 
contacts with DSC2 (top panel). The disease-related variants can no longer mediate such contacts which may impair DSC2-DSG2 interactions (bottom panel). Boxes 
show close up views of the relevant interactions. The DynaMut server was used to calculate the predicted change in stability (in kcal/mol) for each variant. 
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exhibits complex tissue-specific expression profiles (Hofmann, 2020). As 
well as being structural components of desmosomes, plakoglobin and 
PKPs are involved in diverse signalling pathways and modulate cell 
behaviour (Aktary et al., 2017, Hofmann, 2020). 

Plakoglobin consists of a central arm repeat domain flanked by 
intrinsically disordered N- and C-terminal tails (Fig. 3A). The central 
region consists of 12 arm repeats with all comprising of three α-helices, 
H1, H2 and H3, except repeats 1 and 7 which lack H1 (Fig. 3B) (Choi 
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Fig. 3. Plakoglobin and plakophilin 2b (PKP2b) structures and mapping of disease-associated missense mutations. A) Domain architecture of plakoglobin showing 
intrinsically disordered head and tail domains flanking an arm repeat domain consisting of 12 arm repeats. B) Crystal structure of the plakoglobin arm repeat domain 
(PDB: 3IFQ). The electrostatic surface profile of the plakoglobin arm domain shows a positively charged groove (right panel). C) Domain architecture of PKP2b 
showing intrinsically disorder head and tail domains flanking an arm repeat domain consisting of 9 arm repeats. PKP2b is identical to PKP2a with the exception of a 
44 amino acid insert between arm repeats 3 and 4. D) I-TASSER derived molecular model of the PKP2b arm repeat domain. The electrostatic surface profile of the 
PKP2b arm domain shows a positively charged patch in the superhelical groove. E) Mapping of plakoglobin disease-related missense mutations (derived from the 
HGMD database) that result in heart disease and sudden death, and Naxos disease which is characterised by cardiomyopathy, palmoplantar keratoderma and woolly 
hair. F) Mapping of PKP2b missense mutations that result in heart disease and sudden death. G) Examining the effect of disease-associated variant R577C on pla
koglobin crystal structure. Ribbon diagram of the plakoglobin arm domain demonstrating that R577 mediates multiple polar interactions (green dashed lines) with 
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interactions (right panel). H) Probing the effect of disease-associated variant R695C on the PKP2b arm repeat domain model. Ribbon diagram of the PKP2b arm 
domain demonstrating that R695 mediates multiple polar interactions (green dashed lines) with residues protruding from arm repeat 5 (left panel). Introduction of 
C695 at this position would result in a loss of these stabilising interactions (right panel). Boxes show close up views of the relevant interactions. The DynaMut server 
was used to calculate the predicted change in stability (in kcal/mol) for each variant. 
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et al., 2009). The interface between plakoglobin and the E-cadherin-CBD 
spans the entire length of the plakoglobin arm domain and involves 
electrostatic interactions between the electropositive groove of plako
globin and the negatively charged surface of the E-cadherin-CBD. 
Negatively charged patches are also evident in the DSC/DSG-CBD sur
faces suggesting that electrostatic complementarity contributes to stable 
plakoglobin/desmosomal cadherin attachments. Overall, the negative 
surface charge on desmosomal cadherin CBDs is less than that on the E- 
cadherin-CBD which may explain why the latter binds plakoglobin with 
greater affinity (Choi et al., 2009). 

PKPs consist of a central arm repeat domain flanked by intrinsically 
disordered regions (Fig. 3C). The crystal structure of the PKP1a arm 
repeat module consists of 9 arm repeats, with a flexible insert between 
repeats 5 and 6 (Choi and Weis, 2005). The PKP1 arm repeats pack 
together to form a distinct electropositive groove that is comparable to 
that of plakoglobin. Unsurprisingly, the PKP2b arm repeat domain 
adopts a similar fold to PKP1, albeit with an additional insert between 
arm repeats 3 and 4 (Fig. 3D). PKPs serve as a critical hub, mediating 
interactions with DSCs, DSGs, plakoglobin and desmoplakin. Although 
not formally proven the negatively charged DSC-CBD and DSG-CBD may 
interface with the PKP basic groove. In addition, the intrinsically 
disordered tails of plakoglobin and the PKPs could facilitate interactions 
with each other, desmosomal cadherins and desmoplakin. 

The genes encoding armadillo proteins expressed in the heart, 
namely JUP and PKP2, are targeted by missense mutations that are 
distributed throughout the head, arm and tail domains (Fig. 3E, F). The 
clinical effects of these mutations can now be interpreted in light of the 
plakoglobin structure and a molecular model of PKP2b (Fig. 3G, H). For 
example, the ARVC-causing R577C mutation is located in arm repeat 10 
of plakoglobin. The guanidinium moiety of R577 forms salt-bridge and 
hydrogen-bonding interactions with residues protruding from arm re
peats 9 and 10. In the R577C variant, C577 can no longer contribute to 
such inter- and intra-helical stabilisation interactions. It is debatable 
whether the loss of these interactions is solely responsible for disease 
pathogenesis since the R577C variant is not classified as structurally 
deleterious based on DynaMut analysis. One possibility is that the thiol 
group of C577 may be susceptible to oxidation which could lead to the 
formation of physiologically irrelevant disulphide-linked PKP2b dimers. 
Similarly, the presence of the sudden death syndrome-related mutation 
R695C in PKP2b is predicted to introduce structural fragilities within the 
arm domain. In addition, there are numerous mutations that target 
positively charged arm domain residues, which may adversely affect 
DSC2-CBD and/or DSG2-CBD binding. 

4. Desmoplakin 

Desmoplakin is a member of the plakin family of cytolinkers that 
functions as a linker between plakoglobin and the PKPs, and the IF 
cytoskeleton (Fig. 1D). It consists of N-terminal head, central rod and C- 
terminal tail domains (Fig. 4A–D). There are two major isoforms of 
desmoplakin, I and II, with the latter characterised by a shorter rod 
domain. The head domain comprises of a short intrinsically disordered 
region followed by a structured plakin domain. The plakin domain 
consists of six spectrin repeats (SRs) which are organised into long (SR3- 
6) and short (SR7-8) arms (Al-Jassar et al., 2013). Each SR consists of 
three helices A, B and C that form an antiparallel triple helical bundle. 
Helix C and helix A of the subsequent repeat are continuous as SRs are 
connected by an α-helical linker. This arrangement yields an elongated 
rigid structure which is further rigidified by a Src homology-3 domain 
embedded in SR5 which packs extensively against SR4 (Choi and Weis, 
2011). A flexible hinge between the two arms may allow the plakin 
domain to sweep for ligands during desmosome assembly, or permit 
extension of the desmoplakin molecule, preventing damage if the 
molecule is stretched (Al-Jassar et al., 2013). The desmoplakin head 
domain interacts with plakoglobin and the PKPs in the outer dense 
plaque. Although these interactions have not been precisely mapped, the 

intrinsically disordered N-terminal extremity of desmoplakin is likely to 
interface with plakoglobin as ARVC mutations V30M and Q90R abol
ishes the interaction (Yang et al., 2006). 

The rod domain is thought to be involved in desmoplakin homo
dimerization. A molecular model of the rod domain reveals a coiled-coil 
structure of approximately 20 nm in length (Fig. 4C), allowing it to 
transverse the electron lucent region between outer and inner dense 
plaque (Fig. 1D). Electron microscopy of purified desmoplakin I showed 
the rod domain was on average 130 nm long (O’Keefe et al., 1989), a 
figure that is likely to represent a fully unfolded version of the domain. 
The desmoplakin tail domain engages with the IF cytoskeleton in the 
inner dense plaque, and comprises of three plakin repeat domains 
(PRDs), a linker module and a glycine-serine-arginine-rich motif 
(Fig. 4D). The latter undergoes post-translational modifications which 
modulate desmoplakin-IF interactions (Albrecht et al., 2015). All three 
PRDs contain 4.5 copies of a 38-residue plakin repeat (PR) motif, which 
includes an 11-residue hairpin followed by an anti-parallel pair of 
α-helices (Choi et al., 2002, Kang et al., 2016). Each PRD encompasses a 
basic groove that binds poly-acidic motifs on IF rods (Fogl et al., 2016). 
Given the relative orientations of the IF binding grooves in the tandem 
PRD-AB structure, it is likely that PRDs A and B engage adjacent IF rods, 
rather than binding the same rod (Kang et al., 2016, Mohammed et al., 
2020). The desmoplakin linker contains two PR-like motifs with an 
electropositive groove, which also binds IF rods (Kang et al., 2016, 
Odintsova et al., 2020). 

The DSP gene encoding desmoplakin is targeted by mutations that 
result in various heart and skin-related disorders. These disease-causing 
mutations are scattered throughout the head, rod and tail domains 
(Fig. 4E). The clinical effects of disease-associated mutations can now be 
interpreted in light of our increasing structural knowledge of desmo
plakin modules (Fig. 4F–H). For example, the ARVC-causing variant 
S442F maps to SR5 in desmoplakin. In the wild-type protein S442 me
diates hydrogen-bonding interaction with a neighbouring polar residue, 
whereas the bulky aromatic ring of F442 is predicted to clash with the 
surrounding helix and adversely affect the SR5 fold. Molecular dynamic 
simulations on the plakin long arm support the idea that the SH3 domain 
stabilises the module (Daday et al., 2017). Hence ARVC mutations, such 
as S442F, that map to the SR4-SR5-SH3 interface may compromise 
desmosome integrity and impair cellular responses to tension. Other 
disease-associated mutations identified in the rod and PRD domains 
such as R1838H and R2366H abolish core stabilising polar interactions 
which could compromise desmoplakin function. 

5. Conclusion 

Mutations in desmosomal genes are being identified at an unprece
dented rate as a result of advances in next-generation sequencing tech
nology. Substantial progress has also been made in our understanding of 
the structure and function of cardiac-associated desmosomal proteins. 
This has allowed mapping of pathogen-causing missense mutations and 
accurate predictions of their impact on structures. Additionally, the 
rapid growth of computational stability predictors is likely to enhance 
identification of bona fide disease-linked structurally deleterious muta
tions. These approaches can now be extended to structurally map 
disease-causing variants in other desmosome-associated proteins (Lee 
and McGrath, 2021). Despite these advances, the molecular basis of how 
pathogenic mutations lead to disease remain challenging, particularly 
for non-structurally deleterious variants. Such non-synonymous muta
tions could modify the functional properties of the encoded protein by 
affecting ligand binding or trafficking. Future structural determination 
of desmosomal protein–ligand complexes will illuminate ligand docking 
modes and provide further molecular insights into how missense vari
ants drive pathogenicity. 
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