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Abstract

We show generalisation error bounds for deep learning with1

two main improvements over the state of the art. (1) Our2

bounds have no explicit dependence on the number of classes3

except for logarithmic factors. This holds even when formu-4

lating the bounds in terms of the L2-norm of the weight5

matrices, where previous bounds exhibit at least a square-6

root dependence on the number of classes. (2) We adapt the7

classic Rademacher analysis of DNNs to incorporate weight8

sharing—a task of fundamental theoretical importance which9

was previously attempted only under very restrictive assump-10

tions. In our results, each convolutional filter contributes only11

once to the bound, regardless of how many times it is applied.12

Further improvements exploiting pooling and sparse connec-13

tions are provided. The presented bounds scale as the norms of14

the parameter matrices, rather than the number of parameters.15

In particular, contrary to bounds based on parameter count-16

ing, they are asymptotically tight (up to log factors) when17

the weights approach initialisation, making them suitable as a18

basic ingredient in bounds sensitive to the optimisation pro-19

cedure. We also show how to adapt the recent technique of20

loss function augmentation to our situation to replace spectral21

norms by empirical analogues whilst maintaining the advant-22

ages of our approach.23

Introduction24

Deep learning has enjoyed an enormous amount of success25

in a variety of engineering applications in the last decade (Kr-26

izhevsky, Sutskever, and Hinton 2012; He et al. 2016; Karras,27

Laine, and Aila 2018; Silver et al. 2018). However, providing28

a satisfying explanation to its sometimes surprising gener-29

alisation capabilities remains an elusive goal (Zhang et al.30

2017; Du et al. 2019; Asadi, Abbe, and Verdu 2018; Good-31

fellow, Shlens, and Szegedy 2015). The statistical learning32

theory of deep learning approaches this question by providing33

a theoretical analysis of the generalisation performance of34

deep neural networks (DNNs) through better understanding35

of the complexity of the function class corresponding to a36

given architecture or training procedure.37

This field of research has enjoyed a revival since 201738

with the advent of learning guarantees for DNNs expressed39

in terms of various norms of the weight matrices and classi-40

fication margins (Neyshabur, Bhojanapalli, and Srebro 2018;41

Bartlett, Foster, and Telgarsky 2017; Zhang, Lei, and Dhillon42

2018; Li et al. 2019; Allen-Zhu, Li, and Liang 2019). Many43

improvements have surfaced to make bounds non-vacuous at44

realistic scales, including better depth dependence, bounds45

that apply to ResNets (He, Liu, and Tao 2019), and PAC-46

Bayesian bounds using network compression (Zhou et al.47

2019), data-dependent Bayesian priors (Dziugaite and Roy48

2018), fast rates (Suzuki 2018), and reduced dependence49

on the product of spectral norms via data-dependent local-50

isation (Wei and Ma 2019; Nagarajan and Kolter 2019). A51

particularly interesting new branch of research combines52

norm-based generalisation bounds with the study of how the53

optimisation procedure (stochastic gradient descent) impli-54

citly restricts the function class (Cao and Gu 2019; Du et al.55

2019; Arora et al. 2019; Zou et al. 2018; Jacot, Gabriel, and56

Hongler 2018; Frankle and Carbin 2019). One idea at the57

core of many of these works is that the weights stay relatively58

close to initialisation throughout training, reinforcing lucky59

guesses from the initialised network rather than constructing60

a solution from scratch. Thus, in this branch of research, it61

is critical that the bound is negligible when the network ap-62

proaches initialisation, i.e., the number of weights involved63

is not as important as their size. This observation was first64

made as early as in (Bartlett 1998).65

Despite progress in so many new directions, we note that66

some basic questions of fundamental theoretical importance67

have remain unsolved. (1) How can we remove or decrease68

the dependence of bounds on the number of classes? (2) How69

can we account for weight sharing in convolutional neural70

networks (CNNs)? In the present paper, we contribute to an71

understanding of both questions.72

Question (1) is of central importance in extreme classi-73

fication (Prabhu and Varma 2014), where we deal with an74

extremely high number of classes (e.g. millions). (Bartlett,75

Foster, and Telgarsky 2017) showed a bound with no explicit76

class dependence (except for log terms). However, this bound77

is formulated in terms of the L2,1 norms of the network’s78

weight matrices. If we convert the occurring L2,1 norms into79

the more commonly used L2 norms, we obtain a square-root80

dependence on the number of classes.81

Regarding (2), (Li et al. 2019) showed a bound that ac-82

counts for weight sharing. However, this bound is valid83

only under the assumption of orthonormality of the weight84

matrices. The assumption of unit norm weights—which is85

violated by typical convolutional architectures (GoogLeNet,86



VGG, Inception, etc.)—makes it difficult to leverage the gen-87

eralisation gains from small weights, and it is a fortiori not88

easy to see how the bounds could be expressed in terms of89

distance to initialisation.90

In this paper, we provide, up to only logarithmic terms,91

a complete solution to both of the above questions. First,92

our bound relies only on L2 norms at the last layer, yet it93

has no explicit (non-logarithmic) dependence on the number94

of classes. In deep learning, no generalization bound other95

than ours has ever achieved a lack of non-logarithmic class96

dependency with L2 norms. Second, our bound accounts for97

weight sharing in the following way. The Frobenius norm98

of the weight matrix of each convolutional filter contributes99

only once to the bound, regardless of how many times it is ap-100

plied. Furthermore, our results have several more properties101

of interest: (i) We exploit the L∞-continuity of nonlinearities102

such as pooling and ReLu to further significantly reduce the103

explicit width dependence in the above bounds. (ii) We show104

how to adapt the recent technique of loss function augmenta-105

tion to our setting to replace the dependence on the spectral106

norms by an empirical Lipschitz constant with respect to107

well chosen norms. (iii) Our bounds also have very little ex-108

plicit dependence on architectural choices and rely instead109

on norms of the weight matrices expressed as distance to110

initialisation, affording a high degree of architecture robust-111

ness compared to parameter-space bounds. In particular, our112

bounds are negligible as the weights approach initialisation.113

In parallel to our efforts, (Long and Sedghi 2020) recently114

made progress on question (2), providing a remedy to the115

weight-sharing problem. Their work, which appeared at ICLR116

2020, is independent of ours. This can be observed from117

the fact that their work and ours were first preprinted on118

arXiv on the very same day. Their approach is completely119

different from ours, and both approaches have their merits120

and disadvantages. We provide an extensive discussion and121

comparison in Section H.122

Related Work123

We now discuss the related work on the statistical learning124

theory (SLT) of DNNs. The SLT of neural networks can be125

dated back to 1970s, based on the concepts of VC dimension,126

fat-shattering dimension (Anthony and Bartlett 2002), and127

Rademacher complexities (Bartlett and Mendelson 2002).128

Here, we focus on recent work in the era of deep learning.129

Let (x1, y1), . . . , (xn, yn) be training examples independ-130

ently drawn from a probability measure defined on the131

sample space Z = X × {1, . . . ,K}, where X ⊂ Rd, d132

is the input dimension, and K is the number of classes.133

We consider DNNs parameterized by weight matrices A =134

{A1, . . . , AL}, so that the prediction function can be written135

FA(x) = ALσL−1
(
AL−1σL−2

(
· · ·A1x

))
, where L is the136

depth of the DNN, Al ∈ RWl−1×Wl ,W0 = d,WL = K, and137

σi : RWi 7→ RWi is the non linearity (including any pooling138

and activation functions).139

When providing PAC guarantees for DNNs, a critical
quantity is the Rademacher complexity of the network ob-
tained after appending any loss function. The first work in
this area (Neyshabur, Tomioka, and Srebro 2015) therefore

focused on bounding the Rademacher complexity of net-
works satisfying certain norm conditions, where the last layer
is one-dimensional. They apply the concentration lemma
and a peeling technique to get a bound on the Rademacher
complexity of the order O

(
2L√
n

∏L
i=1 ‖A

i‖Fr
)
, where ‖A‖Fr

denotes the Frobenius norm of a matrix A. (Golowich,
Rakhlin, and Shamir 2018) showed that this exponential
dependency on the depth can be avoided by an elegant
use of the contraction lemma to obtain bounds of the or-
der O

(
(
√
L/
√
n)
∏L
i=1 ‖Ai‖Fr

)
.1 The most related work to

ours is the spectrally-normalized margin bound by (Bartlett,
Foster, and Telgarsky 2017) for multi-class classification.
Writing ‖A‖σ for the spectral norm, the result is of order
Õ(M/γ) with

M =
1√
n

L∏
i=1

‖Ai‖σ

 L∑
i=1

‖Ai>‖
2
3
2,1

‖Ai‖
2
3
σ

 3
2

, (1)

where ‖A‖p,q =
(∑

j

(∑
i |Aij |

p
) q

p
) 1

q is the (p, q)-norm,140

and γ denotes the classification margin.141

At the same time as the above result appeared, the authors
in (Neyshabur, Bhojanapalli, and Srebro 2018) used a PAC
Bayesian approach to prove an analogous result 2, where
W = max{W0,W1, . . . ,WL} is the width:

Õ

L√W
γ
√
n

(
L∏
i=1

‖Ai‖σ

)(
L∑
i=1

‖Ai‖2Fr
‖Ai‖2σ

) 1
2

 . (2)

These results provide solid theoretical guarantees for142

DNNs. However, they take very little architectural inform-143

ation into account. In particular, if the above bounds are144

applied to a CNN, when calculating the squared Frobenius145

norms ‖Ai‖2Fr, the matrix Ai is the matrix representing the146

linear operation performed by the convolution, which implies147

that the weights of each filter will be summed as many times148

as it is applied. This effectively adds a dependence on the149

square root of the size of the corresponding activation map150

at each term of the sum. Furthermore, the L2 version of the151

above bound (1) includes a dependence on the square root of152

the number of classes through the maximum width W of the153

network. This square-root dependence is not favorable when154

the number of classes is very large. Although many efforts155

have been performed to improve the class-size dependency in156

the shallow learning literature (Lauer 2018; Guermeur 2002,157

2007; Koltchinskii and Panchenko 2002; Guermeur 2017;158

Musayeva, Lauer, and Guermeur 2019; Mohri, Rostamiza-159

deh, and Talwalkar 2018; Lei et al. 2019), extensions of those160

results to deep learning are missing so far.161

In late 2017 and 2018, there was a spur of research ef-162

fort on the question of fine-tuning the analyses that provided163

the above bounds, with improved dependence on depth (Go-164

lowich, Rakhlin, and Shamir 2018), and some bounds for165

1Note that both of these works require the output node to be one
dimensional and thus are not multiclass

2Note that the result using formula (2) can also be derived by
expressing (1) in terms of L2 norms and using Jensen’s inequality



recurrent neural networks (Chen, Li, and Zhao 2019; Zhang,166

Lei, and Dhillon 2018)). Notably, in (Li et al. 2019), the au-167

thors provided an analogue of (1) for convolutional networks,168

but only under some very specific assumptions, including169

orthonormal filters. Those conditions are not satisfied by170

the typical convolutional architectures (GoogLeNet, VGG,171

Inception, etc.).172

Independently of our work, (Long and Sedghi 2020, to ap-173

pear at ICLR 2020) address the weight-sharing problem using174

a parameter-space approach. Their bounds scale roughly as175

the square root of the number of parameters in the model. In176

contrast to ours, their employed proof technique is more sim-177

ilar to (Li et al. 2019): it focuses on computing the Lipschitz178

constant of the functions with respect to the parameters. The179

result by (Long and Sedghi 2020) and ours, which we con-180

trast in detail in Section , both have their merits. In nutshell,181

the bound by (Long and Sedghi 2020) remarkably comes182

along without dependence on the product of spectral norms183

(up to log terms), thus effectively removing the exponential184

dependence on depth. Our result on the other hand comes185

along without an explicit dependence on the number of para-186

meters, which can be very large in deep learning. As already187

noted in (Bartlett 1998), this property is crucial when the188

weights are small or close to the initialisation.189

Lastly, we would like to point out that, over the course190

of the past year, several techniques have been introduced191

to replace the dependence on the product of spectral norms192

by an empirical version of it, at the cost of either assuming193

smoothness of the activation functions (Wei and Ma 2019)194

or a factor of the inverse minimum preactivation (Nagarajan195

and Kolter 2019). Slightly earlier, a similar bound to that196

in (Long and Sedghi 2020) (with explicit dependence on197

the number of parameters) had already been proved for an198

unsupervised data compression task (which does not apply199

to our supervised setting) in (Lee and Raginsky 2019). Re-200

cently, another paper addressing the weight sharing problem201

appeared on arXiv (Lin and Zhang 2019). In this paper, which202

was preprinted several months after (Long and Sedghi 2020)203

and ours, the authors provided another solution to the weight204

sharing problem, which incorporates elements from both our205

approach and that of (Long and Sedghi 2020): they bound206

the L2-covering numbers at each layer independently, but use207

parameter counting at each layer, yielding both an unwanted208

dependence on the number of parameters in each layer (from209

the parameter counting) and a dependence on the spectral210

norms from the chaining of the layers.211

Further related work includes the following. (Du et al.212

2018) showed size-free bounds for CNNs in terms of the num-213

ber of parameters for two-layer networks. In (Sedghi, Gupta,214

and Long 2019), the authors provided an ingenious way of215

computing the spectral norms of convolutional layers, and216

showed (interestingly) that regularising the network to make217

them approach 1 for each layer is both feasible and beneficial218

to accuracy. Several researchers have also provided interest-219

ing insights into DNNs from different perspectives, includ-220

ing through model compression (Neyshabur, Bhojanapalli,221

and Srebro 2018), capacity control by VC dimensions (Har-222

vey, Liaw, and Mehrabian 2017), and the implicit restriction223

on the function class imposed by the optimisation proced-224

ure (Arora et al. 2018; Zhou et al. 2019; Neyshabur et al.225

2019, to appear; Suzuki 2018; Du et al. 2019; Jacot, Gabriel,226

and Hongler 2018; Arora et al. 2019).227

Contributions in a Nutshell228

In this section, we state the simpler versions of our main229

results for specific examples of neural networks. The general230

results are described in in more technical detail in Section A.231

Fully Connected Neural Networks232

In the fully connected case, the bound is particularly simple:233

Theorem 1 (Multi-class, fully connected). Assume that we
are given some fixed reference matrices M1,M2, . . . ,ML

representing the initialised values of the weights of the
network. Set R̂γ(FA) = (1/n)(#(i : F (xi)yi < γ +
maxj 6=yi F (xi)j)), where # denotes the cardinality of a set.
With probability at least 1− δ, every network FA with weight
matrices A = (A1, A2, . . . , AL) and every margin γ > 0
satisfy:

P(arg max
j

(FA(x)j) 6= y) ≤ R̂γ(FA)+ (3)

Õ

(
maxni=1 ‖xi‖FrRA

γ
√
n

log(W̄ ) +

√
log(1/δ)

n

)
, (4)

where W = W̄ = maxLi=1Wiis the maximum width of the
network, and

RA := ρL max
i
‖ALi, .‖Fr

(
L−1∏
i=1

ρi‖Ai‖σ

)
(5)

(
L−1∑
i=1

(‖Ai −M i‖2/32,1

‖Ai‖2/3σ

+
‖AL‖2/3Fr

maxi ‖ALi, .‖
2/3
Fr

) 3
2

. (6)

Note that the last term of the sum does not explicitly234

contain architectural information, and assuming bounded235

L2 norms of the weights, the bound only implicitly de-236

pends on Wi for i ≤ L − 1 (through ‖Ai − M i‖2,1 ≤237 √
Wi−1‖Ai − M i‖2,1), but not on WL (the number of238

classes). This means the above is a class-size free gener-239

alisation bound (up to a logarithmic factor) with L2 norms240

of the last layer weight matrix. This improves on the earlier241

L2,1 norm result in (Bartlett, Foster, and Telgarsky 2017).242

To see this, let us consider a standard situation where the243

rows of the matrix AL have approximately the same L2244

norm, i.e., ‖ALi, .‖2 � a. (In Section I in the Appendix,245

we show that similar conditions hold except on a subset of246

weight space of asymptotically vanishing measure and further247

discuss possible behaviour of the norms.) In this case, our248

bound involves ‖AL‖Fr �
√
WLa, which incurs a square-249

root dependency on the number of classes. As a comparison,250

the bound in (Bartlett, Foster, and Telgarsky 2017) involves251

‖(AL)>‖2,1 � WLa, which incurs a linear dependency on252

the number of classes. If we further impose an L2-constraint253

on the last layer as ‖AL‖Fr ≤ a as in the SVM case for a254

constant a (Lei et al. 2019), then our bound would enjoy a255

logarithmic dependency while the bound in (Bartlett, Foster,256



and Telgarsky 2017) enjoys a square-root dependency. This257

cannot be improved without also changing the dependence258

on n. Indeed, if it could, we would be able to get good guar-259

antees for classifiers working on fewer examples than classes.260

Furthermore, in the above bound, the dependence on the261

spectral norm of AL in the other terms of the sum is reduced262

to a dependence on maxi ‖ALi, .‖23. Both improvements are263

based on using the L∞-continuity of margin-based losses.264

Convolutional Neural Networks265

Our main contribution relates to CNNs. To avoid blinding266

the reader with notation, we present first simple versions of267

our results.268

Two-layers The topic of the present paper is often notation-269

ally cumbersome, which imposes an undue burden on readers.270

Therefore, we first present a particular case of our bound for271

a two-layer network composed of a convolutional layer and a272

fully connected layer with a single input channel, with expli-273

cit pre chosen norm constraints4. Note that the restrictions274

are purely based on notational and reader convenience: more275

general results are presented later and in the Appendix.276

2-layer Notation: Consider a two layer network with a
convolutional layer and a fully connected layer. Write d,C
for the dimensions of the input space and the number of
classes respectively. We write w for the spacial dimension
of the hidden layer after pooling5. Write A1, A2 for the sets
of weights of the first and second layer, with the weights
appearing only once in the convolutional case. A2 is a mat-
rix whilst A1 can be arranged as a tensor or unfolded as a
matrix. The matrix, which we denote by Ã1, representing
the convolution operation presents the weights of the matrix
A1 repeated as many times as the filters are applied. For any
input x ∈ Rd, we write |x|0 for the maximum L2 norm of
any single convolutional patch of x. For instance, if x is an
image and the network applies 3× 3 convolutions with stride
1, |x|0 would be the maximum L2 norm of any sub-image
of size 3× 3×m where m is the number of channels. The
network is represented by the function

F (x) = A2σ(Ã1x),

where σ denotes the non linearities (including both pooling277

and activation functions). As above, M1,M2 are the initial-278

ised weights.279

Theorem 2. Let a1, a2, a∗, b0, b1 > 0. Suppose that the dis-
tribution over inputs is such that |x|0 ≤ b a.s. With probabil-
ity> 1−δ over the draw of the training set, for every network
A = (A1, A2) with weights satisfying ‖(A1 −M1)>‖2,1 ≤

3Replacing the L2,1 norm by a L2 norm without accumulating
factors of the numbers of classes is the more substantial contribution.
On the other hand, the replacement of the spectral norm is down to
better Lipschitz management and has probably been achieved else-
where. We know of one paper that provides a similar improvement
under specific assumptions (the last layer weights being fixed and
initialised as independent Bernouilli distributions) (Zou et al. 2018)

4It is common practice to leave the post hoc step to the reader in
this way. Cf.,e.g., (Long and Sedghi 2020))

5This is less than the number of convolutional patches in the
input and is not influenced by the number of filters applied.

a1, ‖A2 − M2‖Fr ≤ a2 and supc≤C ‖A2
c, .‖2 ≤ a∗, if

supi≤n ‖Ã1xn‖2 ≤ b1 , then

P
(

arg max
j

(FA(x)j) 6= y

)
(7)

≤ R̂γ(FA) + 3

√
log( 2

δ )

2n
+
C√
n
R
[
log2(n2D)

] 1
2 log(n),

where C is an absolute constant,

R2/3 =

[
b0a1 max

(
1

b1
,

√
wa∗
γ

)]2/3
+

[
b1a2
γ

]2/3
, (8)

and the quantity in the log term is D =280

max(b0a1W̄a∗/b1, b1a2C/γ) where W̄ is the number281

of hidden neurons before pooling.282

Remarks:283

1. Just as in the fully connected case, the implicit dependence284

on the number of classes is only through an L2 norm of285

the full last layer matrix. b1 is a an upper bound on the L2286

norms of hidden activations.287

2. a1 is the norm of the filter matrix A1, which counts each288

filter only once regardless of how many times it is applied.289

This means our bound enjoys only logarithmic dependence290

on input size for a given stride, and takes weight sharing291

into account.292

3. As explained in more detail at the end of Appendix H, there293

is also no explicit dependence on the size of the filters and294

the bound is stable through up-resolution. In fact, there is295

no explicit non logarithmic dependence on architectural296

parameters, and the bounds converges to 0 as a1, a2 tend to297

zero (in contrast to parameter space bounds such as (Long298

and Sedghi 2020)).299

4. a∗ replaces the spectral norm of A2, and is only equal to300

the maximum L2 norm of the second layer weight vectors301

corresponding to each class. This improvement, just as302

the improved dependence on the number of classes, comes303

from better exploiting the continuity of margin based losses304

with respect to the L∞ norm.305

5. The spectral norm of the first layer matrix Ã1 is not nec-306

cessary and is absorbed into an empirical estimate of the307

hidden layer norms. The first term in the max relates to308

the estimation of the risk of a test point presenting with a309

hidden layer norm higher than (a multiple of) b1.310

6. b0 refers to the maximum L2 norm of a single convolu-311

tional patch over all inputs and patches. In particular, the312

bound exploits the sparsity of connections in CNNs.313

A result for the multi-layer case We as-314

sume we are given training and testing points315

(x, y), (x1, y1), (x2, y2), . . . , (xn, yn) drawn iid from316

any probability distribution over Rd × {1, 2, . . . , C}. We317

suppose we have a convolutional architecture so that for each318

filter matrix Al ∈ Rml×dl from layer l− 1 to layer l, we can319

construct a larger matrix Ãl representing the corresponding320

(linear) convolutional operation. The 0th layer is the input,321



whist the Lth layer is the output/loss function. We write wl322

for the spacial width at layer l, Wl for the total width at layer323

l (including channels), and W for maxlWl. For simplicity324

of presentation, we assume that the activation functions are325

composed only of ReLu and max pooling.326

Theorem 3. With probability≥ 1−δ, every network FA with
fliter matrices A = {A1, A2, . . . , AL} and every margin
γ > 0 satisfy:

P
(

arg max
j

(FA(x)j) 6= y

)
≤ R̂γ(FA) + Õ

(
RA√
n

log(W̄ ) +

√
log(1/δ)

n

)
, (9)

where W̄ is the maximum number of neurons in a single layer
(before pooling) and

R
2/3
A =

L∑
l=1

(Tl)
2/3

for where Tl =

Bl−1(X)‖(Al −M l)>‖2,1
√
wl max

U≤L

∏U
u=l+1 ‖Ã

u‖σ′
BU (X)

if l ≤ L− 1 and for l = L, Tl =

BL−1(X)

γ
‖AL −ML‖Fr.

Here, wl is the width at layer l after pooling. By convention,327

bL = γ, and for any layer l1, Bl1(X) := maxi
∣∣F 0→ll(xi)

∣∣
l1

328

denotes the maximum l2 norm of any convolutional patch329

of the layer l1 activations, over all inputs. For l ≤ L − 1,330

‖Ãl‖σ′ ≤ ‖Ãl‖ denotes the maximum spectral norm of any331

matrix obtained by deleting, for each pooling window, all but332

one of the corresponding rows of Ã. In particular, for l = L,333

‖ÃL‖σ′ = ρL maxi ‖ALi, .‖2.Here ALi, . denotes the i’th row of334

AL, and ‖ .‖2 denotes the Frobenius norm.335

Similarly to the two layer case above, a notable property336

of the above bounds is that the norm involved is that of the337

matrix Al (the filter) instead of Ãl (the matrix representing338

the full convolutional operation), which means we are only339

adding the norms of each filter once, regardless of how many340

patches it is applied to. As a comparison, although the gen-341

realization bound in (Bartlett, Foster, and Telgarsky 2017)342

also applies to CNNs, the resulting bound would involve the343

whole matrix Ã ignoring the structure of CNNs, yielding an344

extra factor of Ol−1 instead of
√
wl, where Ol denotes the345

number of convolutional patches in layer l: through exploit-346

ing weight sharing, we remove a factor of
√
Ol−1 in the lth347

term of the sum compared to a standard the result in (Bartlett,348

Foster, and Telgarsky 2017), and we remove another factor349

of
√
Ol−1/wl through exploitation of the L∞ continuity of350

max pooling and our use of L∞ covering numbers.351

A further significant improvement is in replacing the factor352

‖X‖2,2
∏l−1
i=1 ‖Ãi‖σ from the classic bound by Bl−1(X),353

which is the maximum L2 norm of a single convolutional354

patch. This implicitly removes another factor of
√
Ol−1, this355

time from the local connection structure of convolutions.356

We note that it is possible to obtain more simple bounds357

without a maximum in the definition of Tl by using the spec-358

tral norms to estimate the norms at the intermediary layers.359

Empirical spectral norms; Lipschitz augmentation360

A commonly mentioned weakness of norm-based bounds is361

the dependence on the product of spectral norms from above.362

In the case of fully connected networks, there has been a363

lot of progress last year on how to tackle this problem. In364

particular, it was shown in (Nagarajan and Kolter 2019) and365

in (Wei and Ma 2019) that the products of spectral norms can366

be replaced by empirical equivalents, at the cost of either a367

factor of the minimum preactivation in the Relu case (Nagara-368

jan and Kolter 2019), or Lipschitz constant of the derivative369

of the activation functions if one makes stronger assump-370

tions (Wei and Ma 2019). In the appendix, we adapt some371

of those techniques to our convolutional, ReLu situation and372

find that the quantity ρAl can be replaced in our case by:373

ρAl = max

(
maxi maxl̃≥l

ρ
A,xi
l1→l2

Bl2
(X) ,maxi maxl̃≥l

θ
A,xi
l1→l2

El2
(X)

)
374

where El(X) denotes the minimum preactivation (or dis-375

tance to the max/second max in max pooling) at layer l376

for over every input, ρA,xi

l1→l2 (resp. θA,xi

l1→l2) is the Lipschitz377

constant of gradient of F l1→l2 with respect to the norms378

| .|∞,l1 and | .|l2 (resp. | .|∞,l1 and | .|∞). These quantities can379

easily be calculated explicitly: if M = ∇F 0→l1 (xi)F
l1→l2380

so that locally around F 0→l1(xi), F l1→l2(x) = Mx, then381

θA,xi

l1→l2 = ‖M>‖1,∞ and ρA,xi

l1→l2 = maxM ‖M ′‖1,2 where382

M ′ runs over all sub matrices of M obtained by keeping only383

the rows corresponding to a single convolutional patch of384

layer l2.385

Note that an alternative approach is to obtain tighter386

bounds on the worst case Lipschitz constant. Theorem A.1387

in the Appendix is a variation of Theorem 3 involving the388

explicit worst case Lipschitz constants across layers instead389

of spectral norms. These quantities can then be independ-390

ently bounded, or made small via regularisation using recent391

techniques developed in, e.g., (Fazlyab et al. 2019; Latorre,392

Rolland, and Cevher 2020).393

General proof strategy394

Some key aspects of our proofs and general results rely on us-
ing the correct norms in activation spaces. On each activation
space, we use the norm | .|∞ to refer to the maximum abso-
lute value of each neuron in the layer, the norm | .|l to refer to
the the maximum l2 norm of a single convolutional patch (at
layer l) and | .|∞,l for the maximum l2 norm of a single pixel
viewed as a vector over channels. Using these norms, we
can for each pair of layers l1, l2 define the Lipschitz constant
ρl1→l2 is the Lipschitz constant of the subnetwork F l1→l2

with respect to the norms | .|∞,l1 and | .|l2 . Using those norms
we can formulate a cleaner extention of Theorem 3 where the



quantity RA can be replaced by[ L−1∑
l=1

(
Bl−1(X)‖Al −M l‖2,1 max

l̃>l

ρl→l̃
Bl̃(X)

)2/3

+

(
BL−1(X)

γ
‖AL −ML‖Fr

)2/3 ]3/2
,

where for any layer l1, Bl1(X) := maxi
∣∣F 0→ll(xi)

∣∣
l1

denotes395

the maximum l2 norm of any convolutional patch of the layer396

l1 activations, over all inputs.BL(X) = γ. Our proofs derive397

this result, and the Theorems above follow. cf. Theorem A.16.398

In the rest of this Section, we sketch the general strategy399

of the proof, focusing on the (crucial) one-layer step. At this400

point, we need to introduce notation w.r.t. the convolutional401

channels: we will collect the data matrix of the previous layer402

in the form of a tensor X ∈ Rn×U×d consisting of all the403

convolutional patch stacked together: if we fix the first index404

(sample i.d.) and the second index (patch i.d.), we obtain405

a convolutional patch of the corresponding sample. For a406

set of weights A ∈ Rd×m, the result of the convolutional407

operation is written XA where is defined by (XA)u,i,j =408 ∑d
o=1Xu,i,oAo,j for all u, i, j.409

A key step in bounding the capacity of NN’s is to bound the410

covering numbers of individual layers. Recall the definition.411

Definition 1 (Covering number). Let V ⊂ Rn and ‖ · ‖412

be a norm in Rn. The covering number w.r.t. ‖ · ‖, de-413

noted by N (V, ε, ‖ · ‖), is the minimum cardinality m414

of a collection of vectors v1, . . . ,vm ∈ Rn such that415

supv∈V minj=1,...,m ‖v−vj‖ ≤ ε. In particular, ifF ⊂ RX416

is a function class and X = (x1, x2, . . . , xn) ∈ Xn are417

data points, N (F(X), ε, (1/
√
n)‖ · ‖2) is the minimum car-418

dinality m of a collection of functions F 3 f1, . . . , fm :419

X → R such that for any f ∈ F , there exists j ≤ m420

such that
∑n
i=1(1/n)

∣∣f j(xi)− f(xi)
∣∣2 ≤ ε2 . Similarly,421

N (F(X), ε, ‖ · ‖∞) is the minimum cardinality m of a422

collection of functions F 3 f1, . . . , fm : X → R such423

that for any f ∈ F , there exists j ≤ m such that i ≤424

n,
∣∣f j(xi)− f(xi)

∣∣ ≤ ε.425

If we apply classical results on linear classifiers as is done426

in (Bartlett, Foster, and Telgarsky 2017) (where results on427

L2 covering numbers are used) by viewing a convolutional428

layer as a linear map directly, we cannot take advantage of429

weight sharing. In this work, we circumvent this difficulty430

by applying results on the L∞ covering numbers of classes431

of linear classifiers to a different problem where each "(con-432

volutional patch, sample, output channel)" combination is433

mapped into a higher dimensional space to be viewed as a434

single data point, as explained below. A further reduction in435

explicit dependence on architectural parameters is achieved436

by leveraging the L∞-continuity of margin based loss func-437

tions, ReLu activation functions, and pooling. We will make438

use of the following proposition from (Zhang 2002) (The-439

orem 4, page 537).440

6Note that our assumption that the worst case Lipschitz con-
stants are bounded removes some of the interactions between layers,
yielding a simpler final formula compared to (Wei and Ma 2019;
Nagarajan and Kolter 2019)

Proposition 4. Let n, d ∈ N, a, b > 0. Suppose we are given
n data points collected as the rows of a matrix X ∈ Rn×d,
with ‖Xi, .‖2 ≤ b,∀i = 1, . . . , n. For Ua,b(X) =

{
Xα :

‖α‖2 ≤ a, α ∈ Rd
}

, we have

logN (Ua,b(X), ε, ‖ .‖∞) ≤ 36a2b2

ε2
log2

(
8abn

ε
+ 6n+ 1

)
.

Note that this proposition is much stronger than Lemma441

3.2 in (Bartlett, Foster, and Telgarsky 2017). In the latter, the442

cover can be chosen independently of the data set, and the443

metric used in the covering is an L2 average over inputs. In444

Proposition 4, the metric used in the covering is a maximum445

over all inputs, and the data set must be chosen in advance,446

though the size of the cover only depends (logarithmically)447

on the sample size7.448

Using the above proposition on the auxiliary problem449

based on (input, convolutional patch, ouput channel) triplets,450

we can prove the following bounds for the one layer case:451

Proposition 5. Let positive reals (a, b, ε) and positive integer
m be given. Let the tensor X ∈ Rn×U×d be given with
∀i ∈ {1, 2, . . . , n},∀u ∈ {1, 2, . . . , U}, ‖Xi,u, .‖2 ≤ b.
For any choice of reference matrix M , we have

logN
(
{XA : A ∈ Rd×m, ‖A−M‖Fr ≤ a}, ε, ‖ .‖∞

)
≤ 36a2b2

ε2
log2

[(
8ab

ε
+ 7

)
mnU

]
,

where the norm ‖ .‖∞ is over the space Rn×U×m.452

Sketch of proof: By translation invariance, it is clear453

that we can suppose M = 0. We consider the problem of454

bounding the L∞ covering number of {(v>i Xj)i≤I,j≤J :455 ∑
i≤I ‖vi‖22 ≤ a2} (where Xj ∈ Rd×n for all j) with only456

logarithmic dependence on n, I, J . Here, I plays the role of457

the number of output channels, while J plays the role of the458

number of convolutional patches. We now apply the above459

Proposition 4 on the nIJ × dI matrix constructed as follows:460



X1 0 . . . 0
0 X1 . . . 0
. . . . . . . . . . . .
0 0 . . . X1

X2 0 . . . 0
0 X2 . . . . . .
. . . . . . . . . . . .
0 0 . . . X2

X3 0 . . . 0
. . . . . . . . . . . .
XJ 0 . . . 0
0 XJ . . . 0
. . . . . . . . . . . .
0 0 . . . XJ



>

,

with the corresponding vectors being constructed as461

(v1, v2, . . . , vI) ∈ RdI .462

7We note that the proof is also much more obscure, although it is
far more approachable to prove an analogous result with a squared
log term instead, by going via the shattering dimension.



If we compose the linear map on Rn×d represented by463

(v1, v2, . . . , vI)
> with k real-valued functions with L∞464

Lipschitz constant 1, the above argument yields comparable465

bounds on the ‖ .‖2 covering number of the composition, los-466

ing a factor of
√
k only (for the last layer, k = 1, and for467

convolutional layers, k is the number of neurons in the layer468

left after pooling).469

The proposition above is only enough to deal with the470

last layer, or a purely l2 version of our bounds. To prove471

Theorem 3, which involves ‖ .‖2,1 norms, it is necessary to472

show the following extension:473

Proposition 6. Let positive reals (a, b, ε) and positive integer
m be given. Let the tensor X ∈ Rn×U×d be given with
∀i ∈ {1, 2, . . . , n},∀u ∈ {1, 2, . . . , U}, ‖Xi,u, .‖2 ≤ b. For
any fixed M :

logN
(
{XA : A ∈ Rd×m, ‖A−M‖2,1 ≤ a}, ε, ‖ .‖∗

)
≤ 64a2b2

ε2
log2

[(
8ab

ε
+ 7

)
mnU

]
,

where the norm ‖ .‖∗ over the space Rn×U×m is defined by474

‖Y ‖∗ = maxi≤n maxj≤U
[∑m

k=1 Y
2
i,j,k

] 1
2 .475

Sketch of proof: We first assume fixed bounds on the L2476

norms ‖Ai, .‖2 = ai of each filter, and use Proposition 5 with477

m = 1 for each output channel with a different granularity478

εi. We then optimize over the choice of εi, and make the479

result apply to the case where only a =
∑
i ai ≥ ‖A‖2,1 is480

fixed in advance by l1 covering the set of possible choices for481

(a1, a2, . . . , am) for each a, picking a cover for each such482

choice and taking the union. We accumulate a factor of 2483

because of this approach, but to our knowledge, it is not484

possible to rescale the inputs by factors of
√
ai as was done485

in (Bartlett, Foster, and Telgarsky 2017), as the input samples486

in an L∞ covering number bound must be chosen in advance.487

We can now sketch the proof of the Theorem 7 : we use
the loss function

l(xi, yi) = max
[
λb1(‖σ(Ã1xi)‖2 − b1),

λγ
(

max
j 6=y

(A2σ(Ã1xi))j − (A2σ(Ã1xi))yi
)]
,

where for any θ > 0 the ramp loss λθ is defined by488

λθ = 1 + min(max(x,−θ), 0)/θ. This loss incorporates489

the following two failure scenarios: (1) the L2 norm of the490

hidden activations exceed a multiple of b1 (2) The activations491

behave normally but the network still outputs a wrong pre-492

diction. Since pooling is continuous w.r.t. the infty norm, the493

above results for the one layer case applied to a layer yields494

an ε cover of hidden layer w.r.t to the L∞ norm. The contri-495

butions to the error source (1) therefore follows directly from496

the first layer case. The contribution of the 1st layer cover497

error to (2) must be multiplied 1/γ and the Lipschitz constant498

of A2 with respect to the ||∞,1 and L∞ norms respectively,499

which we estimate by
√
wa∗ since the Euclidean norm of the500

deviation from the cover at the hidden layer is bounded by501 √
w times the deviation in ||∞,1 norm 8.502

8Recall this ||∞,1 norm is a supremum over the spacial locations
of the L2 norms over the channel directions.

Remarks and comparison to concurrent work503

We have addressed the main problems of weight sharing and504

dependence on the number of classes. As mentioned earlier,505

(Long and Sedghi 2020) have recently studied the former506

problem independently of us. It is interesting to provide a507

comparison of their and our main results, which we do briefly508

here and in more detail in the Appendix.509

The bound in (Long and Sedghi 2020) scales like510

C
√
W(

∑L
l=1

sl−log(γ))+log(1/δ)

n
, where sl is an upper bound on511

the spectral norm of the matrix corresponding to the lth layer,512

γ is the margin, and W is the number of parameters, tak-513

ing weight sharing into account by counting each parameter514

of convolutional filters only once. The idea of the proof is515

to bound the Lipschitz constant of the map from the set of516

weights to the set of functions represented by the network,517

and use dimension-dependent results on covering numbers of518

finite dimensional function classes. Remarkably, this doesn’t519

require chaining the layers, which results in a lack of a non520

logarithmic dependence on the product of spectral norms.521

Note that the term
∑L
l=1 sl comes from a log term via the522

inequality
∏

(1 + si) ≤ exp(
∑
si).523

On the other hand, the bound scales at least as the square524

root of the number of parameters, even if the weights are525

arbitrarily close to initialisation. In contrast, our bound (3)526

scales like O(
√

1/n) up to log terms when the weights ap-527

proach initialisation. Furthermore, if we fix an explicit upper528

bound on the relevant norms (cf.Theorem C.2) 9, the bound529

then converges to zero as the bounds on the norms go to530

zero. In a refined treatment via the NTK literature (cf. (Arora531

et al. 2019)), explicit bounds would be provided for those532

quantities via other tools. In addition, a small modification of533

the proofs can make the constant towards which the post hoc534

bounds converges at initialisation arbitrarily small at the cost535

of slightly worse log terms away from intialisation10.536

Finally, note that the main advantages and disadvantages537

of our bounds compared to (Long and Sedghi 2020) are con-538

nected through a tradeoff in the proof where one can decide539

which quantities go inside or outside the log. In particular, it540

is not possible to combine the advantages of both. We refer541

the reader to Appendix H for a more detailed explanation.542

Conclusion543

We have proved norm-based generalisation bounds for deep544

neural networks with significantly reduced dependence on545

certain parameters and architectural choices. On the issue546

of class dependency, we have completely bridged the gap547

between the states of the art in shallow methods and in deep548

learning. Furthermore, we have, simultaneously with (Long549

and Sedghi 2020), provided the first satisfactory answer to550

the weight sharing problem in the Rademacher analysis of551

neural networks. Contrary to independent work, our bounds552

are norm-based and are negligible at initialisation.553

9The bounds in (Long and Sedghi 2020) and other works deal
only with this case, leaving the post hoc case to the reader

10The post hoc step from Thm C.2 to (e.g.) Thm 3 is a dis-
crete equivalent to setting priors on the maximum norms ‖(Al −
Ml)

>‖2,1.
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