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RESEARCH Open Access

Clinical-grade whole-genome sequencing
and 3′ transcriptome analysis of colorectal
cancer patients
Agata Stodolna1, Miao He2, Mahesh Vasipalli2, Zoya Kingsbury2, Jennifer Becq2, Joanne D. Stockton1,
Mark P. Dilworth1, Jonathan James1, Toju Sillo1, Daniel Blakeway1, Stephen T. Ward3, Tariq Ismail3,
Mark T. Ross2 and Andrew D. Beggs1,4*

Abstract

Background: Clinical-grade whole-genome sequencing (cWGS) has the potential to become the standard of care
within the clinic because of its breadth of coverage and lack of bias towards certain regions of the genome.
Colorectal cancer presents a difficult treatment paradigm, with over 40% of patients presenting at diagnosis with
metastatic disease. We hypothesised that cWGS coupled with 3′ transcriptome analysis would give new insights
into colorectal cancer.

Methods: Patients underwent PCR-free whole-genome sequencing and alignment and variant calling using a
standardised pipeline to output SNVs, indels, SVs and CNAs. Additional insights into the mutational signatures and
tumour biology were gained by the use of 3′ RNA-seq.

Results: Fifty-four patients were studied in total. Driver analysis identified the Wnt pathway gene APC as the only
consistently mutated driver in colorectal cancer. Alterations in the PI3K/mTOR pathways were seen as previously
observed in CRC. Multiple private CNAs, SVs and gene fusions were unique to individual tumours. Approximately
30% of patients had a tumour mutational burden of > 10 mutations/Mb of DNA, suggesting suitability for
immunotherapy.

Conclusions: Clinical whole-genome sequencing offers a potential avenue for the identification of private genomic
variation that may confer sensitivity to targeted agents and offer patients new options for targeted therapies.
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Background
Colorectal cancer (CRC) is one of the most common
malignancies, with over 30,000 cases reported in the UK
in 2015–2016 and a 5-year survival rate of approximately
60% [1]. CRC is typically initiated by a mutation in the
Wnt signalling pathway gene APC [2] (adenomatous
polyposis coli) or associated genes (CTTNB1, RNF143,
RSPO2/3) that lead to the formation of a polyp [3] that
then progresses via mutations in a number of oncogenes
and tumour suppressors into an invasive cancer. In par-
allel with the expansion of our knowledge of the biology
of colorectal cancer, the field of targeted oncology is rap-
idly advancing, with targeted agents available [4] for a
high percentage of driver and modifier mutations across
a wide range of cancers.
The Cancer Genome Atlas (TCGA) project set out to

characterise mutations in colorectal cancer by exome se-
quencing of a cohort of 600 patients using the Agilent
SureSelect panel via tumour-normal subtraction [5]. It
confirmed recurrent mutations in APC, TP53, SMAD4,
PIK3CA and KRAS as well as identifying recurrent muta-
tions in ARID1A, SOX9 and AMER1 (FAM123B). Gian-
nakis et al. [6] carried out exome sequencing on a
clinically annotated cohort of 619 patients, finding fur-
ther recurrent mutations in BCL9L, RBM10, CTCF and
KLF5, and also showing that neoantigen load as deter-
mined by exome sequencing was associated both with
tumour associated lymphocyte infiltration and overall
survival. However, a key weakness of the TCGA and
other studies has been the use of exome sequencing to
demonstrate key oncogenic drivers. Exome sequencing,
whether by the amplicon or hybridisation approach, may
miss key oncogenic drivers due to allelic dropout or the
biases inherent to targeting approaches [7], and there-
fore, the alterations seen in the publications resulting
from these datasets may miss key insights that would be
seen in a more expansive technology such as whole-
genome sequencing.
Whole-genome sequencing has a number of potential

advantages. Firstly, it can increase the overall variant call-
ing accuracy as exome sequencing techniques can suffer
from probe dropout and poor coverage, especially at splice
junctions and in “difficult” to sequence regions where
probe drop out is common [8]. Secondly, it can natively
call fusions [9] and other structural variants [10] (by de-
tection of split reads), and finally, it can identify copy
number variants [11] to a higher accuracy than alternative
techniques. Given the recent attention to tumour muta-
tional burden (TMB) in selecting patients for anti-PD1
therapies such as pembroluzimab, whole-genome sequen-
cing can accurately call mutation burden [12].
However, until very recently, studies of colorectal can-

cer using whole-genome sequencing have been limited
in number or scope. Shanmugan et al. [13] carried out

whole-genome sequencing in order to identify thera-
peutic targets in four patients with metastatic disease,
finding several known mutations of interest as poten-
tially targetable. Ishaque et al. [14] carried out paired
metastasis-primary tumour whole-genome sequencing in
colorectal cancer, finding novel non-coding oncogenic
drivers and an elevated level of “BRCAness”. The Pan-
Cancer Analysis of Whole Genomes (PCAWG) Consor-
tium [15] presented 52 colorectal (37 colon, 15 rectal)
whole-genome sequenced tumours as part of the larger
consortium effort, although at the time of writing, no
specific examination of the landscape of these had been
carried out, presumably because of the previous TCGA
colorectal cancer paper which examined the exomes of
276 colorectal cancers [5]. Druliner et al. [16] reported
WGS results from 10 CRC arising from the polyp of ori-
gin from that cancer, a relatively rare phenomenon
where residual dysplastic adenoma can be histology seen
in the resection specimen. The study found that polyp-
of-origin cancers were genetically indistinguishable from
non-polyp of origin cancers, meaning that they could be
used as a biological model of the adenoma-carcinoma
sequence. A further paper by Druliner et al. [17] exam-
ined the whole genomes, transcriptomes and methy-
lomes of cancer-associated and cancer-free polyps from
31 patients, finding significant genomic, transcriptomic
and epigenetic differences in patients who had cancer-
associated polyps. In a further paper [18], the group
identified recurrent loss of heterozygosity in 18q that
was preferentially enriched in patients with sporadic
colorectal cancer.
The United Kingdom 100,000 Genomes Project has

set out to sequence tens of thousands of cancer genomes
[19], across multiple tumour types, using a clinical-grade
sequencing pipeline and variant calling algorithm. Our
study has carried out whole-genome sequencing of 54
paired colorectal tumour-normal samples, utilising a the
Genomics England clinical-grade sequencing, alignment,
variant calling and annotation pipeline in order to
understand the utility of WGS in colorectal cancer. We
defined clinical grade as an integrated set of procedures
standardising tissue collection, processing, sequencing
and downstream analysis as a demonstrator for future
use in the UK 100,000 Genomes Project.

Methods
Patients
Sequential patients undergoing elective colorectal sur-
gery at the Queen Elizabeth Hospital Birmingham were
recruited for the study. Patients were selected who had
sporadic colorectal cancer and did not have an
Amsterdam positive history of colorectal cancer or an
age of onset less than 45 years. Consent for the study
was taken, and the study was fully ethically approved by
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the University of Birmingham Human Biomaterials Re-
source Centre (HBRC, ethical approval ref. 15/NW/
0079).

Samples
Immediately after resection, resected specimens were
conveyed to a histopathologist who facilitated direct bi-
opsy of tumour material and associated normal bowel
(defined as the distal resection margin) by frozen sec-
tion. Samples were immediately snap-frozen on liquid
nitrogen and stored at − 80 °C until needed. Tumour
content was verified by frozen section, with at least 60%
tumour being needed for inclusion in the study. DNA
was extracted using a Qiagen DNEasy kit and RNA with
a Qiagen RNEasy kit. Nucleic acid quantity and quality
were assessed using a Qubit2 fluorimeter and TapeSta-
tion assay. A standardised operation procedure (SOP)
was used for the clinical-grade handling of this material
to ensure quality, purity and utility for whole-genome
sequencing.

Library preparation
Sequencing libraries of 500 ng DNA extracted from the
fresh-frozen tumour or normal tissue were prepared
using the TruSeq® DNA PCR-free method (Illumina). Se-
quencing (100 base-paired reads) was performed on the
HiSeq2500 platform to a mean depth of > 30× for the
normal genome and > 60× for the tumour genome, after
the removal of duplicate read-pairs.

RNA
Libraries were prepared using 50 ng of RNA using a
Lexogen QuantSeq 3′ RNA kit from tumour and
matched normal samples. Polyadenylated mRNA was
pulled down then cDNA synthesis and 3′ library prepar-
ation carried out. Samples were indexed and pooled
across an Illumina NextSeq v2 flow cell and sequenced
using a 75-base single-ended sequencing strategy.

Bioinformatics
WGS
Raw reads were converted to FASTQ using bcl2fastq,
quality trimmed then mapped to the GRCh37 (hg19) Hu-
man Reference Genome using the Isaac3 [20] aligner (Illu-
mina). Single nucleotide and indel variants were mapped
using the Strelka2 [21] variant caller (for the germline calls
using germline-only mode and for somatic calls using
joint tumour/normal mode), somatic structural variants
using the Manta [22] structural variant caller and copy
number aberrations using the Canvas [23] copy number
caller. Annotation of the variants was performed using
Illumina’s annotation engine Nirvana (https://github.com/
Illumina/Nirvana/wiki) using Ensembl 73 as database ref-
erence. Novel driver analysis was generated using

MutSigCV2 [24], Intogen [25] and dNdScv [26] with and
without hyper-mutated samples. Non-coding driver ana-
lysis was performed with FunSeq2 [27]. Mutational signa-
tures were generated using the MutationalPatterns R/
Bioconductor package [28]. All variants were stored in
VCF files. Telomere length from whole-genome sequen-
cing data was derived using TelomereCat [29].
Copy number calls were pooled across individuals with

bedtools and overlapped with bedIntersect to identify
the regions that were recurrently gained/lost. Structural
variants were pooled using bedtools and overlapped with
intersectBed to identify common regions of structural
variation.
In samples requiring mutational confirmation, Sanger

sequencing was performed (primer sequences available
on request).

RNA-seq
FASTQ files were quality trimmed, adapters were re-
moved and reads were aligned to the hg19 reference
genome using the STAR aligner [30] (version 2.6.1).
Genes were annotated using the Ensembl v74 database
and gene-centric read counts generated using Partek
Flow GSA algorithm [31]. Hierarchical clustering and
PCA plots were also generated. CMS and CRIS signa-
tures were called using the CMSCaller R package [32].
For the calculation of the CIRC score, the methodology
of Lal et al. was used [33]. For immune infiltration
scores via CIBERSORT, the methodology described by
Chen et al. was used [34]. For the signature derivation,
the BioSigner module of Bioconductor was used [35].

Data availability
All data are available in the Sequence Read Archive (ac-
cession number PRJNA681391) [36].

Results
Sequencing metrics
In total, 54 tumour-normal pairs (30/54 male, 24/54 fe-
male, median age 69 years, range 31–87 years) under-
went whole-genome sequencing, with a median read
depth of 68× for tumour samples and 38× for normal
samples. The median purity based on WGS data was
68% (range 29–100%). The median somatic SNVs were
19,700 (range 2459–1,601,093), somatic indels 4231
(range 360–464,252) and SVs 105 (range 6–681). The
median chromosome count was 46.5 chromosomes/gen-
ome (range 41–67). T median tumour mutational bur-
den was 8.04 mutations/Mb (range 0.92–577.91
mutations/Mb).

Clinical data
In the patients studied, all had primary colorectal cancer.
Two patients with rectal cancer underwent neoadjuvant
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chemoradiotherapy and one underwent neoadjuvant
short-course radiotherapy before excision of the primary
tumour. The pathological stage of the resected tumours
varied from T2N0 to T4N2. Five patients presented with
metastatic disease, and 18 patients had “high-risk” dis-
ease consisting of any of poor differentiation (4 patients),
extra-mural vascular invasion (18 patients) or threatened
circumferential resection margin (2 patients). The oper-
ation types were abdomino-perineal excision of the rec-
tum (1 patient), anterior resection of rectum (25/54), left
hemicolectomy (5/54), panproctocolectomy (1 patient),
right hemicolectomy (16/54), sigmoid colectomy (4/54)
and subtotal colectomy (2/54). The median numbers of
lymph nodes identified by histopathological examination
were 24 (IQR 18–28).
Fifteen patients underwent adjuvant therapy consisting

of capecitabine (1 patient), or capecitabine and oxalipla-
tin (14 patients). Seventeen patients had disease recur-
rence, with a median time to recurrence of 639 days
(IQR 276–2501 days). Fourteen (25.9%) patients died
whilst within the study, with a median time to death of
598 days (IQR 398–1231 days).

Germline mutations
The germline genome of all patients was studied for mu-
tations in genes associated with familial colorectal cancer
syndromes (APC, MYH, MLH1, MSH2, MSH6, PMS2,
POLE, POLD1, SMAD4 and BMPRA1). We found no
SNVs or indel germline mutations in this cohort of
patients.

Hypermutator phenotype
In total, 17/54 patients (Table 1) had greater than 10
somatic mutations per megabase, suggesting that they
may be suitable for anti-PD1 immunotherapy. Of these
patients, five had somatic mutations that have previously
been demonstrated as responsible for hypermutated tu-
mours (Table 1). One tumour had a POLD1 (p.Leu227-
Pro) mutation, with a TMB of 206.26 mutations/Mb,
and the second had a POLE1 (p.Pro286Arg) mutation,
with a TMB of 577.91 mutations/Mb. The other three

patients had variants in the mismatch repair genes
PMS1 and MSH3 (TMB 41.1, 71.1 and 45.2 muts/mb). A
further patient had a TMB of 143.31 mutations/Mb with
no obvious germline or somatic mutation causing this
phenotype.

Most frequently mutated genes and identification of new
drivers
A generic analysis of the ten most frequently mutated
genes (both SNV and indel, not normalised by transcript
length) demonstrated that these were (from most to
least recurrent): TTN, APC, MUC4, FAT2, TP53, FRG1,
KRAS, LRP2, CSMD3 and MT-ND4 (Fig. 1). Mutations
in KRAS and BRAF were validated with pre-existing
Sanger sequencing performed as standard of care.
Mutational frequency of cancer genes was compared

to known cancer drivers in (Fig. 1). The most frequently
mutated gene was APC (38/54 samples), followed by
TP53 (23/54 samples), KRAS (19/54 samples) and
FBXW7 (12/54 samples). Less frequent mutations were
seen in genes that are typically considered “druggable”
but not seen previously in colorectal cancer including
KIT, ERBB2 and ALK.
For all driver analyses, samples were analysed in

hypermutated and non-hypermutated groups. For the
hypermutated analysis, MutSigCV analysis (in order to
identify genes significantly mutated compared to back-
ground) of driver mutations demonstrated 1235 poten-
tially significant mutations (p < 0.05, q < 0.05) in the
dataset. Only APC was highlighted as significant from
the typical colorectal driver mutations (Additional file 1:
Table S1). For the non-hypermutated analysis, Mut-
SigCV analysis demonstrated 97 potentially significant
mutations, with APC, TP53, KRAS, SOX9 and FBXW7
being highlighted as significant driver genes (Additional
file 1: Table S1).
Intogen analysis (in order to identify genes under posi-

tive selection) of the hypermutated set (Additional file 2:
Table S2) revealed 80 genes as potential drivers via ei-
ther OncoDriveFM or OncoDriveClust. The top five
drivers as determined by order of significance were APC
(PoncodriveFM = 0, QoncodriveFM = 0), TP53 (PoncodriveFM = 0,
QoncodriveFM = 0), KMT2C (PoncodriveFM = 6.56 × 10–4,
QoncodriveFM = 0.042), KRAS (PoncodriveFM = 3.11E−15,
QoncodriveFM = 03.35E−12) and HLA-A (PoncodriveFM =
5.43E−10, QoncodriveFM = 4.88E-07). In the non-
hypermutated set, 333 genes were flagged as potential
drivers with the top 5 being APC (PoncodriveFM = 0, Qonco-

driveFM = 0), TP53 (PoncodriveFM = 0, QoncodriveFM = 0),
KRAS (PoncodriveFM = 4.44E−16, QoncodriveFM = 03.93E
−13), SOX9 (PoncodriveFM = 7.16E−14,QoncodriveFM = 4.75E
−11) and FBXW7 (PoncodriveFM = 1.38E−13, QoncodriveFM =
7.33E−11).

Table 1 Hypermutated samples with TMB > 10 and potential
somatic variants known to be associated with hypermutation

Sample TMB (Muts/mb) Potential somatic variants

A03 206.25 POLD1 (p.Leu227Pro)

A09 85.47 PMS1 (p.Ser118Ter)

A10 95.41 MSH3 (p.Val393Ala)

A12 143.31 None detected

B05 221.68 MSH3 (p.Lys383ArgfsTer32)
MLH3 (p.Lys383ArgfsTer32)
POLE (p.Arg759Cys)

B08 577.91 POLE (p.Pro286Arg)
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Fig. 1 (See legend on next page.)
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dNdScv analysis (in order to identify genes under posi-
tive selection) of the hypermutated set (Additional file 3:
Table S3) demonstrated 10 genes with p < 0.05 and Q <
0.1, the top-ranked one of which was FRG1, followed by
KRAS, TP53, APC, DYNC1I2, FBXW7, AC093323.1,
PIK3CA, IGSF3 and PTEN. For the non-hypermutated
set 5 genes had p < 0.05 and Q < 0.1, the top-ranked one
being FRG1 followed by KRAS, APC, TP53 and SOX9
(Additional file 3: Table S3).

Recurrent non-coding mutations
An analysis of non-coding drivers using FunSeq2 [37]
revealed multiple regions with statistically significant in-
creased mutation rates as compared to background
(Additional file 4: Table S4). In the hypermutated set,
the top-ranked region (Chr2:133021792-133036207) was
identified as having recurrent mutations and is predicted
in silico to bind the BRCA1, CHD2, IRF3, MAFK, MXI1,
NFKB1, RFX5 and SMC3 transcription factors. The long
non-coding RNA ENSG00000232274.1 (chr1:143,189,
434-143,211,070) was also recurrently mutated. In the
non-hypermutated sample set, the AP-1 transcription
factor complex member JUND was recurrently mutated
in 46/47 samples in non-coding regions. An enhancer
region adjacent to TEKT4P2 a pseudogene of the Tektin
pathway (involved in PI3K/AKT signalling) was also fre-
quently mutated in 27/54 samples. A second enhancer
region adjacent to CDH10 (Cadherin 10, chr5:24276200-
24285200, implicated in colorectal cancer) was identified
as recurrently mutated in 15/54 samples. In total, over
700 non-coding regions (either of transcription factor
binding sites, enhancers or promoters) were recurrently
mutated in the FunSeq2 dataset. FunSeq2 analysis also
ranked APC as the top-ranked coding driver mutation in
27/54 samples.
An overlapping analysis of potential drivers using

Venny from all four algorithms only demonstrated APC
as being a potential driver in the dataset across all four
sets of calls (Fig. 2). When the MutSigCV calls were re-
moved, 12 genes were enriched (KRAS, TP53, FBXW7,
PIK3CA, NPEPPS, CTNND1, FLII, MGA, SETPB1,

BCL9, MSH3 and ANXA6). When the Intogen calls only
were removed, 4 genes were enriched (ZNF517, CROCC,
TPO and FSHR). When dNdScV was removed, RIPK4
only was enriched and when FunSeq2 calls only were re-
moved there were no significant genes.
A pathway analysis of these pooled drivers across the

four algorithms using G Profiler [38] revealed enrich-
ment in a number of transcription factor associated
enriched pathways, KEGG pathways and GO terms
(Additional file 5: Table S5).

Copy number aberrations
A pooled analysis of copy number variation across the
cohort was performed (Fig. 3). A consistent low-level
pattern of both copy number gain and loss was observed.
When filtered by exonic regions across all samples, 6/
354 losses and 2/30 gains were observed to be exonic.
Gains were seen in all samples in the FOXI2 (chr10:
129534543-129537433) and REX1BD genes (chr19:
18654566-18746304). FOXI2 is a forkhead binding gene
associated with transcriptional activation which has been
seen to be consistently hypomethylated in colorectal
cancer [39] and REX1BD (required for excision 1 bind-
ing domain) is a putative DNA repair gene [40].
Losses were seen for all samples in MYO1C (chr17:

1385365-1386295), CBARP (chr19:1230748-1231737),
PIMREG (chr17:6358505-6359232), NFATC1 (chr18:
77159859-77161091), UCN3 (chr10:5415602-5416345)
and AMH (chr19:2247518-2248270). MYO1C controls
nuclear membrane tension [41] has been previously re-
ported as recurrently deleted in gastric cancer [42] and
is thought to have a role in PIK3 signalling [43]. NFAT
C1 is a gene of the nuclear factor of activated T cells
(NFAT) class, which have been shown to play a key role
in the progression of solid tumours [44].

Structural variants
Structural variants were filtered on the basis that the
most functionally relevant ones were likely to be those
involving known cancer driver genes. In total, 29 poten-
tial oncogenic gene fusions, detected by WGS, were seen

(See figure on previous page.)
Fig. 1 Integrated plot of the characteristics of the whole-genome sequencing dataset of colorectal cancer. a Variant classification by type (y-axis),
frequency of variant (x-axis). b Variant type (y-axis). SNP, single nucleotide polymorphism; INS, insertion; DEL, deletion; frequency (x-axis). c Single
nucleotide variant (SNV) class plot—y-axis demonstrates nucleotide changes; the x-axis demonstrates the proportions of variants in the cohort;
numbers on the end of bars demonstrate the total numbers of each variant. d Bar chart showing variants per sample—variants (y-axis); samples
on the x-axis. e Variant classification summary showing the range of variants per sample (y-axis); the x-axis shows missense (green), nonsense
(red), frameshift deletion (blue), splice site (yellow), frameshift insertion (purple), in-frame deletion (brown), in-frame insertion (dark red), non-stop
mutation (light blue) and transcription start site mutation (orange). f Top ten mutated genes by frequency—genes on the y-axis, numbers of
mutations on the x-axis; colours are the same as in e. g Oncoprint of colorectal driver genes (left y-axis) by sample (x-axis) with the variant type
shown in the key. Percentages across the whole cohort are seen in percentages down the right y-axis. h TCGA style log [10] variants per sample
plot (y-axis) with TCGA cohorts (x-axis); Bham, Birmingham cohort (fifth from left). I Mutational type plot: top left panel—% mutation changes in
the cohort; top right panel—% transition vs. transversion mutations across the cohort; bottom panel—bar chart showing the proportion of
mutations with the percentage on the y-axis and the type of mutations shown by different coloured bars
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in 16 samples (Table 2). Of the 29 potential gene fu-
sions, no recurrent gene fusions were seen. However, fu-
sions involving IDH1-PTH2R, CDK6-CDK14, KAT6B-
RBMS3, ERBB2-HAP1, CCDC6-TMEM212AS1 and
BRAF-DLG1 were seen. Sanger sequencing across the
breakpoint of the BRAF-DLG1 and ERBB2-HAP1 fu-
sions were performed in order to confirm these clinically
relevant findings.

Mutational signatures
The top three most frequent mutational signatures (V3
SBS signatures [45]) (Fig. 4) as determined at the cohort
level using the somatic SNVs of all samples were signa-
ture 1 (53/54 samples), signature 5 (53/54 samples) and
signature 40 (27/54 samples). Signature 1 is the “ageing”
signature and is associated with the consequences of
normal tissue ageing, mainly spontaneous cytosine de-
amination. Signature 5 is associated with tobacco smok-
ing and signature 40 is also associated with ageing.
Other signatures seen were signature 44 (defective DNA
mismatch repair), 17a (pre-treatment with fluorouracil),
17b (pre-treatment with fluorouracil), 13 (APOBEC), 20
(concurrent POLD1 and MMR deficiency), 4 (direct
damage by tobacco smoke), 7c (UV radiation), 9 (IGHV
hypermutation), 18 (Reactive oxygen species) and 41

(unknown). Signatures 57, 46 and 47 were also seen
which are known to be due to sequencing artefact.

Kataegis
The phenomenon of kataegis (localised somatic hyper-
mutation) has been previously demonstrated in breast
cancer [46]. In our study, we found that it occurred in
all 54 samples significantly to one extent or another
(Additional file 1: Table S1). Kataegis occurred particu-
larly frequently at a per-sample level between chr20:
31050000-31080000 (Additional file 1: Figure S1) which
corresponds to the region of NOL4L/C20orf112 (chr20:
31,030,862-31,071,385) a known fusion partner of
RUNX1 and PAX5 in leukaemia [47].

Telomere length
Because of the well-observed phenomenon of shorter
telomere length in cancer, we studied the lengths of
telomeres as measured by whole-genome sequencing,
which have previously been shown to correlate well
to older methods such as Southern blotting [29]. Me-
dian telomere length in cancer was 5028 bp, and in
normal germline, blood was 6294 bp (Mann-Whitney
p < 0.0001).

Fig. 2 Overlapping genes from each significant variant caller (Intogen, MutSigCV, dnDScv and FunSeq2) shown as numbers of genes mutated
(percentage in brackets)
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RNA-seq
Differential expression profiles
In order to understand if there were any de novo tran-
scriptional subgroups within the dataset, a cut-off of the
top 250 genes by variance was extracted from the data-
set. When comparing tumour/normal expression and
using clustering analysis, the number of groups found to
have the lowest Davis-Bouldin index (5 clusters, 1.17)
was used to set a threshold for K-means clustering
(Fig. 5). Hierarchical clustering of 5 separate groups’ re-
vealed separation between the five groups and KEGG
pathway analysis of each subgroup was performed (Add-
itional file 6: Table S6). In three of the clusters, there
were either only one or two samples found. There was
no distinction between these clusters in terms of ana-
tomical location, stage or tumour mutational burden.
For subgroup one, an over-representation of pathways

concerning inflammation and DNA repair was seen. For
subgroups 2 and 3, no significant pathway over-
representation was seen, possibly because these groups

only had one sample within them. For subgroup 4, mul-
tiple separate inflammatory pathways (mostly IL-17, Th1
and Th2 centric) were over-represented. Subgroup 5 had
a number of interesting over-represented pathways, in-
cluding reduced MHC presentation, Wnt/BMP signal-
ling, TGFbeta signalling (via upregulated SMAD) and
upregulated Hedgehog signalling.

Pathway analysis
Single sample gene expression differences do not explain
much of the context of disease processes, so we carried
out a pathway gene expression analysis using the KEGG
pathways of over-expressed genes to normal counts
across the whole dataset. From this, we found a number
of pathways of interest that were differentially expressed
in colorectal cancer: the p53 signalling pathway
(hsa41105, p = 2.24 × 10–53, FDRp = 1.06 × 10–51), NF-
kappa-B signalling pathway (hsa040605, p = 1.75 × 10–
47, FDRp = 4.95 × 10–46) and the “colorectal cancer”

Fig. 3 Genome-wide copy plot of all samples across cohort (green, gain; red, loss); h[[eight of the bar is proportional to the number of samples
with copy number variation
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pathway (hsa03030, p = 2.06 × 10–41, FDRp = 5.41 × 10–
41) were all over-expressed in this cohort of patients.
A number of other pathways of interest (but not of

direct relevance to colorectal cancer) were over-
expressed, including platinum drug resistance
(hsa01524), the cytosolic DNA-sensing pathway (a.k.a.
cGAS-STING, hsa04623) and several involved with
DNA repair (FA pathway hsa03460, DNA replication
hsa03030, NER, hsa03420).

CMS/CRIS
Two classifiers for transcriptional subtypes in colorectal
cancer have been identified (the consensus molecular
subtype (CMS) and the CRC intrinsic subtypes (CRIS)
subtype [48, 49]), which reflect the disease biology of the
tumour and have been linked with prognosis. These

subtypes are derived from pre-existing molecular data by
various computational methods to discover transcrip-
tionally distinct groups within colorectal cancer. CMS
and CRIS classifiers were generated for all tumours
(Fig. 6). Of the 54 sequenced tumours, the CMS classi-
fier grouped the samples as follows: CMS1 = 16/54,
CMS2 = 11/54, CMS3 = 10/54, CMS4 = 14/54 and NA =
3/54. For the CRIS classifier, there were CRIS-A = 11/54,
CRIS-B = 8/54, CRIS-C = 14/54, CRIS-D = 10/54, CRIS-
E = 6/54 and NA = 5/54.

CIRC
We have previously demonstrated the utility of the Co-
ordinate Immune Response Cluster (CIRC) [33] as a
Th1-centric RNA based signature in predicting class I
and II MHC immunovisibility (beyond TMB) in order to

Table 2 List of potentially oncogenic structural variants in the cohort (DEL deletion, BND breakend translocation, INV inversion, DUP
duplication)

Gene Consequence Chromosome Position Ref Alt

GNAM11 GNA11 i > HNRNPM i > chr19 3109401 Intron DEL

NRG1 NRG1 i > L3HYPDH i > chr8 32154965 Intron BND

SMAD4 MRO i < SMAD4 i < chr18 51065790 Intron INV

PTPRK MAN1A1 i > PTPRK i > chr6 128452884 Intron DUP

IDH1 VRK2 i < IDH1 i < chr2 208257287 Intron INV

IDH1 IDH1 e < PTH2R i < chr2 208242100 Exon INV

CDK6 CDK14 i > CDK6 e > chr7 92612231 Exon INV

CDK6 CDK14 i > CDK6 e > chr7 92612048 Exon INV

SRGAP3 LMCD1-AS1 i < SRGAP3 i < chr3 9168820 Intron DEL

NGR1 LDAH i > NGR1 i > chr8 32654703 Intron BND

NRG1 LDAH i < NGR1 i < chr8 32654498 Intron BND

KAT6B RBMS3 i > KAT6B e > chr10 75031261 Exon BND

FAM46C MAN1A2 i > FAM46C i > chr1 117619648 Intron DEL

SMAD4 CTIF i < SMAD4 i < chr18 51062229 Intron DUP

RARA RARA i < TTC25 i < chr17 40354212 Intron DUP

NRG1 NRG1 i < UNC5D I < chr8 32192673 Intron DUP

CDK12 FBX047 i < CDK12 i < chr17 39521585 Intron INV

CDK12 PLXDC1 i > CDK12 i > chr17 39465725 Intron INV

ERBB2 ERBB2 e > HAP1 e > chr17 39727989 Exon INV

ZNF521 MCHR2-AS1 i < ZNF521 i < chr18 25327550 Intron BND

PPP6C SCAI i < PPP6C i < chr9 125174,977 Intron DEL

EML4 EML4 i > MTA3 i > chr2 42,284332 Intron DEL

BRD4 BRD4 i < AKAP8 e < chr19 15332325 Intron DEL

KMT2C KMT2C i <TPTEP1 i < chr7 1522434118 Intron BND

CCDC6 TMEM212-AS1 i < CCDC6 e < chr10 59788825 Exon BND

CCDC6 TMEM212-AS1 i > CCDC6 e > chr10 59906506 Exon BND

BRAF DLG1 i > BRAF e > chr7 140794385 Exon BND

GPHN GPHN i > FAM71D i > chr14 66721301 Intron DEL

ELL RFX2 i < ELL i < chr19 18478021 Intron DEL
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target with immunomodulatory drugs. The average of
expression Z-score for the 28 genes in the CIRC was cal-
culated for each tumour sample, with the lowest CIRC
score being − 0.56 and the maximum 3.17. In total, 12/
54 samples had CIRC > 0 suggesting immunovisibility.

Cell deconvolution using RNA-seq
Immune infiltration estimation using cell type deconvo-
lution by CIBERSORT [34] (Table 3) was performed on
3′ RNA-seq data. This demonstrated a rich and varied
immune infiltration within the colorectal cancers stud-
ied. The predominant cell type was CD4+ memory (rest-
ing) T cell, followed by M2 macrophages, CD8+ T cells,
M0 macrophages then activated mast cells. There did
not seem to be any correlation with purity estimates of
the samples as determined by WGS.

RNA signature for hypermutation
In order to see whether a RNA-based signature for
hypermutation could be developed from RNA-seq data,
gene-centric gene expression was processed using

BioSigner (Bioconductor) using a threshold of > 20 mu-
tations/Mb in the WGS data (in order to develop a clear
signature as > 50% of hypermutant samples were near to
the classical 10 mutations/Mb cut-off). Using 250 itera-
tions of the algorithm, we attempted to generate random
forest (RF), partial least squares discriminant analysis
(PLSDA) and support vector machine (SVM) models of
gene expression for hypermutant samples. We found
that no stable model could be generated; however, this
could be a consequence of the relatively few numbers of
hypermutant samples.

Correlation between drug mutations database and
druggable mutations
In order to ascertain the possibility of actionable targets
from the mutations observed in the dataset, we entered
a list of protein-coding mutations found in at least one
sample to the Drug Interaction Database (http://www.
dgidb.org). Potential drug targets were observed for the
genes—APC, TP53, KRAS, FBXW7, ATM, PIK3CA,
ARID1A, KMT2A, PTEN, SMARCA4, IDH1 and RRM2B

Fig. 4 Most frequent single base substitution mutational signatures shown in hierarchical cluster plot (samples with identical signature
combinations were collapsed); single-based substitution signatures on the x-axis, samples on the y-axis. Colour heat map correlates to the
strength of association with SBS signature (red = strong, blue = weak)
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(Additional file 7: Table S7). Also, 17/54 (32%) of pa-
tients exceeded the 10 mutations/Mb threshold for the
potential benefit for treatment with PD-1/PD-L1
therapy.
Utilising the OpenTarget platform (http://www.

opentargets.org), which takes lists of mutations and
functionally characterises them into drug targets, the 50
top genes from each tool for driver ranking (MutSigCV2,
Intogen, dNdScv, Funseq2) were aggregated and input
into the system (due to a limit of 200); after duplicate fil-
tering, this left 123 genes of interest. OpenTargets dem-
onstrated significant enrichment for GI and epithelial
tract cancers of all subtypes (Additional file 7: Table S7).
Also, significantly enriched pathways were seen in clas-
sical cancer pathways but also Interferon signalling,
phagocytosis and class I MHC signalling. Of the identi-
fied druggable genes, for small molecule agents, 8/123
had clinical precedence, 50/123 discovery precedence,
and 49/123 were predicted to be tractable. Amongst
antibody-based agents, 3/123 had clinical precedence,

68/123 had high tractable confidence and 83/123 had
mid-low tractable confidence.

Conclusions
The use of clinical-grade whole-genome sequencing in
this study has allowed us to identify known and novel
driver mutations that are potentially druggable based on
the current state of knowledge. Our study demonstrated
the known driver mutations seen in colorectal cancer
such as APC, KRAS, BRAF and PIK3CA [5], but also
more novel mutations that would potentially be target-
able by molecular agents. For instance, we detected KIT
mutations that would potentially be targeted by the tyro-
sine kinase inhibitor imatinib [50], offering a therapeutic
option not available to these patients.
We also identified and validated several interesting po-

tential driver mutations by frequency within our cohort.
Recurrent mutations were seen in KMT2C, which codes
for lysine methyltransferase-2C. These mutations have
typically been seen in leukaemia and other blood

Fig. 5 Hierarchical clustering plot of 100 most variably expressed genes in RNA-seq data, demonstrating five separate clusters. Red = over-
expressed, green = under-expressed within cohort by Z-score

Stodolna et al. Genome Medicine           (2021) 13:33 Page 11 of 15

http://www.opentargets.org
http://www.opentargets.org


malignancies but other more recent studies have demon-
strated that these mutations occur amongst a wide var-
iety of other cancers [51] and are targetable by inhibitors
of KMT2C function. Mutations were also seen in ATM
(targetable with ATM kinase inhibitors [52]), IDH1 (tar-
getable with the small molecular inhibitor of IDH1, Ivo-
sidenib [53]) and SMARCA4 (targetable with CDK4/6
inhibitors) [54]. We attempted to identify new driver
mutations as well as validate existing drivers using vali-
dated calling algorithms; however, only APC was consist-
ently enriched across all four callers in our study, once
again emphasising the predominant Wnt signalling
driven nature of colorectal cancer. The recurrent nature

of HLA-A mutations (which were not validated by
Sanger sequencing) in our cohort is interesting, as it is
seen infrequently across all cancers [55] and could po-
tentially represent a mechanism of immune invasion in a
subset of cancers.
We identified many significantly mutated non-coding

regions, such as enhancers, transcription factor binding
sites and promoters which may play a significant role in
the pathogenesis of colorectal cancer. These regions
have been relatively unexplored up to this point and
may represent a hitherto unexplored area of colorectal
cancer biology.
Recurrent alterations in genome structure, in the form

of structural variants, copy number aberrations or gene
fusions have also been highlighted as a potential target
for therapy. For instance, the FGFR2/3 fusion seen in ap-
proximately 40% of cholangiocarcinoma is a target for
the drug pemagatinib [56]. Our study has shown several
recurrent copy number variations or structural variations
but also a number of unique “private” variations that
may be targetable. For instance, we observed potential
fusions between BRAF and DLG1 (which may be target-
able by BRAF kinase inhibition [57]) and between
ERBB2 and HAP1 (which may be targetable by lapatinib
[58]). It is conceivable, however, that our structural vari-
ants observed may be as a result of radiotherapy-
induced damage as a subset of these patients underwent
neoadjuvant radiotherapy. However, the patients in
which these fusions were seen did not undergo neoadju-
vant chemoradiotherapy.
Tumour immunotherapy, using a combination of anti-

PD1 and/or anti-CTLA4 therapy has been shown to
have a survival benefit across multiple tumour types
[59], especially when stratified to patients with high
tumour mutational burden (TMB). TMB correlates dir-
ectly with neoepitope production and thus immunovisi-
bility of the tumour. A threshold of 10 mutations per
megabase of sequence has been suggested as a cut-off
threshold sufficient for the benefit for immunotherapy
[60]. Our study has shown that up to 30% of patients
with colorectal cancer reach this threshold, which is
higher (16%) than previously reported [5] with 10% of

Table 3 CIBERSORT classification of immune cells

Cell type Score

T cells CD4 memory resting 24.2

Macrophages M2 11.9

T cells CD8 11.3

Macrophages M0 10.6

Mast cells activated 8.3

B cells memory 7.6

NK cells activated 7.5

B cells naive 5.5

Dendritic cells activated 4.7

Plasma cells 4.2

T cells follicular helper 4.1

Neutrophils 2.9

Macrophages M1 2.7

NK cells resting 1.2

T cells CD4 naive 1.2

T cells regulatory (Tregs) 0.8

Monocytes 0.8

Dendritic cells resting 0.8

T cells CD4 memory activated 0.4

Mast cells resting 0.3

Eosinophils 0.09

T cells gamma delta 0

Fig. 6 Graph of CMS calls (left) and CRIS calls (right) for the dataset
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the patients having “classical” mismatch repair deficiency
or proofreading polymerase mutations. This may be be-
cause whole-genome sequencing provides a more com-
prehensive detection of mutations compared to other
strategies, and also because of variations in how TMB is
calculated. Chalabi et al. [61] recently demonstrated ex-
cellent responses in a subset pMMR colorectal cancer,
although there was no difference in TMB as calculated.
We have carried out a variety of analyses of the RNA

data derived from our samples. Surprisingly, the pathway
analysis demonstrated findings of potential clinical util-
ity, for instance, the presence of KEGG pathway
hsa01524 (Platinum resistance). Oxaliplatin is commonly
given in adjuvant chemotherapeutic treatment in colo-
rectal cancer and resistance remains a problem [62], es-
pecially on the background of toxicity that leads to
peripheral neuropathy. Interestingly, we have shown that
the most frequent transcriptomic subtype within our
dataset is CMS4, which is associated [48] with a worse
prognosis (also seen in our dataset) and a more aggres-
sive phenotype mainly due to the presence of fibroblasts
which act as “malignant stroma”. The low numbers of
accurate classification of our samples may represent a
weakness of 3′ RNA-seq (although we have previously
used this technique without issue) or inherent weak-
nesses in the CMS classifier when a low tumour content
heterogenous tumour sample undergoes sequencing
[63]. We have also demonstrated by cell deconvolution a
rich and varied immune infiltration with the predomin-
ant cell types being CD4+ memory and CD8+ cells;
however, M2 macrophages are seen in most tumours.
M2 macrophages are known as “repair” macrophages
that decrease inflammation and promote tissue repair
[64]. If this is indeed the case, it highlights an intriguing
future path of research in colorectal cancer. The CIRC
classifier, which we have previously used to highlight
immunovisibility [33] in cancer, demonstrates that a
proportion of samples have immunovisibility beyond
those expected by high TMB.
In an era of personalised medicine, we have attempted

to utilise current drug databases (DGIDb [65] and Open-
Target [66]) in order to identify targets for personalised
medicine therapy. All patients had mutations within
their tumour that were potentially “druggable” allowing
their recruitment into a current or planned clinical trial.
This is an exciting finding, as it gives a potential route of
treatment for patients with metastatic disease; however,
the majority of these trials are phase 1 in nature and
thus are not conclusively demonstrated to be active in
colorectal cancer, or indeed in the targeted genomic al-
teration outside of pre-clinical models.
In conclusion, we have demonstrated the utility of

standardised clinical-grade WGS at detecting both new
biological insights into colorectal cancer and targets for

therapy. WGS has the advantage of breadth and depth
of coverage but comes at the cost of expense; this is
likely to drop significantly as technologies improve. A
particular disadvantage in the clinical setting is the need
for access to fresh-frozen tumour material in order to
perform whole-genome sequencing to the highest qual-
ity. Current experiences of FFPE WGS have demon-
strated poor quality in comparison with fresh-frozen
deriver material [67], and so, this tissue type remains in-
accessible to routine WGS. The use of 3′ RNA-seq al-
lows a cost-effective way to further enrich the data
returned by these assays and may be useful for future
studies, and has the additional advantage of having
equivalent performance [68, 69] between FFPE and fresh
frozen materials. The UK government has recently
recommissioned Genomics England to sequence five
million genomes over the next decade, and we suggest
based on our results that whole-genome sequencing
should be considered standard of care for colorectal can-
cer. We additionally suggest that RNA sequencing
should be utilised as the standard of care due to the add-
itional insights it gives into tumour biology.
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