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Abstract 15 

DNA methylation is a transgenerational stable epigenetic modification able to regulate gene 16 

expression and genome stability. The analysis of DNA methylation by genome-wide bisulfite 17 

sequencing become the main genomic approach to study epigenetics in many organisms; leading to 18 

standardisation of the alignment and methylation call procedures. However, subsequent steps of the 19 

computational analysis should be tailored to the biological questions and the organisms used. Since 20 

most bioinformatics tools designed for epigenetic studies are built using mammalian models, they are 21 

potentially unsuitable for organisms with substantially different epigenetic regulation, such as plants. 22 

Therefore, in this chapter we propose a computational workflow for the analysis, visualisation and 23 

interpretation of data obtained from alignment of whole genome bisulfite sequencing of plant 24 

samples.  Using almost exclusively the R working environment we will examine in depth how to tackle 25 

some plant-related issues during epigenetic analysis. 26 

 27 

Keywords: Plant Epigenetics, Differentially Methylated Regions, cytosine methylation 28 

  29 



Introduction 30 

DNA methylation is an inheritable epigenetic mark found in many eukaryotic organisms, consisting 31 

of the addition of a methyl group to the carbon-5 position of the cytosines ring. Although this 32 

molecular mark leaves the DNA sequence unaltered, it influences many biological processes, 33 

including transposable elements (TEs) silencing, gene expression and genome stability amongst 34 

others [1].  35 

DNA methylation can be studied by treating the DNA with sodium bisulfite, a chemical that 36 

deaminates unmethylated cytosines into uracile, while methylated cytosines are protected during 37 

the reaction. Consequently, in downstream sequencing reactions methylated cytosines remain 38 

unchanged and unmethylated cytosines are converted to thymines allowing  definition of the DNA 39 

epigenetic profile at a single base resolution [2]. The use of next generation sequencing associated 40 

with bisulfite treatment allowed the development of Bisulfite sequencing (BS-Seq) or Whole 41 

Genome Bisulfite Sequencing (WGBS) protocols; which can be used for mapping the epigenetic 42 

profile of an entire genome [3, 4]. These methods are routinely applied to many organisms and are 43 

considered the gold standard for epigenetic studies.  44 

The analysis of the data produced by these strategies can be divided in two parts. The first part 45 

includes well-established protocols of alignment to a reference genome, followed by calling 46 

methylation levels at each cytosine position by comparing the number of covering reads supporting 47 

the presence of methylation (read as cytosines) and the absence of methylation (read as thymine) 48 

[5–7].  49 

The second part of the analysis is more variable and mostly dependent on the experimental design 50 

and the studied model. For example, while in mammals DNA methylation occurs almost uniquely at 51 

cytosines in CG context (cytosine followed by a guanine), in plants all cytosines can be methylated 52 

and at least three contexts are described, namely CG, CHG and CHH (where H represents any 53 

nucleotide except guanine) [4]. Although methylation in CG and non-CG contexts appear to be at 54 

least partially functionally linked [8], the methylation in each context  depends on the affinity of 55 

specific methyltransferases,  which can be directly linked to an epigenetic pathway [9]. 56 

Consequently, for epigenetic analysis involving plants, it is normal to inspect the three contexts 57 

independently.  58 

Furthermore, there are at least two main issues with analysing methylation data at single cytosine 59 

levels. Firstly, independent of genome-wide sequencing depth, there are always cytosines for which 60 

the read coverage is too low and this can prevent accurate detection of changes in methylation 61 

levels [10, 11]. Secondly, methylation data needs to be interpreted in relation to functional features 62 

(e.g. TEs, enhancers, genes, promoters), which contain stretches of cytosines that consistently 63 

change their methylation level. In most cases, a change in methylation state of a single cytosine is 64 

not sufficient to trigger a biological effect. Due to these issues, the interpretation of DNA 65 

methylation data is challenging when individual cytosines are considered. However, taking into 66 

account that cytosine methylation levels display high spatial correlation (at least in CG and CHG 67 

contexts) [10, 12], one possibility is to consider methylation of neighbouring cytosines together, thus 68 

reducing the noise generated by the independent use of single positions.  This solution is 69 

implemented in most DNA methylation analysis workflows, and it is a common procedure to merge 70 

DNA methylation information in regions of annotated features. 71 



Here, we describe a protocol for the analysis of WGBS data applied to the study of plants DNA 72 

methylation profiles. All steps are associated to examples implemented using the popular R 73 

programming language [13], in order to facilitate users to adapt the scripts to their own analysis. 74 

 75 

Materials 76 

Cytosine methylation report 77 

The protocol described here assumes that a genome-wide cytosine report file (CX_report) has been 78 

generated for each sample considered for the analysis. CX_report is the most complete output of 79 

Bismark [6], a popular tool used for genome-wide alignment and methylation call of DNA reads 80 

obtained by high-throughput sequencing of bisulfite converted DNA libraries (see Note 1).  81 

The CX_report is generated as tab-delimited text file containing information for each cytosine in the 82 

genome, with the following format: 83 

<chromosome> <position> <orientation> <count methylated> <count unmethylated> <context> <trinucleotide 84 
context> 85 

Here is an example: 86 

3 417 + 13 3 CG CGT 87 
3 418 - 6 0 CG CGC 88 
3 421 - 2 5 CHH CAA 89 
3 427 - 6 1 CHH CAA 90 
3 428 - 2 5 CHH CCA 91 
3 429 + 1 19 CHH CCT 92 
3 430 + 11 9 CHG CTG 93 
3 432 - 5 4 CHG CAG 94 
3 433 + 15 3 CG CGT 95 
3 434 - 9 2 CG CGC 96 
 97 

It is important to note that the protocol requires this seven-column text file and not a file specifically 98 

generated by Bismark. This means that other tools can be used to perform the methylation call, such 99 

as BS-Seeker [14, 15] or BSMAP [7], as long as the output of those tools is then converted to a text 100 

file with the seven columns described above.  101 

DMRcaller 102 

The R package ‘DMRcaller’ is designed to analyse DNA methylation data starting with the Bismark 103 

CX_report files or any other tab-delimited file formatted accordingly [10]. DMRcaller implements 104 

three different methods for identification of Differentially Methylated Regions (DMRs) in two 105 

samples or in two groups of biological replicates. In addition to its main task, DMRcaller also 106 

integrates a series of additional functions designed to facilitate analysis of WGBS experiments, 107 

including plotting functions.  108 

Tools to export DMRs from R 109 

Internally, DMRcaller stores the DMRs as GRanges objects [16]. There are several Bioconductor 110 

packages that can export GRanges to bed files. The most popular is ‘rtracklayer’ [17] which is 111 

designed for importing and exporting annotated data in various formats compatible with the main 112 

genome browsers. Alternatively, `genomation` package can also be used to export the DMRs to bed 113 

or bedGraph files that can be then loaded in genome browsers [18].  114 



IGV 115 

The Integrative Genomics Viewer (IGV) [19] is a tool design for the visualization and interactive 116 

exploration of large genomics datasets. 117 

Workflow 118 

Loading files 119 

The DMRcaller function readBismark can be used to import CX_reports files directly in R, or any 120 

other cytosine methylation reports formatted accordingly to the Bismark output. DMRcaller imports 121 

CX_reports files and stores them as GRanges objects [16] with the following metadata columns: 122 

- context – the context of the cytosine (CG, CHG or CHH). 123 

- readM – the number of methylated reads (corresponding to the ‘count methylated’ field in 124 

the CX_report file). 125 

- readN – the total number of reads (the sum of ‘count methylated’ and ‘count unmethylated’ 126 

fields in the CX_report file). 127 

- trinucleotide context - the specific context of the cytosine (as the corresponding field 128 

reported in the CX_report file). 129 

Calculate conversion rate 130 

One important step in any epigenetic analysis that includes bisulfite conversion is the estimation of 131 

cytosine conversion rate. In theory, all unmethylated cytosines should be converted to uraciles but 132 

many variables can influence the efficiency of the bisulfite reaction, resulting in the retention of 133 

unmethylated cytosines. Unconverted unmethylated cytosines, if not taken into account, are 134 

wrongly considered methylated in downstream analysis, which can lead to data misinterpretation. 135 

Methods to estimate bisulfite conversion efficiency are based on known unmethylated DNA regions, 136 

which are either naturally present in the sample or derived from synthetic DNA artificially 137 

incorporated before the bisulfite treatment. In many plants, chloroplast DNA has been found to 138 

display low or absent methylation [20, 21], and therefore represents a practical target to check 139 

bisulfite conversion efficiency. Chloroplast DNAs have been successfully used to estimate conversion 140 

rate in several plants, including Arabidopsis [3] , rice [22], tomato [23], soybean [24], eggplant[25], 141 

and many others. 142 

Load the cytosine report: 143 
CX_report <- DMRcaller::readBismark(“CXreport.txt”) 144 
 145 

Extract the chloroplast methylation data: 146 
PtDNA <- CX_report[seqnames(CX_report) == "KU682719"] 147 
 148 

Calculate conversion: 149 
conversion <- 1 - (sum(mcols(PtDNA)$readsM) / sum(mcols(PtDNA)$readsN))} 150 
 151 

Correction for conversion rate 152 

Once that the conversion rate is estimated, methylation levels can be adjusted by taking into 153 

account unconverted cytosines. Here we apply a method that decreases the number of reported 154 

methylated cytosine positions accordingly to the estimated conversion rate [4, 26].  155 

The number of methylated reads is decreased at each cytosine position with the following function:  156 



𝑚∗ =   ⌊max(0, 𝑚 − 𝑛(1 − 𝑐))⌋ 157 
 158 
m* = adjusted number of methylated reads per cytosine position. 159 
m = original number of methylated reads per cytosine position.  160 

n = total number of reads per cytosine position. 161 
c = the conversion rate. 162 
 163 
In R this can be implemented as: 164 
  165 
CX_report_adjusted <- CX_report 166 
CX_report_adjusted$readsM <- round(CX_report$readsM - CX_report$readsN * (1-167 
conversion)) 168 
CX_report_adjusted$readsM[CX_report_adjusted$readsM < 0 ] <- 0 169 
 170 
Using this correction at each cytosine position, the total coverage should be decreased according to the 171 
conversion rate, which prevents overestimated coverage. This can be done with the simple function: 172 

𝑛∗ =  ⌊𝑛𝑐⌋ 173 
 174 
n* = adjusted number of total reads per cytosine position 175 
n = original number of reads per cytosine position 176 
c = estimated conversion rate 177 
 178 
In R is implemented as: 179 
 180 
CX_report_adjusted$readsN <- round(CX_report$readsN * conversion) 181 
 182 

Then, a new CX report can be generated using DMRcaller: 183 
 184 
DMRcaller::SaveBismark(CX_report_adjusted,”CX_report_adjusted.txt”)) 185 
 186 

Generate bedGraph for genome browser visualization 187 

It is sometimes useful to visualise epigenetic data in a genome browser (e.g., IGV), which allows a 188 

visual interactive comparison of different samples in multiple tracks at any genomic location. The 189 

direct visualization of DNA methylation at specific genes can help to identify genomic areas under 190 

epigenetic regulation without running genome-wide unsupervised analysis (Figure 1). The cytosine 191 

report needs to be converted into a compatible file format as it cannot be directly loaded into a 192 

genome browser. It is important at this step to separate into different tracks the methylation of the 193 

different cytosine contexts (CG, CHG and CHH),  194 

First, the CX_report should be loaded in R: 195 

CX_report <- DMRcaller::readBismark(“CXreport.txt”) 196 
 197 

Then, methylation in a specific context is selected (e.g., CG) 198 

selection <- CX_report[which(CX_report$context==“CG”)] 199 
 200 

Optionally, cytosines with low coverage (e.g., less than 4 reads) might be excluded from the track to 201 

reduce the noise.  202 

selection <- selection[selection$readsN >= 4] 203 
 204 



The proportion of methylated reads for the selected cytosines can be calculated: 205 

selection$score <- selection$readsM / selection$readsN 206 
 207 

Finally, a bedgraph file can be generated using rtracklayer. Considering that bedgraph files are often 208 

very large, it may be useful to generate a bigwig file instead, which is compressed and can be loaded 209 

on IGV in a shorter time. 210 

rtracklayer::export.bedGraph(selection, "CG_track.bedGraph") 211 
rtracklayer::export.bw(selection, "CG_track.bw") 212 
 213 

For example, Figure 1 shows how the direct comparison of DNA methylation profiles obtained from 214 

Arabidopsis thaliana and eggplant (Solanum melongena) can be useful to identify the most probable 215 

position of the DNA region controlling the IBM1 gene splicing in eggplant using the A. thaliana 216 

functional annotation [27].  217 

Computing the methylation frequency 218 

In plants, at each cytosine context the methylation is maintained with a different degree of 219 

efficiency that depends on the specific epigenetic pathway involved [4]. Therefore, it is often 220 

informative to plot the distribution of methylation levels. This is usually done in intervals of 10%, 221 

using ten bins to cover methylation values from 0% to 100%. 222 

It is important to consider that cytosines with low read depth are not informative in computing 223 

methylation frequency. Therefore, the data should be filtered to include only cytosines with a read 224 

depth that is higher than the number of bin used (e.g. if ten bins are used, only positions covered 225 

with more than 10 reads should be selected for this analysis). 226 

CX_report <- DMRcaller::readBismark("CXreport.txt") 227 
CX_report_cov <- CX_report[which(CX_report$readsN > 10)] 228 
 229 

To exemplify this, we will show an example of how to calculate the proportion of methylated 230 

cytosines at each bin in all three cytosine contexts: 231 

- Methylation percentage frequency for CG methylation 232 

CX_report_CG <- CX_report_cov[CX_report_cov$context=="CG"] 233 
CG_freq <- hist(100* CX_report_CG$readsM / CX_report_CG$readsN, 234 
breaks=seq(0,100,by=10), plot=FALSE) 235 
 236 
- Methylation percentage frequency for CHG methylation 237 

CX_report_CHG <- CX_report_cov[CX_report_cov$context=="CHG"] 238 
CHG_freq <- hist(100* CX_report_CHG$readsM / CX_report_CHG$readsN, 239 
breaks=seq(0,100,by=10), plot=FALSE) 240 
 241 
- Methylation percentage frequency for CHH methylation 242 

CX_report_CHH <- CX_report_cov[CX_report_cov$context=="CHH"] 243 
CHH_freq <- hist(100* CX_report_CHH$readsM / CX_report_CHH$readsN, 244 
breaks=seq(0,100,by=10), plot=FALSE) 245 
 246 

Then, the methylation frequencies can be visualized using standard R plot function (Figure 2): 247 

cbbPalette <- c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", 248 
"#D55E00", "#CC79A7") 249 



bar_counts <- rbind(100*CG_freq$counts/sum(CG_freq$counts),  250 
                    100*CHG_freq$counts/sum(CHG_freq$counts), 251 
                    100*CHH_freq$counts/sum(CHH_freq$counts)) 252 
rownames(bar_counts) <- c("CG", "CHG", "CHH") 253 
colnames(bar_counts) <- paste0(CG_freq$breaks[1:(length(CG_freq$breaks)-1)], "-",  254 
                               CG_freq$breaks[2:length(CG_freq$breaks)]) 255 
barplot(bar_counts, xlab="% of methylation", beside = TRUE, 256 
     ylab=paste0("% of Cs"), las=1, ylim=c(0,100), col=cbbPalette[c(7,6,4)]) 257 
legend("topright", rownames(bar_counts), fill=cbbPalette[c(7,6,4)], bty="n") 258 
 259 

Figure 2 shows that majority of CHH sites display low or lack of methylation (< 10%), while, for CG 260 

sites , there is a large proportion of sites (approximately 40%) that display high level of methylation 261 

(>80%). Finally, majority of CHG sites are unmethylated but there is a small proportion of sites 262 

displaying intermediary and high level of methylation.   263 
 264 

Coverage calculation and spatial correlation 265 

The next step of the analysis consists of performing some preliminary analysis that will inform the 266 

selection of the DMR calling method. First, one needs to evaluate the coverage or the read depth of 267 

the libraries. To exemplify these steps, we can use a dataset from A. thaliana Col-0 2 weeks seedling 268 

in WT plants (GSM2384978) and met1-1 plants (GSM2384979) [26] (see Note 2). 269 

Once the files are downloaded, they can be loaded in R with DMRCaller as follow: 270 

 271 
wt <- DMRcaller::readBismark("GSM2384978_wt_processed.txt.gz") 272 
met1 <- DMRcaller::readBismark("GSM2384979_met1-1_processed.txt.gz") 273 
 274 

Then, the proportion of cytosines with coverage above a customisable set of thresholds (in this 275 

example 1, 5, 10 and 15) can be computed and plotted (Figure 3) for each cystosine context using 276 

the following function: 277 
 278 
DMRcaller::plotMethylationDataCoverage(wt, met1, breaks = c(1,5,10,15), 279 
conditionsNames=c("WT","met1-1"), context = c("CG", “CHG”, “CHH”), labels=LETTERS) 280 
 281 
This step allows to evaluate the sequencing depth and setup strategies for the downstream analysis. 282 

In particular, for this dataset, we found that approximately 30-40% of the cytosines have at least 5-283 

10 reads (Figure 3), which means that calling differentially methylated cytosines might have missed 284 

some true sites. Increasing the sequencing depth can partially solve this problem, but even highly 285 

sequenced libraries will not lead to all cytosines having at least 10 reads (see Note 3). There are 286 

several ways to computationally address this issue, and most of them assume merging several 287 

cytosines and pooling together the reads in those regions. We will discuss several options in the 288 

following sections below. 289 

Calculate DNA methylation in features. 290 

One popular approach is to determine if different genetic features display differential methylation. 291 

This approach consists of selecting an annotation file and pooling all methylated reads and 292 

unmethylated reads in each of the genomics features. DMRcaller supports this functionality by 293 

providing the filterDMRs function.  294 

If DMRcaller package is installed, the bisulfite sequencing data and the annotation file can be loaded 295 

with: 296 

data(methylationDataList) 297 
data(GEs) 298 



 299 

Note that the methylationDataList is a list object contains a subset of methylation data from [26]. 300 

Similar objects can be generated by using the list function and the imported CX_report files. In this 301 

example:  302 

 303 
CX_WT <- DMRcaller::readBismark(“CXreport_WT.txt”) 304 
CX_met1 <- DMRcaller::readBismark(“CXreport_met1-3.txt”) 305 
methylationDataList <- list("WT" = CX_WT, "met1-3" = CX_met1) 306 
 307 

The GEs is a GRanges object representing TAIR10 annotation of Arabidopsis thaliana genome, 308 

obtained by using the import function from rtracklayer: 309 
 310 
GEs <- rtracklayer::import( 311 
"https://www.arabidopsis.org/download_files/Genes/TAIR10_genome_release/TAIR10_gff3312 
/TAIR10_GFF3_genes_transposons.gff") 313 
 314 

Then, gene features can be filtered from the annotation object using the following command: 315 

genes <- GEs[which(GEs$type == "gene")] 316 
 317 
If we do not want to analyse the entire genome, a GRanges object should be created to select only 318 

the area of interest (in this example, 100 Kb DNA fragment of chromosome 3):   319 

chr_local <- GRanges(seqnames = Rle("Chr3"), ranges = IRanges(5E5,6E5)) 320 
 321 
Finally, the filterDMRs function can be used to identify gene with statistical methylation differences 322 

between the two conditions: 323 
 324 
DMRsGenesCG <- DMRcaller::filterDMRs(methylationDataList[["WT"]],  325 

      methylationDataList[["met1-3"]], 326 
                          potentialDMRs = genes[overlapsAny(genes, chr_local)], 327 
                          context = "CG", test = "score",pValueThreshold = 0.01, 328 
                          minCytosinesCount = 4,minProportionDifference = 0.4, 329 
                          minReadsPerCytosine = 3,cores = 1) 330 
 331 

This can be very useful in identifying genes which are differentially methylated between two 332 

conditions. However, often changes in methylation can influence the expression of a gene even if 333 

they only partially overlap (or do not overlap at all) its transcribed sequence. Moreover, in plant 334 

most coding genes are not equally methylated along their sequence [4]. A methylation change 335 

between two conditions could be strongly underestimated if a single methylation value is estimated 336 

by averaging all cytosines in the gene coding sequence. In other words, the arbitrary definition of 337 

regions to test a difference in methylation does not necessarily correspond to the genomic area 338 

where the change in methylation occurred. 339 

To visualize this issue with an example, we can plot the locus of the Arabidopsis gene AT3G02490 on 340 

chromosome 3 using the DMRcaller function plotLocalMethylationProfile.   341 

We should select a 20 Kb location on the chromosome 3: 342 
 343 
chr3Reg <- GRanges(seqnames = Rle("Chr3"), ranges = IRanges(510000,530000)) 344 
 345 

and then create a list with all genes differentially methylated identified in our previous analysis: 346 
 347 
DMRsCGList <- list("genes" = DMRsGenesCG) 348 



 349 
 350 
We can now use the function to generate the plot: 351 
par(cex=0.9) 352 
par(mar=c(4, 4, 3, 1)+0.1) 353 
DMRcaller::plotLocalMethylationProfile(methylationDataList[["WT"]], 354 
                            methylationDataList[["met1-3"]], 355 
                            chr3Reg,DMRsCGList, 356 
                            conditionsNames = c("WT", "met1-3"), 357 
                            GEs,windowSize = 300,main="CG methylation") 358 
 359 

In the plot (Figure 4), we can notice that only a small part of the gene displays methylation in wild 360 

type that is not present in met1-3 mutant. Nevertheless, this difference is not enough to be 361 

statistically significant if the sequence of the entire gene is used to run the analysis. 362 

In this case, it would be more appropriate to investigate differentially methylated regions (DMRs), 363 

independently from gene annotation. When a list of DMRs will be generated (as explained in the 364 

next section), one could check if genes (or other features) overlap with any DMRs. For example, one 365 

could do this by using the following commands (assuming that DMRs are listed in a GRanges object 366 

called DMRs) 367 

DMGenes <- genes[overlapsAny(genes, DMRs)] 368 
 369 

Call Differentially Methylated Regions (DMRs) 370 

Call of DMRs is now an essential part of any WGBS analysis. In this analysis, genomic regions are 371 

determined and selected by the presence of differences in methylation between two samples. This 372 

approach avoids assumptions related to the use of predetermined features where methylation is 373 

expected to change (e.g. genes, promoters) and it is therefore preferred for unsupervised analysis.  374 

In DMRCaller, the same function computeDMRs can be used to call DMRs with one of the three 375 

methods implemented (see Note 4); it is sufficient to specify the method of choice with the method 376 

parameter (possible choices are among noise_filter, bins and neighbouring, a full description of how 377 

these methods are implemented is provided in [10]). 378 

 379 

An example of how to compute the DMRs in CG context with noise_filter method is: 380 
DMRsNoiseFilterCG <- DMRcaller::computeDMRs(methylationDataList[["WT"]],  381 
                      methylationDataList[["met1-3"]],  382 
                      context = "CG", method = "noise_filter",  383 
                      windowSize = 100, pValueThreshold = 0.01,  384 
                      minCytosinesCount = 4, minProportionDifference = 0.4,  385 
                      minGap = 200, minReadsPerCytosine = 4,  386 
                      cores = 1) 387 
 388 
Similarly, the DMRs in CHH context can be computed using bins method as follows: 389 
DMRsBinsCHH <- DMRcaller::computeDMRs(methylationDataList[["WT"]],  390 
               methylationDataList[["met1-3"]],  391 
               context = "CHH", method = "bins", binSize = 100,  392 
               pValueThreshold = 0.01, minCytosinesCount = 4,  393 
               minProportionDifference = 0.1, minGap = 200,  394 
               minReadsPerCytosine = 4, cores = 1) 395 
 396 



The additional arguments of the function can be changes to adapt the analysis to the data structure. 397 

Here are following useful considerations for some of these parameters. 398 

- binSize/windowSize (default = 100) can be changed depending by the desired output. 399 

Higher values will produce longer DMRs including more cytosines, while lower values are 400 

more efficient in detection of small DMRs. A previous study investigated how different value 401 

for this argument affect the DMR call [10]. 402 

- regions argument can be used to limit the DMR call to only a part of the genome. For 403 

example one can run a pilot analysis for parameter optimisation limiting the computational 404 

time only on one chromosome or a part of it.  405 

- minProportionDifference controls the minimal differences between the methylation 406 

values in the two conditions which are considered significant. This threshold can be used to 407 

avoid calling DMRs with small changes of DNA methylation, under the assumption that small 408 

methylation changes between two conditions (even if statistically significant) are not 409 

biological relevant (see Note 5).  410 

- minGap can be used to control how distant two DMRs should be merged together. This 411 

parameter affects the number of DMRs generated, but if set to 0 it will force the generation 412 

of not overlapping DMRs of identical length (equal to the binSize) when used in 413 

conjunction with bins method (see Note 6).  414 

- minCytosinesCount controls the minimum number of cytosine in a DMR. Setting this as 415 

threshold will avoid calling significant differences in DMRs that are constituted by only one 416 

or few isolated cytosines (and therefore not properly defined as “regions”) (see Note 7).   417 

- minReadsPerCytosine is a threshold used to discard from the analysis DMRs with an 418 

average number of reads lower than this value. Higher values of this parameter ensure 419 

reliable results, but they also exclude proportional larger genomic area from the analysis, 420 

which is less covered. 421 

- cores is the number of CPUs/cores used for the computation. More cores will lead to faster 422 

computations.  423 

In many cases, it is possible to have access to datasets including biological replicates. One possible 424 

approach is to merge different biological replicates, but DMRcaller also allows treating the replicates 425 

independently (see Note 8).  426 

First, the CX_reports files from each condition are loaded in R: 427 

CX_CTR_rep1 <- DMRcaller::readBismark(“CX_CTR_rep1.txt”) 428 
CX_CTR_rep2 <- DMRcaller::readBismark(“CX_CTR_rep2.txt”) 429 
CX_TEST_rep1 <- DMRcaller::readBismark(“CX_TEST_rep1.txt”) 430 
CX_TEST_rep2 <- DMRcaller::readBismark(“CX_TEST_rep2.txt”) 431 
 432 

Then, the joinReplicates function is used iteratively to combine all data in the same object. 433 

CX_all_data <- DMRcaller::joinReplicates(CX_CTR_rep1, CX_CTR_rep2) 434 
CX_all_data <- DMRcaller::joinReplicates(CX_all_data, CX_TEST_rep1) 435 
CX_all_data <- DMRcaller::joinReplicates(CX_all_data, CX_TEST_rep2) 436 
 437 
 438 
A vector of labels should be generated to identify the samples: 439 

condition_labels <- c("CTR", "CTR", "TEST", "TEST") 440 
 441 



At this point, it is possible to call DMRs (in this example in CG context), using the beta regression 442 

test: 443 

DMRs_CG <- DMRcaller::computeDMRsReplicates(CX_all_data, condition = 444 
condition_labels, context = "CG", method = "bins") 445 
 446 
Once the list of DMRs has been generated, it can be exported from R as txt file, or as annotation 447 

(bed or gff) file, by using rtracklayer. 448 

write.table(as.data.frame(DMRs_CG),file="DMRs_CG.txt",sep="\t", quote=F) 449 
rtracklayer::export(DMRs_CG, "DMRs_CG.gff3") 450 
 451 

Call Differentially Methylated Cytosines (DMCs) 452 

Although summarising DNA methylation information per features and call DMRs are a common 453 

procedure performed in WGBS analysis, in some conditions, the call of DMCs can also be informative 454 

(see Note 9).  455 

With DMRcaller, DMCs can be simply calculated using the computeDMRs function and the 456 

neighbouring method, selecting a minGap value of zero. In this way single cytosines will be tested to 457 

be differentially methylated but not merged together to generate regions, and an output is provided 458 

as a list of single differentially methylated cytosines. The following is an example of how to run this 459 

analysis in R:  460 

 461 
DMCs <- DMRcaller::computeDMRs(methylationDataList[["WT"]], 462 
                    methylationDataList[["met1-3"]], 463 
                    regions = chr_local, context = "CG", 464 
                    method = "neighbourhood", test = "score", 465 
                    pValueThreshold = 0.01, minCytosinesCount = 1, 466 
                    minProportionDifference = 0.4,minGap = 0, 467 
                    minSize = 1, minReadsPerCytosine = 4) 468 
 469 
In this case, 1.5% of the CG sites at Chr3R:500,000-600,000 are detected to display differential 470 

methylation between WT and met1-3 mutant. This method leads to correct identification of a small 471 

region inside AT3G02490 gene with a change in methylation, which could be missed when 472 

computing DMRs using a too large window size or the entire gene as feature (Figure 4). 473 

 474 

Plot DMRs on chromosomes 475 

Finally, when analysing mutants that lead to global changes in methylation or different conditions 476 

that could lead to significant global changes, one can compute and plot the low-resolution profiles 477 

on each chromosome using wide bins (e.g., 200 Kb). For example, if we perform this analysis, we 478 

could see that in Arabidopsis thaliana the highest methylation levels are located at pericentromeric 479 

regions and, in met1-1 mutant, CG methylation is significantly lost globally although not completely 480 

depleted (Figure 5). This is what we would expect since MET1 is the main methyltransferase involved 481 

in CG methylation maintenance and met1-1 mutation leads to partial loss of function [26].  482 

To plot DMRs on chromosome 1, we first select this chromosome as range of the Arabidopsis 483 

genome: 484 
 485 
chr1 <- GRanges(seqnames = "1", ranges = IRanges(1,30427671)) 486 
 487 



Then, the following code computes the average methylation in 200 Kb bins along chromosome 1 for 488 

both wild type and met1-1 samples: 489 

 490 
chr1_wt <- DMRcaller::computeMethylationProfile(wt, chr1,windowSize = 200000, 491 
context = "CG") 492 
 493 
chr1_met11 <- DMRcaller::computeMethylationProfile(met11, chr1,windowSize = 200000, 494 
context = "CG") 495 
 496 
Finally, the following code can be used to plot the averaged methylation data along the chromosome 497 

and to generate figure 5: 498 
 499 
 500 
plot((start(chr1_wt) + end(chr1_wt))/2, 100*chr1_wt$Proportion, type="l", lty=1,  501 
     lwd=2, col=cbbPalette[1], main="CG methylation on Chr 1", xlab="", xaxt="n",  502 
     ylab="methylation percentage", ylim=c(0,100)) 503 
lines((start(chr1_met11) + end(chr1_met11))/2, 100*chr1_met11$Proportion, lty=1,  504 
      lwd=2, col=cbbPalette[6]) 505 
legend("topright", c("WT", "met1-1"), col=cbbPalette[c(1,6)], bty="n", lty=1, 506 
lwd=2) 507 
 508 

 509 

Notes 510 

1. CX_report files are generated in Bismark by running the bismark_methylation_extractor 511 

command and specifying the --cytosine_report and --CX options. For a detailed 512 

description of the use of Bismark please refer to the user manual [6]. 513 

2. The corrected CX_report files can be directly downloaded from 514 
ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM2384nnn/GSM2384978/suppl/GSM238515 
4978_wt_processed.txt.gz and from 516 
ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM2384nnn/GSM2384979/suppl/GSM238517 
4979_met1-1_processed.txt.gz 518 

3. One might ask why we need more reads covering each cytosine. There are two answers 519 

to this: firstly, we need more reads to perform reliable statistical test to detect 520 

differential methylation and secondly ,the more reads we have the more robust we can 521 

call the actual methylation level when this has intermediary values (e.g., we need at 522 

least 4 reads to call a cytosine being methylated in 75% of the cases). 523 

4. There are different methods to call DMRs and it appears that the method used should be 524 

selected depending on the methylation context, coverage and tissues used to generate 525 

the data. The DMRcaller tool implements three methods to call DMRs and the 526 

performances of each of them has been previously discussed [10]. 527 

5. If a binary methylation change is expected (i.e. regions pass from being highly 528 

methylated to a complete unmethylated status) as often happens for methylation in CG 529 

context in plants, a higher value of this parameter helps to reduce noise generated by 530 

random changes. By contrary, limited variations in methylation (more common for CHH 531 

context) require a lower value of this parameter to allow detection of small changes. 532 

6. This setting applied to the minGap parameter can be useful in case of multiple sample 533 

comparisons, due to the fact that the number of DMRs found in each comparison is 534 

directly informative of the portion of genome with methylation difference. Therefore, if 535 

minGap is set to 0, the DMR lists would not be required to be normalised by their length 536 

when compared across samples. 537 

ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM2384nnn/GSM2384978/suppl/GSM2384978_wt_processed.txt.gz
ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM2384nnn/GSM2384978/suppl/GSM2384978_wt_processed.txt.gz
ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM2384nnn/GSM2384979/suppl/GSM2384979_met1-1_processed.txt.gz
ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM2384nnn/GSM2384979/suppl/GSM2384979_met1-1_processed.txt.gz


7. Although a high value of this argument ensures robustness of the identified methylation 538 

difference (because more positions contribute to calculate the methylation value of each 539 

region), it should be increased with caution because it could generate artefacts. For 540 

example, for small bin sizes and less frequent contexts (CG and CHG), a high value of this 541 

parameter can bias the DMRs call toward genome area with high CG content. 542 

8. Biological replicates can be used to distinguish between true differences in methylation 543 

levels and noise. We observed that, for large difference in methylation levels, the use of 544 

biological replicates does not improve significantly the results [10]. Nevertheless, for 545 

small differences in methylation (lower than 20%), biological replicates are critical to 546 

distinguish between the noise affecting the data and true differences between biological 547 

samples.  548 

9. For example, the methylation at single cytosine positions has proved informative to 549 

study the cytosine context specificity of plant methyltransferases [4, 8, 28], or to 550 

estimate epigenetic mutation rate in Arabidopsis [29].  551 

Acknowledgment 552 

We thank Ms. Jessica Scivier (University of Birmingham, UK) for critical reading and proofreading of 553 

the chapter draft.  554 



References 555 

1.  Zhang H, Lang Z, Zhu J-K (2018) Dynamics and function of DNA methylation in plants. Nat Rev 556 
Mol Cell Biol 19:489. https://doi.org/10.1038/s41580-018-0016-z 557 

2.  Frommer M, McDonald LE, Millar DS, et al (1992) A genomic sequencing protocol that yields a 558 
positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci 559 
89:1827–1831. https://doi.org/10.1073/pnas.89.5.1827 560 

3.  Cokus SJ, Feng S, Zhang X, et al (2008) Shotgun bisulphite sequencing of the Arabidopsis 561 
genome reveals DNA methylation patterning. Nature 452:215–219. 562 
https://doi.org/10.1038/nature06745 563 

4.  Lister R, O’Malley RC, Tonti-Filippini J, et al (2008) Highly Integrated Single-Base Resolution 564 
Maps of the Epigenome in Arabidopsis. Cell 133:523–536. 565 
https://doi.org/10.1016/j.cell.2008.03.029 566 

5.  Chen P-Y, Cokus SJ, Pellegrini M (2010) BS Seeker: precise mapping for bisulfite sequencing. 567 
BMC Bioinformatics 11:203. https://doi.org/10.1186/1471-2105-11-203 568 

6.  Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq 569 
applications. Bioinformatics 27:1571–1572. https://doi.org/10.1093/bioinformatics/btr167 570 

7.  Xi Y, Li W (2009) BSMAP: whole genome bisulfite sequence MAPping program. BMC 571 
Bioinformatics 10:232. https://doi.org/10.1186/1471-2105-10-232 572 

8.  Zabet NR, Catoni M, Prischi F, Paszkowski J (2017) Cytosine methylation at CpCpG sites triggers 573 
accumulation of non-CpG methylation in gene bodies. Nucleic Acids Res 45:3777–3784. 574 
https://doi.org/10.1093/nar/gkw1330 575 

9.  Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns 576 
in plants and animals. Nat Rev Genet 11:204–220. https://doi.org/10.1038/nrg2719 577 

10.  Catoni M, Tsang JM, Greco AP, Zabet NR (2018) DMRcaller: a versatile R/Bioconductor package 578 
for detection and visualization of differentially methylated regions in CpG and non-CpG 579 
contexts. Nucleic Acids Res 46:e114. https://doi.org/10.1093/nar/gky602 580 

11.  Lister R, Pelizzola M, Dowen RH, et al (2009) Human DNA methylomes at base resolution show 581 
widespread epigenomic differences. Nature 462:315–322. 582 
https://doi.org/10.1038/nature08514 583 

12.  Eckhardt F, Lewin J, Cortese R, et al (2006) DNA methylation profiling of human chromosomes 584 
6, 20 and 22. Nat Genet 38:1378–1385. https://doi.org/10.1038/ng1909 585 

13.  R Core Team (2019) R: A language and environment for statistical computing. R Foundation for 586 
Statistical Computing. https://www.R-project.org/ 587 

14.  Guo W, Fiziev P, Yan W, et al (2013) BS-Seeker2: a versatile aligning pipeline for bisulfite 588 
sequencing data. BMC Genomics 14:774. https://doi.org/10.1186/1471-2164-14-774 589 

15.  Huang KYY, Huang Y-J, Chen P-Y (2018) BS-Seeker3: ultrafast pipeline for bisulfite sequencing. 590 
BMC Bioinformatics 19:111. https://doi.org/10.1186/s12859-018-2120-7 591 



16.  Lawrence M, Huber W, Pagès H, et al (2013) Software for Computing and Annotating Genomic 592 
Ranges. PLOS Comput Biol 9:e1003118. https://doi.org/10.1371/journal.pcbi.1003118 593 

17.  Lawrence M, Gentleman R, Carey V (2009) rtracklayer: an R package for interfacing with 594 
genome browsers. Bioinformatics 25:1841–1842. 595 
https://doi.org/10.1093/bioinformatics/btp328 596 

18.  Akalin A, Franke V, Vlahoviček K, et al (2015) genomation: a toolkit to summarize, annotate and 597 
visualize genomic intervals. Bioinformatics 31:1127–1129. 598 
https://doi.org/10.1093/bioinformatics/btu775 599 

19.  Robinson JT, Thorvaldsdóttir H, Winckler W, et al (2011) Integrative genomics viewer. Nat 600 
Biotechnol 29:24–26. https://doi.org/10.1038/nbt.1754 601 

20.  Feng S, Cokus SJ, Zhang X, et al (2010) Conservation and divergence of methylation patterning 602 
in plants and animals. Proc Natl Acad Sci 107:8689–8694. 603 
https://doi.org/10.1073/pnas.1002720107 604 
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Figure captions 630 

Fig. 1  631 

Example of visualisation of epigenetic profiles with IGV. Methylation in the three main cytosine 632 

contexts is displayed for WGBS analysis of two replicates of wild type A. thaliana seedlings [26] and 633 

Solanum melongena  leaf tissue [25], plotted at the IBM1 gene locus (respectively AT3G07610 and 634 

SMEL_008g308130). The Arabidopsis IBM1 gene contains a regulatory DNA sequence under 635 

epigenetic regulation (marked with a red rectangle) which must be methylated to allow proper 636 

splicing of the large IBM1 intron [27]. By comparison of the IBM1 loci in the two plants, a DNA region 637 

with similar methylation profile is evident in S. melongena (marked with a blue rectangle), 638 

suggesting that IBM1 has similar epigenetic regulation in the two species. 639 

Fig. 2  640 
Distribution of the percentage of cytosine methylation in each sequence context in wild type 641 
Arabidopsis thaliana seedling (GSM2384978). The y axis indicates the frequency observed for the 642 
methylated cytosines that display the percentage of methylation indicated on the x axis. Fractions 643 
were calculated within bins of 10%, as indicated on the x axis. 644 
 645 
Fig. 3 646 
Methylation coverage calculated at the proportion of cytosine positions in the genome having at 647 
least a read depth of 1, 5, 10 and 15 reads respectively (indicated in the x axes). The data are taken 648 
from Arabidopsis thaliana wild type and met1-1 mutant [26], and are displayed separately for the 649 
three main cytosine contexts. 650 
 651 
Fig. 4 652 
Local methylation profile plotted with DMRcaller, displaying the methylation at a Differentially 653 
Methylated Gene (DMG) located at chromosome 3.  Each point on the graph represent methylation 654 
proportion of individual cytosines, in Arabidopsis thaliana wild type (red) or met1 mutant (blue). The 655 
intensity of the dot colours is proportional to the read coverage of that particular cytosine (darker 656 
colours indicate higher coverage). The solid lines represent the smoothed profiles, and the intensity 657 
of the line colour is proportional to the coverage in the smoothed region. The list of annotated 658 
features used for the analysis (in this case gene exons) is displayed in the lower part of the graph as 659 
black boxes, separated in forward (+) or reverse (-) orientation. The differentially methylated region 660 
inside the gene sequence is represented by a yellow box on top of the graph. 661 
 662 
Fig.5 663 
Low resolution methylation profile along chromosome 1 of Arabidopsis thaliana wild type and met1-664 
1 mutant [26], obtained by merging cytosine methylation in CG context in windows of 200 kb size. 665 
Highest methylation levels are located at centromeres and pericentromeric regions. 666 
 667 
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