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Abstract: Reflex increases in breathing in response to acute hypoxia are dependent on activation
of the carotid body (CB)—A specialised peripheral chemoreceptor. Central to CB O2-sensing is
their unique mitochondria but the link between mitochondrial inhibition and cellular stimulation is
unresolved. The objective of this study was to evaluate if ex vivo intact CB nerve activity and in vivo
whole body ventilatory responses to hypoxia were modified by alterations in succinate metabolism
and mitochondrial ROS (mitoROS) generation in the rat. Application of diethyl succinate (DESucc)
caused concentration-dependent increases in chemoafferent frequency measuring approximately
10–30% of that induced by severe hypoxia. Inhibition of mitochondrial succinate metabolism by
dimethyl malonate (DMM) evoked basal excitation and attenuated the rise in chemoafferent activity
in hypoxia. However, approximately 50% of the response to hypoxia was preserved. MitoTEMPO
(MitoT) and 10-(6′-plastoquinonyl) decyltriphenylphosphonium (SKQ1) (mitochondrial antioxidants)
decreased chemoafferent activity in hypoxia by approximately 20–50%. In awake animals, MitoT
and SKQ1 attenuated the rise in respiratory frequency during hypoxia, and SKQ1 also significantly
blunted the overall hypoxic ventilatory response (HVR) by approximately 20%. Thus, whilst the data
support a role for succinate and mitoROS in CB and whole body O2-sensing in the rat, they are not
the sole mediators. Treatment of the CB with mitochondrial selective antioxidants may offer a new
approach for treating CB-related cardiovascular–respiratory disorders.

Keywords: carotid body; hypoxia; succinate; mitochondrial reactive oxygen species; succinate
dehydrogenase; hypoxic ventilatory response

1. Introduction

The ability for humans to sense and respond to a fall in blood oxygen
(hypoxia/hypoxaemia) has never been so apparent as in the current COVID-19 pandemic,
in which millions of people have experienced this life-threatening stressor [1]. When chal-
lenged by hypoxia, the carotid body (CB) is the major peripheral chemoreceptor that detects
this stimulus within seconds [2,3]. In contrast to almost all other cell types, the CB type I
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cell has an extraordinarily high sensitivity to O2, with its activity increasing exponentially
from mild levels of hypoxia [4]. Upon stimulation, the CB activates numerous critical
protective reflexes including hyperventilation, tachycardia, systemic vasoconstriction, and
adrenaline release [5,6]. These reflexes are essential to preserve enough O2 delivery to the
brain and vital organs, helping to support survival.

What remains controversial is the precise mechanism by which the CB senses hypoxia,
with many different mechanisms being proposed [7]. One of the most longstanding hy-
potheses is that during hypoxia, CB mitochondrial electron transport is inhibited [8,9].
Importantly, the CBs express unique mitochondria which have a much lower O2 affinity
in contrast with other cell types [8–11]. Functional experiments have shown that mito-
chondrial inhibition in CB type I cells starts to occur as the PO2 falls below a threshold
of between 40–60 mmHg, i.e., considerably above the normal value of less than 5 mmHg
observed in other cells [9]. As such, CB mitochondrial inhibition, activation of the chemo-
transduction cascade, and initiation of protective reflexes can be achieved in response to
relatively small falls in blood PO2 from normoxic values and before the metabolism or
function of other cells starts to be impaired [11].

A key consideration is the link between mitochondrial inhibition and activation of
the downstream chemotransduction cascade [11,12]. Suggested mechanisms include a
rise in [lactate]i [13], a fall in [MgATP]i [14,15], and/or stimulation of AMP-activated
protein kinase (AMPK) [16]. A recent hypothesis is that during hypoxia, an elevation
in mitochondrial reactive oxygen species (mitoROS) generation at complex I is sufficient
to cause membrane K+ channel closure and chemostimulation [17,18]. Mice lacking the
complex I ndufs2 gene do not display an increase in respiratory frequency when subjected to
hypoxia [17]. CB type I cells isolated from ndufs2 deficient mice do not exhibit rises in either
mitoROS or intracellular Ca2+ in response to hypoxia [17,18]. Importantly, the elevation
in mitoROS is proposed to be dependent on a rise in succinate metabolism at complex
II, reverse electron transport (RET), and the oxidation of ubiquinol (QH2) to ubiquinone
(Q) at complex I [18,19]. It is currently unclear if selective pharmacological targeting of
mitochondria with antioxidants can abolish or dampen the CB chemoafferent or whole
animal response to hypoxia. Information of this type should underpin development of
treatments for CB hyperactivity, an emerging driver of neurogenic hypertension [20,21].

Countering the idea that complex I-derived mitoROS are essential for CB O2 sensing
is the finding that type I cell hypoxic sensitivity can be retained in the presence of rotenone
(complex I inhibitor) by feeding electrons directly to cytochrome c [22]. Furthermore, CB
type I cells isolated from mice with heterozygous deletion of the mitochondrial complex
II gene SDHD (encoding succinate dehydrogenase (SDH) subunit D) display the same
neurosecretory response to hypoxia as those obtained from wildtype littermates, raising
questions about the importance of succinate in hypoxic chemotransduction [23]. No
study has directly examined the role of succinate metabolism and mitoROS generation in
mediating CB or ventilatory O2 sensitivity in the rat.

The aim of the current study was to evaluate if ex vivo CB chemoafferent activity
and in vivo ventilatory responses to hypoxia could be modified by alterations in succinate
metabolism and mitoROS signalling in the rat.

2. Materials and Methods
2.1. Ethical Approval

All procedures were performed in accordance with UK Animals (Scientific Procedures)
Act 1986 and approved by the UK Home Office (PPL number PF4C074AD) and by the
Animal Welfare and Ethical Review Body (AWERB) at the University of Birmingham. Adult
male Wistar rats (n = 98, 5–10 weeks, 120–390 g) were purchased from Charles River, UK.
Animals were housed in individually ventilated cages (n = 2–4 per cage) under standard
conditions: 12:12 h light:dark cycle (lights on at 0700), 22 ◦C and 55% humidity. Food
and water were available ad libitum. Animals were killed humanely by either exposure
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to carbon dioxide gas in a rising concentration or by dislocation of the neck (following
removal of CBs under terminal non recovery anaesthesia).

2.2. Recordings of CB Chemoafferent Nerve Activity

CBs were isolated from adult male Wistar rats under deep non-recovery terminal
inhalation anaesthesia (3–5% isoflurane in O2, 1.5 L min−1) as previously described [24,25].
Depth of anaesthesia was monitored during the procedure by absence of a hind limb flexor
withdrawal reflex and breathing frequency.

Intact carotid bifurcations containing the carotid sinus nerve (CSN) and CB were
removed and animals immediately killed by cervical dislocation. The tissue was transferred
to a recording chamber (volume of approximately 0.2 mL) with a Sylgard 184 base (Dow
Corning, Midland, MI, USA) and continuously superfused with a bicarbonate buffered
Krebs solution containing, in mM: 119 NaCl, 4.5 KCl, 1.2 NaH2PO4, 1.2 MgSO4.7H2O,
25 NaHCO3, 2.4 CaCl2, and 11 D-glucose, 37 ◦C, pH 7.4, equilibrated with 95% O2, 5%
CO2. The CSN was identified, dissected-free and surrounding connective tissue removed.
To aid with extracellular recording [26,27], the tissue was partially digested in a Krebs
solution containing 0.075 mg mL−1 collagenase type II and 0.0025 mg mL−1 dispase type I
(Sigma-Aldrich, Gillingham, UK), for 20–30 min.

Extracellular action potential recordings of single and few-fibre units were recorded
from the cut end of the CSN using borosilicate glass pipettes as described [28,29]. Ac-
quisition and analysis were performed using Spike2 (version 7.12) software (Cambridge
Electronic Design, Cambridge, UK). Raw chemoafferent voltage was amplified x5000 and
sampled at 15 kHz. Single units were used for frequency analysis. These were discrimi-
nated initially by thresholding and subsequently by comparison of specific AP waveform
parameters such as amplitude, 50% repolarisation time, and time to peak hyperpolarisation.

Experiments were performed at 37 ◦C and superfusate PO2 was continuously mea-
sured (100 Hz) using an O2 electrode (ISO2) and O2 meter (OXELP; World Precision
Instruments, Hitchin, UK). Basal activity was measured at ca. 300 mmHg and hypoxic
responses were induced by a slow ramp down to ca. 100 mmHg before rapid reversal into
hyperoxia (95% O2, 5% CO2). Single fibre frequency was plotted against the superfusate
PO2 and data fitted to an exponential curve with offset:

y = a + b × Exp(−cx) (1)

where y is the discharge frequency (Hz), x is the superfusate PO2 (mmHg), a is the discharge
frequency as the PO2 tends to infinity (offset), b is the theoretical frequency when the PO2
is 0 mmHg (minus the offset), and c is the exponential rate constant.

Hypoxic responses were performed under control conditions and in the presence of
pharmacological agents at concentrations consistent with those shown to modify mitochon-
drial succinate metabolism and mitoROS generation. These included diethyl Succinate [30]
(DESucc, 1 and 5 mM, Sigma-Aldrich, Gillingham, UK), dimethyl malonate [19,30] (DMM,
mitochondrial complex II inhibitor, Sigma-Aldrich, Gillingham, UK), MitoTEMPO [30,31]
(20 µM, MitoT, mitochondrial antioxidant, targeted to the matrix, Sigma-Aldrich, Gilling-
ham, UK), and 10-(6′-plastoquinonyl) decyltriphenylphosphonium [32,33] (1 µM, SKQ1,
mitochondrial antioxidant targeted to the intermembrane space, Bio-Techne Ltd., Abing-
don, UK). Incubation time was 5 min for DESucc and DMM and 20–25 min for MitoT and
SKQ1 to allow for sufficient uptake.

2.3. Ventilatory Responses to Hypoxia and Hypercapnia

Respiratory parameters in unrestrained awake animals were recorded using whole
body plethysmography (WBP) specifically designed for rats as described [34]. Gas flow into
the chamber was approximately 2 L min−1. The WBP chamber was perfused with either
a normoxic (78.97% N2, 21% O2, 0.03% CO2), hypoxic (89.97% N2, 10% O2, 0.03% CO2),
or hypercapnic (73% N2, 21% O2, 6% CO2) gas mixture, controlled using Iox2.9.11.8
software (EMKA Technologies, Paris, France). Respiratory flow data were sampled at



Antioxidants 2021, 10, 840 4 of 19

1000 Hz and respiratory frequency (Rf), tidal volume (VT), and minute ventilation (VE)
were calculated offline.

WBP was performed between 8:30 a.m. to 14:00 p.m. Rats were individually placed
in the WBP chamber and allowed to acclimatise for 15–30 min. Following acclimatisa-
tion, a 5-min baseline was recorded. Rats were then exposed to a cycle of hypoxia (10%
O2, 5 min)/normoxia (5 min) and immediately after to a cycle of hypercapnia (6% CO2,
5 min)/normoxia (10 min). The final 2 min of hypoxic/hypercapnic exposure was used for
analysis. Rats were removed from the WBP chamber and received an intraperitoneal (I.P.)
injection of either vehicle or mitochondrial antioxidant (MitoT-1.96 µM kg−1/19.6 µM kg−1,
SKQ1 500 nM kg−1). All solutions were prepared fresh on the day of experimentation and
injection volume did not exceed 1 mL kg−1 bodymass. After one hour in the home cage,
rats were placed back into the WBP chamber and the respiratory protocol was repeated.

2.4. Data Analysis

Data are presented as mean± SEM or as box-whisker plots with median, mean (shown
as +), the box representing the interquartile range and the whiskers extending to outliers.
Single points represent individual chemoafferent fibres or animals. Statistical analysis
was performed using (i) a paired 2-tailed student’s t-test, (ii) repeated measures one-way
analysis of variance (ANOVA) or (iii) repeated measures two-way ANOVA with Tukey or
Dunnett’s post hoc analysis where appropriate (Prism v9, GraphPad Software, San Diego,
CA, USA). Significance was taken as p < 0.05.

3. Results
3.1. Succinate Causes Significant CB Chemoafferent Excitation

Application of the cell permeable compound diethyl succinate (DESucc; 1–10 mM)
increased chemoafferent activity in a concentration dependent manner (Figure 1a,b). The
onset of the response was quick, achieving steady state within 3 min, and was rapidly
reversible (Figure 1a). At the highest concentration (10 mM), the frequency peaked within
the range of 1.5–5 Hz (Figure 1b). In four experiments, application of 20 mM DESucc
was tested but we did not observe any further rise in frequency, measuring 1.9 ± 0.7 Hz,
n = 4. Prolonged exposure of the CB to 5 mM DESucc demonstrated that the chemoafferent
frequency did not continue to rise, but rather peaked at 5 min, remained elevated at 15
min before returning to, or slightly below baseline (Figure 1c). Even at the highest concen-
trations, the response to DESucc was relatively modest compared to hypoxia (Figure 2a).
Experiments performed on the same CB preparations showed that the maximum rise in
chemoafferent frequency induced by DESucc was approximately 10–30% of that induced
by a subsequent severe hypoxic stimulus (Figure 2a,b). Thus, although excessive succinate
metabolism did cause CB stimulation, it did not precisely mimic hypoxia. Chemoafferent
excitation induced by 5 mM DESucc was almost completely abolished by 10 mM DMM, a
competitive inhibitor of mitochondrial complex II (Figure 2c,d). Furthermore, excitation
caused by DESucc was attenuated in the presence of two different mitochondrial antiox-
idants MitoT (targeted to the mitochondrial matrix; 20 µM) and SKQ1 (targeted to the
mitochondrial intermembrane space; 1 µM) (Figure 2e–h).
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response to 1, 5, and 10 mM diethyl succinate (DESucc). Raw voltage is shown (upper) along with frequency histograms
(lower). Overdrawn action potentials are inset, demonstrating single fibre discrimination. (b) Mean steady-state responses
to DESucc at 1, 5, and 10 mM concentrations (n = 9 fibres, N = 4 animals). Data presented as box-whisker plots with
median, mean (shown as +), the box representing the interquartile range and the whiskers extending to outliers. Single
points represent individual fibres. ** and *** denote p < 0.01 and p < 0.001 vs. 0 mM, one-way repeated measures ANOVA
with Dunnett’s post hoc test. (c) Time course of prolonged exposure to 5 mM DESucc (n = 11 fibres, N = 5 animals). Data
presented as mean ± SEM. * and ** denote p < 0.05 and p < 0.01 vs. 0 min, one-way repeated measures ANOVA with
Dunnett’s post hoc test.
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Figure 2. The carotid body (CB) response to succinate is dependent on mitochondrial complex II activity and reactive
oxygen species generation. (a) Example 5 s raw CB chemoafferent recordings from the same fibre comparing activity in the
presence of diethyl succinate (DESucc—5 and 10 mM) with peak hypoxia. (b) Mean responses to 1, 5, and 10 mM DESucc
as a percentage of peak hypoxia (n = 9 fibres, N = 4 animals). * and ** denote p < 0.05 and p < 0.01 vs. 1 mM, one-way
repeated measures ANOVA with Dunnett’s post hoc test. (c,d) Absolute and changes in frequency caused by 5 mM DESucc
± 10 mM dimethyl malonate (DMM), respectively (n = 11 fibres, N = 5 animals). (e,f) Absolute and changes in frequency
caused by 5 mM DESucc ± 20 µM MitoTEMPO (MitoT), respectively (n = 8 fibres, N = 6 animals). (g,h) Absolute and
changes in frequency caused by 5 mM DESucc ± 1 µM SKQ1, respectively (n = 6 fibres, N = 5 animals). For (c,e,g), data
presented as mean ± SEM. +++ p < 0.001 control vs. DMM, # p < 0.05 control vs. MitoT, $$ p < 0.01 control vs. SKQ1,
two-way ANOVA with Tukey post hoc test. For (d,f,h), data presented as box-whisker plots with median, mean (shown
as +), the box representing the interquartile range and the whiskers extending to outliers. Single points represent individual
fibres. +++ p < 0.001 control vs. DMM, # p < 0.05 control vs. MitoT, $ p < 0.05 control vs. SKQ1, paired t-test.

3.2. Excessive Succinate Metabolism Attenuates CB Hypoxic Sensitivity

CB chemoafferent activity recorded during hypoxia exhibited a characteristic exponen-
tial increase below a certain PO2 threshold (Figure 3a,b). In the presence of 5 mM DESucc,
chemoafferent frequency in hypoxia was significantly decreased and the PO2 ‘set-point’ for
hypoxic response initiation was left-shifted, suggestive of an attenuation of O2 sensitivity
(Figure 3a–c). The inhibition of the hypoxic response caused by DESucc was reversible
(Figure 3a,b). Application of a lower concentration of DESucc (1 mM) did not alter the CB
chemoafferent response to hypoxia (Figure 3d).
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Figure 3. High levels of mitochondrial succinate metabolism depress carotid body hypoxic sensitivity. (a) Example CB
chemoafferent recording of the response to hypoxia in the presence and absence of 5 mM diethyl succinate (DESucc).
Raw voltage is shown (upper) along with frequency histograms (lower). Inset: overdrawn action potentials. (b) PO2-
chemoafferent frequency response curves from a single experiment corresponding to the example shown in (a). (c) Mean
chemoafferent hypoxic response curves for paired control and 5 mM DESucc (n = 9 fibres, N = 5 animals). (d) Mean
chemoafferent hypoxic response curves for paired control and 1 mM DESucc (n = 5 fibres, N = 5 animals). Data presented as
mean ± SEM. ** denotes p < 0.01 vs. control, two-way repeated measures ANOVA.

3.3. Mitochondrial Antioxidants and Inhibition of Succinate Metabolism Decrease but Do Not
Abolish CB Chemoafferent Responses to Hypoxia

To evaluate the importance of endogenous succinate metabolism, we monitored
chemoafferent frequency in the presence of DMM (10 mM; a cell permeable and com-
petitive inhibitor of SDH, complex II). In normoxia, DMM caused rapid and reversible
chemostimulation in all preparations tested (Figure 4a,b). The elevation above baseline
was variable, lying within the range of 0.5–5.5 Hz and was maintained throughout the
stimulus duration (Figure 4a,b). DMM also significantly decreased the chemoafferent
frequency in hypoxia and evoked a left shift in the hypoxic response curve (Figure 4c–e).
However, a significant component (greater than 50%) of the overall hypoxic response was
still preserved (Figure 4c–e). The inhibitory action of DMM on CB O2 sensitivity was
reversible as evidenced by restoration of the response to hypoxia after 10–15 min washout
(Figure 4c,d).
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partially attenuates the response to hypoxia. (a) Example chemoafferent response to 10 mM dimethyl malonate (DMM),
an inhibitor of mitochondrial succinate dehydrogenase (complex II). Raw voltage (upper) is shown along with frequency
histograms (lower). Inset: overdrawn action potentials. (b) Mean steady state frequency caused by DMM (n = 17 fibres,
N = 10 animals). Data presented as box-whisker plots with median, mean (shown as +), the box representing the interquartile
range and the whiskers extending to outliers. Single points represent individual fibres. *** denotes p < 0.001 vs. baseline,
paired t-test. (c) Example chemoafferent response to hypoxia in the presence and absence of 10 mM DMM. (d) PO2-response
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vs. control, two-way repeated measures ANOVA.
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As succinate increases mitoROS generation as a by-product of respiration [18,19,30],
we assessed CB responses to hypoxia in presence of two different mitochondrial antiox-
idants MitoT (20 µM) and SKQ1 (1 µM). MitoT (which is targeted to the mitochondrial
matrix) caused an attenuation in the rise in chemoafferent activity in hypoxia, without
completely abolishing it, with a significant proportion of the response (>50%) being pre-
served (Figure 5a–c). MitoT induced a left shift in the PO2 threshold for response initiation,
suggestive of a decrease in CB O2 sensitivity (Figure 5a–c). SKQ1, an antioxidant targeted
to the mitochondrial intermembrane space, also decreased but did not fully eliminate the
chemoafferent response to hypoxia (Figure 6a–c). At a superfusate PO2 of 100 mmHg,
the response to hypoxia was blunted by approximately 20–50% (Figure 6a–c). SKQ1 also
produced a left shift in the CB hypoxic response curve, signifying decreased O2 sensitivity
(Figure 6a–c). Inhibition caused by MitoT and SKQ1 was not always reversible and there
was a possibility that the decrease in O2 sensitivity was caused by a time dependent run-
down during the 20–25 min incubation period. Additional experiments were performed
comparing 2 control hypoxic responses 30 min apart. Paired chemoafferent responses for
the same fibre separated by 30 min exhibited a high degree of consistency (Figure 6d),
suggesting that the inhibition of CB O2 sensitivity observed in the presence of MitoT and
SKQ1 was not due to time-dependent preparation run-down.

3.4. Mitochondrial Antioxidants Decrease Ventilatory Responses to Hypoxia but Not Hypercapnia

Administration of a relatively low dose of MitoT (1.96 µM kg−1, I.P.) did not modify
basal Rf, VT, and VE or the ventilatory response to hypoxia and hypercapnia (Table 1).
At a higher dose (19.6 µM kg−1, I.P.), MitoT had no effect on normoxic Rf but did de-
crease the rise in Rf induced by hypoxia (Figure 7a–d, Table 1). The overall hypoxic
ventilatory response (HVR) was unaffected, suggesting a partial compensation of increased
VT (Figure 7e–g, Table 1). The 19.6 µM kg−1, I.P. dose of MitoT had no impact on any
component of the hypercapnic ventilatory response (Table 1).

Table 1. Changes in respiratory variables (Rf—respiratory frequency; VT—tidal volume; VE—minute ventilation) in
response to hypoxia or hypercapnia in the presence or absence of saline, MitoTEMPO or SKQ1.

Exposure Intervention N ∆Rf
(bpm)

∆VT
(mL g−1)

∆VE
(mL min−1 g−1)

Hypoxia
(10% O2)

Vehicle control (saline)
− 5 42.2 ± 7 0.0012 ± 0.0004 0.39 ± 0.06
+ 5 43.7 ± 6 0.002 ± 0.0003 0.5 ± 0.02

MitoTEMPO
(1.96 µM kg−1)

− 6 57.8 ± 10.7 0.0012 ± 0.0002 0.47 ± 0.055
+ 6 50.6 ± 7.9 0.0014 ± 0.00025 0.4 ± 0.03

MitoTEMPO
(19.6 µM kg−1)

− 8 53 ± 5.3 0.001 ± 0.0002 0.53 ± 0.07
+ 8 41.6 ± 7.2 * 0.0015 ± 0.0004 0.44 ± 0.027

SKQ1
(500 nM kg−1)

− 6 52.8 ± 6 0.0014 ± 0.00025 0.5 ± 0.03
+ 6 37.7 ± 5.7 * 0.0016 ± 0.0002 0.4 ± 0.03 *

Hypercapnia
(6% CO2)

Vehicle control (saline)
− 5 81 ± 7 0.003 ± 0.0006 0.87 ± 0.14
+ 5 84.7 ± 11 0.003 ± 0.0005 0.86 ± 0.12

MitoTEMPO
(1.96 µM kg−1)

− 6 87 ± 8.5 0.003 ± 0.0003 0.94 ± 0.11
+ 6 80.9 ± 7.7 0.0018 ± 0.0002 * 0.75 ± 0.09

MitoTEMPO
(19.6 µM kg−1)

− 8 71.6 ± 5.5 0.003 ± 0.00025 0.98 ± 0.07
+ 8 66.7 ± 3.8 0.003 ± 0.0002 0.89 ± 0.05

SKQ1
(500 nM kg−1)

− 6 68.6 ± 3.8 0.0025 ± 0.0005 0.78 ± 0.06
+ 6 72.6 ± 8 0.003 ± 0.0005 0.82 ± 0.07

* p < 0.05; paired t-test. Vehicle control—n = 5; MitoTEMPO (1.96 µM kg−1)—n = 6; MitoTEMPO (19.6 µM kg−1)—n = 8; SKQ1(500 nM kg−1)—n= 6.
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Figure 5. The mitochondrial antioxidant MitoTEMPO (MitoT) decreases but does not abolish carotid body (CB) chemoaffer-
ent responses to hypoxia. (a) Raw CB chemoafferent recording of the response to hypoxia ± 20 µM MitoT. Raw voltage
is shown (upper) along with frequency histograms (lower). Inset: overdrawn action potentials from a single fibre. (b)
PO2-chemoafferent frequency response curves from a single experiment corresponding to the example shown in (a). (c)
Mean chemoafferent hypoxic response curves for paired control and 20 µM MitoT (n = 9 fibres, N = 6 animals). Data are
presented as mean ± SEM. ** denotes p < 0.01 MitoT vs. control, two-way repeated measures ANOVA.
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Figure 6. The mitochondrial antioxidant SKQ1 partially attenuates carotid body (CB) chemoafferent responses to hypoxia.
(a) Raw CB chemoafferent recording of the response to hypoxia ± 1 µM SKQ1. Raw voltage is shown (upper) along with
frequency histograms (lower). Inset: overdrawn action potentials from a single fibre. (b) PO2-chemoafferent frequency
response curves from a single experiment corresponding to the example shown in (a). (c) Mean chemoafferent hypoxic
response curves for paired control and 1 µM SKQ1 (n = 9 fibres, N = 6 animals). (d) Mean chemoafferent hypoxic response
curves for 2 repeated control hypoxic exposures separated by 30 min (n = 7 fibres, N = 7 animals). For (c,d), data are
presented as mean ± SEM. * denotes p < 0.05 SKQ1 vs. control, two-way repeated measures ANOVA.
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plex II, reverse electron transport (RET), and mitoROS generation. It was hypothesised 
that co-stimulation of the CB with succinate and hypoxia would potentiate the hypoxic 
response as reported by Arias-Mayenco and colleagues (2018) in isolated mice type I cells. 
On the contrary, our data show that such co-stimulation leads to a depression of hypoxic 
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lism and mitoROS generation have additional inhibitory actions on CB function that may 
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Figure 7. MitoTEMPO (MitoT) decreases the rise in respiratory frequency (Rf) during hypoxia. (a) Representative respiratory
traces (tidal volume (VT) vs. time, 5 s) illustrating breathing pattern before (left) and after (right) MitoT administration
(19.6 µM kg−1, I.P.), in normoxia (21% O2) and during hypoxia (10% O2). (b–d) Mean Rf in normoxia, hypoxia and the
relative change, respectively, before and after MitoT (N = 8 animals). (e–g) Mean minute ventilation (VE) in normoxia,
hypoxia and the relative change, before and after MitoT. Data presented in box and whisker plots show mean (+), median
line with a box range of 25th and 75th percentiles and outlier whiskers at minimum and maximum. Single points represent
individual animals. * denotes p < 0.05, paired t-test.

Representative traces illustrating breathing pattern at baseline and in response to
hypoxia in presence and absence of SKQ1 are presented in Figure 8a. Following SKQ1
administration (500 nM kg−1, I.P.), the basal Rf was markedly decreased, as was the
elevation in Rf caused by hypoxia (Figure 8a–d, Table 1). Although there was still a robust
increase in VE during hypoxia, SKQ1 significantly attenuated the HVR by approximately
20% (Figure 8e–g). In contrast, SKQ1 had no effect on the response to hypercapnia (Table 1),
suggesting that SKQ1 selectively inhibited hypoxic sensing within the whole animal.
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Our data support the idea that physiological levels of mitoROS are important in me-
diating some of the hypoxic chemotransduction, but not all. Changes in MgATP, lactate, 
and possibly other, as yet unidentified substances, may be necessary for a full response to 
hypoxia to be evoked [13,15]. The specific role of each mediator could be dependent on 
the specific intensity of hypoxia as has been suggested for release of neurotransmit-
ters/neuromodulators [43]. That said, there are questions over a role of lactate being in-
volved in CB O2 sensing in the rat based on the recent finding that acute lactate admin-
istration (up to 20 mM) does not evoke type I cell depolarisation or chemoafferent excita-
tion [44]. 

Alternatively, an upregulation of redundant control mechanisms in our experiments 
could account for the lack of complete abolition of the hypoxic response in the presence 
of DMM, MitoT, and SKQ1. The pharmacological approach used makes it difficult to sep-
arate out potential redundant control mechanisms, with those that are acting in parallel. 
If redundant mechanisms were at play in the current investigation, then they must have 

Figure 8. The mitochondrial antioxidant SKQ1 decreases the hypoxic ventilatory response (HVR). (a) Representative
respiratory traces (tidal volume (VT) vs. time, 5 s) illustrating breathing pattern before (left) and after (right) SKQ1
administration (500 nM kg−1, I.P.), in normoxia (21% O2) and during hypoxia (10% O2). (b–d) Mean Rf in normoxia,
hypoxia, and the relative change, respectively, before and after SKQ1 (N = 6 animals). (e–g) Mean minute ventilation (VE) in
normoxia, hypoxia, and the relative change (HVR), before and after SKQ1. Data presented in box and whisker plots show
mean (+), median line with a box range of 25th and 75th percentiles and outlier whiskers at minimum and maximum. Single
points represent individual animals. * and **** denote p < 0.05 and p < 0.001 control vs. SKQ1 respectively, paired t-test.

Time/vehicle control experiments were performed before and 1 h after I.P. injection
with vehicle (saline) and demonstrated consistent breathing patterns and responses to
hypoxia and hypercapnia (Table 1).

4. Discussion
4.1. Main Findings

The present study shows that inhibition of succinate metabolism at mitochondrial
complex II and mitochondrial antioxidants both partially attenuate the rat CB chemoaffer-
ent response to hypoxia. Mitochondrial antioxidants also decrease the rise in Rf in hypoxia
and, in the case of SKQ1, the HVR. However, at the level of the CB and in the whole animal,
a significant component (50–80%) of the response to hypoxia remains intact. Thus, whilst
the data support a role for succinate metabolism and mitoROS being involved in CB and
whole body O2 sensing, they are unlikely to be the sole mediators. Interestingly, excessive
succinate metabolism causes modest chemoafferent stimulation in normoxia, but blunts
activity in hypoxia. The additional inhibitory action of exaggerated succinate and mitoROS
generation may have relevance in mediating CB dysfunction in disease.
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4.2. Succinate and mitoROS Contribute to CB and Whole-Body Responses to Hypoxia in the Rat

Numerous studies have implicated the CB mitochondria in acute O2 sensing in mul-
tiple species [8,9,17,35]. CB mitochondrial cytochrome c oxidase has an unusually high
Km for O2 consistent with the PO2s known to cause type I cell stimulation [9]. Emerging
evidence indicates that the low O2 affinity of CB mitochondria could be due to a unique
expression profile of mitochondrial electron transport chain complex subunits [36,37] or
the presence of a high level of a competitive inhibitor such as nitric oxide [35,38].

There is now much focus on identifying the precise link between mitochondrial inhibi-
tion and activation of the downstream chemotransduction cascade: K+ channel inhibition,
membrane depolarisation, Ca2+ influx, neurotransmitter release, and chemoafferent excita-
tion [35]. Our data identify an important role for succinate metabolism and mitoROS in
mediating hypoxic sensitivity in the rat CB. Furthermore, we demonstrate that mitochon-
drial antioxidants and particularly SKQ1 can dampen the HVR in awake animals without
impacting on hypercapnic ventilation. These findings are consistent with previous studies
performed on isolated mouse type I cells where conditional deletion of mitochondrial
complex I gene ndufs2 prevented hypoxia induced mitochondrial intermembrane ROS
generation and rises in intracellular Ca2+ [17,18]. Identifying a role for succinate and mi-
toROS in the intact CB preparation is an important finding as there are known differences
between reduced and whole organ CB preparations in being able to sense and respond to
other stimuli such as low glucose [39–42]. Furthermore, our data show that involvement of
succinate and mitoROS in CB O2 sensing is conserved between species and is present in the
rat, albeit to a lesser extent. Validation of a similar role in the human CB is still warranted.

4.3. Implications of the Current Study

In the presence of DMM, MitoT, and SKQ1, although aspects of the ex vivo CB and
in vivo ventilatory response to hypoxia were depressed, they were far from abolished,
with around 50–80% being preserved. The stimulation with exogenous succinate led to
an increase in the basal nerve discharge frequency, however it did not mimic hypoxia.
Excitation by succinate was completely abolished by DMM and was attenuated by MitoT
and SKQ1. This is consistent with succinate causing chemostimulation via metabolism at
complex II, reverse electron transport (RET), and mitoROS generation. It was hypothesised
that co-stimulation of the CB with succinate and hypoxia would potentiate the hypoxic
response as reported by Arias-Mayenco and colleagues (2018) in isolated mice type I cells.
On the contrary, our data show that such co-stimulation leads to a depression of hypoxic
responsiveness in the ex vivo nerve preparation. Therefore, excessive succinate metabolism
and mitoROS generation have additional inhibitory actions on CB function that may be
relevant in pathophysiology or cellular plasticity e.g., ageing.

Our data support the idea that physiological levels of mitoROS are important in
mediating some of the hypoxic chemotransduction, but not all. Changes in MgATP, lactate,
and possibly other, as yet unidentified substances, may be necessary for a full response
to hypoxia to be evoked [13,15]. The specific role of each mediator could be dependent
on the specific intensity of hypoxia as has been suggested for release of neurotransmit-
ters/neuromodulators [43]. That said, there are questions over a role of lactate being
involved in CB O2 sensing in the rat based on the recent finding that acute lactate ad-
ministration (up to 20 mM) does not evoke type I cell depolarisation or chemoafferent
excitation [44].

Alternatively, an upregulation of redundant control mechanisms in our experiments
could account for the lack of complete abolition of the hypoxic response in the presence of
DMM, MitoT, and SKQ1. The pharmacological approach used makes it difficult to separate
out potential redundant control mechanisms, with those that are acting in parallel. If
redundant mechanisms were at play in the current investigation, then they must have been
induced very rapidly as pharmacological interventions were only applied for a maximum
of 1 h. The lack of complete elimination of the response to hypoxia in the presence of DMM,
MitoT, and SKQ1 also does not rule out the involvement of other mediators independent
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of mitochondrial function including H2S [45,46] and ROS derived from other sources
such as NADPH oxidase [47,48]. Whilst mitoROS may be elevated in hypoxia, in other
compartments, they may be decreased and the specific interactions between ROS and ion
channels require further investigation. The importance of H2S has also been challenged
by the findings that mice lacking cystathionine-γ-lyase (CSE) have preserved CB and
ventilatory responses to hypoxia [49]. Again, O2 stimulus intensity is likely to account
for some of these apparent discrepancies, with H2S generation now thought to be more
relevant at moderate rather than severe hypoxic intensities [50]. Therefore, it is possible
that there are many mediators, and their importance may be apparent at different severities
of hypoxia, something that should be addressed in the future.

4.4. Translational Relevance

Lack of full understanding of the CB chemotransduction cascade undermines any
attempts at designing potential treatment options for patients suffering from diseases
associated with CB dysfunction, such as heart failure, hypertension, or obstructive sleep
apnoea. One of the conclusions that can be drawn from the present study is that different
levels of succinate metabolism, and consequently mitoROS, may have opposite effects
on the CB activity and the response to hypoxia. The stimulatory impact of the succinate
metabolism is likely to be important for initiation of the hypoxic response, whereas when
very high excessive levels of succinate metabolism are reached, this may lead to detrimental
accumulation of high levels of mitoROS. While ROS are known signalling molecules and
are part of many signalling pathways, in severe excess, they cause damage to the cells and
individual organelles, such as mitochondria. Providing that one of the hypotheses states
that the oxygen sensor is located in the CB mitochondria, a major increase could have a
detrimental impact on the overall oxygen sensing mechanism.

ROS have also been implicated in CB hyperactivity previously, although the focus so
far has been on those derived from angiotensin II and NADPH oxidase [51–56]. Interest-
ingly, it has been observed that mitochondrial superoxide dismutase nitration and protein
expression is elevated in the CB following 7 days of chronic intermittent hypoxia (CIH),
suggestive of elevated mitoROS production [57]. Our data do identify that mitochondrial
selective antioxidants are capable of dampening CB function, which could offer a new
approach to reducing CB hyperactivity in certain pathologies. Evaluating mitoROS genera-
tion and mitochondrial function in the CB in multiple pathologies will be an important
next step.

In the current investigation, DMM inhibition of mitochondrial complex II resulted
in a pronounced chemoafferent excitation. We speculate that basal stimulation by DMM
was a consequence of a slight fall in intracellular MgATP, but this requires validation in
future work. Accordingly, previous studies identified persistent type I cell membrane
depolarisation in mice lacking one SDHD allele (SDHD+/−) [23]. These findings high-
light a particularly high importance of succinate metabolism in maintaining normoxic
electrical stability within the CB. Mutations in the SDHD gene are one of the causes of
pheochromocytoma and paraganglioma, paragangliomas being the most prevalent type of
CB cancer [58]. Whether or not the chronic stimulation itself contributes to oncogenesis (in
addition to succinate dependent HIF1α stabilisation) is an area that has not yet been fully
explored, particularly in combination with ageing.

4.5. Limitations

A major part of this study was performed on ex vivo nerve preparation rather than
isolated type I cells. While chemoafferent recordings are a validated way of assessing the
hypoxic sensitivity, it is impossible to determine whether the effects of antioxidants and
inhibitors used in this study are limited to type I cells. There could be potential effects on
other cell types present in the CB, such as type II cells or the nerve itself and therefore affect
the final reading. Similar limitations apply to the in vivo studies as the antioxidants were
administered systemically and they were not specifically targeted to the CB mitochondria.
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Therefore, some systemic effects on the cardiorespiratory system could have altered the
response to hypoxia by disrupting ROS signalling. Finally, findings presented here were
described in a rodent model, as such further studies are needed to determine whether the
same effects are observed in humans.

5. Conclusions

Blocking succinate metabolism and the use of mitochondrial antioxidants decreases O2
sensing both at the level of the intact ex vivo CB and whole body HVR. However, significant
proportions of the responses are preserved, suggesting that succinate-mediated mitoROS is
not the only relevant signalling pathway. Excessive levels of succinate metabolism impair
CB function in hypoxia. Treatment of the CB with mitochondrial selective antioxidants
may offer a new approach for treating CB-related cardiovascular and respiratory disorders.
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