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Electric Vehicle Charging Simulation Framework
Considering Traffic, User, and Power Grid

Weicheng Liu, Xujiang Shi, Jianfeng Zhao, Xiao-Ping Zhang, and Ying Xue

Abstract——The traffic and user have significant impacts on
the electric vehicle (EV) charging load but are not considered
in the existing research. We propose a novel integrated simula‐
tion framework considering the traffic, the user, and power
grid as well as the EV traveling, parking and charging based
on cellular automaton (CA). The traffic is modeled by the traf‐
fic module of the proposed framework based on CA, while the
power grid and user are modeled in the EV charging module.
The traffic flow, user’s charging preference, user’s charging
satisfaction, and the total supply capability (TSC) in the sur‐
veyed region are considered in the proposed framework. Two
cases are carried out to show the interactions between the user
and power grid. It is shown that the proposed framework can
accurately simulate the interactions among traffic situation, us‐
er’s behavior and TSC，which are significantly lacking in the
existing research. The proposed framework is scalable in consid‐
ering additional interrelated elements.

Index Terms——Electric vehicle (EV), integrated simulation
framework, cellular automaton, traffic, user, power grid.

I. INTRODUCTION

ELECTRIC vehicle (EV) is critical for alleviating energy
dilemmas and the greenhouse effect [1]. The large-scale

deployment of EV will bring a non-negligible impact on the
planning and operation of the power grid [2], [3]. The charg‐
ing demand for the district area is closely related to the us‐
er’s behavior and traffic flow. Meanwhile, the total supply
capability will affect the charging process and the user’s
charging experience. Total supply capability (TSC) of a dis‐
tribution system is defined as the maximum load, which
serves under the N - 1 guideline, considering the capacities
of substation transformers and feeder, network topology, and
some operation constraints [4]. The importance of the inter‐
actions between the user and power grid has been highlight‐
ed in recent years [5], [6]. Therefore, a method considering

the traffic, user, and power grid should be adopted to ana‐
lyze the interactions.

The research on the influence of EV charging process of
the traffic flow and power grid has been carried out in [7],
[8]. The restrictions of the traffic flow and power grid also
have the impact on EV charging process. The distributed de‐
cision-making method [9] has been used to model the charg‐
ing behavior under different transmission conditions. The us‐
er’s satisfaction is considered in the charging sequence opti‐
mization [10] and a bi-level tariff scheme [11].

With the development of intelligent transportation and
smart grid, researchers have further studied the relevance be‐
tween the traffic flow and the EV charging load. The traffic
flow data and power load profile are used to navigate EV us‐
ers to best fit the charging station, where both the power
grid and user can benefit based on the intelligent transporta‐
tion system [12]. Using geographical traffic data to plan the
charging station location and navigate the users is the appli‐
cation of transportation information. Besides the charging sta‐
tion planning, [13] utilizes the information of traffic flow
and power grid to improve the EV charging navigation strat‐
egy by locational marginal price (LMP), which reduces the
charging time and cost. The transportation information is al‐
so suitable to construct the integrated simulation framework.
The multi-agent model has been applied to simulate the inter‐
action between EV and charging infrastructure in [14]. Multi-
agent transportation simulation model is proposed to assess
the impact of EV traveling and charging process on the pow‐
er grid with different electricity pricing strategies and differ‐
ent charging prioritizations. The multi-agent method is also
used to obtain a large-scale tempo-spatial distribution of EV
charging in [15], which proposes a simulation method of EV
charging characteristics considering the traffic situation.

In addition to the multi-agent method, the cellular automa‐
ton (CA) method is able to simulate the bilateral effects be‐
tween the traffic flow and EV charging load. Reference [16]
proposes a traffic-power model to investigate the charging
power in the charging station based on CA by modeling the
charging station alongside the road in a CA system. Refer‐
ence [17] combines the CA method with the agent method
to describe the dynamic process of EV charging and analyz‐
es the charging load in a 25-node traffic network. The charg‐
ing tempo-spatial distribution is obtained through Monte Car‐
lo method. However, the user’s behavior is not considered
in this method and the accuracy of Monte Carlo method is
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insufficient in the simulation of dynamic traffic process.
The traffic flow and the EV charging load are two princi‐

pal elements in the EV charging process and are well stud‐
ied by the research mentioned above, whereas the user’s be‐
havior is not sufficiently considered. Some researchers have
taken the EV user into account, but do not consider the inter‐
action with the traffic flow and power grid. The traffic-con‐
strained multi-objective planning method combining geo‐
graphic location information and vehicle battery information
to optimize the location of the charging station is proposed
in [18]. Traffic information is also used by considering the
user’s behavior and trip chain [19] to reflect the user’s trav‐
el path and travel time in order to plan the location of the
charging station [20], [21]. The trip chain method improves
the efficiency of the charging station by modeling the vehi‐
cle travel path so as to optimize the planning of the charging
station. Reference [22] considers the user’s behavior to pre‐
dict EV charging demand, but the user’s behavior is simpli‐

fied as a function of travel distance that neglects the user’s
charging behavior. More importantly, none of the above mod‐
els have considered the mutual interactions among the traf‐
fic, the user, and power grid at the same time. Therefore, it
would be highly beneficial to develop an overall integrated
simulation framework to explore the interactions in the cou‐
pled driving, parking, and charging system, which considers
the traffic, user, and power grid as a whole. The traffic, user,
and power grid all have a significant impact on each other,
and the negligence of any one of them will result in a con‐
siderable error in the analysis.

The main contribution of this paper is the development of
an integrated simulation framework considering the traffic,
user, and power grid to analyze the interactions among them.
To highlight the advantages of the proposed framework, Ta‐
ble I presents the comparison between the proposed frame‐
work and the existing methods.

The proposed framework has the advantage of microcos‐
mic scale simulation, reflecting the behavior of each vehicle
such as vehicle lane changing process, vehicle acceleration
and deceleration processes and user’s charging preference,
which all contribute to a more detailed and accurate simula‐
tion results. In addition, the proposed framework utilizes the
concept of agent, and superimposes the user’s attributes as
an agent upon the vehicle cell, which makes the proposed
framework much more accurate in describing the user’s be‐
havior. The advantages of the proposed framework will be
further explained and highlighted in case studies. The two
objectives of this paper are as follows.

1) Development of the proposed framework: detailed mod‐
eling of the traffic is based on CA, the consideration of user’
s behavior as built-in attributes of each vehicle, and the inter‐
actions among the traffic, the user, and power grid during
the charging process.

2) Case study based on the proposed framework: after
constructing the proposed framework, two cases about the in‐
teractions are simulated and analyzed.

The rest of this paper is arranged as follows. Section Ⅱ in‐
troduces the design of the proposed framework. Section Ⅲ
details the design and function of the modules which are

used in the proposed framework. Section Ⅳ shows the re‐
sults of two cases based on the proposed simulation frame‐
work. Discussions on the results are presented. At last, Sec‐
tion Ⅴ concludes the paper.

II. SIMULATION FRAMEWORK DESIGN

The proposed framework is based on a two-dimensional
CA traffic model shown in Fig. 1, where the cross marks in‐
dicate the zone exits and others without cross marks indicate
zone entrances. One two-lane road has been considered and
simulated with focus on the interactions among the traffic,
user, and power grid. Figure 2 shows the structure of the
proposed framework, which includes two main modules: traf‐
fic module and vehicle parking module. The traffic modules
are used to simulate the traffic. The vehicle parking modules
are used to simulate vehicle parking and EV charging. The
functions of these modules are shown in Table II and ex‐
plained in Section Ⅲ. These modules operate together based
on the CA framework to form the proposed framework. In
order to focus on the interactions among the traffic, user,
and power grid, the buses of the power grid are simplified
in the proposed framework [24], [25], where TSC and total
charging power are used.

TABLE I
COMPARISON BETWEEN PROPOSED FRAMEWORK AND EXISTING METHODS

Method

Type

EV charging load simulation

Charging station planning

Traffic-power
comprehensive simulation

Proposed framework

Theory

Monte Carlo [23]

Trip chain [19]

Multi-agent [14], [15]

CA [16]

Agent-cellular [17]

CA

Function list

Vehicle
microcosmic

behavior

×

×

×

√
√
√

Different
charging mode

√
√
√
√
√
√

Impact of
TSC

×

×

√
√
√
√

User’s charing
preference

×

√
√
×

×

√

User’s
charging

experience

×

×

×

×

×

√

Scalability

×

×

√
√
√
√

Note: √ means that the method has the function and × means that the method does not have the function.
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A. CA Framework

CA is a discrete system where space, time, and state are
discrete [26]. The space dimensionality is D, and the vehicle
cell exists in a set of infinite states S, where Z is a set of in‐
tegers; n is the discrete step number; and ∆t is the stepsize.
Assuming D= 1, SZ is the distribution of S with Z. The dy‐
namic evolution process supervised with the rule of evolu‐
tion F can be described as:

F:S nDt
Z ® S (n+ 1)Dt

Z (1)

The dynamic evolution is determined by the local evolu‐

tion rule f of each cell. For one-dimensional CA, the local
function of the cell and its neighbor S2r + 1 is:

F(S (n+ 1)Dt
i )= f (S nDt

i - rS nDt
i S nDt

i + r) (2)

where S nDt
i is the state of the cell at time nDt; and i, i - r, and

i + r stand for neighbor cells.
Using CA as the connection is suitable to simulate the in‐

tegrated system since the nature of CA is suitable for traffic
simulation and the discrete characteristics of each cell are
suitable for modelling the user’s behavior. There is an ad‐
vantage of using CA to simulate the integrated system, e.g.,
CA has a clear physical meaning which means that the
framework based on CA has strong interpretability compared
with other probabilistic-based methods, where the cells stand
for a part of the road, and the states of the cells stand for
the properties of the vehicle.

The critical step in developing the proposed framework is
to convert the traffic rules to CA generation update rules.
The proposed framework is constructed based on CA frame‐
work, as is shown in Fig. 1. The freeway traffic module is
based on CA. Zones alongside each road are built, represent‐
ing different types of function and charging stations. The ve‐
hicle can move into or exit the zone or charging station ac‐
cording to its destination and battery state. The charging pro‐
cess takes place in zones and charging stations. The update
of the vehicle is supervised by basic traffic rules considering
the real road condition and traffic safety.

B. Design of Proposed Framework

The structural of the proposed framework is shown in Fig.
2. Vehicle travel safety and battery state of charge (SOC) are
considered in the traffic module. If the zone matches the des‐
tination of the vehicle, the vehicle will move into that zone.
If the battery SOC is less than the requirement of the jour‐
ney to the destination, the vehicle will move into the charg‐
ing station to be charged. The vehicle parking module deals
with the parking and charging processes of vehicles. When
the parking time ends or the charging process finishes, the
vehicle will get back to the road.

III. SIMULATION FRAMEWORK MODULE

A. Traffic Modules

1) Vehicle Generation Module
This module is used to generate the new vehicles at the

left boundary in Fig. 1. If the entrance cell is empty and the
vehicle generation condition is satisfied, the new vehicle is
added to the first cell with its attributes. The vehicle genera‐
tion quantity of hour h Qgh is calculated by Qgh = Qmaxηh.
Qmax is the maximum vehicle generation quantity of one
hour in one day, which is an adjustable parameter. ηh is the
proportion of Qgh to Qmax of hour h, which is a default pa‐
rameter to control the proportion of traffic flow. The vehicle
generation quantity per simulation step is calculated by divid‐
ing the vehicle generation quantity of each hour and the to‐
tal number of simulation steps in one hour. The vehicle gen‐
eration module will generate a random number between 0
and 1 and compare it with the calculated vehicle generation

TABLE II
FUNCTIONS OF MODULES

Type

Traffic
modules

Vehicle
parking
modules

Objective

Simulate the
traffic
flow
precisely

Simulate
the user’s
charging
behavior
in zones
or charg‐
ing stations

Module

Vehicle
generation
module

Vehicle scan
module

Vehicle motion
module

Vehicle elimina‐
tion module

Entrance and
exit module

Parking time
computation
module

Charging mode
selection
module

Parking and
charging pro‐
cess module

Function

Generate new vehicles at the
left boundary in Fig. 1

Scan the surroundings of ve‐
hicle in order to ensure
safety

Achieve the lane changing
and moving forward of
the vehicle

Eliminate the vehicles at the
right boundary of the road

Deal with the exit and entry
between road and zones/CS

Compute the parking time of
each vehicle

Choose charging mode ac‐
cording to user’s
preference

Accomplish parking and
charging process

Road with vehicle; Charging station; Commerce zone
Residence zoneOffice zone;Road without vehicle;

Architecture alongside road; Traffic flow

Fig. 1. Simulation based on CA framework.

Traffic module

User

Vehicle parking
module

Power grid

Generate
vehicles

Change
road

Move
forward

Destination detection
Move into
zones/CS

Exit
zones/CS

Eliminate
vehicles

Vehicle
data

Vehicle
data

Start charging
and parking

Select
charging mode

Compute
parking time

Charge EV
Finish charging

and parking
Park

vehicle

Fig. 2. Structure of proposed framework.
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quantity per simulation step. If the random number is larger
than the vehicle generation quantity per simulation step, the
vehicle generation condition is satisfied, which means that
the vehicle generation module will generate a new vehicle
and vice versa. The vehicle attributes in traffic flow are list‐
ed in Table III.

The maximum speed of the vehicle starts from 0 to the
maximum speed where the number is normalized, and 1
stands for 5 km/h. The vehicle type is determined by EV ra‐
tio (EVR). The destination of vehicles is generated random‐
ly. The initial SOC is generated by a function relevant to the
time. The charging requirement is calculated by considering
the energy consumption from the present position to the des‐
tination. The charging preference is a part of the user’s be‐
havior and is formulated according to the generation of vehi‐
cles. In this module, the structure of traffic attributes is devel‐
oped and the initial states of the vehicle are set.
2) Vehicle Scan Module

In this module, the surrounding conditions of vehicles are
scanned. Five distances are measured for one vehicle, which
are rear left distance, rear right distance, front left distance,
front right distance and front distance. Left label and right la‐
bel are used to show whether two-side road is occupied or
not. The distance element is used to show the distances with
other vehicles in the respective directions. The surrounding
information is used in the vehicle motion process and vehi‐
cle exit zone/CS process to ensure the safety.
3) Vehicle Motion Module

The vehicle motion module includes two parts, which are
vehicle lane changing module and vehicle moving forward
module. This module is used to realize the vehicle motion
function with traffic rules.

The vehicle lane changing module is used to investigate
the lane changing of the vehicle. Lane changing is the funda‐
mental behavior of vehicles in traffic flow. This module
takes the data generated by the vehicle scan module in order
to judge the safety of changing.

1) Condition of lane changing is presented as dk <min(vk +
a0Dtvmax)Dt ; dkother > dk; and lanek ¹ lanekdest (dkdest < 2dsafe).

2) Condition of safety is presented as dkback > dsafe.
With a unit of power grid as shown in Fig. 1, dk is the dis‐

tance between the kth vehicle and the first vehicle ahead of
it; vk is the velocity of the kth vehicle with a unit of power
grid per time step; vmax is the maximum vehicle velocity

which is a fixed value for all vehicles; a0 is the acceleration
coefficient for the vehicles; dkother is the distance in the for‐
ward direction, i.e., the direction of lane, between the kth ve‐
hicle and the first vehicle ahead of it in other lanes; lanek is
the present lane of the kth vehicle; lanekdest is the destination
lane of the kth vehicle; dkdest is the distance in the forward di‐
rection between the kth vehicle to its destination; dsafe is the
safety distance behind the vehicle which is a fixed value of
all vehicles; and dkback is the minimum distance between the
kth vehicle and first vehicle backward in lanek and the neigh‐
bor lanes.

The vehicle motion module is used to control the velocity
and movement of vehicles according to the velocity-depen‐
dent-randomization (VDR) model. Considering the practical
driving principle, the vehicle accelerates or decelerates on
the premise of driving safety. xk is the vehicle position of
the kth vehicle.

Step 1: detect random decelerate probability.
Step 2: accelerate vk ®min(vk + a0Dtvmax).
Step 3: decelerate vk ®min(vkdk /Dt).
Step 4: randomly decelerate vk ®max(vk - a0Dt0).
Step 5: move forward xk ® xk + vk (Dt).
Meanwhile, the battery SOC is updated in this module ac‐

cording to the speed-time sequence of EV running status.
The vehicle running equation [27] is:

F(nDt)=mgf +mgi + δm
dv(nDt)

dt
+
ρCD A

2
v2 (nDt) (3)

where F(nDt) is the vehicle tractive force, which is a func‐
tion of nDt; v(nDt) is the velocity of the vehicle, which is a
function of nDt; m is the vehicle kerb weight; f and g are the
rolling resistance coefficients; i is the road incline; δ is the
correction coefficient of rotating mass; ρ= 1.2258 kg/m3 is
the air density; CD is the coefficient of air resistance; A is
the coefficient of the wind; and v is the velocity of the vehi‐
cle. Based on (3), the energy consumption formula for vehi‐
cle running is derived as (4).

Ec =
∑
n= ns

ne F(nDt)v(nDt)
1000

Dt

3600

(4)

Assume the additional consumption is (5).

Ea =
Pa (ne - ns)Dt

3600
(5)

The total energy consumption can be derived as (6).

E =
Ec

η
+Ea (6)

where Ec is the energy consumption of vehicle running; ns is
the beginning discrete simulation time step of vehicle mo‐
tion, valued as the simulation time step when the vehicle is
generated; ne is the latest simulation time step; Pa is the addi‐
tional power which is a constant value; and η is the transmis‐
sion efficiency. Based on (6), the SOC of EV is updated.
4) Vehicle Elimination Module

When the vehicle travels out of the simulated district, the
vehicle is eliminated from the simulation system. The elimi‐
nation process takes place at the right boundary of the road

TABLE III
VEHICLE ATTRIBUTES IN TRAFFIC FLOW

Vehicle attribute

Vehicle type

Total time

Section time

Battery energy

SOC

Charging requirement

Charging preference

Charging cost

Explanation

Types of vehicle, e.g., fuel vehicle and EV

Time spent in the district

Time spent after the last zone/CS

EV battery energy

SOC of EV

Vehicle has enough energy to the destination or not

User’s charging preference

EV charging cost
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where all vehicle attributes are eliminated, and vital data are
stored for analysis. The data gathered from this module will
be used to analyze the congestion and the user’s average
parking duration.

B. Vehicle Parking Modules

Vehicle parking modules are designed to simulate the us‐
er’s charging behavior in zones or charging stations, which
is not included in previous research. The events that happen
in zones are modeled as two processes which are vehicle
charging process and vehicle parking process. The SOC of
EV measures the vehicle charging process, and the parking
duration measures the vehicle parking process.
1) Entrance and Exit Module

In this module, the vehicle enters into the vehicle parking
module from the traffic module as shown in Fig. 2. The data
of vehicles are transformed into the vehicle parking module.
There are two exit conditions: the first is the ending of park‐
ing and the second is the completion of the charging pro‐
cess. The exit condition for the charging station is that the
charging process of EV is finished. If these exit conditions
are satisfied, the vehicle will be put into the waiting list and
ready to move out.
2) Parking Time Computation Module

In this module, the parking duration is generated accord‐
ing to the normal distribution in (7), where the probability
density function is shown in (8):

T~N(avtσ2) (7)

f (t)=
1

σ 2π
e
-

(nDt - avt)2

2σ2

(8)

where T is the time; σ is the standard deviation; and avt is
the average parking time. The type of zone determines the
average parking time. Typically, the residence zone has the
longest avt, while the office zone has a shorter avt, and the
commerce zone has the shortest avt. σ of commerce zone is
the largest, and σ in the office zone is the smallest.
3) Charging Mode Selection Module

In this module, the charging mode M for EV is deter‐
mined using the user’s decision objective function consider‐
ing the user’s preference cuserprefer, energy price cenergyprice, the
urgency of charging time curgency and the charging loca‐
tion clocation.

M (cuserprefer cenergyprice curgencyclocation) (9)

Three types of user’s preferences are modelled, which are
speed-sensitive xspeed, price-sensitive xprice and time-sensitive
xtime charging preferences.

xspeed =min{g1g2gk} (10)

xprice = {min{c1c2ck} tkÎ tpeak

min{g1g2gk} tkÎ tvalley

(11)

xtime = {min{c1c2ck} gpk ³ gslowk

min{g1g2gk} gslowk > gpk

(12)

where gk is the charging duration of the kth EV; ck is the
charging cost of the kth EV; tk is the charging start time of
the kth EV; tpeak and tvalley are the peak and valley time for

electricity price, respectively; gpk is the parking duration of
the kth EV; and gslowk is the charging duration when the kth

EV selects slow charging. The charing cost stands for the
cost when the EV selects slow charging mode and the mini‐
mum charging duration refers to the fast charging mode.

The speed-sensitive preference minimizes the charging
time regardless of other elements. The time-sensitive prefer‐
ence selects the charging mode based on the time schedule.
The price-sensitive preference selects the charging mode
based on the charging price.
4) Parking and Charging Process Module

In this module, EVs are charged according to their charg‐
ing mode. TSC limits the charging power of EV, affecting
the charging process, the traffic flow, the user’s charging
preferences and charging satisfactions. The parking time is
calculated at the same time. The attributes of both vehicle
and EV are updated.

C. Scalability of Proposed Framework

Based on the simulation system, case studies can be car‐
ried out to analyze the interactions among the traffic, user,
and power grid. The proposed framework can be easily ex‐
panded to investigate other elements due to the nature of the
module design. For example, investigating the influence of
EV charging load caused by severe weather can be realized
by amending the modules and users in the proposed frame‐
work. For more specific user’s behavior, it can be modelled
by altering the driving rules in traffic module and the rules
in the vehicle parking module. The scalability cannot be easi‐
ly achieved by other methods.

IV. CASE STUDY

A. System Initialization

The simulation time duration is 86400 s (one day), and
the simulation time step is set to be 6 s. EVs account for
50% of all vehicles. In this paper, the default maximum Qmax

is set to be 200. The normalized vehicle number is the pro‐
portion of vehicle generation quantity of each hour to Qmax,
which is shown in Fig. 3 and calculated using the data from
[28]. One road length stands for 5 m in reality, which is sim‐
ilar to the length of a vehicle.

The position of the office zone is at the right side of the
second lane, and the entrance and exit of the office zone are
at 480 road lengths and 481 road lengths. The position of
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Fig. 3. Daily traffic flow and power load profile.
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the residence zone is at the same side of the office zone, and
the entrance and exit are at 720 road lengths and 721 road
lengths, respectively. The position of the commerce zone is
at the left side of the first lane, and the entrance and exit are
at 600 and 601 road lengths, respectively. Three charging sta‐
tions locate at 20%, 30%, 70% of the road lengths, the first
and third stations locate in the first lane, and the second sta‐
tion locates in the second lane. The per-hour traffic flow pro‐
file is based on the data from [28]. The typical daily traffic
flow and power load profile are shown in Fig. 3.

The initial SOC for EV are set to be:

SOCini =

ì

í

î

ï

ï
ïï

ï

ï
ïï

N(0.250.04) tÎ(00:0008:00]

N(0.950.05) tÎ(08:0010:00]

N(0.650.15) tÎ(10:0015:00]

N(0.400.10) tÎ(15:0020:00]

N(0.300.15) tÎ(20:0024:00]

(13)

where N(·) is the normal distribution.
Assume the rational drivers with the time-sensitive charg‐

ing preference are the majority. The typical ratio of three us‐
er’s preferences is 15% of speed-sensitive charging prefer‐
ence, 70% of time-sensitive charging preference and 15% of
price-sensitive charging preference. The peak electricity de‐
mand happens during 07: 00-19: 00 according to the power
load profile shown in Fig. 3. The office zone, commerce
zone and residence zone are the destinations of vehicles. The
probability of each destination is 1/3. The parking duration
of these zones are N(41.0) for office zone, N(20.3) for com‐
merce zone, and N(103.0) for residence zone.

The fast charging power and the slow charging power are
set to be 60 kW and 3.3 kW, respectively. There is no limita‐
tion on the number of charging devices, but the charging
power in a zone or charging station is limited due to the
power load profile shown in Fig. 3. Based on these initial
settings, daily EV charging loads of different zones are show
in Fig. 4.

The peak charging loads are around 19:00 p.m., which is
also the peak time of traffic flow. Since the parking duration
of residence zone is much longer than other two zones, the
parking in residence zone is inclined to use slow charging
based on the charging preference, where the commerce zone
has the maximum load fluctuation. After the initialization,
the interactions among the traffic, user, and power grid can
be investigated in the following section. The computing time
for running the simulation is 226 s.

B. Case 1: Impact on Power Grid Caused by User and
Traffic

Case 1 aims to investigate the impact on the power grid
caused by the user’s charging preferences and traffic flows.
1) Different User’s Charging Preferences

The user’s charging preference has apparent impacts on
EV charging load, while the existing method cannot simulate
the change of user’s charging preference. The different set‐
ting scenario stands for the situation for different users and
charging situations. The speed-sensitive preference mainly
happens in the business department or office.

The daily charging load in the commerce zone is consid‐
ered as an example. Three different ratios of the user’s
charging preferences, i. e., price-sensitive, time-sensitive and
speed-sensitive, are simulated to investigate the impact on
the charging load of the power grid, as shown in Fig. 5.

As shown in Fig. 5(d), the Monte Carlo method cannot
deal with different user’s charging preferences. 70% users
are speed-sensitive, which result in the highest charging load
fluctuation as shown in Fig. 5(a). The price-sensitive charg‐
ing preference leads to the most considerable charging load
fluctuation due to the change of electricity price at peak and
valley time. The time-sensitive charging preference is the
most friendly to the power grid as shown in Fig. 5(b), which
has the smallest charging load fluctuations. The maximum
charging load considering speed-sensitive users is 15% high‐
er than that of time-sensitive users. It can be seen from the
above results that the user’s charging preferences have a sig‐
nificant impact on the charging load.
2) Different Traffic Flows

Two different traffic flow scenarios are simulated in the
proposed framework and compared with the traditional Mon‐
te Carlo method. In scenario 1, Qmax is set to be 250, and in
scenario 2, it is set to be 150. Other framework parameters
are based on the initialization in Section III. The daily charg‐
ing load at the office zone is chosen to analyze the impact
on the charging load of the power grid caused by different
traffic flows, which is simulated and shown in Figs. 6 and 7.
It can be seen from Figs. 6 and 7 that the charging load in
the commerce zone of these two scenarios shares the same
trend, which is generally proportional to the traffic flow pro‐
file in Fig. 3.
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Fig. 4. Daily EV charging load of different zones. (a) Commerce zone. (b)
Office zone. (c) Residence zone.
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However, the proposed framework has a better dynamic
performance, especially when the traffic flow increases up to
the maximum flow of the road, since the proposed frame‐

work can simulate traffic jam condition as shown in Fig. 8.
When an accident happens at 16:00 p.m., the charging load
of the commerce zone gradually decreases to 0, which can‐
not be reflected in the Monte Carlo method. Monte Carlo
method describes the traffic situation as a probabilistic func‐
tion, so that it cannot deal with the chain reaction caused by
a single vehicle.

To analyze the relationship between traffic flow and charg‐
ing load, additional cases with different traffic flows are sim‐
ulated to obtain the relationship between traffic flow and
charging load.

Using the linear function to fit these two curves, the fit‐
ting polynomial equations are obtained as:

{Acl = 1.0503Qmax + 81.1771

Pcl = 2.9091Qmax + 419.6814
(15)

where Acl is the average charging load; and Pcl is the peak
charging load. The curve fitting results are shown in Table
IV, which indicates that the fitting results have a high confi‐
dence degree. The relationships among peak charging load,
average charging load, and traffic flow are approximately
proportional.

To sum up, if the traffic flow in a specific district increas‐
es, the electricity demand grows simultaneously. In this pa‐
per, the impact on the power grid, especially on the peak
charging load caused by the traffic and user, is investigated
using the proposed framework, which modularizes the behav‐
iors of the traffic, user, and power grid and can simulate the
coupling of the system precisely. Besides, the proposed
framework is beneficial for transportation planning and de‐
mand forecasting.

C. Case 2: Impact on User Caused by Power Grid and
Traffic

Case 2 investigates the impact on the user’s satisfaction
with the charging process caused by different TSCs and traf‐
fic flows. According to the previous research, user’s satisfac‐
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Fig. 6. Charging load of commerce zone by two simulation methods
(Qmax = 250).
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Fig. 7. Charging load of commerce zone by two simulation methods
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Fig. 8. Charging load of commerce zone by two simulation methods when
traffic jam happens around 16:00 p.m..

TABLE IV
CURVE FITTING RESULTS FOR (15)

Variable

Acl

Pcl

SSE

3391

32070

R-square

0.9528

0.9424

Adjusted R-square

0.9511

0.9404

RMSE

10.81

33.26

Note: SSE stands for the sum of squares for error and RMSE stands for
root mean squared error.
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tion is related to the waiting time [29], [30]. The measurable
indicator can be set as the charging overtime when the charg‐
ing duration exceeds the parking duration. Users are identi‐
fied as satisfied if the charging overtime is less than 3 min.
1) Different TSCs

By setting different TSCs of the proposed framework, the
average value and median value of charging overtime can be
obtained in Table V. Qmax is set to be 200. The EV charging
capability is determined by TSC of the power grid and the
load except EV charging, which is shown in Fig. 3.

The average overtime increases remarkably when TSC de‐
creases. However, the maximum overtime has no significant
change unless TSC is too small to satisfy the demand in Ta‐
ble V. The number of dissatisfied users gradually increases,
which results in a decrease in charging satisfaction rate. The
change of dissatisfied user between 1100 kW TSC and 1000
kW TSC since 1100 kW TSC can barely meet the demand,
but 1000 kW TSC cannot meet the demand at all. Construct‐
ing the TSC at the level of 1200 kW rather than at the level
of 1700 kW could save more than 40% investment. Howev‐
er, the user’s charging satisfaction rate decreases only by
5% and still at an acceptable high rate as shown in Table V.
The charging load profile of different TSCs in commerce
zone is shown in Fig. 9.

2) Different Traffic Flows
By setting different traffic flows of the proposed frame‐

work, the average, median, and maximum values of charging
overtime can be obtained as shown in Table VI, where TSC
is set to be 1200 kW. Besides, the user’s charging satisfac‐
tion rate increases gradually with the decline of traffic flow.
However, the charging satisfaction rate stops to elevate at
around 95.7% although the traffic flow still declines. It

means that the impact on the charging satisfaction rate
caused by traffic flow is saturated when the traffic flow is
too small to use all charging capacity. The charging load pro‐
file of different traffic flows with 1000 kW TSC in com‐
merce zone is shown in Fig. 10. When Qmax drops to 50,
TSC cannot restrict the charging load, i.e., TSC does not af‐
fect the user’s charging satisfaction rate.

In general, increasing TSC or reducing the traffic flow
can boost the user’s charging satisfaction rate. More than
40% designed TSC can be saved by using the proposed
framework to simulate the user’s satisfaction rate as well as
the investment.

V. CONCLUSION

We propose a framework for EV based on CA to investi‐
gate the interactions among the traffic, user, and power grid.
The proposed framework lays the theoretical and modelling
foundation for analyzing the complex interactions among the
three elements. Based on the developed framework, the re‐
sults from two case studies have been presented, which
show that the user’s charging preferences have significant
impact on the charging load, e. g., more than 15% of the
charging load fluctuations. Meanwhile, the traffic flow has a
nearly proportional relationship with the average and peak
values of the charging load. Case 2 shows that increasing
TSC or reducing the traffic flow has the promotion effect on
the user’s charging satisfaction. However, the relationship
between the user’s charging satisfaction and traffic flow or
TSC is nonlinear, which is similar to a hyperbolic function.
By using the proposed framework, the user’s satisfaction
with different traffic flows under different power grid condi‐
tions can be investigated.

One of the future research directions is to consider the de‐

TABLE V
USER’S CHARGING OVERTIME IN DIFFERENT TSCS WITH 200

VEHICLES PER HOUR

TSC
(kW)

1700

1600

1500

1400

1300

1200

1100

1000

Average
overtime (s)

185

191

195

208

223

264

311

998

Maximum
overtime (s)

9985

9873

9896

10015

11268

11853

10391

38448

Median
overtime (s)

3.29

3.34

3.38

3.38

3.41

3.42

3.46

3.80

Charging
satisfaction rate (%)

96.1

94.7

93.7

93.1

93.0

91.2

88.9

81.9
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Fig. 9. Charging load profile of different TSCs in commerce zone.

TABLE VI
USER’S CHARGING OVERTIME IN DIFFERENT TRAFFIC FLOW

WITH 1200 KW TSC

Traffic
flow

200

170

140

110

80

50

Average
overtime (s)

264

249

234

188

185

170

Maximum
overtime (s)

11853

10026

10299

10081

10266

10127

Median
overtime (s)

3.41

3.37

3.36

3.24

3.19

3.14

Charging
satisfaction rate (%)

91.2

92.5

92.8

94.7

95.7

95.7
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Fig. 10. Charging load profile of different traffic flows with 1000 kW
TSC in commerce zone.
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tailed topology of traffic and power grid. The traffic module
can be further extended by combining with the geographic
information system to simulate a more diversified traffic situ‐
ation.
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