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A NOTE ON COLOR-BIAS HAMILTON CYCLES IN DENSE
GRAPHS∗

ANDREA FRESCHI† , JOSEPH HYDE† , JOANNA LADA‡ , AND ANDREW TREGLOWN†

Abstract. Balogh, Csaba, Jing, and Pluhár [Electron. J. Combin., 27 (2020)] recently deter-
mined the minimum degree threshold that ensures a 2-colored graph G contains a Hamilton cycle
of significant color bias (i.e., a Hamilton cycle that contains significantly more than half of its edges
in one color). In this short note we extend this result, determining the corresponding threshold for
r-colorings.
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AMS subject classifications. 05C35, 05C45, 05C15, 05C55

DOI. 10.1137/20M1378983

1. Introduction. The study of color-biased structures in graphs concerns the
following problem. Given graphs H and G, what is the largest t such that in any
r-coloring of the edges of G, there is always a copy of H in G that has at least t edges
of the same color? Note if H is a subgraph of G, one can trivially ensure a copy of H
with at least |E(H)|/r edges of the same color, so one is interested in when one can
achieve a color-bias significantly above this.

The topic was first raised by Erdős in the 1960s (see [4, 6]). Erdős et al. [5]
proved the following: for some constant c > 0, given any 2-coloring of the edges of
Kn and any fixed spanning tree Tn with maximum degree ∆, Kn contains a copy
of Tn such that at least (n − 1)/2 + c(n − 1 − ∆) edges of this copy of Tn receive
the same color. In [1], Balogh et al. investigated the color-bias problem in the case
of spanning trees, paths, and Hamilton cycles for various classes of graphs G. Note
all their results concern 2-colorings and therefore were expressed in the equivalent
language of graph discrepancy. The following result determines the minimum degree
threshold for forcing a Hamilton cycle of significant color-bias in a 2-edge-colored
graph.

Theorem 1.1 (Balogh et al. [1]). Let 0 < c < 1/4 and n ∈ N be sufficiently
large. If G is an n-vertex graph with

δ(G) ≥ (3/4 + c)n,

then given any 2-coloring of E(G) there is a Hamilton cycle in G with at least (1/2 +
c/64)n edges of the same color. Moreover, if 4 divides n, there is an n-vertex graph
G′ with δ(G′) = 3n/4 and a 2-coloring of E(G′) for which every Hamilton cycle in
G′ has precisely n/2 edges in each color.

In [7], Gishboliner, Krivelevich, and Michaeli considered color-bias Hamilton cy-
cles in the random graph G(n, p). Roughly speaking, their result states that if p is
such that with high probability (w.h.p.) G(n, p) has a Hamilton cycle, then in fact
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COLOR-BIAS HAMILTON CYCLES IN DENSE GRAPHS 971

w.h.p., given any r-coloring of the edges of G(n, p), one can guarantee a Hamilton
cycle that is essentially as color-bias as possible (see [7, Theorem 1.1] for the pre-
cise statement). A discrepancy (therefore color-bias) version of the Hajnal–Szemerédi
theorem was proven in [2].

In this paper we give a very short proof of the following multicolor generalization
of Theorem 1.1. We require the following definition to state it.

Definition 1.2. Let t, r ∈ N and H be a graph. We say that an r-coloring of the
edges of H is t-unbalanced if at least |E(H)|/r + t edges are colored with the same
color.

Theorem 1.3. Let n, r, d ∈ N with r ≥ 2. Let G be an n-vertex graph with
δ(G) ≥ ( 1

2+ 1
2r )n+6dr2. Then for every r-coloring of E(G) there exists a d-unbalanced

Hamilton cycle in G.

Note that n, r, and d may all be comparable in size. Further, Theorem 1.3 implies
Theorem 1.1 with a slightly better bound on the color-bias. In the following section we
give constructions that show Theorem 1.3 is best possible; that is, there are n-vertex
graphs G with minimum degree δ(G) = (1/2 + 1/2r)n such that for some r-coloring
of E(G), every Hamilton cycle in G uses precisely n/r edges of each color. The proof
of Theorem 1.3 is constructive, producing the d-unbalanced Hamilton cycle in time
polynomial in n.

Remark. After making our manuscript available online, we learned of simultane-
ous and independent work of Gishboliner, Krivelevich, and Michaeli [8]. They prove
an asymptotic version of Theorem 1.3 (i.e., for sufficiently large graphs G) via Sze-
merédi’s regularity lemma. They also generalize a number of the results from [1].

2. The extremal constructions. Our first extremal example is a generaliza-
tion of a 2-color construction from [1].

Extremal Example 1. Let r, n ∈ N where r ≥ 2 and such that 2r divides n.
Then there exists a graph G on n vertices with δ(G) = ( 1

2 + 1
2r )n, and an r-coloring

of E(G), such that every Hamilton cycle uses precisely n/r edges of each color.

Proof. The vertex set of G is partitioned into r sets V1, . . . , Vr such that |V1| =
· · · = |Vr−1| = n/2r, and |Vr| = (r + 1)n/2r; the edge set of G consists of all edges
with at least one endpoint in Vr. Now color the edges of G with colors 1, . . . , r as
follows:

• For each i ∈ [r−1], color every edge with one endpoint in Vi and one endpoint
in Vr with color i.

• Color every edge with both endpoints in Vr with color r (see Figure 1).
Observe that δ(G) = (1

2 + 1
2r )n, which is attained by every vertex in V1∪· · ·∪Vr−1.

For each i ∈ [r− 1], every vertex in Vi is only adjacent to edges of color i, |Vi| = n/2r
and E(G[V1∪· · ·∪Vr−1]) = ∅. Hence every Hamilton cycle in G must contain precisely
n/r edges of each color i ∈ [r−1]. Since a Hamilton cycle has n edges, every Hamilton
cycle in G must also contain n/r edges of color r. Thus every Hamilton cycle in G
uses precisely n/r edges of each color.

We also have an additional extremal example in the r = 3 case.

Extremal Example 2. Let n ∈ N such that 3 divides n. Then there exists a
graph G on n vertices with δ(G) = 2n/3, and a 3-coloring of E(G), such that every
Hamilton cycle uses precisely n/3 edges of each color and every vertex in G is incident
to precisely two colors.

D
ow

nl
oa

de
d 

05
/1

2/
21

 to
 1

47
.1

88
.2

16
.5

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

972 A. FRESCHI, J. HYDE, J. LADA, AND A. TREGLOWN

Fig. 1. Extremal Example 1 for r = 3.

Proof. Let G be the n-vertex 3-partite Turán graph. So G consists of three vertex
sets V1, V2, and V3, such that |V1| = |V2| = |V3| = n/3, and all possible edges that go
between distinct Vi and Vj . Color all edges between V1 and V2 red, all edges between
V2 and V3 blue, and all edges between V3 and V1 green.

Clearly δ(G) = 2n/3 and every vertex is incident to precisely two colors. Let H
be a Hamilton cycle in G and let r, b, and g be the number of red, blue, and green
edges in H, respectively. Since all red and green edges in H are incident to vertices
in V1, |V1| = n/3 and V1 is an independent set, we must have that 2n/3 = r + g.
Applying similar reasoning to V2 and V3, we have that 2n/3 = b+r and 2n/3 = g+ b.
Hence r = b = g = n/3. Thus every Hamilton cycle in G uses precisely n/3 edges of
each color.

3. Proof of Theorem 1.3. As in [1], we require the following generalisation of
Dirac’s theorem.

Lemma 3.1 (Pósa [9]). Let 1 ≤ t ≤ n/2, G be an n-vertex graph with δ(G) ≥ n
2 +t

and E′ be a set of edges of a linear forest in G with |E′| ≤ 2t. Then there is a Hamilton
cycle in G containing E′.

Proof of Theorem 1.3. Recall that G is a graph on n vertices with δ(G) ≥ ( 1
2 +

1
2r )n + 6dr2 for some integers r ≥ 2 and d ≥ 1. Consider any r-coloring of E(G).
Given a color c we define the function Lc : E(G)→ {0, 1} as follows:

Lc(e) :=

{
1 if e is colored with c,

0 otherwise.

Given a triangle xyz and a color c, we define Netc(xyz, xy) as follows:

Netc(xyz, xy) := Lc(xz) + Lc(yz)− Lc(xy).
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COLOR-BIAS HAMILTON CYCLES IN DENSE GRAPHS 973

This quantity comes from an operation we will perform later where we extend a cycle
H by a vertex z via deleting the edge xy from H and adding the edges xz and yz, to
form a new cycle H ′. One can see that Netc(xyz, xy) is the change in the number of
edges of color c from H to H ′.

Since δ(G) ≥ 1
2n, by Dirac’s theorem, G contains a Hamilton cycle C. If C

is d-unbalanced we are done, so suppose it is not. Let v ∈ V (G). Since d(v) ≥
( 1
2 + 1

2r )n+ 6dr2, there are at least n
r + 12dr2 edges e in C such that v and e span a

triangle.
This can be seen in the following way. Let X be the set of neighbors of v and X+

be the set of vertices whose “predecessors” on C are neighbors of v, having arbitrarily
chosen an orientation for C. We have

n ≥ |X ∪X+| = |X|+ |X+| − |X ∩X+| ≥ n+
n

r
+ 12dr2 − |X ∩X+|.

Hence |X ∩ X+| ≥ n
r + 12dr2. Clearly each element in X ∩ X+ yields a triangle

containing v, thus giving the desired bound.
This property, together with the fact that C is not d-unbalanced (so contains

fewer than n/r + d edges of each color) immediately implies the following.

Fact 3.2. Let v ∈ V (G), Y ⊆ V (G) with |Y | ≤ 5dr2, and xy be any edge in G
that forms a triangle with v and is disjoint to Y .1 Then there is an edge zw on C
vertex-disjoint to xy, and distinct colors c1 and c2 such that vzw induces a triangle,
xy has color c1, zw has color c2, and z, w 6∈ Y .

Initially set A := ∅. Consider an arbitrary v ∈ V (G) and let x, y, z, w, c1, c2 be
as in Fact 3.2 (where Y := ∅), where xy is chosen to be an edge of C that forms a
triangle with v.

If there exists a color c such that Netc(vxy, xy) 6= Netc(vzw, zw), then add the
pair (xy, zw) to the set A, and define v1 := v. If there is no such color, then we must
have that Netc1(vxy, xy) = Netc1(vzw, zw) and so

Lc1(vx) + Lc1(vy)− Lc1(xy) = Lc1(vw) + Lc1(vz)− Lc1(wz),

Lc1(vx) + Lc1(vy)− 1 = Lc1(vw) + Lc1(vz) ≥ 0,

as xy has color c1, wz has color c2 and c1 6= c2. Hence vx or vy is colored with c1.
Without loss of generality, let vx be colored with c1. By the same argument with
color c2, we may assume that, without loss of generality, vw is colored c2. Let c3 be
the color of vy. Then Netc3(vxy, xy) = Netc3(vzw, zw) and so

Lc3(vx) + Lc3(vy)− Lc3(xy) = Lc3(vw) + Lc3(vz)− Lc3(wz),

1 = Lc3(vz),

as vx and xy are both colored with c1 and vw and wz are both colored with c2. Hence
c3 is also the color of vz (see Figure 2). Since c1 6= c2, we may assume, without loss
of generality, c1 6= c3.

Now we apply Fact 3.2 with x playing the role of v, vy playing the role of xy, and
Y = ∅. We thus obtain a color c4 6= c3 and an edge w′z′ on C that is vertex-disjoint
from vy, so that w′z′ forms a triangle with x, and w′z′ is colored c4. Note that by
construction Netc3(xvy, vy) = −1 while, as c4 6= c3, by definition Netc3(xw′z′, w′z′) =
Lc3(xw′)+Lc3(xz′)−0 ≥ 0. In this case we define v1 := x and add the pair (vy, w′z′)
to A.

1Note sometimes in an application of this fact, xy will be an edge of C, but other times not.
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974 A. FRESCHI, J. HYDE, J. LADA, AND A. TREGLOWN

Fig. 2. A Hamilton cycle C for G. There is no color c with Netc(vxy, xy) 6= Netc(vzw, zw)
implying the color arrangement above.

Repeated applications of this argument thus yield sets B := {v1, v2, . . . , vdr2} and
a set A whose elements are pairs of edges from G so that

• all vertices lying in B and in edges in pairs from A are vertex-disjoint,
• for each u = vi in B there is a pair (xy, zw) ∈ A associated with u, and a

color cu so that (i) uxy and uzw are triangles in G, (ii) Netcu(uxy, xy) 6=
Netcu(uzw, zw). We call cu the color associated with u.

Note that it is for the first of these two conditions that we require the set Y in Fact 3.2.
At a given step of our argument, Y will be the set of vertices that have previously
been added to B or lie in an edge previously selected for inclusion in a pair from A.

There is some color c∗ for which c∗ is the color associated with (at least) dr of the
vertices in B. Let B′ denote the set of such vertices of B; without loss of generality we
may assume B′ = {v1, v2, . . . , vdr}. Let A′ denote the subset of A that corresponds
to B′. For each i ∈ [dr], let (xiyi, ziwi) denote the element of A′ associated with vi.
We may assume that for each i ∈ [dr],

Netc∗(vixiyi, xiyi) > Netc∗(viziwi, ziwi).(1)

Consider the induced subgraph G′ of G obtained from G by removing the vertices
from B′. Let E′ be the set of all edges which appear in some pair in A′. As δ(G′) ≥
n/2+dr, Lemma 3.1 implies that there exists a Hamilton cycle C ′ in G′ which contains
E′. Let C1 be the Hamilton cycle of G obtained from C ′ by inserting each vi from B′

between xi and yi; let C2 be the Hamilton cycle of G obtained from C ′ by inserting
each vi from B′ between zi and wi. For j = 1, 2, write Ej for the number of edges in
Cj of color c∗. Note that (1) implies that E1 − E2 ≥ dr. It is easy to see that this
implies one of C1 and C2 contains at least n/r + d edges in the same color,2 thereby
completing the proof.

4. Concluding remarks. As mentioned in [5, section 7] there are many possible
directions for future research. One natural extension of our work is to seek an analogue
of Theorem 1.3 in the setting of digraphs.

2This color may not necessarily be c∗.
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Question 4.1. Given any digraph G on n vertices with minimum in- and outde-
gree at least (1/2 + 1/2r+ o(1))n, and any r-coloring of E(G), can one always ensure
a Hamilton cycle in G of significant color-bias?

Note that the natural digraph analogues of our extremal constructions for Theo-
rem 1.3 show that one cannot lower the minimum degree condition in Question 4.1.

Given an r-colored n-vertex graph G and nonnegative integers d1, . . . , dr, we say
that G contains a (d1, . . . , dr)-colored Hamilton cycle if there is a Hamilton cycle in
G with precisely di edges of the ith color (for every i ∈ [r]). Note that the proof of
Theorem 1.3 (more precisely (1)) ensures that given a graph G as in the theorem,
one can obtain at least dr distinct vectors (d1, . . . , dr) such that G has a (d1, . . . , dr)-
colored Hamilton cycle. It would be interesting to investigate this problem further.
That is, given an r-colored n-vertex graph G of a given minimum degree, how many
distinct vectors (d1, . . . , dr) can we guarantee so that G contains a (d1, . . . , dr)-colored
Hamilton cycle?

In [2], the question of determining the minimum degree threshold that ensures
a color-bias kth power of a Hamilton cycle was raised; it would be interesting to
establish whether a variant of the switching method from the proof of Theorem 1.3
can be used to resolve this problem (for all k ≥ 2 and r-colorings where r ≥ 2).

Remark. Since a version of this paper first appeared online, Bradač [3] has used
the regularity method to resolve this problem asymptotically for all k ≥ 2 when r = 2.

Acknowledgment. The authors are grateful to the referee for their careful re-
view.
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