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Non-elitist Evolutionary Algorithms Excel in

Fitness Landscapes with Sparse Deceptive Regions

and Dense Valleys*

Duc-Cuong Dang�, Anton Eremeev�, Per Kristian Lehre§

May 5, 2021

Abstract

It is largely unknown how the runtime of evolutionary algorithms
depends on fitness landscape characteristics for broad classes of problems.
Runtime guarantees for complex and multi-modal problems where EAs
are typically applied are rarely available.

We present a parameterised problem class SparseLocalOptα,ε, where
the class with parameters α, ε ∈ [0, 1] contains all fitness landscapes with
deceptive regions of sparsity ε and fitness valleys of density α. We study
how the runtime of EAs depends on these fitness landscape parameters.

We find that for any constant density and sparsity α, ε ∈ (0, 1),
SparseLocalOptα,ε has exponential elitist (µ+ λ) black-box complexity,
implying that a wide range of elitist EAs fail even for mildly deceptive and
multi-modal landscapes. In contrast, we derive a set of sufficient conditions
for non-elitist EAs to optimise any problem in SparseLocalOptα,ε in
expected polynomial time for broad values of α and ε. These conditions
can be satisfied for tournament selection and linear ranking selection, but
not for (µ, λ)-selection.

1 Introduction

Non-elitist evolutionary algorithms (EAs) have been proved to be competitive
with the elitist ones on a variety of benchmark functions Corus et al. (2018);
Dang and Lehre (2016a), and to perform well in complex settings such as under
incomplete information of the objective function Dang and Lehre (2016a), under
noise Dang and Lehre (2015) or in dynamic optimisation Dang et al. (2017). Yet
it remains an open question whether a pure non-elitist EA on some significant
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problem classes can efficiently escape a local optima region once the latter has
been discovered. This is a fundamental question as non-elitism means the ability
to at some point during the search forget some good solutions, albeit local
optima, in favour of exploration. Showing rigorously that a non-elitist EA can
escape a local optimum while elitist EAs get stuck has been a fundamental open
problem in evolutionary computation. In the rest of the section, we will discuss
the previous studies that are related to this open problem and describe the
contribution of this paper.

1.1 Previous Work

It was shown in Rudolph (1996) that the use of bit-wise mutation is crucial
for the (1+1) EA, in contrast to the fixed mutation of the Randomised Local
Search (RLS), to find the global/local optimum of the LongPath function in
expected polynomial time. Later, it was shown in Droste et al. (1998) that
even the (1+1) EA requires a super-polynomial time to optimise the modified
function LongPath√n.

Crossover has been a long-time suggested operator that allows faster escaping
from local optima Horn et al. (1994). Using Jump as the benchmark function
where the performance of mutation-only EAs is restricted to Ω(nk) with k
being the Hamming distance from the global optimum from the local optima,
in Dang et al. (2018) it was shown that the interplay between mutation and
crossover operators can increase the diversity of the population in (µ+1) EA,
hence enabling the algorithm to leave the local optima in a shorter time. An
Ω(
√
n) speed-up in the overall expected runtime is proved for the standard

mutation rate 1/n, and it is increased to Ω(n) with mutation rate 2/n. In
the same line of research, it was shown in Dang et al. (2016) that artificially
enforcing population diversity with common mechanisms found in Evolutionary
Computing (EC) literature enables the (µ+1) EA to escape the local optima
faster and hence optimise Jump efficiently. Similar arguments relying on the
impact of various operators found in EC, e.g. ageing, tabu, hypermutation, to
population diversity allowed the local performance proofs of these operators
Oliveto et al. (2019); Sudholt (2011); Zarges (2011).

Like the theoretical studies of elitist EAs, the research on the local per-
formance of non-elitist EAs started with simple populations that consist of
a single individual. Popular algorithms in this category are Metropolis, and
Simulated Annealing (SA). It was shown Hajek (1988) that the convergence
of SA to the global optimum depends on the temperature schedule and on the
depth of the deepest local optimum which is not the global one. It was also
proved Wegener (2005) that SA can beat Metropolis on a class of minimum
spanning tree instances.

The (1, λ) EA was compared with the (1+λ) EA on the Cliff function
in Jägerskupper and Storch (2007), where the (1, λ) EA is proved to outperform
the (1 + λ) EA when lambda is logarithmic in n. However, the (1, λ) EA with
smaller λ is shown to be inefficient on any pseudo-Boolean function with a unique
optimum.
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More recently, the scheme of Strong Selection Weak Mutation (SSWM), which
is well-studied in Population Genetics, was introduced as a search algorithm for
EC in Paixão et al. (2017). The authors proved a speed-up of eΩ(d) of SSWM
over the base expected runtime Θ(nd) of the (1+1) EA on the Cliff function,
here d is both the height of the local optima and the distance from them to the
global optimum.

The elitist (µ+λ)-black-box model introduced in Doerr and Lengler (2016)
was used to study inherent performance limits of EAs using (certain) elitist
selection mechanisms. The model covers any algorithm which bases its decisions
solely on the µ best found solutions found so far. It was shown that some
problem-tailored, non-elitist EAs can optimise efficiently some problem classes
which have exponential elitist black-box complexity. However, these tailored
EAs are unlikely to perform well on other problem classes, so Doerr and Lengler
(2016) does not answer whether standard non-elitist EAs can outperform elitist
EAs.

Based on the construction of LongPath, the ValleyPath function was
introduced in Oliveto et al. (2018). It was shown that the non-elitist algorithms
with population of size 1, such as the SSWM and Metropolis, are able to cross a
valley of deceptive fitness, and their ability to escape the current local optimum
depends on the depth of the valley. This is in contrast to the (1+1) EA in which
case the ability to escape crucially depends on the width of the valley.

In the experimental analysis of meta-heuristics, also a lot of attention has
been given to the relationship between the structure of the fitness landscape
and the performance of EAs (see e.g. Herrmann (2016); Reeves and Eremeev
(2004)), especially the ones with a population of a single individual, elitist and
non-elitist. In particular, in Thomson et al. (2017) it was demonstrated that
the presence of multiple sub-optimal funnels in fitness landscapes contributes to
lower success for Randomised Local Search and SA.

Related to our work, a simple modification of the LeadingOnes function
was studied in Dang and Lehre (2016b), where a single peak/local optimum
at height m is placed at the all zeroes bitstring. Under the assumption of
the initial population on the peak, a normal (µ+λ) EA obviously needs eΩ(m)

expected evaluations to optimise the function. On the other hand, the (µ, λ) EA
with two possibilities of mutation parameter embedded and co-evolving with
each individual is shown to optimise the function in O

(
nλ log λ+ n2

)
expected

evaluations. Furthermore, the same framework of self-adaption for non-elitist
populations has been also adopted in Case and Lehre (2020) to include more
possibilities for the mutation parameter, allowing the handling of optimisation
problems with unknown solution length efficiently.

A common feature of such positive results for the non-elitist EAs is that the
mutation rate has to be set below but pretty close to a known limit, above which
they are inefficient in optimising functions with unique optimum Lehre (2010).
This limit, called the error threshold, is studied in both evolutionary computing
Doerr (2020); Lehre (2010, 2011), population genetics Wilke (2005), and virology
Biebricher and Eigen (2005). The experimental results in Dang et al. (2021)
have also indicated that setting the mutation rate close to the error threshold
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allows the EAs with tournament selection to succeed on some benchmarks of
the Set Cover problem.

In contrast to the upper bounds on runtime of the non-elitist EAs Corus
et al. (2018); Lehre (2011); Dang and Lehre (2016b), the tight analysis of the
(µ, λ) EA runtime on Jump, obtained in Doerr (2020), indicates that there is no
benefit of the non-elitist comma selection with any setting of mutation rate on
this function with multiple local optima.

The first exponential separation between the elitist (µ+λ) EA and a non-
elitist, population-based EA was shown for the Funnel problem Dang et al.
(2021). This result holds for 3-tournament selection, and contrasts the conclu-
sions from Doerr (2020), indicating that results for (µ, λ)-selection cannot be
extrapolated to other non-elitist selection mechanisms. In fact, it was shown
in Dang et al. (2021) that the non-elitist (µ,λ)-EA has exponential expected
runtime on Funnel, assuming that the µ best individuals of the initial popu-
lation are in the basin of attraction of a local optimum and close to it. The
(µ,λ) EA considered in the last negative result is indeed a non-elitist algorithm,
except that the comma selection is used instead of tournament or linear ranking
selection. The intuition to the difference between (µ, λ)-selection and non-elitist
selection mechanisms like tournament selection comes from the following differ-
ence in selection probabilities. Let P be a population of size λ and sorted in a
descending order according to fitness, and define β(γ, P ) to be the probability
of selecting an individual at least as good as the dγλe-ranked individual of P ,
see e.g. Lehre (2011). In the case of (µ, λ)-selection, before reaching 1.0, β(γ, P )
is essentially linear Lehre (2011): β(γ, P ) = γλ/µ if γ ≤ µ/λ. The advantage
that tournament has over the comma selection is the non-linearity of its β(γ, P ),
namely β(γ, P ) = 1− (1− γ)k, Lehre (2011) where k is the tournament size.

Indeed, let us make a simplistic assumption that p0 is a constant representing
the probability of making copies of some high quality solution x, which could be
a promising new incumbent or just a local optimum causing a stagnation, and
assume that a γ-fraction of the population are copies of x. If x is a promising
new incumbent, we want this fraction to grow, which requires that β(γ, P )p0 > γ
when γ is small. If x is just a local optimum, we also want the fraction to not
grow too large so that the remaining part of the population has some chance
to reproduce, this requires β(γ, P )p0 < γ when γ is too large. It is easy to see
that within the co-domain [0, 1) the β(γ, P ) mentioned above for tournament
selection can display both properties: it can be set to stay above the function
f(γ) = γ/p0 up to some point, then afterwards to move below f . The linear
function of comma selection on the other hand can only display either one of
the two properties.

1.2 Contributions of this Paper

We study how the runtime of evolutionary algorithms depend on properties of the
fitness landscape Wright (1932); Stadler (2002). We classify fitness landscapes
based on the sparsity of deceptive regions (“local optima”) and the density of
surrounding “fitness valleys” (see Defs. 1 and 2).
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For any parameters α, ε ∈ [0, 1] and fitness function f , we say that f belongs
to the problem class SparseLocalOptα,ε if all its deceptive regions are ε-sparse,
and all its fitness valleys are α-dense (Definition 4). Thus, the parameters induce
a problem hierarchy: whenever 0 ≤ α′ ≤ α ≤ 1 and 0 ≤ ε ≤ ε′ ≤ 1,

SparseLocalOptα,ε ⊆ SparseLocalOptα′,ε′ .

Intuitively, increasing the parameter ε relaxes the sparsity requirement for the
deceptive regions, and decreasing the parameter α relaxes the density requirement
on the fitness valleys. In the limit when α = 0 and ε = 1, the problem class
contains almost any function (barring a technical condition (SP2) from Def. 2).
In the other limit, when α = 1 and ε = 0, the class contains only completely
non-deceptive problems, such as OneMax and LeadingOnes.

We prove the following runtime results with respect to this classification:

� SparseLocalOptα,ε has an exponential elitist black box complexity (in the
sense of Doerr and Lengler (2016)) for any constant levels of denseness α and
sparsity ε, which we demonstrate on the BBFunnel problem sub-class. This
negative result (Theorem 8) implies that a large set of elitist EAs, including
those with one-point, bit-wise or heavy-tailed mutation, crossover etc. are
inefficient on problems with even mild degrees of deception.

� Standard diversity mechanisms do not help the elitist (µ+1) GA optimise
BBFunnel efficiently (Theorem 9).

� Non-elitist EAs with bit-wise mutation have expected polynomial runtime on
SparseLocalOptα,ε, given the appropriate values of α, ε, and selection and
mutation parameters (Theorem 11). In particular, this applies to EAs with
3-tournament selection and linear ranking selection.

� The non-elitist (µ,λ) EA has an exponential expected runtime on the BBFunnel
problem, assuming the standard initialisation of the EA population (Theo-
rem 14). This standard assumption improves the negative result on (µ,λ) EA
from Dang et al. (2021).

2 Preliminaries

The natural and base-2 logarithms are denoted ln(·), and log(·) respectively. N is
the set of natural numbers. For any n ∈ N, define [n] := {1, . . . , n}. The Iverson
bracket is denoted by [·]. The Hamming distance is denoted by H(·, ·). The
Hamming sphere with radius r ∈ [n] around a bitstring x ∈ {0, 1}n is defined by
Sr(x) := {y ∈ {0, 1}n | H(x, y) = r} . Clearly, |Sr(x)| =

(
n
r

)
.

Given a partition of a search space X into m ordered “levels” (A1, . . . , Am),
we define A≥j := ∪mi=jAi.

Given two bitstrings x and y, we let x · y and xy denote the concatenated
bitstrings.
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A simple path is any sequence of bitstrings x1, . . . , x` ∈ {0, 1}m, where for
all i, j ∈ [`], if xi = xj then i = j (i. e. uniqueness of each string), and for every
i ∈ [`− 1], H(xi, xi+1) = 1 (i. e. consecutively separated by a Hamming distance
of 1) (Droste et al., 2006). Clearly, simple paths contain no cycles.

Some definitions use the standard pseudo-Boolean functions OneMax(x) :=

Om(x) :=
∑n
i=1 xi, and y, Loy(x) :=

∑n
i=1

∏i
j [xj = yj ] for a bitstring y.

For an event E and random variable X, we use the notation E [X;E] :=
E [X1E ], using the random variable 1E(ω) := [ω ∈ E] (see e.g. Section 6.3 in
Williams (1991)).

A population is a vector P ∈ X λ, the i-th individual of P is denoted P (i).
Given x ∈ X , define H(x, P ) := minj∈[|P |]{H(P (j), x)}, and for A ⊆ X , we let
|P ∩A| := |{i | P (i) ∈ A}|, i. e. the number of individuals of P belonging to A.

All non-elitist EAs with unary variation operators can be cast in the frame-
work of Algorithm 1 Dang and Lehre (2016a). A new population Pt+1 is
generated by independently sampling λ individuals from an existing population
Pt according to a selection mechanism psel, then by perturbing each of the
selected individuals with a unary variation operator pmut. The algorithm in
turn is a special case of a more general framework of Algorithm 2, for which the
level-based theorem Corus et al. (2018) was developed. To prove the positive
result in this paper, we derive a variant of that theorem, i. e. see Theorem 10.

We will characterise selection mechanisms in the following way. If the
individuals in a population P are ordered by decreasing fitness such that that
f(P (1)) ≥ f(P (2)) ≥ · · · ≥ f(P (λ)), then β(ψ, γ, P ) where 0 ≤ ψ ≤ γ ≤ 1 is the
probability that the selection mechanism chooses an individual ranked between
dψλe and dγλe in the population. We omit the symbol P from the notation
when the population is clear from the context. Note also that the 2-argument
variant of the definition of β, such as the one used in Lehre (2011) or in our
introduction, is the special case of the above notation with ψ = 0.

Algorithm 1 Non-elitist EA with unary variation operator Dang and Lehre
(2016a)

Require: Initial population P0 ∈ X λ where X = {0, 1}n, and a mutation rate
parameter χ ∈ [0, n].

1: for t ∈ N until a termination cond. is met do
2: for i = 1 to λ do
3: Sample It(i) ∼ psel(Pt), and set x := Pt(It(i)).
4: Sample x′ ∼ pmut(x, χ), and set Pt+1(i) := x′.
5: end for
6: end for

In k-tournament selection, psel returns argmaxi∈S f(Pt(i)) where S is a set
of k random numbers is drawn independently and uniformly from [λ]. The
corresponding β is non-linear, with β(γ1, γ2) = (1− γ1)k − (1− γ2)k. In (µ, λ)-
selection (comma-selection), the set of indices S = [λ] is first sorted according to
fitness, then psel returns S[i] where i ∼ Unif([µ]). In this case, before reaching 1.0,

6



Algorithm 2 Population-based algorithm Corus et al. (2018).

Require: A finite state space X , and population size λ ∈ N,
a mapping D from X λ to the space of prob. dist. over X ,
and an initial population P0 ∈ X λ.

1: for t = 0, 1, 2, . . . until termination condition met do
2: Sample Pt+1(i) ∼ D(Pt) independently for all i ∈ [λ].
3: end for

Algorithm 3 (µ+ λ) elitist black-box algorithm Doerr and Lengler (2016), f is
unknown.

1: P0 ← ∅
2: for i ∈ [µ] do
3: Depending only on the multiset P0 and the ranking ρ(P0, f) of P0 induced

by f , choose a probability distribution p(i) over {0, 1}n and sample x(i)

according to p(i)

4: P0 ← P0 ∪ {x(i)}
5: end for
6: for t = 0, 1, 2, . . . do
7: Depending only on the multiset Pt and the ranking ρ(Pt, f) of Pt induced

by f choose a probability distribution p(t) on ({0, 1}n)λi=1 and sample
(y(1), . . . , y(λ)) according to p(t)

8: Pt+1 ← Pt ∪ {y(1), . . . , y(λ)}
9: for i ∈ [λ] do

10: Select x ∈ argmin f (Pt+1) and update Pt+1 ← Pt+1 \ {x}
11: end for
12: end for

β is a linear function Lehre (2011) satisfying β(ψ,ψ+γ) = γλ/µ if (ψ+γ) ≤ µ/λ.
Linear ranking selection (Corollary 13) is defined in Goldberg and Deb (1991).

We consider the standard bitwise mutation operator as pmut and it is config-
ured by a parameter χ ∈ (0, n/2] so that for any pair of bitstrings x, x′ ∈ {0, 1}n,

the probability of obtaining x′ from x is Pr (x′ = pmut(x, χ)) = (χ/n)
H(x,x′)

(1− χ/n)
n−H(x,x′)

.
The elitist black-box model Doerr and Lengler (2016) covers all algorithms

with the outline of Algorithm 3. The initial µ search points may be sampled
adaptively, i.e. the i-th sample may depend on the ranking of the first i − 1
samples w. r. t. f . In each of the main iterations, this algorithm samples λ new
search points from distributions that depend only on the current population Pt
and the ranking of it. In each of these iterations, the λ offspring do not need to
be independent of each other. However, it is required that all of the λ offspring
are created before the fitness of any of them is evaluated.

Given a class F of pseudo-Boolean functions, the complexity of an algorithm A
for this class is the maximum expected number of fitness evaluations made by
A, before it evaluates an optimal solution for the first time, where the maximum
is taken over all fitness functions f ∈ F . The (µ+λ) elitist black-box complexity
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of a class F is the minimum complexity, taken over all (µ+λ) elitist black-box
algorithms A with the outline of the Algorithm 3.

In the elitist (µ+λ) EA (which is a special case of Algorithm 3), a new
offspring population P is created by selecting uniformly those from Pt and
perturbing them with pmut. The surviving population Pt+1 of the next generation
then composes of the µ best individuals among both parent and offspring
populations Pt ∪ P .

3 Problems with Sparse Optima and Dense Fit-
ness Valleys

We introduce a class of fitness landscapes SparseLocalOptα,ε which we claim
separates elitist from non-elitist evolutionary algorithms. The class contains all
functions which satisfy the following requirements. We first require that from
any point in the search space, there must exist a not too long directed path to
the global optimum, where consecutive steps on the path are near each other in
the search space. Along any path, we distinguish between “deceptive regions”
and “fitness valleys”. Any region of the path with higher fitness than a later
part of the path is called deceptive. Conversely, any region with lower fitness
than an earlier part of the path is called a fitness valley. We only impose the
constraint that deceptive regions must be sparse, while fitness valleys must be
dense. Informally, a set is called dense if every member of the set has many
neighbours in that set, and a set is called sparse if there are few set members
in any direction. (In the following definitions, recall that Sr(x) refers to the
Hamming-sphere of radius r around bitstring x, as defined in Section 2.)

Definition 1. For α ∈ [0, 1], a subset C ⊆ {0, 1}n is called α-dense if ∀x ∈ C, |S1(x) ∩ C| ≥
αn.

Definition 2. For ε ∈ [0, 1], a subset B ⊆ {0, 1}n is ε-sparse if

(SP1) ∀x ∈ B, ∀r ∈ [n], |Sr(x) ∩B| ≤ ε ·
(
n
r

)
, and

(SP2) ∀x ∈ {0, 1}n \B, ∀r ∈ [n], |Sr(x) ∩B| = O
(

1
n

(
n
r

))
.

To make the notion of deceptive regions and fitness valleys more precise, we
formally define deceptive pairs.

Definition 3. Given a function f : {0, 1}n → R and a partition (A1, . . . , Am)
of {0, 1}n, a pair (Ai, Aj) is called f-deceptive if 1 ≤ i < j ≤ m and there are
elements x ∈ Ai, y ∈ Aj such that f(x) ≥ f(y).

We can now state the definition of the problem class.

Definition 4. An objective function f : {0, 1}n → R belongs to the problem class
SparseLocalOptα,ε if there exists a partition of {0, 1}n into m ∈ poly(n),
subsets (A1, . . . , Am) such that

� Am = {x ∈ {0, 1}n | ∀y ∈ {0, 1}n, f(x) ≥ f(y)}
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� ∀j ∈ [m− 1],∀x ∈ Aj ,∃y ∈ A≥j+1 s.t. H(x, y) = O(1),

and if (Ai1 , Aji), . . . , (Aiu , Aju) are f -deceptive pairs then

� ∪uv=1Aiv is ε-sparse, and

� A≥jv is α-dense for all v ∈ [u].

4 Elitist Black-box Algorithms

4.1 Elitist black-box complexity of BBFunnel

To prove that SparseLocalOptα,ε has exponential elitist black-box complexity,
we consider a sub-class BBFunnel (see Definition 5 and Theorem 7). The sub-
class captures the same features of the problem Funnel introduced in Dang
et al. (2021), however it is a broader class. It is partly defined in terms of the
functions Loz and Om (see Section 2).

Definition 5. For any integers 1 ≤ u < v < w ≤ n, and a simple path
p1, p2, . . . , p` ∈ {0, 1}v−u of length ` ∈ poly(n) starting from p1 := 0v−u, let
BBFunnel`(x) :=

Loy(x) + ` if w < Loy(x) ≤ n (D)
Loy(x) if v < Loy(x) ≤ w (C)
i+ w if x = 1upi0

n−v where i ∈ [`] (B)
−n−Om(x) if Loy(x) ≥ u and x 6∈ B ∪ C ∪D (B′)
Loy(x) if Om(x) ≤ u (A)
−Om(x) if x 6∈ A ∪B′ ∪B ∪ C ∪D (A′)

where a bitstring z ∈ {0, 1}w−v, and y := 1u · p` · z · 1n−w.

To prove a worst-case runtime for any randomised, elitist black-box algorithm,
we will apply Yao’s principle.

Theorem 6 (Yao’s Principle (Yao, 1977)). Let Π be a problem with a finite set I
of input instances of fixed size permitting a finite set A of deterministic algorithms.
Let Ip be a randomly chosen instance with a probability distribution p over I
and let Aq be a randomly chosen algorithm with a probability distribution q over
A. Then minA∈AE [T (Ip, A)] ≤ maxI∈I E [T (I, Aq)], where T (I, A) denotes the
running time of A ∈ A on I ∈ I.

We fix A to be the set of deterministic algorithms, which may become a
realisation of the randomised elitist (µ+ λ) black-box algorithms (see Algorithm
3). As pointed out by Doerr and Lengler Doerr and Lengler (2016), to account
for the possibility that a deterministic elitist black-box algorithm can enter an
infinite loop, it is necessary to extend the class A with algorithms that know
the number of queries they have made. Clearly, lower bounds that hold in this
more general class, also hold for the original class.
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We define a random instance Ip from the class BBFunnel as follows. The
bitstring z is chosen uniformly at random. Furthermore, the simple path p is
constructed by the following randomised algorithm (see (Droste et al., 2006)):
Define a sequence R of b = n2δµ points for any constant δ ∈ (0, 1) and where
m := v − u and r0 := 0m, and for all i ≤ b, ri+1 equals ri except for one
bit-position chosen uniformly at random. From this random sequence, we obtain
a simple path where p0 := r0, and for i ≥ 0, if pi = rj , then pi+1 := rk+1

where k ≥ j is the largest index where rj = rk. This construction ensures that
p0, . . . , p` is a simple path, where ` is the (random) length of the induced path p.
From Lemma 1, it follows that the path length satisfies ` ≥ nδµ with probability

1 − 2−Ω(nδ). The following lemma is a variant of Theorem 8 in Droste et al.
(2006), but uses a different proof idea.

Lemma 1. For d ≤ m/5, and any bitstring z ∈ {0, 1}m,

Pr (H(z, ri+k) ≤ d | H(z, ri)) = 2d−H(z,ri)−ck + e−Ω(m),

where the random sequence r0, . . . , rb, is distributed as described above, i ∈
[0..b− 1], k ∈ [1..b− i], and c > 0 is a constant.

Lemma 1 can be used to prove that BBFunnel belongs to the class SparseLocalOptα,ε.
Due to the page limit, the proof is omitted.

Theorem 7. For any constants σ, ε ∈ (0, 1), with probability 1− σ, a function
sampled from the class BBFunnel with w ∈ Θ(n), v − u ≤ n/2 and ` ∈ poly(n)
according to distribution Ip belongs to the problem class SparseLocalOptα,ε
with parameter α = 1− w/n.

In the following, let A be any deterministic, elitist (µ+λ) black box algorithm.
All instances of BBFunnel define the fitness values in regions A ∪ A′ ∪ B′
identically. So we can assume that an optimal deterministic algorithm A has
hard coded the fitness values in these regions, and that it knows the starting
point p1 of the path in B.

In order to reach the optimum y = 1u ·p` ·z ·1n−w, the algorithm must discover
the end point p` of the random path and the hidden sub-string z. Lemma (2)
implies that any black-box algorithm must explore large parts of the path before
the end point p` is discovered.

Lemma 2. For each t ∈ N, let Mt be the set of points visited up to step t of
algorithm A. Assume that an instance of BBFunnel is sampled from the distri-
bution Ip and the algorithm after step t ≤ ecd(n) knows the path points p0, . . . , pi
but no further points on the path. Then Pr

(
pi+d(n) ∈Mt+1

)
= e−Ω(d(n)), if

c > 0 is small enough.

Proof. For any z ∈Mt+1, Lemma 1 with d = 0 implies

Pr
(
z = pi+d(n)

)
= Pr

(
H(z, pi+d(n)) ≤ 0

)
= 2−H(z,pi)−Ω(d(n)) + e−Ω(m) = e−Ω(d(n)).
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By a union bound over all t+ 1 ≤ ecd(n) + 1 elements in Mt+1,

Pr
(
pi+d(n) ∈Mt+1

)
≤ (t+ 1)e−Ω(d(n)) = e−Ω(d(n)).

Unless the algorithm knows the end point p`, the fitness function does not
reveal any information about the hidden sub-string z. However, if the path
length is at least nδµ, any elitist (µ+ λ) EA must with high probability produce
at least µ path points before the end point p` is discovered. From this point,
the only way to discover the hidden sub-string z is to evaluate search points in
region C. However, due to the elite nature of the algorithm, it is prevented from
evaluating any search point. The only way for the algorithm to reach region D
is to guess the bitstring z correctly.

Theorem 8. For any constants α, ε ∈ (0, 1) and µ, λ ∈ poly(n), the elitist
(µ+λ) black-box complexity of SparseLocalOptα,ε is eΩ(n).

Proof. We apply Theorem 6 and consider the average case runtime of any
deterministic elitist (µ+λ) black-box algorithm A wrt the following distribution
I ′p over SparseLocalOptα,ε.

We construct I ′p from the distribution Ip over BBFunnel with path length

b = µn2δ ∈ poly(n), and parameters w := (1 − α)n, v := (2/3)(1 − α)n, and
u := max(1/3(1− α)n, v − n/2). Note that m := v − u ≤ n/2. Given a function
f sampled according to distribution Ip, let F be the event that f has simple
path length ` < nδµ or f 6∈ SparseLocalOptα,ε. By Theorem 7, Lemma 1

and a union bound, the probability of event F is less than σ + 2−Ω(nδ) for any
constant σ ∈ (0, 1). To sample from distribution I ′p, we sample f according to
Ip, and return OneMax ∈ SparseLocalOpt1,0 if F occurs, and f otherwise.

When event F occurs, we use the lower bound T (I ′p,A) ≥ 0. Otherwise,

if event F does not occur, then by by Lemma 2, with probability 1− e−Ω(nδ),
algorithm A must query at least `/nδ ≥ µ of the points in the path region B
before it obtains the final point p`. The fitness of these search points is higher
than any search point in C, hence once the algorithm has obtained path point p`,
the population contains only points in B. With µ elements in B, the algorithm
cannot base any further decisions on the fitness values in region C. Hence, in
order to reach region D, the algorithm must find the hidden sub-string z. The
probability that z is found in any of the eΩ(n) next queries made by the algorithm
is exponentially small. Thus, if F does not occur, T (I ′p,A) = eΩ(n).

By the law of total probability wrt F , minA∈A T (I ′p,A) = eΩ(n), which by
Yao’s principle implies the theorem.

4.2 Elitist EAs with diversity mechanisms

It has been shown in Dang et al. (2016) that on the Jumpk function, diversity
mechanisms can improve the performance of (µ+1) GA. This base algorithm is
outlined as Algorithm 4. As a corollary of Theorem 8, it holds that many of those
mechanisms, denoted by the set L11 as they alter the tie-breaking rule in line 11,
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are not helpful to escape the local optimum of BBFunnel. Specifically, the set
L11 := {duplicate elimination, duplicate minimisation, convex hull maximisation,
Hamming distance maximisation, deterministic crowding}.

Algorithm 4 The (µ+1) GA on {0, 1}n space.

Require: State space {0, 1}n, population size µ ∈ N, crossover probability pc,
and mutation parameter χ.

1: Initialise P0 with µ individuals uniformly at random in {0, 1}n
2: for t = 0, 1, 2, . . . until termination condition met do
3: Sample x ∼ Unif(Pt) and sample p ∼ Unif([0, 1])
4: if p ≤ pc then
5: Sample y ∼ Unif(Pt).
6: Set z ← by copying independently bit-by-bit either from x or from y

with equal probability.
7: else
8: Set z ← x.
9: end if

10: Flip each bit of z with probability χ/n independently.
11: Set Pt+1 ← Pt ∪ {z}, then remove one element from Pt+1 with the lowest

fitness, breaking ties at random.
12: end for

Theorem 9. There exists a BBFunnel function such that the expected optimi-
sation time using any (µ+1) GA as in Algorithm 4 with µ = poly(n) and any
parameters pc and χ, and using one of the diversity mechanisms from the set
L11, or none of them, is exponential.

5 Non-elitist Algorithms

We now develop a set of sufficient conditions for non-elitist EAs using bitwise
mutation to be efficient on SparseLocalOptα,ε (see Theorem 11). These
conditions require that the selection mechanism has a non-linear β-function. As
examples, we demonstrate that these conditions hold for Algorithm 1 (non-elitist
EA) using 3-tournament selection (Corollary 12) and linear ranking selection
(Corollary 13), and mutation rate close to the error threshold.

5.1 Conditions for Efficiency of Non-Elitist EAs

The level-based theorem Corus et al. (2018) is a tool for deriving upper bounds
on the expected runtime of Algorithm 2. To derive sufficient conditions for the
efficiency of non-linear EAs on SparseLocalOptα,ε, we generalise the theorem
by introducing a “deceptive region” B. The new conditions (G1) and (G2) are
weakened (compared to those in Corus et al. (2018)), and only required to hold if
there few individuals in the deceptive region. A new condition (G0) requires that
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the number of deceptive individuals reduces in expectation by a (1− δ)-factor
if it is above some threshold ψ0λ. This variant of the level-based theorem has
been implicitly used before, including Dang and Lehre (2016b) and Case and
Lehre (2020).

Theorem 10. Consider Algorithm 2 with population size λ. Given a partition
(A1, . . . , Am) of X and a subset B ⊂ X , define T := min{tλ | |Pt ∩ Am| > 0},
where for all t ∈ N, Pt ∈ X λ is the population in generation t. If there exist
z1, . . . , zm−1, δ ∈ (0, 1], and ψ0, γ0 ∈ (0, 1) such that for any population P ∈ X λ,
y ∼ D(P ), any j ≤ m− 1, any γ ≤ γ0, and any ψ ≥ ψ0,

(G0) If |P ∩B| ≤ ψλ then Pr (y ∈ B) ≤ (1− δ)ψ,
(G1) If |P ∩B| ≤ ψ0λ and |P ∩A≥j | ≥ γ0λ,

then Pr (y ∈ A≥j+1) ≥ zj ,
(G2) If |P ∩ B| ≤ ψ0λ and |P ∩ A≥j | ≥ γ0λ and |P ∩ A≥j+1| ≥ γλ, then

Pr (y ∈ A≥j+1) ≥ (1 + δ)γ,

(G3) λ ≥
(

12

γ0δ2

)
ln

(
300m

z∗δ2

)
, where z∗ := min

j
zj ,

then E [T ] ≤ 12λ
δ +

(
96
δ2

)∑m−1
j=1

(
λ ln

(
6δλ

4+zjδλ

)
+ 1

zj

)
.

Proof. We call individuals in B deceptive individuals. To apply the level-based
theorem Corus et al. (2018), we first prove that the number of deceptive individ-
uals quickly drops below ψ0λ. For any t0 ∈ N, define Yt := |Pt0+t ∩B|. Hence,
by (G0), Yt+1 is stochastically dominated by the random variable Z ∼ Bin(λ, ps)
where ps := max(ψ0, Yt/λ)(1− δ). Then by a Chernoff bound (see e.g. Dubhashi
and Panconesi (2009)),

Pr (Yt+1 ≥ max(ψ0λ, (1− δ/2)Yt))

< Pr (Z ≥ (1− δ/2) max(ψ0λ, Yt))

= Pr (Z ≥ E [Z] (1 + δ/(2(1− δ))))

≤ exp

(
−δ

2 max(ψ0λ, Yt)

12(1− δ)

)
≤ e−

δ2ψ0λ

12(1−δ) . (1)

We now consider phases of length τ1 + 2τ2 generations, where

τ1 :=
log(ψ0)

log(1− δ/2)
≤ (1− ψ0)(1− δ/2)

δ/2
<

2

δ
. (2)

(Note that x−1
x ≤ ln(x) for all x > 0.) and

τ2 :=

(
8

δ2

)m−1∑
j=1

(
ln

(
6δλ

4 + zjδλ

)
+

1

zjλ

)
(3)

≤ 8m

δ2

(
ln(6/z∗) +

1

λz∗

)
<

8m

δ2z∗

(
6 +

1

λ

)
<

146m

3δ2z∗
(4)
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where the last inequality applied λ > 12 which follows from condition (G3).
Note that τ2 is the expected time to reach level m in the original level-based
theorem Corus et al. (2018). Now by Eqs. (1),(2),(4), condition (G3), and a
union bound, with probability no more than

(τ1 + 2τ2)e−
δ2ψ0λ

12(1−δ) ≤
(

2

δ
+

292m

3δ2z∗

)(
z∗δ

2

300m

)
<

1

3
, (5)

after τ1 generations of the phase, there are still λ (1− δ/2)
τ1 = ψ0λ deceptive

individuals. By the Markov’s inequality and the level-based theorem Corus
et al. (2018), with probability no more than 1/2, the algorithm fails to reach
level m after 2τ2 generations of the phase. Inversely, by a union bound and Eq.
(5), a phase is successful with probability 1− 1/2− 1/3 = 1/6. If the phase is
unsuccessful, we can apply the same arguments to the next phase, since we have
not assumed anything about the initial state of the population.

Hence, a successful phase occurs in expectation after at most 6 phases, i.e.,
6(τ1 + 2τ2) generations. The theorem now follows because each generation
produces λ individuals.

The following lemmas describe the behaviour of the bitwise mutation operator
in dense and sparse regions of the search space.

Lemma 3. If C is an α-dense set, then

Pr (pmut(x) ∈ C | x ∈ C) > (1− χ/n)
n

(1 + αχ). (6)

Lemma 4. If B is ε-sparse with ε = ρ−(1−χ/n)n

1−(1−χ/n)n , then

� Pr (pmut(x) ∈ B | x ∈ B) ≤ ρ, and

� Pr (pmut(x) ∈ B | x 6∈ B) = O(1/n).

Theorem 11. If there exist constants ε, ψ0, γ0, δ, α ∈ (0, 1) such that Algorithm
1 with the bitwise mutation operator with rate χ, and a selection mechanism with
β, and population size λ satisfying

(SM0) β(0, γ) ≤ γ
ε

1−ε+(1−χn )
n for all γ ∈ [ψ0, 1],

(SM2a) β(0, γ) ≥ γ(1+δ)

(1−χn )
n for all γ ∈ (0, γ0],

(SM2b) β(ψ,ψ + γ) ≥ γ(1+δ)

(1−χn )
n

(1+αχ)
for all γ ∈ (0, γ0], ψ ∈ [0, ψ0],

(SM3) c ln(n) ≤ λ ∈ poly(n) for a sufficiently large constant c,

then it has expected polynomial runtime on SparseLocalOptα,ε.
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Proof. Consider any function f in the problem class, with an associated partition
(A1, . . . , Am) and f -deceptive pairs (Ai1 , Aj1), ..., (Aiu , Aju). We will apply
Theorem 10 with respect to B := ∪uv=1Ajv , which by the definition of the problem
class is ε-sparse. Assume that x = P (i) where i ∼ psel(P ) and y ∼ pmut(x).
For any γ ≥ ψ0, we have by Lemma 4, condition (SM0), and the law of total
probability

Pr (y ∈ B) ≤ Pr (x ∈ B) Pr (y ∈ B | x ∈ B)

+ Pr (x 6∈ B) Pr (y ∈ B | x 6∈ B)

≤ β(0, γ)ε+ O(1/n) ≤ γ(1− ε) + O(1/n).

Hence, for large n, condition (G0) is satisfied for any constant ε′ < ε.
Assume that |P ∩ B| ≤ ψ0λ and |P ∩ A≥j | ≥ γ0λ. Then, to produce an

individual y in A≥j+1, it suffices to select an individual x ∈ A≥j , and flip
d = O(1) bit-positions. Except for at most ψ0λ individuals in B, the individuals
in the set A≥j have higher fitness than all other individuals. Thus, by condition
(SM2b), we get

Pr (y ∈ A≥j+1) ≥ Pr (x ∈ A≥j) Pr (y ∈ A≥j+1 | x ∈ A≥j)

≥ β(ψ0, ψ0 + γ0) (χ/n)
d

(1− χ/n)
n−d

≥ γ0(1 + δ)

(1− χ/n)
n

(1 + αχ)
(χ/n)

d
(1− χ/n)

n−d
=: zj .

Hence, condition (G1) is satisfied for the parameter zj = n−O(1).
Assume that |P ∩ B| ≤ ψ0λ, |P ∩ A≥j | ≥ γ0λ and |P ∩ A≥j+1| ≥ γλ, then

except for at most ψ0λ individuals in B, the individuals in A≥j+1 have higher
fitness than all others in P . We consider two cases. If Aj+1 is a part of a
deceptive pair, then by the problem definition, A≥j+1 is an α-sparse set. Lemma
3 and (SM2b) then imply

Pr (y ∈ A≥j+1) ≥ Pr (x ∈ A≥j+1) Pr (y ∈ A≥j+1 | x ∈ A≥j+1)

≥ β(ψ0, ψ0 + γ) (1− χ/n)
n

(1 + αχ) ≥ γ(1 + δ).

In case Aj+1 is not part of a deceptive pair, the individuals in A≥j+1 are fitter
than any other individual in the population, and to produce an individual in
A≥j+1, it suffices to select a one in A≥j+1 and not flip any bits, which by (SM2a)
occurs with probability

Pr (y ∈ A≥j+1) ≥ Pr (x ∈ A≥j+1) Pr (y = x)

≥ β(0, γ) (1− χ/n)
n ≥ γ(1 + δ).

Hence, condition (G2) of Theorem 10 is satisfied. Finally, (G3) follows im-
mediately from (SM3) for some constant c since γ0 and δ are constants and
m ∈ poly(n). All conditions are satisfied, thus the expected runtime on f is

O
(∑m−1

j=1 λ ln(1/zj) + 1/zj

)
∈ poly(n).
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The following corollaries of Theorem 11 give example configurations where
non-elitist EAs are efficient on SparseLocalOptα,ε. The proofs are omitted
due to the page limit. Future work should provide a more comprehensive analysis
of the algorithmic configurations which satisfy the conditions of Theorem 11.

Corollary 12. Algorithm 1 with 3-tournament selection, population size c ln(n) ≤
λ ∈ poly(n) for a sufficiently large c, and mutation rate χ = 1.09812 has poly-
nomial worst case expected runtime on SparseLocalOptα,ε with α = 1/4 and
ε = 7/105.

Corollary 13. Algorithm 1 with linear ranking selection Lehre and Yao (2012)
for η = 2, population size c ln(n) ≤ λ ∈ poly(n) for a sufficiently large c, and
mutation rate χ = 0.693146 has polynomial worst case expected runtime on
SparseLocalOptα,ε with α = 4/9 and ε = 1/100.

5.2 The (µ, λ) EA is inefficient

The (µ, λ)-selection mechanism has a linear β-function, and therefore does not
satisfy the requirements imposed by Theorem 11. We will now show that
the non-elitist (µ, λ) EA is inefficient on BBFunnel, thus by extension on
the problem SparseLocalOptε,α. To achieve this, it suffices to prove that
(µ, λ) EA requires exponential runtime with overwhelmingly high probability on
a specific BBFunnel function, denoted as f in the rest of the section, where
z = 1w−v and the simple path is (pi)0≤i≤v−u with pi = 1i0v−u−i.

Algorithm 1 has exponential runtime on any function with a unique optimum if
the mutation rate χ exceeds ln(α0)+σ (called the error threshold), where α0 is the
reproductive rate of the algorithm, and for an arbitrarily small constant σ ∈ (0, 1)
Lehre (2010). For the (µ, λ) EA, the error threshold occurs when χ ≥ ln(λ/µ)+σ.
We therefore consider (µ, λ) EA for mutation rates χ ≤ ln(λ/µ) − σ, for any
constant σ ∈ (0, 1). We will show that the population will quickly produce µ
individuals in region B. From then on, all individuals will with high probability
have a parent in B, and it will take exponential time to produce an offspring in
D.

To simplify the derivations, we will only count generations where the popula-
tion has an individual in region Y := A∪B∪C∪D. This will only under-estimate
the runtime of the algorithm. Lemmas 5 and 6 show that it is unlikely that
(µ, λ) EA optimises the B-region before the population contains µ individuals
in B.

Lemma 5. If χ ≤ ln(λ/µ) − σ for any constant σ > 0, then with probability

1−t0e−
µσ2

2(1+σ) −λe−Ω(n), every population Pt of (µ, λ) EA, where t ≤ t0, contains
at least µ individuals in Y := A ∪B ∪ C ∪D of function f with u ≥ (1 + ε)n/2
for any constant ε > 0.

Proof. We prove the statement by induction on t. By a Chernoff bound and
a union bound, all individuals in P0 belong to A with probability 1− λe−Ω(n).
Assume that at least µ individuals in generation t ≤ t0 − 1 belong to region
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Y. By the definition of the BBFunnel and of (µ,λ)-selection, any individual
created in Pt+1 has a parent in region Y. So the probability that an offspring
belongs to region Y is at least the probability that no bit is mutated, i.e., at least
(1− χ/n)

n ≥ e−χ(1− o(1)) ≥ (µ/λ)eσ(1− o(1)) ≥ (µ/λ)(1 + σ) where the last

inequality follows from the fact that ex ≥ 1 + x+ x2

2 for any x ≥ 0. Hence, the
expected number of offspring in region Y is at least µ(1 + σ), and by a Chernoff
bound, the probability that there are less than µ such individuals is less than

e−
µσ2

2(1+σ) . The statement now follows by a union bound over t0 generations.

Lemma 6. Let u ≥ (n/2)(1 + ε) for any constant ε > 0, v − u = Ω(n) and
define α := (v − u)/n. Let Pt be the population in generation t of the (µ,λ)
EA with λ = poly(n) and χ ≤ ln(λ/µ)− σ for a constant σ > 0 on function f .
Define Xt := maxi∈[λ] Lo(Pt(i)). For T := min{t ∈ N | Xt ≥ v−αn/3}, it holds

Pr
(
T ≤ n1−2δ

)
= e−Ω(nδ) + e−

µσ2

2(1+σ)
+(1−2δ) ln(n) for any constant δ ∈ (0, 1/2).

Proof. We say that failure event 1 occurs if there exists a generation t ≤ n1−2δ

where less than µ individuals in Pt belong to Y := A∪B ∪C ∪D. By Lemma 5,

the probability of failure event 1 is less than e−
µσ2

2(1+σ)
+(1−2δ) lnn + e−Ω(n) given

that λ = poly(n).
We say that failure event 2 occurs if any individual in A is mutated into

region C ∪D within the first n1−2δ generations. In a single step, such a mutation
has probability of at most

(
χ
n

)αn ≤ 2−Ω(n) since at least αn 0-bits have to be
flipped to 1. By a union bound, the failure probability of the event is no more
than λn1−2δ2−Ω(n) = e−Ω(n).

We now assume that failure events 1 and 2 did not occur. Let t1 be the first
generation where the population contains an individual in region B. Firstly, we
notice the probability thatXt1 exceeds u+αn/3 is no more than λ2−Ω(n) = e−Ω(n)

by a union bound since the easiest way to create an individual x in B with
Lo(x) ≥ u + αn/3 from one in A still requires to flip at least αn/3 specific
bits. We call such excess failure event 3. Secondly, for a lower bound we can
assume optimistically that for any generation t ≥ t1, some individual x ∈ B with
Lo(x) = Xt is always picked as parent. Even with this, the probability of making

a large improvement of nδ in fitness within B is less than (χ/n)n
δ

= 2−Ω(nδ)

because nδ specific bit-positions have to be flipped. We call any such mutation
within the first n1−2δ generations failure event 4 and by a union bound, its

probability is no more than λn1−2δ2−Ω(nδ) = e−Ω(nδ).
If failure events 1-4 do not occur, then Xt − (u+ αn/3) ≤ Xt −Xt1 ≤ tnδ ≤

n1−δ < (1/3)αn for all t ≤ n1−2δ and sufficiently large n. The lemma follows by
noting that u+ 2αn/3 = v − αn/3.

We will estimate the expected “upgrade time” for the number of individuals
Xt of (µ,λ) EA in B ∪ C ∪ D by Lemma 7. If χ ≤ ln(λ/µ) − σ, then the
probability to produce an individual in B∪C∪D is at least (Xt/µ) (1− χ/n)

n ≥
(Xt/µ)e−χ(1−o(1)) ≥ (Xt/λ)(1+σ). For a lower bound, we only count the latest
sub-sequence of iterations where Xt ≥ 1 with no preemptions. If µ ∈ poly(n),
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Lemma 7 implies that with probability 1 − 2−n
c

for a constant c > 0, region
B ∪ C ∪D takes over the population within at most n1−2δ iterations.

Lemma 7. Let µ, λ ∈ N where µ ≤ λ/(1+δ) for some δ > 0. Assume a stochastic
process (Xt)t∈N is defined by Xt := max(1, Zt) where for all t ∈ N and Xt < µ,
Zt ∼ Bin(λ, (1 + δ)Xt−1/λ), and X0 ∈ N. Let T := min{t | Xt ≥ µ}, then
E [T ] ≤ (7/δ2) ln(1 + (δ/2)µ). Furthermore Pr

(
T ≥ r(14/δ2) ln(1 + (δ/2)µ)

)
≤

2−r for any r ∈ N.

Proof. Let a distance function be g(x) := ln
(

1+(δ/2)µ
1+(δ/2)x

)
. By Lemma 6 from Corus

et al. (2018), the expected drift w. r. t. g is at least δ2

7 . The upper bound on
E [T ] now follows by Theorem 2 Corus et al. (2018), which is a variant of the
additive drift theorem He and Yao (2001). By Markov inequality, Xt ≥ µ at
least for one t in any phase of length 2E [T ] with probability at least 1

2 . The tail
bound follows by considering r phases.

We now show that the (µ, λ) EA is inefficient on BBFunnel.

Theorem 14. Let σ, ε ∈ (0, 1) be constants. The runtime T of (µ,λ) EA with

population sizes λ ∈ poly(n), µ ≥ 2(1+σ)
σ2 ln(n), and mutation rate parameter

χ ≤ ln(λ/µ) − σ on BBFunnel with v − u = Ω(n), w − v = Ω(n) and u ≥
(1 + ε)n/2 satisfies Pr(T ≤ ecmin(µ,n)) ≤ e−Ω(µ) + e−Ω(nd) for some constants
c, d > 0.

Proof. It suffices to give a proof for function f . Let us note that

µσ2/(2(1 + σ))− (1− 2δ) ln(n) = Ω(µ), (7)

and count generations with some individuals in Y := A ∪B ∪ C ∪D.

We will prove a stronger statement that with probability 1−e−Ω(nd)−e−Ω(µ),
none of the search points produced during the first ecmin(µ,n) generations are in
region D for some constants c, d.

We let phase 1 be the first n1−2δ generations. By Lemma 5 (failure probability

e−Ω(µ) + e−Ω(n) by (7)), Lemma 6 (failure probability e−Ω(nδ) + e−Ω(µ)), and
Lemma 7 (failure probability e−Ω(nc)) and a union bound, with probability at

least 1− e−Ω(µ) − e−Ω(nc
′
), by the end of Phase 1, the population consists of at

least µ individuals in region B, and no individual has more than v − (1/3)αn
leading 1-bits, where α := (v− u)/n. For a constant c > 0 to be chosen later, let
phase 2 to be the ecmin(µ,n) generations after phase 1. A generation in phase 2
is said to fail if there are less than µ offspring in B, or there is a mutation from
region B into region D.

Since the µ best individuals are in B, all offspring have parents in B. To
create an offspring in B, it suffices to not flip any bit, i.e., with probability
(1− χ/n)

n≥ (1− σ′)e−χ ≥ (µ/λ)(1− σ′)eσ for any constant σ′ ∈ (0, 1), if n is
large enough. Choosing σ′ so that (1 + σ′)/(1− σ′) = eσ, this probability is at
least (1 + σ′)(µ/λ). By a Chernoff bound, the probability that the population
has less than µ individuals from B in the next generation is e−Ω(λ) = e−Ω(µ). For
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those individuals to be the best of the population, no individual in D must be
created. The probability of creating a D-individual by mutating a B-individual
is n−Ω(n). By a union bound, this event occurs with probability less than
λ ·n−Ω(n) = n−Ω(n) in any generation. By induction and a union bound, a failure
occurs in phase 2 only with probability e−Ω(µ) + e−Ω(n).

6 Conclusion

We have presented SparseLocalOptα,ε, a general class of functions, in which
depending on its parameters (α, ε), the deceptive regions of the landscape are
sparse while the fitness valleys are dense. By introducing a new version of the
level-based theorem, we have deduced sufficient conditions for non-elitist EAs
to have polynomial expected runtime on SparseLocalOptα,ε, and indicated
some algorithms satisfying these conditions.

Conversely, we have shown that elitist black-box (µ+λ) EAs can meet a
significant difficulty, i. e. get trapped in the local optima of functions from the
sub-class BBFunnel. This result covers a large set of algorithms, including
elitist genetic algorithms with different types of variation operators and even with
the use of standard diversity mechanisms. We have shown unconditionally that
the non-elitist (µ, λ) EA fails to optimise the BBFunnel problems in expected
polynomial time, demonstrating an exponential performance differences between
different non-elitist selection mechanisms.

In summary, the paper proves that non-elitist EAs can outperform elitist EAs
by exponential factors on fitness landscapes with highly rugged and multi-modal
structure. The results suggest that non-elitism should be considered more often
when applying EAs to complex combinatorial optimisation problems.
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Towards a Runtime Comparison of Natural and Artificial Evolution. Algorith-
mica 78, 2 (2017), 681–713. https://doi.org/10.1007/s00453-016-0212-1

C. R. Reeves and A. V. Eremeev. 2004. Statistical Analysis of Local Search
Landscapes. The Journal of the Operational Research Society 55, 7 (2004),
687–693. http://www.jstor.org/stable/4102015

Günter Rudolph. 1996. How Mutation and Selection Solve Long-Path Problems
in Polynomial Expected Time. Evol. Comput. 4, 2 (1996), 195–205. https:

//doi.org/10.1162/evco.1996.4.2.195

Peter F. Stadler. 2002. Fitness landscapes. In Biological Evolution and Statis-
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Appendix

This appendix provides the proofs from the GECCO 2021 paper “Non-elitist
evolutionary algorithms excel in fitness landscapes with sparse deceptive regions
and dense valleys” that did not fit within the 8 page limit.

Lemma 8. For any constants ε, σ ∈ (0, 1) and sufficiently large n, an instance of
BBFunnel sampled from the distribution Ip has a set B = {1upi0n−v | i ∈ [0..`]}
with ` ∈ poly(n) and v − u ≤ n/2 which is ε-sparse with probability 1− σ.

Proof of Lemma 1. We apply Theorem 16 (Hajek’s drift theorem) w.r. t. the
process Yk := m−H(z, ri+k) for the filtration Fk := σ({H(z, ri+j) | j ∈ [0..k]}),
and the parameters a := (3/4)m, b := m − d ≥ a + m/20 and η = ln(2). For
Yk ≥ a, we have Pr (Yk+1 − Yk = 1) ≤ 1/4, thus

E1,k ≤
1

4
eη +

3

4
e−η =

7

8
=: ρ.

For Yk ≤ a, we have Yk+1 ≤ a+ 1, and E2,k ≤ eη =: D. Thus, both conditions
of the Hajek’s drift theorem are satisfied and

Pr (H(z, ri+k) ≤ d | H(z, ri)) = Pr (Yk ≥ b | F0)

≤ ρkeη(Y0−b) + eΩ(a−b)

= 2d−H(z,ri)+k log2(ρ) + e−Ω(m).

Proof of Lemma 8. By assumption, there exists a constant k such that the set
B consists of ` ≤ nk elements, where each pj is a bitstring of length m := v − u.

We first verify condition (SP1) of Definition 2. Choose any rj ∈ B and
r ∈ [n]. We will prove that with probability 1−O(1/n), the randomised path
satisfies

X := |{y ∈ B | H(rj , y) = r}| ≤ ε
(
n

r

)
. (8)

For any r > m, Eq. (8) trivially holds, because the Hamming-distance
between any pair of elements in B is at most m.

For any r with k + 1 ≤ r ≤ m < n/2 it holds for sufficiently large n that

ε

(
n

r

)
≥ ε
(

n

k + 1

)
≥ ε

(
n

k + 1

)k+1

> nk ≥ |B|,

so Eq. (8) holds in this case with probability 1.

Finally, for 1 ≤ r ≤ k, define X :=
∑`
i=1Xi where for each i ∈ [`], Xi := 1 if

H(ri, rj) ≤ r and Xi = 0 otherwise. Then, it holds for any constant c > 0

E [X] ≤
∑̀
i=0

E [Xi] (9)
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<

j∑
i=0

Pr
(
H(ri, ri+(j−i)) ≤ r

)
+
∑̀
i=j+1

Pr
(
H(rj , rj+(i−j)) ≤ r

)
(10)

≤ 2r/c+

j−r/c∑
i=0

Pr
(
H(ri, ri+(j−i)) ≤ r

)
(11)

+
∑̀

i=j+1+r/c

Pr
(
H(rj , rj+(i−j)) ≤ r

)
, (12)

and Lemma 1 with the corresponding constant c gives

≤ 2r/c+ ` · e−Ω(m) + 2
∞∑
i=0

2−ci = O(1). (13)

By Markov’s inequality, we thus have

Pr

(
X ≥ ε

(
n

r

))
≤ E [X]

ε
(
n
r

) = O(1/n).

We now verify condition (SP2) of Definition 2. Choose any x 6∈ B and r ∈ [n].
We will prove that with probability 1− σ, the randomised path satisfies

Y := |{y ∈ B | H(x, y) = r}| ≤ c′

σn

(
n

r

)
, (14)

where c′ > 0 is a constant independent of x that will be determined later.
In the case k + 2 ≤ r ≤ n/2, it holds for sufficiently large n

c′

σn

(
n

r

)
≥ c′

σn

(
n

k + 2

)
≥ c′

σn

(
n

k + 2

)k+2

> |B| ≥ Y,

so Eq. (14) is satisfied with probability 1.
Assume that 1 ≤ r ≤ k + 1, and that rj ∈ B is one of the elements in B

with minimal distance r0 = H(rj , x) to x. If r0 ≥ r + 1, then there is nothing
to prove since Y = 0. Hence, we consider the case r0 ≤ r + 1 ≤ k + 2. By the
triangle inequality, the Hamming distance between x and any element ri ∈ B
is H(x, ri) ≥ H(rj , ri)− r0. Hence, the number of elements in B in Hamming-
distance r to x, is at most the number of elements in B in Hamming-distance at
most r0 + r to rj . For all i ∈ [`], define Yi := 1 if H(ri, rj) ≤ r0 + r and Yi := 0

otherwise. Similarly to above, for r ≤ k + 1, we obtain E [Y ] ≤
∑`
i=1E [Yi] ≤ c′

for some constant c′ > 0. By Markov’s inequality, it holds for 1 ≤ r ≤ k+ 1 that

Pr

(
Y ≥ c′

σn

(
n

r

))
≤ c′

c′

σn

(
n
r

) ≤ σn(
n
r

)r ≤ σ.
Finally, consider the case r = n/2 + r0 for r0 ≥ 1. By a symmetry argument,

the number of elements in B in Hamming distance r to x, equals the number of
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elements in B in Hamming distance n−n/2−r0 = n/2−r0 to the complementary
bitstring to x. Thus, by the arguments above, it holds with probability 1− σ
that

Y ≤ c′

σn

(
n

n/2− r0

)
=

c′

σn

(
n

r

)
.

Proof of Theorem 7. We show that an instance of BBFunnel sampled according
to distribution Ip satisfies the criteria of Definition 4 with probability 1 − σ.
Define the sets1

B̃′i := {x ∈ B′ | Om(x) = n− i}
Ã′i := {x ∈ A′ | Om(x) = n− i}
Ãi := {x ∈ A | Loy(x) = i}
B̃i := {1upi0n−v}
C̃i := {x ∈ C | Loy(x) = i− v}, and

D̃i := {x ∈ D | Loy(x) = i− w}.

Using these sets, we define the partition of {0, 1}n as (A1, . . . , Am) := (B̃′1, B̃
′
2,...,

Ã′1, Ã
′
2,...., Ã1, Ã2,. . . , B̃1, B̃2,. . . , C̃1, C̃2,. . . , D̃1, D̃2, . . . , Dn−w). It is easy

to see that for all j and all x ∈ Aj , there exists an element y ∈ Aj+1 with
H(x, y) = O(1).

The partition has BBFunnel-deceptive pairs (B̃i, C̃j) for all i, j. By Lemma

8, the set B := ∪iB̃i is ε-sparse with probability 1− δ. Furthermore, every C̃≥j
is a 1− w/n-dense set because every search point with Loy(x) ≥ j + v belongs

to C̃≥j . The function therefore belongs to the class SparseLocalOptα,ε with
probability 1− σ.

Proof of Lemma 3. To obtain an element in C from x via mutation, it suffices to
either flip no bits, or to mutate into one of the at least αn Hamming-neighbours
of x in C, each obtained by flipping exactly one specific bit. The probability of
this event is(

1− χ

n

)n
+ αn

(χ
n

)(
1− χ

n

)n−1

>
(

1− χ

n

)n
(1 + αχ) .

Proof of Lemma 4. Define Br(x) := {y ∈ B | H(x, y) = r}. If x ∈ B and
y ∼ pmut(x), then by the Binomial theorem

Pr (y ∈ B) =
(

1− χ

n

)n
+

n∑
r=1

∑
z∈Br(x)

Pr (y = z)

1The tilde-notation is introduced to disambiguate the levels in region A of BBFunnel, and
the partition (A1, . . . , Am) required by the definition of SparseLocalOptα,ε.

26



≤ (1− ε)
(

1− χ

n

)n
+ ε

n∑
r=0

(
n

r

)(χ
n

)r (
1− χ

n

)n−r
= (1− ε)

(
1− χ

n

)n
+ ε = ρ.

Similarly, if x 6∈ B and y ∼ pmut(x), then

Pr (y ∈ B) = O

(
1

n

n∑
r=0

(
n

r

)(χ
n

)r (
1− χ

n

)n−r)
= O

(
1

n

)
.

Proof of Corollary 12. Note that 3-tournament selection has β-function

β(ψ,ψ + γ) = (1− ψ)3

(
1−

(
1− γ

1− ψ

)3
)
.

We evaluate the conditions of Theorem 11 numerically with the parameters

ψ0 :=
2001−

√
3995997

1334
≈ 1.5 · 10−3

γ0 :=
6003−

√
36028006

4002
≈ 1.7 · 10−4, and

δ :=
1

3000
.

We use the upper bound (
1− χ

n

)n
< e−χ <

3335

10000

and for n ≥ 104 the lower bound(
1− χ

n

)n
=
(

1− χ

n

)(nχ−1)χ (
1− χ

n

)χ
≥ e−χ

(
1− χ

104

)χ
>

3334

10000
.

Note that the function

h(γ, ψ) :=
β(ψ,ψ + γ)

γ
= γ2 + 3(1− ψ)(1− γ − ψ)

satisfies ∂h(γ,ψ)
∂γ < 0 for all γ ≤ γ0 < 1 < 3

2 (1− ψ0) ≤ 3
2 (1− ψ), and ∂h(γ,ψ)

∂ψ < 0

for all ψ ≤ ψ0 < 1/2 < 2−γ0
2 ≤ 2−γ

2 .
Hence, we have for all γ ∈ [ψ0, 1]

β(0, γ)

γ
= h(γ, 0) ≤ h(ψ0, 0) <

2996

1000
<

1
ε

1−ε +
(
1− χ

n

)n ,
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which implies that condition (SM0) is satisfied.
Similarly, it holds for all γ ∈ (0, γ0]

β(0, γ)

γ
= h(γ, 0) ≥ h(γ0, 0) >

29995003

10000000
>

1 + δ(
1− χ

n

)n ,
thus condition (SM2a) is satisfied.

Furthermore, for all γ ∈ (0, γ0] and ψ ∈ [0, ψ0], it holds

β(ψ,ψ + γ)

γ
= h(γ, ψ) ≥ h(γ0, ψ0) >

299

100
>

1 + δ

(1− χ/n)
n

(1 + αχ)
,

thus condition (SM2b) is also satisfied. Finally, condition (SM3) is satisfied for
a sufficiently large constant c.

Proof of Corollary 13. The proof is by Theorem 11, similarly to Corollary 12
for the parameters δ = 1/106, ψ0 = 39606/106 and γ0 = 12/108.

Lemma 9. For x > 0

x− 1

x
≤ ln(x)

Lemma 10. ex ≥ 1 + x+ x2

2 for x ≥ 0

Theorem 15 (Chernoff). If X ∼ Bin(n, p), then for 0 ≤ ε ≤ 1,

Pr (X ≤ (1− ε)E [X]) ≤ exp

(
−ε

2E [X]

2

)
Theorem 16 (Hajek’s drift theorem, Thm. 2.3 (2.8) Hajek (1988)). Let (Yk)k≥0

be a sequence of random variables on a probability space (Ω,F , P ) adapted to an
increasing sequence (Fk)k≥0 of sub-σ-algebras of F where for a < b it holds

D1) E1,k := E
[
eη(Yk+1−Yk);Yk > a | Fk

]
≤ ρ, and

D2) E2,k := E
[
eη(Yk+1−a);Yk ≤ a | Fk

]
≤ D,

then

Pr (Yk ≥ b | F0) ≤ ρkeη(Y0−b) +
1− ρk

1− ρ
Deη(a−b).

Theorem 17 (Additive drift theorem). Let (Zt)t∈N be a discrete-time stochastic
process in [0,∞) adapted to any filtration (Ft)t∈N. Define Ta := min{t ∈ N |
Zt ≤ a} for any a ≥ 0. For some ε > 0 and constant 0 < b < ∞, define the
conditions

1.1) E [Zt+1 − Zt + ε ; t < Ta | Ft] ≤ 0 for all t ∈ N,

1.2) E [Zt+1 − Zt + ε ; t < Ta | Ft] ≥ 0 for all t ∈ N,
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2) Zt < b for all t ∈ N, and

3) E [Ta] <∞.

If 1.1), 2), and 3) hold, then E [Ta | F0] ≤ Z0/ε.
If 1.2), 2), and 3) hold, then E [Ta | F0] ≥ (Z0 − a)/ε.

Lemma 11 (Corus et al. (2018)). If X ∼ Bin(λ, p) with p ≥ (i/λ)(1 + δ) and
i ≥ 1 for some δ ∈ (0, 1], then

E

[
ln

(
1 + δX/2

1 + δi/2

)]
≥ δ2

7
.
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