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A nearest-neighbor-based ensemble classifier and its

large-sample optimality

Majid Mojirsheibani1 and William Pouliot2

Department of Mathematics, California State University Northridge, CA, 91330, USA 1

Department of Economics, University of Birmingham, B15 2TT, UK2

Abstract

A nonparametric approach is proposed to combine several individual classifiers
in order to construct an asymptotically more accurate classification rule in the sense
that its misclassification error rate is, asymptotically, at least as low as that of the
best individual classifier. The proposed method uses a nearest neighbor type ap-
proach to estimate the conditional expectation of the class associated with a new
observation (conditional on the vector of individual predictions). Both mechanics
and the theoretical validity of the proposed approach are discussed. As an inter-
esting byproduct of our results, it is shown that the proposed method can also be
applied to any single classifier in which case the resulting new classifier will be at
least as good as the original one. Several numerical examples, involving both real
and simulated data, are also given. These numerical studies further confirm the
superiority of the proposed classifier.

Keywords: Nonparametric, asymptotics, classification.

1 Introduction

Consider the following standard two-group classification problem. Let (χ, Y ) be a ran-

dom pair, where χ takes values in a metric space (F , ρ) and Y ∈ {0, 1}, called the

class label, must be predicted based on χ. Here, F is not necessarily confined to Rd. In

classification one wants to find a classifier, g : F → {0, 1}, whose misclassification error,

P{g(χ) 6= Y }, is as small as possible. The classifier with the lowest misclassification

error, called the Bayes classifier, is given by gB(χ) = 1 if P{Y = 1|χ = χ} > 1/2, and

1Corresponding author. Email: majid.mojirsheibani@csun.edu

This work was supported by the NSF under Grant DMS-1916161 of Majid Mojirsheibani.
2Email: w.pouliot@bham.ac.uk
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gB(χ) = 0 otherwise; see, for example, Cérou and Guyader [9], Abraham et al. [1], and

Devroye, et al. [12]. Although our setup is expressed for the popular two-class problem,

all the results in this paper can be extended in a straightforward manner to the multi-class

classification problem; see Remark 2.

Of course, in practice the distribution of (χ, Y ) is virtually always unknown and, typically,

one only has access to a training sample of n independent and identically distributed (iid)

observations Tn = {(χ1, Y1), . . . , (χn, Yn)} from the distribution of (χ, Y ). Much of the

theory of classification deals with the construction of sample-based classification rules ĝn

based on Tn whose error rates are somehow as small as possible. Of course, the choice

of ĝn is at the practitioner’s discretion and there may be several different options; there-

fore, let ĝn,1, . . . , ĝn,J be J ≥ 1 different classification rules for predicting Y . Here, ĝn,1

may be a linear classifier, ĝn,2 a kernel classifier, while ĝn,3 may be Breiman’s [8] random

forest classifier, etc. The aim is then to combine these individual classifiers in such a way

that the resulting classifier is in some sense at least as good as the best individual classifier.

There is a vast literature on combined or ensemble methods and there are many different

approaches available; this is particularly true for the important problems of classification

and regression function estimation. One may divide the existing methods into roughly

two types: (a) those approaches that involve a large number of similar or homogeneous

base models. Relevant examples here include Breiman’s [7, 8] random forest, Lin and

Jeon [17], Biau et al. [3], and Rahman et al. [19]. (b) Those approaches that com-

bine a number of models or estimators that are constructed based on different theories

or estimation methods. Results under (b) include Fischer and Mougeot [13], Biau et al.

[4], Cholaquidis et al. [10], Balakrishnan and Mojirsheibani [2], Mojirsheibani [18], and

LeBlanc and Tibshirani [16]. The methods employed in the cited papers under (b) are

mainly nonlinear in nature, which is also the framework of the current paper. There is

also a large body of literature on linear and convex aggregation methods; in fact, Chapter
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3 of the monograph by Giraud [14] presents a detailed account of such methods along

with many relevant references.

In passing, we also note that there are other taxonomies for characterizing combined

classifiers. In fact, as explained in Rokach [20, 21], combined classification methods can

be put into two main categories: weighting methods and non-weighing or meta-learning.

Popular weighting methods include the majority voting employed by Breiman [7, 8] in the

context of tree classification, and by Xu et al. [24] for the problem of handwriting recog-

nition. Weighted-averaging of estimated class conditional probabilities that are produced

by each classifier, has also been studied by several researchers; results along these lines

include the work of Xu et al. [24], Breiman [6], and LeBlanc and Tibshirani [16]. There

are also other weighting methods that can be found in Rokach [20, 21]. Meta-learning

methods typically work by using the predicted values of the individual classifiers on the

data. Relevant results along these lines include the stacked generaliztion of Wolpert [23],

Breiman’s [6] stacked method, and the nonlinear methods of Mojirsheibani [18], Balakr-

ishnan and Mojirsheibani [2], Biau et al. [4], and Cholaquidis et al. [10]. For more on

meta-learning methods, one may refer to Rokach [20].

In the next section, we consider the problem of combining several individual classifiers

in such a way that the resulting ensemble is, asymptotically, at least as good as the

best individual one. The paper is organized as follows. Section 2 presents the main

results, where both the mechanics and the theoretical validity of the proposed approach

are discussed. Numerical studies involving both simulated as well as real data are carried

out in section 3; these studies further confirm the good finite-sample performance of the

proposed approach. All proofs are deferred to section 4.
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2 Main results

In order to motivate our proposed method, consider the following hypothetical oversim-

plified setup. Let g1, ∙ ∙ ∙ , gJ be J classifiers for predicting Y based on χ (no data yet).

Here, each gj is a map of the form gj : F → {0, 1}. Define the combined classifier

G∗ : {0, 1}J → {0, 1}, for predicting the same Y , by

G∗
(
g1(χ), ∙ ∙ ∙ , gJ(χ)

)
=






1 if E
[
(2Y − 1)

∣
∣g1(χ), ∙ ∙ ∙ , gJ(χ)

]
> 0

0 otherwise.
(1)

Then we have the following elementary result

Proposition 1 The combined classifier G∗ in (1) is optimal, i.e.,

P
{

G∗
(
g1(χ), ∙ ∙ ∙ , gJ(χ)

)
6= Y

}
= inf

G: {0,1}J→{0,1}
P
{

G
(
g1(χ), ∙ ∙ ∙ , gJ(χ)

)
6= Y

}
.

We also observe that in view of Proposition 1, and without further ado, one has

P
{
G∗
(
g1(χ), ∙ ∙ ∙ , gJ(X)

)
6= Y

}
≤ min

1≤j≤J
P
{
gj(χ) 6= Y

}
; (2)

in other words, G∗ is at least as good as the best classifier among g1, . . . , gJ . When

J = 1, we may simply write g instead of g1 in which case (2) reduces to

P{G∗(g(χ)) 6= Y } ≤ P{g(χ) 6= Y } ,

where the equality holds when g is the Bayes classifier, i.e., g(χ) = 1 if E[(2Y −1)|χ] > 0,

otherwise g(χ) = 0.

Next, suppose that we have J individual classifiers, ĝn,1, . . . , ĝn,J , constructed based on

the data Tn for predicting Y . As explained in the introduction, these could be J very

different classifiers; for example, ĝn,1 may be a linear classifier, ĝn,2 a kernel classifier,

ĝn,3 may be a random forest classifier or the support vector machine, etc. Then (1) in

conjunction with Proposition 1 suggests considering a combined classifier, G∗
n, of the

following form

G∗
n

(
ĝn,1(χ), ∙ ∙ ∙ , ĝn,J(χ)

)
=






1 if E
[
(2Y − 1)

∣
∣ĝn,1(χ), ∙ ∙ ∙ , ĝn,J(χ)

]
> 0

0 otherwise.
(3)
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Although (3) is not available in practice, the following counterpart of Proposition 1 shows

that (3) is in fact theoretically optimal in the important sense that its overall error rate is

the smallest:

Proposition 2 Let G∗
n be the combined classifier in (3). Then

P
{

G∗
n

(
ĝn,1(χ), ∙ ∙ ∙ , ĝn,J(χ)

)
6= Y

}
= inf

G: {0,1}J→{0,1}
P
{

G
(
ĝn,1(χ), ∙ ∙ ∙ , ĝn,J(χ)

)
6= Y

}
,

and in particular P
{
G∗

n

(
ĝn,1(χ), ∙ ∙ ∙ , ĝn,J(χ)

)
6= Y

}
≤ min1≤j≤J P

{
ĝn,j(χ) 6= Y

}
.

Obviously, the theoretically optimal classifier G∗
n is not useful in practice because the con-

ditional expectation on the right hand side of (3) is virtually always unknown. Therefore,

in what follows, the aim is to construct estimates of (3) whose error rates can be arbitrarily

close to that of G∗
n, as the sample size n grows larger and larger. In what follows, we

propose a rather simple-to-implement nearest neighbor (NN) type method that works as

follows. Randomly split the data Tn into a training sample Tm of size m and a testing

sequence T` of size ` = n−m, where Tm∪T` = Tn and Tm∩T` = ∅. Let ĝm,1, ∙ ∙ ∙ , ĝm,J

be the J individual classifiers constructed based on Tm only, and consider the k-NN type

combined classifier Gn,k, 1 ≤ k ≤ `, given by

Gn,k

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
=






1 if
∑

i: (χi,Yi)∈T`
(2Yi − 1) ∙ Im(k, χ, χi) > 0

0 otherwise,

(4)

where Im(k, χ, χi) = I{
(
ĝm,1(χi), ∙ ∙ ∙ , ĝm,J (χi)

)
is among the k nearest neighbors of

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J (χ)

)
};

(5)

here, the distance between two J-dimensional vectors in {0, 1}J is measured with respect

to the Hamming distance, i.e., the number of discrepancies between the corresponding

components of the two vectors. In the case of ties, the nearest neighbor to be selected is

determined by random chance; thus, for example, if (ĝm,1(χi), ∙ ∙ ∙ , ĝm,J(χi)) is the third

nearest neighbor of (ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)) for i = 2, 7, and 10, then we randomly choose

one of these three candidates (and its corresponding Yi) to be used as the third nearest
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neighbor of (ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)). Then, the proposed combined classifier, denoted by

Gn,k̂ , is given by (4) with k replaced by k̂ that minimizes the re-substitution error, i.e.,

k̂ = argmin
1≤k≤`

1

`

∑

i: (χi,Yi)∈D`

I{
Gn,k

(
ĝm,1(χi),∙∙∙ ,ĝm,J (χi)

)
6= Yi

} (6)

To study the asymptotic optimality of Gn,k̂ we first state two assumptions. Define the

quantity

Sm,`(χ) =
∑

i: χi∈T`

I{(
ĝm,1(χi),∙∙∙ ,ĝm,J (χi)

)
=
(

ĝm,1(χ),∙∙∙ ,ĝm,J (χ)
)}, (7)

and consider the following assumptions:

Assumption A.

The quantity Sm,`(χ) diverges with n: Sm,`(χ) → ∞, in probability, as n (and thus `) →

∞.

Assumption B.

For the classifier G∗
n in (3), one has P

{
G∗

n

(
ĝn,1(χ), ∙ ∙ ∙ , ĝn,J(χ)

)
6= Y

}
→ c, for some

constant c in [0, 1], as n → ∞.

Assumption A above is not unrealistic at all; to appreciate this, observe that conditional

on Tm and χ, the quantity Sm,`(χ) merely represents the total number of “successes”

in ` independent Bernoulli trials, which is, intuitively, expected to diverge as ` → ∞. In

fact, alternative versions of this assumption have already been used in the literature (e.g.,

Devroye et al. [12]; p. 94)). The following result summarizes the asymptotic optimality

of the proposed combined classifier Gn,k̂.

Theorem 1 Let Gn,k̂ be the nearest neighbor combined classifier defined in (4), where k̂
is the minimizer of the empirical error in (6). If Assumptions A and B hold then

P
{

Gn,k̂

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
6= Y

}
− inf

G:{0,1}J→{0,1}
P
{

G
(
ĝn,1(χ), ∙ ∙ ∙ , ĝn,J(χ)

)
6= Y

}
−→ 0,

as n → ∞. In particular, Gn,k̂ is asymptotically at least as good as the best individual
classifier, i.e.,

lim sup
n→∞

max
1≤j≤J

[
P
{

Gn,k̂

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
6= Y

}
− P

{
ĝn,j(χ)

)
6= Y

}]
≤ 0 ,

where ĝn,j is the j-th individual classifier constructed based on the full data Tn.
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Remark 1 Let Gn,k and Sm,`(χ) be as in (4) and (7), respectively. Now, if we choose k
to be equal to Sm,`(χ) in Gn,k, provided that Sm,`(χ) > 0, then our proposed combined
classifier reduces to that of Balakrishnan and Mojirsheibani [2]. To appreciate this, observe
that in this case (4) becomes

Gn, Sm,`(χ)

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)

=

{
1 if I{Sm,`(χ)>0} ∙

∑
i: (χi,Yi)∈T`

(2Yi − 1) ∙ Im

(
Sm,`(χ), χ, χi

)
> 0

0 otherwise,
(

where Im

(
Sm,`(χ), χ, χi

)
is as in (5) with k replaced by Sm,`(χ)

)

=

{
1 if I{Sm,`(χ)>0}

∑
i: (χi,Yi)∈T`

(2Yi − 1) ∙ I{(
ĝm,1(χi), ∙ ∙ ∙ , ĝm,J (χi)

)
=
(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J (χ)

)} > 0

0 otherwise,
(8)

where we have used the fact that, in view of the definition of Sm,`(χ),

I{Sm,`(χ)>0} × I{
(
ĝm,1(χi), ∙ ∙ ∙ , ĝm,J (χi)

)
is among the Sm,`(χ) nearest neighbors of

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J (χ)

)
}

is equal to 1 if and only if I{
(
ĝm,1(χi), ∙ ∙ ∙ , ĝm,J (χi)

)
=
(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J (χ)

)
}= 1. It is straight-

forward to see that (8) is equivalent to

{
1 if

I{Sm,`(χ)>0}

Sm,`(χ)

[∑
i: (χi,Yi)∈T`

Yi ∙ I{
(
ĝm,1(χi), ∙ ∙ ∙ , ĝm,J (χi)

)
=
(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J (χ)

)
}

]
> 1

2

0 otherwise,
(9)

which is the combined classifier of Balakrishnan and Mojirsheibani [2], where, by conven-
tion, 0/0 := 0. The classifier in (9) is essentially a weighted average of all Yi ∈ T`, where
the weights are indicator functions I{

(
ĝm,1(χi), ∙ ∙ ∙ , ĝm,J (χi)

)
=
(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J (χ)

)
}, each of

which will be 1 if and only if ĝm,j(χi) = ĝm,j(χ) for all j ∈ {1, 2, . . . , J}. Unfortu-
nately, from a practical point of view, if there are a few weak/poor classifiers among
ĝm,1, . . . , ĝm,J , then one could end up with ĝm,j(χi) 6= ĝm,j(χ) for a large number of χi’s
in T` and this can hold true even when χi and χ belong to the same class. This means
that many of the weights (i.e., the indicator functions) in (9) will be zero, which in turn
reduces the predictive performance of (9). Our proposed method in this paper circum-
vents this vulnerability of the combined classifier of Balakrishnan and Mojirsheibani [2] in
(9) by allowing a few weak classifiers to “misbehave” or be incorrect in their predictions.
Thus, unlike (9), the new classifier Gn,k̂ is not seriously affected by the impact of a few
poor classifiers.

Remark 2 The results of this section can be extended to the M -group (M ≥ 2)
classification problem in a straightforward manner. More specifically, let (χ, Y ) be a
random pair where χ is as before, but Y ∈ {1, . . . ,M}. A classifier of the form
g∗(χ) := argmax1≤k≤M P{Y = k|χ = χ} is optimal in the sense that P{g∗(χ) 6=

7



Y } = ming:F→{1,...,M} P{g(χ) 6= Y }; see, for example, Devroye and Györfi [11], ch. 10.
In this case, with Im(k, χ, χi) as in (5), we have the following counterpart of (4):

Gn,k

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
= argmax

1≤j≤M

∑

i: (χi,Yi)∈T`

I{Yi= j} ∙ Im(k, χ, χi)

and the proposed combined classifier is given by Gn,k̂, where k̂ is as in (6). It can be
shown that, under assumption A and the version of B corresponding to the M -group
problem, the conclusion of Theorem 1 continues to hold in the general M -group problem
in the sense that

P
{

Gn,k̂

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
6= Y

}

− inf
G: {1,...,M}J→{1,...,M}

P
{

G
(
ĝn,1(χ), ∙ ∙ ∙ , ĝn,J(χ)

)
6= Y

}
−→ 0, as n → ∞.

Remark 3 In the case where J = 1, Theorem 1 essentially implies that, given any initial
classifier ĝn, the error of the new classifier Gn,k̂ defined via (4) and (6) can always be
asymptotically less than or equal to that of ĝn. To the best of our knowledge, this is a
new result in the literature.

Remark 4 Since, for each k = 1, . . . , `, the nearest neighbor type combined classifier
Gn,k in (4) is constructed based on one sample split, its performance can be affected
by the particular split used. Thus, unless n is very large, a “bad” split can in practice
result in a poor choice of k̂ in (6) which will lead to a poor corresponding classifier
Gn,k̂. This practical issue suggests using several random splits and taking their average.

More precisely, with N sample splits, each split will produce an estimate k̂b of k, where
b = 1, . . . , N , and the corresponding predicted class Y (corresponding to χ) is given by

Ŷb = Gn,k̂b

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
. Since each Ŷb is either 0 or 1, the overall predicted

value of Y is taken to be 1 if N−1
∑N

b=1 Ŷb > 1/2, and 0 otherwise. As for the choice of
N , our experience shows that one can expect good results with N as small as 15 or 20.

3 Numerical examples

In what follows, we study the prediction of the class variable, Y (= 0 or 1, corresponding

to the random covariate χ, using the ensemble methods proposed in this paper.

Example A (Simulated data).

In this example we consider the prediction of Y = 0 or 1, based on χ ∈ R10, where

P{Y = 1} = P{Y = 0} = 0.5. Here, we have taken χ ∼ N10

(
0 , 8Σ

)
whenever
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Y = 1 (i.e., class 1), where Σ = (σij)i,j=1,∙∙∙ ,10, with σij = 2|i−j|. On the other hand, if

Y = 0 then χ has a 10-dim standard Cauchy distribution with independent components,

i.e., the components of χ are iid random variables with the pdf f(x) = (π(1 + x2))−1,

−∞ < x < ∞. As for the choice of the individual classifiers, we have considered the

following six classifiers: a 1-Nearest Neighbor (1-NN) classifier, (ii) a 7-NN classifier, (iii)

the Support Vector Machine (SVM) of Boser et al. [5], (iv) Breiman’s [8] Random Forest,

(v) a Gaussian kernel classifier with a bandwidth of n−0.2, and (vi) the Linear Discriminant

Analysis (LDA). Next we considered three different combined classifiers: The proposed

combined classifier Gn,k̂ defined in (4), where k̂ is the minimizer of the empirical error in

(6), the combined classifier of Balakrishnan and Mojirsheibani [2] given in (9), and the

majority-vote classifier. To trace the performance of various methods, several sample sizes

were used: n = 50, 100, 200, . . . , 800, 900, with n
2

observations from each population. As

for the sample splits, we took m = 0.65n and ` = n − m, but any other fraction in the

0.55 to 0.85 range seems to work just as well. Next, for each sample size, we constructed

the six individual classifiers based on Tm, which were then used to construct the above

combined classifiers based on T`. For each value of n, a total of 25 sample splits were

used; this is in view of Remark 4. To assess the performance of various classifiers, we

also generated 1000 additional observations, with 500 from each of the two populations;

these were used as test samples for each classifier. Finally, the whole process above was

repeated a total of 300 times, yielding 300 estimates of the misclassification errors of

each classifiers discussed above. The average errors (over 300 Monte Carlo runs) are

summarized in Table 1 along with their standard errors in parentheses.

As Table 1 shows, the SVM and random forest classifiers perform very well for smaller

sample sizes, but as n reaches 100, the proposed combined classifier Gn,k̂ (as well as B-M)

start performing better than all other classifiers. The boldface values represent the smallest

error rates for each n. We also note that as n gets larger and larger, most classifiers start

performing better and better (except for the LDA which is a wrong classifier in the presence

of Cauchy populations); however, the proposed combined classifier is consistently superior

9



Table 1: Misclassification errors of the three combined classifiers and the six individual classifiers for
the simulated data of Example A. Here Ĝn,k̂ is the proposed classifier, B-M is the combined classifier of

Balakrishnan and Mojirsheibani [2], and Vote is the combined classifier based on majority voting. The
boldfaced values represent the lowest errors for each n.

n Ĝn,k̂ B-M Vote SVM Forest 1-NN 7-NN Kernel LDA

50 .3342 .3404 .3732 .3020 .3180 .3616 .4698 .3339 .4864
(.0029) (.0023)(.0015) (.0016) (.0018) (.0015) (.0013) (.0014) (.0013)

100 .2802 .2828 .3366 .2847 .2875 .3329 .4374 .3126 .4906
(.0017) (.0015)(.0016) (.0010) (.0017) (.0016) (.0017) (.0013) (.0012)

200 .1709 .1821 .2646 .2506 .2181 .2696 .3341 .2635 .4849
(.0014) (.0013)(.0010) (.0009) (.0011) (.0011) (.0011) (.0010) (.0013)

300 .1491 .1623 .2463 .2428 .2078 .2534 .2897 .2510 .4873
(.0013) (.0011)(.0010) (.0009) (.0011) (.0009) (.0012) (.0009) (.0013)

400 .1452 .1514 .2248 .2385 .1909 .2399 .2570 .2387 .4843
(.0010) (.0009)(.0013) (.0008) (.0009) (.0009) (.0011) (.0009) (.0015)

500 .1394 .1405 .2105 .2262 .1739 .2275 .2354 .2265 .4945
(.0009) (.0008)(.0009) (.0012) (.0011) (.0010) (.0010) (.0010) (.0013)

600 .1360 .1360 .2001 .2212 .1676 .2221 .2195 .2213 .4845
(.0008) (.0007)(.0009) (.0007) (.0008) (.0007) (.0010) (.0007) (.0014)

700 .1310 .1343 .1961 .2199 .1656 .2230 .2097 .2221 .4891
(.0010) (.0008)(.0007) (.0010) (.0009) (.0009) (.0009) (.0009) (.0012)

800 .1249 .1278 .1861 .2119 .1583 .2137 .2066 .2133 .4851
(.0008) (.0007)(.0009) (.0008) (.0008) (.0009) (.0009) (.0009) (.0013)

900 .1190 .1243 .1856 .2076 .1505 .2122 .1969 .2118 .4920
(.0009) (.0008)(.0006) (.0010) (.0010) (.0008) (.0008) (.0008) (.0013)

to all the other ones. Furthermore, in some cases this superiority is quite notable; see,

for example, the row corresponding to n=300, where the error of Ĝn,k̂ is only 0.1491

as compared to the best individual classifier, the random forest, with an error of 0.2078.

Such rather large discrepancies can also be noticed for many other values of n in Table 1.

Another feature of the proposed classifier Ĝn,k̂ is that, unlike linear combined classifiers, it

can even be used to improve the predictive performance of any single classifier (although

the improvement may be quite incremental in some cases). To appreciate this, observe

that according to Theorem 1, the proposed combined classifier Ĝn,k̂ can asymptotically

outperform each constituent classifier ĝn,1, . . . , ĝn,J , where J ≥ 1. Now, taking J=1,

this theorem states that, given a single classifier ĝn, the proposed approach can produce

an improved version of ĝn. To put this to the test, we applied Ĝn,k̂ to some of the six
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classifiers in Table 1; in fact, we applied it to each of the two classifiers that have already

performed quite well and are difficult to outperform, i.e., the SVM and random forest

classifiers. The results appear in Table 2. This table shows that as n increases, the

Table 2: Effects of applying the combined classifier Ĝn,k̂ to J=1 classifier only. Here ŜVM and F̂orest

represent the classifiers obtained by applying Ĝn,k̂ to SVM and random forest, respectively. For each

n, the boldfaced values represent the smaller of the two error rates when comparing SVM and ŜVM in

columns 3 and 4, and when comparing random forest and F̂orest in columns 4 and 5.

n SVM ŜVM Forest F̂orest
50 0.3020 0.3076 0.3180 0.3193

(.0016) (.0017) (.0018) (.0024)
100 0.2847 0.2871 0.2875 0.2844

(.0010) (.0011) (.0017) (.0016)
200 0.2506 0.2411 0.2181 0.2032

(.0009) (.0008) (.0011) (.0013)
300 0.2428 0.2380 0.2078 0.1993

(.0009) (.0009) (.0011) (.0008)
400 0.2385 0.2302 0.1909 0.1815

(.0009) (.0007) (.0009) (.0009)
500 0.2262 0.2265 0.1739 0.1732

(.0012) (.0010) (.0011) (.0010)
600 0.2212 0.2207 0.1676 0.1768

(.0007) (.0008) (.0008) (.0008)
700 0.2199 0.2188 0.1656 0.1643

(.0010) (.0008) (.0009) (.0009)
800 0.2119 0.2031 0.1583 0.1492

(.0008) (.0007) (.0008) (.0008)
900 0.2076 0.2070 0.1505 0.1480

(.0010) (.0007) (.0010) (.0009)

proposed classifier can still improve upon the performance of each of these two classifiers,

individually, despite the fact that both SVM and random forest are well known to be superb

classifiers. It is true that the improvement is rather minimal, but the main message here

is that Ĝn,k̂ is more than just a combined classifier, it can also improve the predictive

power of a single classifier.

Example B (Wisconsin Breast Cancer Data).

This real data set has 683 fully observed instances, 444 of which have been labeled benign,

11



which is class 1, and the rest are malignant, i.e., class 0. There are also 9 numerical covari-

ates associated with each instance. A full description of this data set is available from the

UCI Machine Learning Repository of data sets: https://archive.ics.uci.edu/ml/datasets.php.

Also, see Wolberg and Mangasarian (1990).

To carry out the analysis, 500 of the 683 instances were randomly selected to be used

as the training data, whereas the remaining 183 were set aside as the test sequence to

be used to estimate the error rates of different classifiers. To study the performance of

various classifiers as a function of the sample size n, we considered 5 different sample

sizes n = 100, . . . , 500 (since n can only go up to 500 here) and, for each value of n,

six individual classifiers were constructed which were then used to construct the proposed

combined classifier. Here, as in Example A, the sample splits were taken to be m = 0.65n

and ` = n − m. Finally, the error rates of all classifiers were estimated using the test

sequence of 183 instances that were set aside. This whole process was repeated 100 times.

Table 3 reports the average error rates of various classifiers over 100 runs; the standard

errors appear in parentheses. The boldfaced values represent the smallest error rates for

each n. The combined classifier B-M of Table 1 is not included here for the simple reason

that it is always inferior to Ĝn,k̂. As Table 3 shows, the proposed combined classifier can

outperform the individual classifiers. This can be noticed by comparing the error of the

best individual classifier (the random forest in this case) with that of Ĝn,k̂ that appears

in the first column.

Example C (German Credit Data).

Here we consider a real data set consisting of 1000 individuals, 700 of whom have been

labeled as having “good credit”, i.e., class 1, whereas the remaining 300 have “bad credit”,

which is class 0. There are 24 numerical covariates associated with each person. A full

description of this data set is available from the UCI repository of machine learning data

sets at https://archive.ics.uci.edu/ml/index.php.

12



Table 3: Misclassification errors of various classifiers for the Wisconsin Breast Cancer data of Example

B. Here Ĝn,k̂ is our proposed classifier and Vote is the combined classifier based on majority voting. The

boldfaced values represent the lowest errors for each n.

n Ĝn,k̂ Vote SVM Forest 1-NN 15-NN Kernel LDA

100 .0362 .0387 .0541 .0387 .0469 .0449 .0459 .0453
(.0013) (.0012) (.0017) (.0014) (.0016) (.0012) (.0016) (.0016)

200 .0312 .0347 .0511 .0337 .0427 .0384 .0422 .0392
(.0012) (.0013) (.0018) (.0014) (.0015) (.0014) (.0016) (.0013)

300 .0279 .0304 .0439 .0303 .0396 .0346 .0391 .0375
(.0011) (.0011) (.0015) (.0012) (.0012) (.00012) (.0011) (.0012)

400 .0277 .0316 .0445 .0298 .0408 .0338 .0409 .0385
(.0010) (.0012) (.0015) (.0010) (.0014) (.0012) (.0013) (.0012)

500 .0272 .0327 .0422 .0295 .0416 .0336 .0416 .0395
(.0010) (.0011) (.0014) (.0010) (.0012) (.0012) (.0012) (.0012)

To carry out the analysis, first we randomly selected, and set aside, 300 of the 1000 obser-

vations to be used as the test sequence to estimate the error rates of various classifiers. As

for the training sample size, seven values were considered: n = 100, 200, . . . , 700, (since

n cannot go beyond 700=1000−300). This grid of values of n allows us to somewhat

monitor the performance of different classifiers as n increases. Then, given a sample of

size n, each of the six individual classifiers of Example B were constructed and used to

construct the proposed combined classifiers. Here, once again, the sample splits were

taken to be m = 0.65n and ` = n − m. Finally, the error rates of various classifiers

were estimated using the test sample of 300 observations. The entire process above was

repeated 100 times and the average misclassification error rates were calculated. The

results are summarized in Table 4. As this table shows, the combined classifier Ĝn,k̂ has

the ability to perform well and, in fact, slightly outperform the best individual classifier

(which is random forest) as the sample size increases to about 600.

4 Proofs

PROOF OF THEOREM 1

Let G∗
n and Gn,k be as in (3) and (4), respectively. Similarly, let G∗

m be as in (3), but

13



Table 4: Misclassification errors of different classifiers for the German Credit data of Example C. Here

Ĝn,k̂ is our proposed classifier and Vote is the combined classifier based on majority voting. The boldfaced

values represent the lowest errors for each n.

n Ĝn,k̂ Vote SVM Forest 1-NN 15-NN Kernel LDA

100 .2914 .3012 .3053 .2755 .3746 .3061 .3718 .3150
(.0028) (.0024) (.0022) (.0024) (.0032) (.0023) (.0032) (.0033)

200 .2691 .2922 .2975 .2613 .3590 .3030 .3572 .2974
(.0026) (.0026) (.0022) (.0023) (.0025) (.0023) (.0025) (.0030)

300 .2608 .2838 .2954 .2523 .3534 .2984 .3521 .2893
(.0024) (.0022) (.0024) (.0020) (.0026) (.00023) (.0027) (.0022)

400 .2472 .2794 .2909 .2458 .3494 .2973 .3467 .2860
(.0024) (.0029) (.0023) (.0027) (.0027) (.0024) (.0026) (.0023)

500 .2438 .2738 .2886 .2414 .3417 .2955 .3399 .2775
(.0021) (.0024) (.0024) (.0021) (.0023) (.0023) (.0024) (.0022)

600 .2398 .2749 .2914 .2411 .3424 .2994 .3395 .2774
(.0023) (.0022) (.0023) (.0022) (.0023) (.0021) (.0024) (.0024)

700 .2372 .2756 .2869 .2376 .3407 .2990 .3385 .2800
(.0021) (.0022) (.0026) (.0021) (.0023) (.0022) (.0022) (.0024)

with n replaced with m everywhere in (3). Also, let Gn,k̂ be the combined classifier given

by (4) and (6), and define the quantities

L(G∗
n) = P

{
G∗

n

(
ĝn,1(χ), ∙ ∙ ∙ , ĝn,J(χ)

)
6= Y

}
(10)

L(G∗
m) = P

{
G∗

m

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
6= Y

}
(11)

L̂`(Gn,k) =
1

`

∑

i: (χi,Yi)∈T`

I{
Gn,k

(
ĝm,1(χi),∙∙∙ ,ĝm,J (χi)

)
6= Yi

} (12)

L(Gn,k

∣
∣Tn) = P

{
Gn,k

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
6= Y

∣
∣
∣Tn

}
(13)

L(Gn,k̂) = P
{

Gn,k̂

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
6= Y

}
(14)

L(Gn,k̂

∣
∣Tn) = P

{
Gn,k̂

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
6= Y

∣
∣
∣Tn

}
, (15)

where k̂ is as in (6) and 1 ≤ k ≤ `. Therefore, in view of Proposition 2, and the notation

in (10) and (14), one must show L(Gn,k̂) − L(G∗
n) → 0, as n → ∞. Now, start by

writing

L(Gn,k̂) − L(G∗
n) = E

[
L(Gn,k̂

∣
∣Tn) − min

1≤k≤`
L(Gn,k

∣
∣Tn)

]

+
[
E min

1≤k≤`
L(Gn,k

∣
∣Tn) − L(G∗

m)
]

+
[
L(G∗

n) − L(G∗
m)
]
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:= Rn,1 + Rn,2 + Rn,3. (16)

Then, fix Tn and define the classes of sets An,1 = {An,1,1, . . . , An,1,`} and An,0 =

{An,0,1, . . . , An,0,`} where, for 1 ≤ k ≤ `,

An,1,k =
{(

ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)
)
, as χ varies over F

∣
∣
∣Gn,k

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
= 1
}
× {0}

An,0,k =
{(

ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)
)
, as χ varies over F

∣
∣
∣Gn,k

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
= 0
}
× {1}

Furthermore, for 1 ≤ k ≤ `, let

λ(An,b,k|Tn) = P
{(

ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ), Y
)
∈ An,b,k

∣
∣
∣Tn

}
, b = 0, 1

λ̂`(An,b,k) = `−1
∑

i: (χi,Yi)∈T`

I{
(ĝm,1(χi),∙∙∙ ,ĝm,J (χi), Yi)∈An,b,k

}, b = 0, 1,

and observe that

L(Gn,k̂

∣
∣Tn) − min

1≤k≤`
L(Gn,k

∣
∣Tn)

= L(Gn,k̂

∣
∣Tn) − L̂`(Gn,k̂) + L̂`(Gn,k̂) − min

1≤k≤`
L(Gn,k

∣
∣Tn)

≤ 2 max
1≤k≤`

∣
∣
∣L̂`(Gn,k) − L(Gn,k

∣
∣Tn)

∣
∣
∣

≤ 2
∑

b=0,1

max
1≤k≤`

∣
∣
∣λ̂`(An,b,k) − λ(An,b,k|Tn)

∣
∣
∣

≤ 4 sup
B∈B

∣
∣
∣λ̂`(B) − λ(B|Tm)

∣
∣
∣

(where B is the collection of the Borel sets of RJ+1)

≤ 4
∑

z∈{0,1}J+1

∣
∣
∣λ̂`({z}) − λ({z}|Tm)

∣
∣
∣ , (17)

where, for z ∈ RJ+1, we have λ̂`({z}) = `−1
∑

i: (χi,Yi)∈T`
I{

(ĝm,1(χi),∙∙∙ ,ĝm,J (χi), Yi)= z
}

and λ({z}|Tm) = P
{(

ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ), Y
)

= z
∣
∣Tm

}
. Therefore, in view of (17),

for every ε > 0, one has

P
{

L(Gn,k̂

∣
∣Tn) − min

1≤k≤`
L(Gn,k

∣
∣Tn) > ε

}

≤ P






∑

z∈{0,1}J+1

∣
∣
∣λ̂`({z}) − λ({z}|Tm)

∣
∣
∣ > ε/4
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≤
∑

z∈{0,1}J+1

E
[
P
{∣∣
∣λ̂`({z}) − λ({z}|Tm)

∣
∣
∣ > 2−(J+3) ε

∣
∣
∣Tm

}]

≤ 2J+1
[
2 e−C `ε2

]
, with C = 2−(2J+5), (18)

where (18) follows from an application of Hoeffding’s (1963) inequality in view of the fact

that, conditional on Tm, the term λ̂`({z}) is the average of ` independent indicator func-

tions, I{
(ĝm,1(χi),∙∙∙ ,ĝm,J (χi),Yi)= z

}, corresponding to the ` pairs (χi, Yi) ∈ T`. Now, (18)

together with the Borel-Cantelli lemma yields L(Gn,k̂

∣
∣Tn)−min1≤k≤` L(Gn,k

∣
∣Tn) →a.s. 0,

as n → ∞. Thus, by Lebesgue’s dominated convergence theorem,

Rn,1 := E
[
L(Gn,k̂

∣
∣Tn) − min

1≤k≤`
L(Gn,k

∣
∣Tn)

]
→ 0, as n → ∞.

To deal with the term Rn,2 in (16), start by defining the quantity

νn(χ) = Sm,`(χ) + ` ∙ I{
Sm,`(χ) = 0

}, (19)

where Sm,`(χ) is as in (7). Here, we note that νn(χ) takes values in {1, . . . , `}. Also put

P̂m,`(χ) =

∑
i:χi∈T`

Yi I{(
ĝm,1(χi),∙∙∙ ,ĝm,J (χi)

)
=
(

ĝm,1(χ),∙∙∙ ,ĝm,J (χ)
)}

Sm,`(χ)
(20)

and observe that upon replacing k by νn(χ) in (4), we can write

Gn, νn(χ)

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)

=






1 if 1
νn(χ)

∑
i: (χi,Yi)∈T`

(2Yi − 1) ∙ Im

(
νn(χ), χ, χi

)
> 0

0 otherwise,

(where the term Im

(
νn(χ), χ, χi

)
is defined via (5))

=






1 if
I{Sm,`(χ)>0}

Sm,`(χ)

∑
i: (χi,Yi)∈T`

(2Yi − 1) ∙ Im

(
Sm,`(χ), χ, χi

)

+
I{Sm,`(χ)=0}

`

∑
i: (χi,Yi)∈T`

(2Yi − 1) ∙ Im(`, χ, χi) > 0

0 otherwise,

(21)

(where (21) follows from the definition of νn(χ) in (19))

=






1 if
I{Sm,`(χ)>0}

Sm,`(χ)

∑
i: (χi,Yi)∈T`

(2Yi − 1) I{(
ĝm,1(χi), ∙ ∙ ∙ , ĝm,J (χi)

)
=
(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J (χ)

)}

+ (2Y ` − 1) I{Sm,`(χ)=0} > 0

0 otherwise,

(22)
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=






1 if P̂m,`(χ) ∙ I{Sm,`(χ)>0} + Y ` ∙ I{Sm,`(χ)=0} > 1/2

0 otherwise,
(23)

where P̂m,`(χ) is as in (20) and Y ` = `−1
∑

i: Yi∈T`
Yi. Here, (22) follows from (21)

because of the following simple facts:

(i) For each χi ∈ T`, the product of the two indicator functions, I{Sm,`(χ)>0} and

I{
(
ĝm,1(χi), ∙ ∙ ∙ , ĝm,J (χi)

)
is among the Sm,`(χ) neighbors of

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J (χ)

)
},

(where the latter indicator function is just the term Im

(
Sm,`(χ), χ, χi

)
in (21)), will be

equal to 1 if and only if I{
(
ĝm,1(χi), ∙ ∙ ∙ , ĝm,J (χi)

)
=
(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J (χ)

)
} = 1.

(ii) For each χi ∈ T`, the term Im(`, χ, χi) in (21), which is just the indicator function

I{
(
ĝm,1(χi), ∙ ∙ ∙ , ĝm,J (χi)

)
is among the ` nearest neighbors of

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J (χ)

)
},

is always equal to 1; this is because here the number of nearest neighbors, `, is the same

as the entire sample size, `, (the size of T`).

To complete the proof, we also need the following lemma which puts bounds on the term

Rn,2 in (16) based on the expected value of the expression that appears on the right side

of (23). More specifically,

Lemma 1 Let Rn,2 be as in (16) and put Y ` = `−1
∑

i: Yi∈T`
Yi . Then

0 ≤ Rn,2 ≤ 2E

∣
∣
∣
∣P̂m,`(χ) ∙ I{Sm,`(χ)>0} + Y ` ∙ I{Sm,`(χ)=0} − Pm(χ)

∣
∣
∣
∣,

where Pm(χ) = P
{
Y = 1

∣
∣ ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

}
.

Now, to show Rn,2 → 0, let Pm(χ) be as in Lemma 1 and observe that by Lemma 1 and

the fact that 0 ≤ Y ` ≤ 1, one has

Rn,2 ≤ 2E

∣
∣
∣
∣P̂m,`(χ) ∙ I{Sm,`(χ)>0} − Pm(χ)

∣
∣
∣
∣+ 2E

(
I{Sm,`(χ)=0}

)

≤ 2

√

E

[

E

(∣
∣
∣P̂m,`(χ) ∙ I{Sm,`(χ)>0} − Pm(χ)

∣
∣
∣
2
∣
∣
∣
∣Tm, χ, {χi}i ∈ T`

)]

(24)
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+ 2P {Sm,`(χ) = 0} .

However, conditional on Tm, χ, and {χi}i ∈T`, the random variable Sm,`(χ) ∙ P̂m,`(χ),

which is equal to the numerator of the right side of (20), has the binomial distribu-

tion Bin
(
Sm,`(χ) , Pm(χ)

)
whenever Sm,`(χ) > 0. Therefore, the expression under the

square-root sign in (24) can be bounded as follows

E

[

E

(∣
∣
∣P̂m,`(χ) ∙ I{Sm,`(χ)>0} − Pm(χ)

∣
∣
∣
2
∣
∣
∣
∣Tm, χ, {χi}i ∈ T`

)]

≤ E

[

E

( ∣∣
∣
∣
∣

Sm,`(χ) ∙ P̂m,`(χ) ∙ I{Sm,`(χ)>0}

Sm,`(χ)
− Pm(χ)

∣
∣
∣
∣
∣

2

× I{Sm,`(χ)>0}

∣
∣
∣
∣
∣
Tm, χ, {χi}i ∈ T`

)

+ I{Sm,`(χ)=0}

]

= E

[

E





∣
∣
∣
∣
∣

Bin
(
Sm,`(χ), Pm(χ)

)

Sm,`(χ)
− Pm(χ)

∣
∣
∣
∣
∣

2

× I{Sm,`(χ)>0}

∣
∣
∣
∣
∣
Tm, χ, {χi}i ∈ T`

)

+ I{Sm,`(χ)=0}

]

= E

[
Pm(χ)

(
1 − Pm(χ)

)

Sm,`(χ)
× I{Sm,`(χ)>0}

]

+ P {Sm,`(χ) = 0} ,

where the last line follows from the usual binomia variance formula. This last expression,

in conjunction with (24), and the fact that Pm(χ)
(
1−Pm(χ)

)
≤ 1/4 immediately yields

Rn,2 ≤ 2

√

E
[(

4Sm,`(χ)
)−1

I{Sm,`(χ)>0}

]
+ P {Sm,`(χ) = 0} + 2P {Sm,`(χ) = 0} . (25)

But, upon replacing {Sm,`(χ) > 0} by {1 ≤ Sm,`(χ) ≤ k} ∪ {Sm,`(χ) > k}, for any

arbitrary integer k ≥ 1, one finds E
[

1
Sm,`(χ)

I{Sm,`(χ)>0}

]
≤ P{1 ≤ Sm,`(χ) ≤ k} + k−1

holds for all k ≥ 1. Therefore, by first choosing k large enough and then applying

Assumption A, the bound in (25) can be made as small as desired. The proof of Theorem

1 now follows since, in view of Assumption B, we have Rn,3 → 0, as n (and thus m)

→ ∞, where Rn,3 is as in (16). This completes the proof of Theorem 1.

2
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PROOF OF LEMMA 1

Let L(G∗
m) be as defined in (11). Also, let Gn, νn(χ) be as given by the right side of (23)

and put L(Gn, νn(χ)

∣
∣Tn) = P

{
Gn, νn(χ)

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
6= Y

∣
∣Tn

}
. Now, observe

that E
[
min1≤k≤` L(Gn,k

∣
∣Tn)

]
≤ E

[
L(Gn, νn(χ)

∣
∣Tn)

]
= L(Gn, νn(χ)), from which one

obtains

Rn,2 ≤ L(Gn, νn(χ)) − L(G∗
m). (26)

Furthermore, Rn,2 ≥ 0 which follows from the fact that

E

[

min
1≤k≤`

L(Gn,k

∣
∣Tn)

]

= E

[

L

(

argmin
Gn,k∈{Gn,1,...,Gn,`}

L
(
Gn,k|Tn

)
∣
∣
∣
∣Tn

)]

= L

(

argmin
Gn,k∈{Gn,1,...,Gn,`}

L
(
Gn,k|Tn

)
)

≥ L(G∗
m),

where the last line follows from Proposition 2 with n replaced by m. Next, observe that

Rn,2 ≤ L(Gn, νn(χ)) − L(G∗
m) , (by (26))

= P
{
G∗

m

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
= Y

}
− P

{
Gn,νn(χ)

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
= Y

}

=
∑

k=0,1

E

(

I{
[G∗

m(ĝm,1(χ),∙∙∙ ,ĝm,J (χ))=k]∩ [Y =k]
} − I{

[Gn,νn(χ)(ĝm,1(χ),∙∙∙ ,ĝm,J (χ))=k]∩ [Y =k]
}
)

=
∑

k=0,1

E

[

E

(

I{
G∗

m(ĝm,1(χ),∙∙∙ ,ĝm,J (χ))=k
} ∙ I{Y =k}

− I{
Gn,νn(χ)(ĝm,1(χ),∙∙∙ ,ĝm,J (χ))=k

} ∙ I{Y =k}

∣
∣
∣
∣ ĝm,1(χ), ∙ ∙ ∙ ,

ĝm,J(χ),
(
ĝm,1(χi), ∙ ∙ ∙ , ĝm,J(χi), Yi

)

i: χi∈T`

)]

=
∑

k=0,1

E

[(

I{
G∗

m(ĝm,1(χ),∙∙∙ ,ĝm,J (χ))=k
} − I{

Gn,νn(χ)(ĝm,1(χ),∙∙∙ ,ĝm,J (χ))=k
}
)

× E
(
I{Y =k}

∣
∣
∣ ĝm,1(χ), ∙ ∙ ∙ ĝm,J(χ)

)]

(because Y is independent of ĝm,1(χi), ∙ ∙ ∙ , ĝm,J(χi), Yi , i : χi∈T`)

= E

[(

I{
G∗

m(ĝm,1(χ),∙∙∙ ,ĝm,J (χ))=1
} − I{

Gn,νn(χ)(ĝm,1(χ),∙∙∙ ,ĝm,J (χ))=1
}
)

∙ Pm(χ)

]
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−E

[(

I{
G∗

m(ĝm,1(χ),∙∙∙ ,ĝm,J (χ))=1
} − I{

Gn,νn(χ)(ĝm,1(χ),∙∙∙ ,ĝm,J (χ))=1
}
)

∙
(
1 − Pm(χ)

)]

(where, as in Lemma 1, Pm(χ) = P
{
Y = 1

∣
∣ ĝm,1(χ), ∙ ∙ ∙ ĝm,J(χ)

}
.)

= E

[(

I{
G∗

m(ĝm,1(χ),∙∙∙ ,ĝm,J (χ))=1
} − I{

Gn,νn(χ)(ĝm,1(χ),∙∙∙ ,ĝm,J (χ))=1
}
)

∙
(
2Pm(χ) − 1

)]

= 2E

[

I{
G∗

m(ĝm,1(χ),∙∙∙ ,ĝm,J (χ)) 6= Gn,νn(χ)(ĝm,1(χ),∙∙∙ ,ĝm,J (χ))
} ∙
∣
∣
∣Pm(χ) − 0.5

∣
∣
∣

]

≤ 2E

∣
∣
∣
∣P̂m,`(χ) ∙ I{Sm,`(χ)>0} + Y ` ∙ I{Sm,`(χ)=0} − Pm(χ)

∣
∣
∣
∣,

where the last line follows from the definition of Gn,νn(χ)

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
in the

far right side of (23), the definition of G∗
m

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
, and the fact that the

inequality
∣
∣Pm(χ) − 0.5

∣
∣ ≤

∣
∣
∣P̂m,`(χ) ∙ I{Sm,`(χ)>0} + Y ` I{Sm,`(χ)=0} − Pm(χ)

∣
∣
∣ holds on

the set
{

G∗
m

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)
6= Gn,νn(χ)

(
ĝm,1(χ), ∙ ∙ ∙ , ĝm,J(χ)

)}
.

2

PROOF OF PROPOSITION 1

The proof Proposition 1 is similar to (and, in fact, much simpler than) that of Proposition

2, and will not be given.

PROOF OF PROPOSITION 2

The proof of this Proposition is similar to (and easier than) the proof of Lemma 1 and

goes as follows. Let G : {0, 1}J → {0, 1} be any combined classifier with error L(G) =

P
{
G
(
ĝn,1(χ), ∙ ∙ ∙ , ĝn,J(χ)

)
6= Y

}
. Then, with G∗

n as in (3), one has

L(G) − L(G∗
n)

= P
{

G∗
n

(
ĝn,1(χ), ∙ ∙ ∙ , ĝn,J(χ)

)
= Y

}
− P

{
G
(
ĝn,1(χ), ∙ ∙ ∙ , ĝn,J(χ)

)
= Y

}

=
∑

k=0,1

E

[

E

(

I{
G∗

n(ĝn,1(χ),∙∙∙ ,ĝn,J (χ))=k
} ∙ I{

Y =k
}

− I{
G(ĝn,1(χ),∙∙∙ ,ĝn,J (χ))=k

} ∙ I{
Y =k
}
∣
∣
∣
∣ ĝn,1(χ), ∙ ∙ ∙ , ĝn,J(χ)

)]

= E

[(

I{
G∗

n(ĝn,1(χ),∙∙∙ ,ĝn,J (χ))=1
} − I{

G(ĝn,1(χ),∙∙∙ ,ĝn,J (χ))=1
}
)

∙
(
2Pn(χ) − 1

)]
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= 2E

[

I{
G(ĝn,1(χ),∙∙∙ ,ĝn,J (χ)) 6= G∗

n(ĝn,1(χ),∙∙∙ ,ĝn,J (χ))
} ×

∣
∣
∣Pn(χ) − 0.5

∣
∣
∣

]

≥ 0 , where Pn(χ) = P
{
Y = 1

∣
∣ ĝn,1(χ), ∙ ∙ ∙ ĝn,J(χ)

}
.
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