
 
 

University of Birmingham

Evaluation of software architectures under
uncertainty
Sobhy, Dalia; Bahsoon, Rami; Minku, Leandro; Kazman, Rick

DOI:
10.1145/3464305

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Sobhy, D, Bahsoon, R, Minku, L & Kazman, R 2021, 'Evaluation of software architectures under uncertainty: a
systematic literature review', ACM Transactions on Software Engineering and Methodology, vol. 30, no. 4, 51.
https://doi.org/10.1145/3464305

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
©  ACM 2021. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of
Record was published in ACM Transactions on Software Engineering and Methodology, https://doi.org/10.1145/3464305.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 06. May. 2024

https://doi.org/10.1145/3464305
https://doi.org/10.1145/3464305
https://birmingham.elsevierpure.com/en/publications/14b804b9-ad04-4caf-91fa-118a9b10dc6f


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review
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Context: Evaluating software architectures in uncertain environments raises new challenges, which require
continuous approaches. We define continuous evaluation as multiple evaluations of the software architecture
that begins at the early stages of the development and is periodically and repeatedly performed throughout
the lifetime of the software system. Numerous approaches have been developed for continuous evaluation;
to handle dynamics and uncertainties at run-time, over the past years, these approaches are still very few,
limited, and lack maturity.
Objective: This review surveys efforts on architecture evaluation and provides a unified terminology and
perspective on the subject.
Method:We conducted a systematic literature review to identify and analyse architecture evaluation approaches
for uncertainty including continuous and non-continuous, covering work published between 1990-2020. We
examined each approach and provided a classification framework for this field. We present an analysis of the
results and provide insights regarding open challenges.
Major results and conclusions: The survey reveals that most of the existing architecture evaluation approaches
typically lack an explicit linkage between design-time and run-time. Additionally, there is a general lack of
systematic approaches on how continuous architecture evaluation can be realised or conducted. To remedy
this lack, we present a set of necessary requirements for continuous evaluation and describe some examples.

Additional Key Words and Phrases: Continuous Software Architecture Evaluation, Design-time Software
Architecture Evaluation, Run-time Software Architecture Evaluation, Uncertainty.

Reference Format:
Dalia Sobhy, Rami Bahsoon, Leandro Minku, and Rick Kazman. 2021. Evaluation of Software Architectures
under Uncertainty: A Systematic Literature Review. 1, 1 (April 2021), 50 pages.

1 INTRODUCTION
Architecture evaluation is a milestone in the decision-making process. It aims at justifying the
extent to which architecture design decisions meet a system’s quality requirements and their
trade-offs, particularly in the face of operational uncertainties and changing requirements. The
evaluation can aid in early identification and mitigation of design risks; the exercise is typically
done in an effort to save integration, testing and evolution costs [124]. Examples of seminal work
include Architecture Tradeoff Analysis Method (ATAM) [85], and Cost Benefit Analysis Method
(CBAM) [82].
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2 Sobhy et al.

Software architectures that operate in dynamic and non-stationary environments (e.g., IoT and
cloud applications) require a fundamental shift in the way evaluations are conducted. This is due
to unforeseen factors that may affect the evaluation, including (but not limited to), fluctuations in
QoS, multi-tenancy, hyper-connectivity, sensor ageing effects, etc [71, 109, 130].
Though existing design-time evaluation approaches promise to evaluate flexibility in architec-

tures under uncertainty and their responses in enabling change [19, 82, 85], in contexts of highly
dynamic environments these approaches tend to be limited because there may be emerging sce-
narios where the architect cannot rely solely on design-time evaluation. Such scenarios require
a run-time evaluation to inform and calibrate the design-time decisions. In this context, a more
continuous approach would benefit the evaluation process. We define continuous software architec-
ture evaluation as multiple evaluations of the software architecture that begins at the early stages of
the development and is periodically and repeatedly performed throughout the lifetime of the software
system. Continuous evaluation is performed either continuously or sporadically covering either
one feature (e.g. QoS) or multiple features.

There have been many research studies aimed at evaluating software architectures to deal with
uncertainty which may implicitly or explicitly adopt continuous approaches (e.g. DevOps [17]). The
field has attracted a wide range of researchers and practitioners. However, continuous evaluation
has not been viewed as a key area within software architecture research. We still lack a clear vision
regarding the elements of a continuous software architecture evaluation approach.

In past years, many research studies have reviewed design-time architecture evaluation methods
(e.g. [27, 53, 122]), while some have attempted to review run-time methods without addressing
them from the context of continuous architecture evaluation (e.g. [26, 47, 93, 98, 131]). In particular,
to date there is no systematic literature review for software architecture evaluation approaches
for uncertainty which may implicitly or explicitly adopt continuous approaches. A systematic
literature review (SLR) is a methodological mean to aggregate empirical studies, to systematically
investigate a research topic, answer specific research questions, and finally determine the gaps and
research directions for the research topic [88, 89, 116].
The objective of this study is to (i) provide a basic classification schema which categorises

software architecture evaluation approaches under uncertainty; (ii) categorise the current design-
time and run-time approaches for evaluating software architectures based on this schema; (iii)
determine the necessary guidelines for developing a continuous evaluation approach; (iv) point
out current gaps and directions for future research in software architectures for environments
characterised by uncertainty, where we consider both design-time and run-time evaluation that
take into account the possibility of uncertainties in the environment where the system will operate
/ is operating. Concretely, we aim to provide answers for the following research questions:

(1) How can the current research on software architecture evaluation under uncertainty be
categorised and what are the current state-of-the-art approaches with respect to this cate-
gorisation? The goal is to provide a categorisation of existing architecture evaluation approaches
under uncertainty and classify the state-of-the-art approaches under this categorisation.

(2) What are the actions taken by these architecture evaluation approaches to deal with un-
certainty? The aim of this question is to demonstrate and discuss how the existing approaches
deal with uncertainty and whether these actions can contribute to developing more continuous
approaches.

(3) What are the current trends and future directions in software architecture evaluation for
uncertainty and their consideration for continuous evaluation? This question aims to show
how researchers and practitioners can benefit from the existing approaches to draw inspiration

, Vol. 1, No. 1, Article . Publication date: April 2021.



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147
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on the essential requirements and address the pitfalls when developing a continuous evaluation
approach.

The manuscript is structured as follows: Section 1.1 identifies and explains the necessary con-
cepts to ease the understanding of the review. Section 2 demonstrates the systematic literature
review process, Section 3 provides an overview of the included studies from the chronological and
distribution perspectives. Section 4 categorises the included studies with respect to a classification
framework and presents the limitations of review. The related reviews are discussed in Section
5. New trends and research directions are discussed in Section 6. Finally, Section 7 concludes the
work.

1.1 Preliminaries and Basic Concepts
In this section, we list descriptions of the main concepts used in this review to ease the analysis.

1.1.1 Architecture Design Decisions. The foundation of an architecture is in the set of taken
[25, 80, 137]. The architects define the possible set of candidate architectures to serve a particular
concern and then based on their experience and knowledge they choose the best candidate [35].
For example, in an IoT application, the architect could prefer processing the data in the cloud rather
than the fog devices to improve the energy consumption. However, this design decision could
have a negative impact on the performance. This motivates the need for software architecture
evaluation.

1.1.2 Software Architecture. In the literature, software architecture is defined in many ways. In our
work, we use the definition introduced by ISO/IEC/IEEE 42010:2011: "the fundamental concepts
or properties of a system in its environment embodied in its elements, relationships, and in the
principles of its design and evolution". This definition is complementary to [115, 125] and later ones
[16]. In this context, a software architecture represents the abstractions for a software system by
defining its structure, behaviour, and key properties [125]. These include software components (i.e.
processing and computational elements), connectors (i.e. interaction elements), and their relation
to the environmental conditions [16, 115].

1.1.3 Architecture Evaluation. It is a milestone in the decision-making process. Classical approaches
to architecture evaluation are generally a human-centric, where architects and various stakeholders
(e.g. developers, managers, etc) are involved to evaluate the extent to which the architecture design
decisions and adopted styles can meet quality attributes of interest and their trade-offs. The exercise
also involves analysis of costs and likely added value of the decisions. Classical approaches heavily
rely on experts’ judgement; they utilise human generated inputs, such as scenarios for evaluating
the architecture. Evaluation is conducted at design-time and before the system is built, covering the
statics of an architecture (e.g. style, structure and topology) and its dynamics (e.g. likely performance
and scalability).

1.1.4 Design-time Architecture Evaluation. It is the process where humans, tools, and methods are
used to reason about the architecture of the system-to-be. The evaluation can cover both static
aspects of the architecture relating to structure, topology, environment, and style, etc and dynamic
analysis that relates to behavioural properties of the architecture, such as performance, scalability,
etc. The evaluation can heavily rely on stakeholders involvement and their estimates. Estimation
can be backed up by experts judgement about the domain, historical data and benchmarks that
relates to the likely performance of similar systems, or what-if analysis of simulated instances for
the projected deployment environments, predicted or eventual load (before the system is deployed).
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1.1.5 Run-time Architecture Evaluation. It means the execution of the architecture under study;
this can be a typical execution profile or it can be the actual deployed system implementing the
architecture for the objectives of profiling, refinements or enrichment. For either cases, architects
can collect dynamic, near real or real time information about the performance of QA of interest to
inform the evaluation or further tuning of the running system. In other cases, simulated data (e.g.
QoS data) are used to capture the dynamic behaviour of architecture decisions under uncertainty
at run-time and to use such information to profile and evaluate design decisions, if full deployment
was expensive. The evaluation can leverage simulation tools with inputs from the running system
to perform anticipatory evaluation of key design decisions and their possible variants based on the
run-time contextual requirements.

1.1.6 Continuous Architecture Evaluation. It goes beyond the classical architecture evaluation
approaches to include additional run-time information that can assist the evaluation and help in
tuning the parameters. Several flavors can implement this category of evaluation: for example,
info-symbiotic simulation1 can be linked to the architecture to simulate how an architecture can
behave if implemented and deployed in particular environment. The run-time information can be
then fed into the evaluation to tune the parameters. This step can involve a self-adaptive mechanism
and can leverage components of the MAPE-K to tune the parameters. As for the actors involved
in the evaluation - these can be various stakeholders (architects, developers, etc) and automated
agents (taking the form of monitoring agents for the environment, analysis, planning and actuating
for the observed inputs - these can be automatic and/or interactive etc).
We see continuous architecture evaluation to include two activities: design-time and run-time

evaluation. In particular, design-time evaluation can be used to support the necessary initial system
design and deployment based on estimations only. After that, run-time evaluation can assist
continuous architecture evaluation in monitoring QAs and suggesting re-configuration from a
repository of candidate options, some of which their technical viability has been established but
requires further profiling and confirmation following continuous monitoring at run-time. The
recommendation can utilise learning and suggest a suitable configuration; it can also call for further
refinements and/or phasing out of existing reconfiguration. Once the architecture is adopted, it is
very expensive to change the architecture or amend its structural design. Would the architecture
appear to lag behind optimality, for this case, run-time evaluation may recommend more structural
changes to the architecture, which can be very expensive to deal with following deployment, unless
the context is aimed as prototyping and learning through prototypes. In other words, the evaluation
can be also used to repeatedly assess to what extent the architecture options created at design-time,
as well as other potential architecture options, perform well at run-time. This enables architects
to make informed decisions on potential changes to the architecture, so that its performance
remains good over time. In other contexts, evaluations can be intertwined and interleaved between
design-time and run-time. Consider, for example, in modern incremental software development
(e.g. DevOps), microservices, etc, the design of each change to the system when evolving it again is
"design-time".

1.1.7 Uncertainty in Architecture Evaluation. A common issue in architecture evaluation is the
presence of uncertainty. In architecture evaluation and decision-making, uncertainty is the lack of
full knowledge about the outcomes of deploying the architecture options [95]. For instance, the
architects may be uncertain about the effect of a proposed software architecture on benefit (e.g.
performance, availability, etc) and cost. Uncertainty also may arise due to unpredictable situations

1a term that is widely used by the dynamic data driven simulation system community (e.g. http://1dddas.org/InfoSymbiotics/
DDDAS2020, https://sites.google.com/view/dddas-conf/home)
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in dynamic applications, such as IoT. For instance, sensors ageing effects, the varying internet
connectivity and mobility of sensors, fluctuations in QoS and so forth [1, 71, 108, 109].
Architecture can experience two sources of uncertainty: aleatory and epistemic [15, 50, 66].

Aleatory conception of uncertainty intends that uncertainty arises from variability in possible
realisation of a stochastic event, where unknown and different results could appear every time one
runs an experiment under similar conditions. It is also defined as "the inherent variation associated
with the physical system or environment under consideration" [111]. This type of uncertainty is
more common in run-time. In other words, it is the uncertainties occurring in the later execution
environment. For instance, in IoT systems, new types of sensors with new communication behaviour
might be introduced, which do not match the workloadmodel assumed for a system. This knowledge
will only become available after running the system. Epistemic conception of uncertainty denotes
the rise of uncertainty due to lack of confidence or missing knowledge to a fact which is either
true or false. It is also defined as "uncertainty of the outcome due to the lack of knowledge or
information in any phase or activity of the modelling process" [111]. This type of uncertainty
is more common in design-time. In particular, this may occur due to the impact of decisions at
design-time that are not yet known (e.g. designing new way of communication, without knowing
yet how much performance can be improved in a distributed and parallel setup by this decision,
which one needs to implement and measure to find out). In some contexts, this type of uncertainty
could be partially reduced at design-time.

1.1.8 Quality Attribute. We adopt the definition introduced by the IEEE Standard for Software
Quality Metrics [45], where a quality attribute is "a characteristic of software, or a generic term
applying to quality factors, quality sub-factors, or metric values". Examples of quality attributes are
performance, reliability, energy consumption, availability, security, and so forth.

1.1.9 Stakeholder. We adopt the notion used by ISO/IEC/IEEE 42010:2011: "an individual, team,
organization, or classes thereof, having an interest in a system". In this context, stakeholders have a
stake in the success of the architecture, and of any systems that are derived from the architecture. So
this could include customers, programmers, testers, reusers, architects, integrators, users, managers,
etc. An architect is just one stakeholder among many, whose needs are less important (and hence
lower priority) than the needs of many of the other stakeholders.

2 SYSTEMATIC LITERATURE REVIEW PROCESS
In this section, we will discuss the SLR protocol, how the systematic review process has been
carried out, and finally the existing architecture evaluation approaches with respect to criteria and
review objectives.

2.1 SLR Protocol
We have followed the systematic literature review guidelines and procedures [116] and the work of
[27] to develop our review protocol. In particular, the protocol identifies the objectives of the review,
the necessary background, research questions, inclusion and exclusion criteria, search strategy, data
extraction and analysis of gathered data. One author has developed the review protocol and then
the outcome has been revised by other authors to limit bias. The review objectives, background, and
the research questions are discussed in Section 1, whereas other procedures are described below.

2.2 Inclusion and Exclusion Criteria
Initially, we needed to set up a criteria to aid in the search process and filtration of irrelevant studies.
We considered English papers published in peer-reviewed journals, conferences, and workshops
from 1990 and early 2019. This time frame was chosen because one of the earlier well-known
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architecture evaluation approaches (e.g. SAAM [83]) was published in 1994. We excluded studies
that do not have software architecture evaluation as one of its main contributions. We also excluded
editorials, opinion, keynote, abstract, tutorial summary, position paper, panel discussion, or technical
reports, panels and poster sessions. Moreover, we found that some studies are duplicated in different
versions that appear as books, journal papers, conference and workshop papers. In this context, we
included only the latest and most complete version. We provide a summary of the inclusion and
exclusion criteria below. Publications are included if they cover all the inclusion criteria in Section
2.2.1, and publications are excluded if they fit any of the exclusion criteria in Section 2.2.2.

2.2.1 Inclusion Criteria.

• Studies published between 1990 and early 2020.
• Studies in the domain of software architecture evaluation. In particular, the study should
include a software architecture evaluation method as one of its contributions.

• Studies that discuss architecture evaluation approaches with explicit focus on high-level
architecture design (e.g. component level, style, architecture design decisions and tactics),
covering design-, run-time and continuous evaluation; we exclude approaches which discuss
low-level structural design (e.g. code and class refactoring).

• Studies that report on software architecture evaluation supported by quantitative analy-
sis/models (e.g, using utility theory as part of ATAM; using cost-benefit analysis as part of
CBAM, etc.)

2.2.2 Exclusion Criteria.

• Studies that do not explicitly consider architecture evaluation. For example, some self-adaptive
system studies may make use of architecture evaluation to inform self-adaptation, but may
not explicitly refer to this as architecture evaluation. Such studies were excluded.

• Studies that are non-peer reviewed.
• Studies not written in English and not accessible in full-text.

2.3 Search Strategy
The search strategy was performed to identify the studies through the following:

1. Applying an initial search to determine the current systematic reviews and mapping studies,
and hence identifying significantly related primary studies.

2. Using the concept of "quasi-gold" standard, as introduced by Zhang and Babar [142], where
we performed a manual scan for the most well-known venues of the software architecture
and software engineering domains to cross-check the automated search results.

3. Performing several trials using different combinations of keywords derived from the main
objectives of the review (i.e. automated search from recognised bibliographical data sources).

4. Performing an additional search to manually check and analyse the related references (snow-
balling) [140] to ensure that we did not miss any important study and hence guarantee a
representative set of studies.

All the prior procedures aided us in defining valid search strings along with other procedures
discussed in Section 2.3.1. For the venues, we manually searched the following:

− International Conference on Software Engineering (ICSE).
− International Conference on Software Architecture (ICSA) 2.
− European Conference on Software Architecture (ECSA).

2Formerly the Working IEEE/IFIP Conference on Software Architecture (WICSA) and International Conference Series on
the Quality of Software Architectures (QoSA).
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Our manual search included the title, keywords, and abstract of each publication. After finishing
the manual and automatic searches, we checked the differences between the results to guarantee
the most appropriate coverage of the domain. We found that all the manual results were a subset of
the automatic results (i.e. meeting the "quasi-gold" standard).

2.3.1 Keyword Selection. As mentioned above, we used both automatic and manual search. In
the automatic search, we tried several keywords on search engines of electronic bibliographical
sources. Manual search is not a practical procedure as it retrieves thousands of results, which is
difficult to manually filter. However, we still performed a manual search (to meet the "quasi-gold"
standard [142]) to ensure that we used the most suitable search queries.
One of the main challenges identified through our automatic search is a lack of well-defined

terminology for the process of continuous architecture evaluation. As an example, some self-*
systems can implicitly incorporate some principles that resemble architecture evaluation. To avoid
missing any relevant studies, we used some generic keywords in the search query of automatic
search (e.g. "run-time", "dynamic", etc). This led to retrieving some studies that were actually relevant
to our search. We have also performed a manual search for the studies, which could seem to be a
run-time architecture evaluation approach. To obtain our search query, we applied the following
procedures:

1. Extract the major keywords from the objectives of review and main research topics.
2. Determine and try different spellings, related terms and synonyms for major keywords, if

applicable.
3. Use the "advanced" search option to insert the complete search query and filter by date, if

the bibliographical source allows for that (Section 2.3.2).
4. Pilot various combinations of search keywords in test queries.
5. Validate the results of (4) with "quasi-gold" standard.
From our pilot testing, we found that the notion of "continuous" architecture evaluation is

used in different forms in the context of software architecture and software engineering with
other closely-related alternative terms, such as run-time and dynamic. This is because the term
"continuous" is not clearly defined. We also incorporated additional keywords which may implicitly
refer to continuous evaluation, such as design-time and static (i.e. the state-of-the-art approaches
for architecture evaluation). Furthermore, in other contexts, architecture evaluation is interpreted
as architecture assessment or architecture analysis. Therefore, we tried to consider these related
keywords in our search query and used them in an interchangeable manner.

The search query is composed of five major terms, ContinuousAND SoftwareANDArchitecture
AND Evaluation AND Uncertainty. To generate the main search query, we used the alternate
keywords listed above. This is performed by connecting these terms through logical OR as follows:
(design-time OR run-time OR design time OR runtime OR static OR dynamic OR continuous)
AND SoftwareAND (architectureOR architectural)AND (evaluationOR analysisOR assessment)
AND uncertainty

2.3.2 Bibliographical Sources. The selected databases present the most important and highest
impact journals and conference proceedings. They also provided us with the ability to perform
expert search with a variety of Boolean operations and limit the search on the Title, Abstract and
Keywords fields and time frame, which returned more relevant results as compared to searching
all the fields. For instance, this allowed us to use Boolean "OR" to try different spellings and
synonyms, and use Boolean "AND" to link the major keywords (e.g. software AND architecture
AND evaluation).
The electronic bibliographical sources used include:
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Table 1. Summary of Search Results and Included Studies from each database. Note that the number of
included studies listed for each of the databases excludes studies that have already been included by a former
database. A total of 48 unique studies have been included.

Database Search Results # Included Studies
IEEE Xplorer 994 11
ACM digital library 2108 8
SpringerLink 999 3
ScienceDirect 524 5
GoogleScholar 1000 7
Other
Snowballing Process 349 14
Total 48

− IEEE Xplorer (http://ieeexplore.ieee.org/Xplore/)
− ACM digital library (http://portal.acm.org/)
− SpringerLink (http://www.springerlink.com/)
− ScienceDirect (http://www.sciencedirect.com/)
− GoogleScholar (http://scholar.google.com/)

Note that we included Google Scholar as there are some of works in software architecture
evaluation (e.g. ATAM), which were not retrieved in the first four databases. we have found that
Google retrieves many irrelevant results after the first pages of retrieved results. This is because
Google enables retrieval of results that do not match the search query completely. Therefore, we
have limited the Google scholar results to 1000. Other works (e.g. [2]) have also limited the Google
scholar results to specific number of pages.

2.4 Search Execution
In this stage, we executed the search process in Figure 1, realising the procedures in Section
2.3. Initially, we manually searched in the current systematic reviews and mapping studies (e.g.
[11, 27, 53, 98, 122]) to identify significantly related primary studies (13 results). We then performed
manual search (17 results) to determine the set of studies to be compared with automatic search list
(i.e. "quasi-gold" standard). After that, we searched through all the search engines and bibliographical
sources mentioned in Section 2.3.2 using search queries created in Section 2.3.1. All the search
engines provided the option to save the results to excel spreadsheets, except for Springer which
exports only the first 999 relevant results and ScienceDirect which does not have that option and
hence a manual scan was performed. We then filtered the 5,625 primary studies using title, abstract,
full-text (when needed), inclusion and exclusion criteria. We also snowballed the primary studies
[140], where we scanned the list of references for the primary studies and the citations to add
related works (349 results), which were not identified by the bibliographical engines. In the end we
included 48 studies. The search results and number of included studies from each database and
snowballing process are listed in Table 1.

2.5 Quality Assessment
To assess the quality of the findings, we adopted similar quality criteria to the ones used by [27].
The following criteria show the credibility of an individual study when analyzing the results:

, Vol. 1, No. 1, Article . Publication date: April 2021.

http://ieeexplore.ieee.org/Xplore/
http://portal.acm.org/
http://www.springerlink.com/
http://www.sciencedirect.com/
http://scholar.google.com/


393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 9

Fig. 1. Search Execution.
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Table 2. Data Extraction Criteria.

Extracted Data Description
Study Identification Unique ID for the study
Bibliographical references Author, title, publication type, source

and year
Study Type Book, journal paper, conference paper

workshop paper
Study Focus Main area and study objectives
Strengths and Limitations Identified strengths and limitations of

the approach and its application and
its potentials for future directions

Fig. 2. Distribution of the publication types.

1. The study provides evidence or theoretical reasoning for their experimental evaluation and
data analysis rather than relying on non-justified or adhoc statements.

2. The study describes the context in which the research was conducted.
3. The design and implementation of the research is mapped to the study objectives.
4. The study provides full description of their data collection process.

All 48 studies identified in the search described above met the quality assessment criteria.

2.6 Data Extraction process
In this process, we performed a thorough scan for the 48 included papers to extract the relevant
data, which were managed by Excel spreadsheets and bibliographical management tool BibTeX. The
data extraction for the 48 studies was driven by the form depicted in Table 2 and the classification
framework in Section 4.1. For the data analysis, we investigated the extracted data with respect
to their relationships. The results of this process is given in the subsequent sections. The list of
included studies are presented in Appendix B.
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3 OVERVIEW OF THE INCLUDED STUDIES
Here we provide an overview of the included studies with respect to their distribution along
publication channels, over the years, and their ranks.

Table 3. Distribution of included studies along with the publication channels.

Publication Channel No. of
Studies

IEEE International Conference on Software Engineering 8
(ICSE)
International Conference on Software Architecture (ICSA) 3 7
Software Engineering for Self-Adaptive Systems (SEAMS) 4
Journal of Systems and Software (JSS) 5
Book 3
IEEE Transactions on Software Engineering (TSE) 2
IEEE Internet Computing 1
Software Quality Journal 1
Empirical Software Engineering 1
European Conference of Software Architecture (ECSA) 2
IEEE International Conference on Software Maintenance (ICSM) 1
ACM Joint European Software Engineering Conference and Symposium on the 1
Foundations of Software Engineering (ESEC/FSE)
IEEE International Conference on Autonomic Computing (ICAC) 1
ACM/SPEC International Conference on Performance Engineering (ICPE) 1
International Conference on Software Reuse (ICSR) 1
International Conference on Quality of Software Architectures (QoSA) 2
IEEE International Conference and Workshops on Engineering of 1
Computer-Based Systems (ECBS)
International Conference on Evaluation of Novel Approaches to Software 1
Engineering (ENASE)
IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, 1
Networking and Parallel/Distributed Computing (SNPD)
International Workshop on the Economics of Software and Computation (ESC) 1
IEEE International Enterprise Distributed Object Computing Conference 1
Workshops (EDOC)
Proceedings of the 3rd international workshop on Software and performance (WOSP) 1
Software and Systems Modeling (Springer) 1
International Workshop on Software Engineering for Embedded Systems (SEES) 1
Total 48

3.1 Distribution of Studies over Publication Channels
Most of the included studies (i.e. 48 studies) were published in the most well-known and prominent
journals and conferences. In Table 3, we provide an overview of the included studies with respect
to their publication channels and the number of studies per channel. We have checked the included
3Formerly the Working IEEE/IFIP Conference on Software Architecture (WICSA) and International Conference Series on
the Quality of Software Architectures (QoSA).
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Fig. 3. Distribution of the publication types among the years.

Table 4. An overview of citation rate of included studies.

Cited by <10 10-50 50-100 >100
Number of Studies 8 21 5 14

(Total = 48)

studies against the criteria for quality assessment and confirmed that they indeed fulfil the quality
criteria introduced in Section 2.5. We have also plotted the distribution of the included studies
related to the publication channel (i.e. conference, journal, etc) in Figure 2. From these results, we
found that there are a significant number of studies published in conferences (about 62%), followed
by a smaller number of studies (19%) in journals. There are limited studies published in workshops
(roughly 13%) and books (about 6%). This indicates that architecture evaluation approaches are
still presented in conferences, and some of them have matured and published through books and
journals.

3.2 Distribution of Included Studies Through the Years
By analysing the studies by year of publication, as depicted in Figure 3, we observe an increasing
trend in the domain of software architecture evaluation starting from 2003 till 2013 (with some
oscillation). Though it may seem that interest in architecture evaluation has decreased in the past
four years, there were recent studies that provided new architecture evaluation approaches, which
are included in this survey (e.g., [127, 136]).

3.3 Citation Rate of Included Studies
We list in Table 4 the citation rate for the included studies, which was obtained from Google
Scholar4. The citation rate is not meant for comparing studies; instead we use it to provide a rough
estimate of the quality of papers. In particular, almost five studies were cited by fewer than 10
sources. Two of them were cited in 2004 and 2010 and hence we do not expect that they will be
cited further, whereas the others are relatively new. Almost 45% of the studies (21 publications)
4http://www.googlescholar.com
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Table 5. Featuring the most cited studies above 100 citations.

Rank Ref Author(s) Year Title
1 [43] R. Kazman, M. Klein, 2003 Evaluating software architectures

P. Clements and others
2 [83] R. Kazman, L. Bass, 1994 SAAM: A method for analyzing the

G. Abowd, & M. Webb properties of software architectures
3 [19] P. Bengtsson, N. Lassing, 2004 Architecture-level modifiability analysis

J. Bosch, and H. Vliet (ALMA)
4 [30] R. Calinescu, L. Grunske, 2011 Dynamic QoS management and optimization

M. Kwiatkowska, in service-based systems
R. Mirandola,
& G. Tamburrelli

5 [58] I. Epifani, C. Ghezzi, 2009 Model evolution by run-time
R. Mirandola, parameter adaptation
& G. Tamburrelli

6 [82] R. Kazman, J. Asundi, 2001 Quantifying the costs and benefits
& P. Clements of architectural decisions

7 [139] G. Williams,U. Smith 2002 PASA: A Method for the Performance
Assessment of Software Architectures

8 [18] P. Bengtsson,J. Bosch 1998 Scenario-based software
architecture reengineering

9 [133] G. Tesauro 2007 Reinforcement learning in autonomic computing:
A manifesto and case studies

10 [40] S. Cheng 2004 Rainbow: cost-effective software
architecture-based self-adaptation

11 [5] T. Al-Naeem, I. Gorton, 2005 A quality-driven systematic approach for
and M. Babar architecting distributed software applications

12 [62] N. Esfahani, E. Kouroshfar, 2011 Taming uncertainty in self-adaptive software
& S. Malek

13 [145] L. Zhu, A. Aurum, 2005 Tradeoff and sensitivity analysis in
I. Gorton, & R. Jeffery software architecture evaluation using

analytic hierarchy process
14 [32] R. Calinescu 2009 Using quantitative analysis to

& M. Kwiatkowska implement autonomic IT systems

were cited by 10-50 other sources, and five studies were cited 50-100 times. Fourteen studies have
very high rates with more than 100 citations and the first ranked study was cited almost 1578 times.
This shows that the included studies are, in general, highly cited, which signifies their quality
and impact. In Table 5, we present the most cited publications. The first study is a book, and the
remainder are journal and conference papers.

4 DATA EXTRACTION RESULTS
This section aims to provide answers for the first and second research question: (1) How can the
current research on software architecture evaluation under uncertainty be categorised and what are
the current state-of-the-art approaches with respect to this categorisation? ; (2) What are the actions
taken by these architecture evaluation approaches to deal with uncertainty? Our analysis of research
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topics addressed in each study and the systematic reviews and surveys found in literature (e.g.
[11, 27, 53, 93, 98]) helped us in developing the following classification framework. This classification
aided us in filtering, mapping, and understanding the architecture evaluation domain. We also
discuss how the included evaluation approaches deal with uncertainty.

4.1 Classification Framework
Next, we will explain in detail the criteria presented in Figure 4.

1. Quality Evaluation: Architecture evaluation is typically done as a milestone review that
aims at justifying the extent to which the architecture design decisions meet the quality
requirements and their trade-offs. The evaluation can aid in early identification and miti-
gation of design risks. The point of the exercise is to avoid poor decisions, identify a stable
architecture and thus save integration, testing and evolution costs that can be attributed
to design decisions that are not fit in meeting the changes [124]. We review Stage of Eval-
uation, covering design-time, run-time and continuous along with Approaches to Evaluation
covering major efforts including utility-based, scenario-based, parametric-based, search-based,
economics-based, and learning-based.

2. Quality Attributes Considerations: Our literature review aims to show how the studied
software architecture evaluation methods addressing quality attributes (i.e. focus on single
versus multiple QAs), as well as what are the supported quality attributes. Examples of quality
attributes are performance, reliability, security, cost, etc. Further monitoring and treatment
of quality attributes is an important aspect to discuss, which could provide the architects
and architecture evaluaters with the necessary elements to design a continuous architecture
evaluation framework.

3. Level of Autonomy: In software architecture evaluation, the level of autonomy is an im-
portant aspect while designing a continuous architecture evaluation framework. In this
context, we will review how the studies performed the management of stakeholder input and
management of trade-offs between conflicting requirements.

4. Uncertainty Management: In this category, we focus on discussing the sources of uncer-
tainty and how the literature has treated uncertainty.

In Section 4.2 to 4.5, we aim to provide answers for the review’s research questions mentioned
earlier. We classify the architecture evaluation approaches as design-time and run-time. In each
category we further classify and explain the existing architecture evaluation approaches with
respect to the framework (answering research question 1). We also discuss the actions taken by
these architecture evaluation approaches to deal with uncertainty (answering research question 2).
Table 6- 12 provide a summary of the representative contributions with respect to the classification
framework.

4.2 Quality Evaluation
4.2.1 Approaches to Evaluation Under Uncertainty. Architecture evaluation methods can take
several forms: the methods can be bespoke, providing phases and systematic guidance for architects
to evaluate the extent to which the architecture can meet its non-functional goals and trade-offs -
e.g. ATAM [85], CBAM [82], etc. Additionally, the architects can utilise generic frameworks for
quality assessment, which can be used to evaluate any artefact under consideration, where the
software architecture can be a beneficiary. Regardless of the type of evaluation used, the architects
can adopt one of the below commonly approaches to evaluate architecture design decisions and
choices in the presence of uncertainty. The commonly used approaches can be categorised as
utility-based, scenario-based, parametric-based, search-based, economics-based, and learning-based.
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Fig. 4. The proposed classification of architecture evaluation approaches.

1. Utility-based: This category focuses on approaches to architecture evaluation methods that
adopt utility functions for decision-making when justifying architecture design decisions,
adopting a tactic and style among alternative candidates, etc. Utility functions are used in
two contexts. First, it is a measure of the extent to which the candidate solution satisfy
the set of quality attributes in question. Second, it can be used to provide a stakeholder’s
preferences over a set of quality attributes, which is called aWeighted Utility function. Various
methods have adopted utility theory to shortlist the candidate architectures operating under
uncertainty, such as [63, 95, 113].
− Osterlind et al. [113] used utility theory to balance quality attributes against each other to

obtain the best possible architecture.
− GuideArch [63] is an architecture framework that explicitly models the uncertainty of

architecture decisions using fuzzy logic to rank and determine the optimal architecture
decision. However, the use of fuzzy logic cannot be empirically evaluated and adjusted.

− Letier et al. [95] designed a method, based on GuideArch and CBAM, to deal with uncer-
tainty. Utility theory and Monte Carlo simulation were used to calculate the costs and
benefits of candidate architecture decisions under uncertainty. The latter approach made

, Vol. 1, No. 1, Article . Publication date: April 2021.



736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Sobhy et al.

an assumption that the probability distributions of model attributes are accurate; this may
affect its applicability, particularly in dynamic environments.

− The architecture evaluation approach in [96] focuses on middleware and design pattern
integration for developing adaptive self-managing architectures at design-time that is able
to recover from failures. This approach suffers from the same limitation of design-time
approaches: the design-time patterns (i.e. decision) may not be able to handle the changing
environmental conditions at run-time. Architecture Software Quality Assurance (aSQA)
[42] is an evaluation method that uses metrics to determine the user’s satisfaction towards
prioritized quality requirements, especially in agile software projects. Despite it focuses on
a single point of evaluation to lighten the evaluation process, yet it misses the main aim of
evaluation (i.e. assess the impact of architecture decisions on quality attributes).

− Decision-centric software architecture evaluation method (DACAR) [57] assesses the ar-
chitecture decisions made or to be made independently using utility functions based on
stakeholders’ beliefs, rather than evaluating the whole architecture. The method could be
potentially adopted in agile projects, since the architecture decisions could be evaluated
as they appear in the process. However, the approach is not as flexible as scenario-based
methods in obtaining the novel paradigms and significant change domains from stakehold-
ers.

− Heaven et al. [75] reported on an approach tailored for self-managed software systems.
The approach provides the following features: high-level task planning, architecture config-
uration and reconfiguration, and component-based control. Their approach uses weighted
utility functions to represent quality attributes and determine the total utility of configura-
tions by taking into account reliability and performance concerns.

− Esfani et al. [62] proposed an approach that elicits from stakeholders their beliefs regard-
ing uncertainty with respect to attributes such as network bandwidth. In particular, the
stakeholders provide an estimate for the range of uncertainty with respect to the expected
level of input variation. The approach also quantifies the uncertainty through profiling by
comparing the actual values with estimates from stakeholders and hence provides proba-
bility distributions for the variation in data collection. After that the overall uncertainty is
computed using fuzzy math.

− Veritas [67] is another utility-based approach which adopts utility functions for the man-
agement of run-time test cases to improve the adaptation procedure.

− Cooray et al. [46] proposed a proactive approach, which continuously updates reliability
predictions in response to environmental changes. The approach has proved its efficiency
in adapting the system before it experiences a significant performance drop. However, the
approach does not consider cost and suffers from scalability issues.

− Models@run.time [22, 39, 107] includes built-in mechanism for evaluating the behaviour
of software systems through continuous monitoring, planning, and model transforma-
tion. However, the effort was not discussed from the architecture evaluation angle. In
particular, the authors state that "models of the functional and/or non-functional software
behaviour are analysed at run-time, in order to select system configurations that satisfy the
requirements" [29]. Models@run.time operates on the assumption that possible run-time
configurations have already been evaluated and encoded in the system, where evaluation
can be an afterthought through profiling configurations and recommending alternatives.
It aims to "reevaluate requirements satisfaction while the system is evolving" [54]. In the
spirit of models@run.time, several approaches which are architecture-centric have been
discussed in the context of self-adaptive and managed architectures [36, 47, 68, 91, 131].
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Examples of these approaches include [7, 30, 40, 46, 58, 69], which formally analyse their
architectural models.
– The Rainbow framework [40] uses Markov processes to determine the likely aggregated
impact of each strategy on each quality attribute. It requires high human intervention
to determine the effects of strategies with respect to quality attributes (i.e. predefined
probabilities) [41].

– Epifani et al. [58] proposed a utility-based approach leveraging a Discrete Time Markov
Chain approach and Bayesian estimators to provide continuous automatic verification of
requirements at run-time and support failure detection and prediction. Their approach
does not consider multiple quality attributes, switching cost, and variance in run-time
data.

– In [104], Meedeniya et al. proposed a Discrete Markov Chain approach that performs
MonteCarlo simulations to predict the reliability of heterogeneous software architectures.
The approach also adjusts the number of architecture evaluations with respect to partic-
ular performance levels. They then extended the work to deal with different sources of
uncertainty, which occur in different software architecture evaluation models [105]. One
major concern in this approach is its assumption that all software architectures can be
modelled as Markov chains, which may not be true in some contexts due to complexity.

– Ghezzi et al’s [69] method is one of the few that complement design-time with run-
time analysis. At design-time, the approach integrates goal-refinement methodologies
with Discrete Markov Time Chains to determine all possible execution paths for the
goal. At run-time, it exploits utility functions to measure the utility of paths, based on
assumptions. For example, the utility for a 5ms response time is 1 and so forth. Given
these assumptions, a hill climbing algorithm is used to select the optimal goal. We will
discuss [7, 30, 46] in learning-based section.

– Other utility-based approaches are found in Table 6.
Summary and Reflection: Generally, the major problems of the prior approaches are: (i) the high
reliance of stakeholders for utility estimations, which is subject to their experience; (ii) the utility
functions are hard to define; (iii) there is complexity and uncertainty in the quantification of utility
values. This motivated the need to integrate learning techniques to learn over time and hence improve
the analysis (discussed in the learning-based section).

2. Scenario-based: The foundation of most architecture evaluation approaches rests on sce-
narios [27, 53, 122]. These approaches use quantitative evaluation to determine the fitness of
operational quality attributes. They elicit from stakeholders the utilities of architecture deci-
sions and their effect on quality attributes of interest. Some of the scenario-based approaches
have been validated and used in industry over the past decades [53].
− Software Architecture Analysis Method (SAAM) [83]: is the first well-known architecture

evaluation method that aimed to reify quality attributes via a set of scenarios as a means to
evaluate architecture design decisions under concern and identify risks in an architecture.
It assesses the extent to which the architecture satisfies the quality goals. It was originally
used for assessing modifiability, but it has been applied for other quality attributes, such as
portability and extensibility. SAAM takes as input: business goals, software architecture
description, and quality requirements that illustrate the interaction between stakeholders
and the system being analysed. It then maps between scenarios and architecture compo-
nents to assess anticipated changes to the system. This mapping can also be employed to
estimate the amount of effort needed to handle these changes. The SAAM does not explicitly
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deal with trade-offs between quality attributes. The lack of trade-offs management has
contributed to the evolution of Architectural Trade-off Analysis Method.

− Architectural Trade-off Analysis Method (ATAM) [43]: is the most popular architecture
evaluation method. It is an evolved version of SAAM. Unlike SAAM, the ATAM focuses
on a comprehensive evaluation of quality attributes rather than just concentrating on
modifiability, portability, and extensibility. ATAM is a generic design-time architecture
evaluation method that uses scenarios to assess the value of architecture design decisions.
Specifically, it aims to reveal the degree to which an architecture will meet its quality
requirements (e.g. availability, security, usability, and modifiability), and the interaction
between those goals through trade-off analysis.

− Cost-Benefit analysis method (CBAM) [82]: is an architecture evaluation method that extends
ATAM to provide cost/benefit analysis of architecture design decisions. The CBAM was
created to "develop a process that helps a designer choose amongst architectural options,
during both initial design and its subsequent periods of upgrade, while being constrained to
finite resources" [9]. Although CBAMuses cost/benefit information to value the architecture
design decisions and to justify their selection, this method is unable to dynamically profile
the added value of architecture decisions, which is essential for applications operating
in uncertain environments (such as IoT). It only deals with uncertainty through set of
scenarios, similar to ATAM.

− Scenario-Based Architecture Re-engineering (SBAR) [18]: is another scenario-based architec-
ture evaluation method that uses different techniques to assess the quality attributes of
interest and implicitly deal with uncertainty: scenarios, simulation, and mathematical mod-
eling. For example, if a quality attribute is concerned with development and design-time
properties, such as maintainability and reusability, scenario-based techniques can be best
utilized. Scenario-based analysis can be still used for behavioral and run-time properties,
such as performance and fault-tolerance, simulation and/or mathematical models can better
provide meaningful insights and can complement scenario-based ones. A major concern in
SBAR is its use of impractical assumptions. For instance, to address the reusability concern,
the architect has to define all the scenarios related to the reuse of parts of the architecture,
which is not feasible.

− Architecture-Level Modifiability Analysis (ALMA) [19]: Unlike ATAM and CBAM, ALMA
focuses on a single quality attribute, and hence it does not consider trade-offs. It utilizes
probabilities to determine the likelihood of the impact of scenarios at the software archi-
tecture level with respect to modifiability concern (e.g. maintenance cost prediction and
risk assessment).

− Systematic Quantitative Analysis of Scenarios’ Heuristics (SQUASH) [79]: is a systematic
quantitative method for scenario-based value, risk, and cost analysis. The method focuses
on evaluating the relative benefits of proposed scenarios in early stages of architecting.
The method extends some steps from CBAM by providing extensive evaluations of the
internal structure of the scenarios to predict the quality attributes of architecture decisions.
In this context, the approach relies more on stakeholders than CBAM and hence it may not
be easy to apply in practical settings.

− Analytic Principles and Tools for the Improvement of Architectures (APTIA) [84]: is an archi-
tecture improvement method that combines existing architecture evaluation methods (such
as ATAM, CBAM, etc.) through: "quality attribute models, design principles in the form of
tactics, scenario-based quality attribute elicitation and analysis, and explicit elicitation of
the costs and benefits of architecture decisions from stakeholders" [84] as well as the use of
architecture documentation templates. It also adds new steps to the analysis. Particularly, it
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identifies design decisions linked to the analysis rather than stating their future problems.
It was able to aid the team of architects to propose architecture design decisions for a
complex system and in a short period of time.

− Architectural Tradeoff Method using Implied Scenario (ATMIS) [64]: is an extension of ATAM
through the adoption of Implied Scenarios for security testing [3]. The main aim of this
approach is to apply trade-off analysis between security and any other quality attribute
through the use of implied scenarios.

− Further, there is another scenario-based method which is different from the commonly used
scenario-based architecture evaluation methods. The method is named Performance Assess-
ment of Software Architecture (PASA) [139]. In PASA, the architect uses the architecture
specification to form performance models. The generated models are then utilised to assess
whether the performance objectives are met. ATAM uses scenarios to determine, prioritise
and refine the key quality attributes by constructing a utility tree, where each leaf in tree
represents a scenario. PASA instead employs scenarios in the form UML and sequence
diagrams to demonstrate how the software architecture will achieve the performance
objectives.

− Finally, Yang et al. [141] proposed a utility-based approach that extends the scenario-based
approaches (e.g. ATAM, CBAM) and profiles the run-time information to better manage the
QA trade-offs. It aims to improve decision-making and handle the uncertainty which may be
better managed at run-time. In particular, their approach determines the potential QA trade-
off points, designs the adaptive architecture decisions, and finally deploys their system on
a middleware platform to collect run-time information. Though the latter approach is one
of the few attempts to extend scenario-based approaches at run-time, it lacks the ability to
learn over time and hence cannot forecast the future potentials of architecture decisions.

Summary and Reflection: Scenario-based evaluation approaches can be described as best-effort,
where the evaluators’ expertise, choice of stakeholders, etc., are all factors that influence the evaluation.
In particular, these approaches heavily rely on human inputs and expert judgement. These processes
can thus suffer from subjectivity, bias and can never be complete. As for the their effectiveness for
evaluating for uncertainties, these methods advocate the use of exploratory, growth and stress and the
like of scenarios that can test for the likelihood of an issue (e.g., sudden spike in load; downtime in part
of the network; hostile attack, etc) to be confronted by the architecture along its response and quality
trade-offs affected and the soundness of the architecture design decision and choices in responding
to these issues. The choice of these scenarios can be critical input to the evaluation process and its
conclusion on the extent to which the architecture can be resilient to uncertainty. Henceforth, the
soundness of the evaluation for uncertainty can be influenced by human expertise, judgement and their
skills and experience in identifying of uncertainty revealing scenarios to steer the evaluation exercise.

3. Parametric-based: The previous scenario-based approaches used simplistic mathematical
models and relied heavily on stakeholders for the elicitation of scenarios and on expert evalu-
ators for the impact of these scenarios on quality attributes. Here, we will discuss approaches
that assess architecture decisions using parametric models - parameterised mathematical
models with parameters identified and supplied that can aid decision-making. Stakehold-
ers often provide values for these parameters (i.e. design-time and interactive approaches)
or can be provided or calibrated at run-time through observing relevant concerns of the
parameterised functions.
− Analytic Hierarchy Process (AHP) [123] is a mathematical modelling tool used in deal-

ing with complex decision-making. AHP has been used in two contexts for architecture
evaluation: managing trade-offs and determining the relative importance of scenarios and
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decisions. Zhu et al. [145] adopted AHP to explicitly determine the trade-offs being made
and the relative size of these trade-offs. It has been used with CBAM to determine the
relative importance of scenarios through pair-wise comparisons [94]. It relies on eliciting
the benefits and costs from stakeholders, and hence suffers from the same limitations of
scenario-based approaches.

− ArchDesigner [5] is an architecture framework that first adopts AHP to elicit from stakehold-
ers their preferred architecture decisions. It then uses Integer programming to determine
the optimal architecture decision, which satisfies conflicting stakeholder quality goals
subject to project constraints, such as cost and time.

− LiVASAE [86] (a lightweight value-based architecture evaluation technique) attempts to
measure the level of uncertainty using AHP and also provides three simplified evaluation
procedures as compared to the CBAM. All these approaches rely on stakeholders for
evaluating the candidate architecture decisions as well as their benefits and costs.

− Other approaches include [40, 58, 103–105] (mentioned in utility-based approaches section),
can also satisfy the parametric-based evaluation, as they use Markov Chains to determine
the QoS of architectures.

Summary and Reflection: Though all the prior approaches provide some management for uncer-
tainties, they suffer from the same concerns: the high reliance on stakeholders for the elicitation of the
relative importance (i.e. rank) of architecture decisions and their impact on quality attributes.

4. Search-based: This category focuses on showing how search-based techniques have been
used to complement architecture evaluation (but not related to work on search-based tech-
niques in software architecture unless the work is evaluation-related). Search-based software
engineering is "the application of metaheuristic search techniques, such as genetic algorithms,
simulated annealing and tabu search" to the analysis [73]. In software architecture, it is used
to solve complex problems in terms of searching for the most suitable (i.e. optimal) candidate
architecture choice [73]. In this context, it is sometimes called search-based optimisation
[74].
− Evolutionary Algorithms are generally adopted for decision-making in software systems

[7]. For example, ArcheOpetrix [6] is a tool that exploits evolutionary algorithms for
multi-objective optimization of an embedded system’s architecture.

− Grunske et al. [70] proposed a method to automate the trade-off management process
using an evolutionary algorithm. The aim of the approach was to rank design decisions
(architecture refactorings) by taking into consideration competing quality goals. However,
this was an initial attempt without a complete evaluation (i.e. it has not been applied on
architecture evaluation methods).

− As aforementioned in utility-based section, Ghezzi et al’s [69] method uses a hill climbing
algorithm to select the optimal goal, which could also be seen as a search-based technique.

− Among the notable excluded work is [6], as the work does not explicitly or implicitly
address uncertainties in architecture evaluation though they have covered some phases of
design-time and run-time evaluation. However, we have included their subsequent work
[102] as it addresses uncertainty in architecture evaluation decision-making. In particular,
Meedeniya et al. [102] proposed a Robust ArcheOpterix framework that can determine
the uncertain information related to system parameters and hence search for the most
optimal and robust candidate architecture. The framework provides the architect with
the flexibility to choose the most suitable optimisation algorithm from the following list
[101, 118]: Multi-Objective Genetic Algorithm (MOGA), Non-dominated Sorting Genetic
Algorithm (NSGA-II), Pareto Ant Colony Algorithm (P-ACO), Simulated Annealing (SA),
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Hill Climbing, Bayesian Heuristic for Component Deployment optimization (BHCDO),
Random Search Algorithm, and Brute-Force Algorithms. The used software architecture
evaluation model is based on their previous work [104].

− PerOpteryx [28] is an automated tool based on Palladio framework [120] for selecting
the optimal candidate architecture. This approach performs evaluation at design-time. So
still run-time monitoring is important to complement the design-time decisions. However,
we see potentials in extending PerOpteryx tool with run-time analysis to develop the
continuous evaluation framework.

− Other approaches include [5, 62, 63, 67, 95, 103, 127] (mentioned in other sections), can
also satisfy the search-based evaluation, as they adopt some search-based algorithms for
the analysis.

Summary and Reflection: Search-based techniques, which are fundamentally optimisation-based,
have been used to evaluate architecture design decisions and choices. These techniques often rely on
the assumption that fitness functions guide the search. These techniques suffer from the following
limitations: stopping criteria for the search is often difficult to confirm with confidence and solutions
tend to provide "good enough" optima. Additionally, as much of the work on architecture evaluation
are scenario-based, mapping the concerns of the scenarios into search-based objective functions along
their constraints can be complex to abstract if one would be seeking a search that would reflect on these
scenarios. Nevertheless, search-based techniques can be specifically useful if one would use the search
and evolutionary techniques to generate new styles and architecture configurations that could better
meet the requirements of interest.

5. Economics-based: This category presents approaches that inform architecture evaluation
using economics and finance inspired methods; these approaches quantitatively evaluate the
worthiness, short- and long-term benefits, option, risks and costs of the architecture design
decisions. Though these approaches can be essentially utility-based and/or parametric, we
are discussing the economics-driven approaches that were utilised in steering these efforts.
In most cases, economics-based approaches have been used to evaluate the architectures at
design-time.
− Traditional cost-benefit analysis methods have been used to evaluate software. For instance,

Cellini et al. [34] computed the net benefit of a software through the deduction of total costs
from total benefits. These attributes have been obtained from software architects through
a group of questions (e.g. "what is the state of the world in the absence of the program
?"). CBAM [82] is a utility-based architecture evaluation method that uses cost-benefit to
analyse the impact of architecture decisions on quality attributes of interest. This approach
partially capture uncertainties which motivated the need to integrate some finance-inspired
approaches into the software engineering field. Boehm [23, 24] was among the first to
introduce economics and finance theories to evaluate software design decisions. Examples
of these approaches: Net Present Value (NPV) [56, 97], Modern Portfolio Theory (MPT)
[100], and Real Options Analysis (ROA) [8] (which will be discussed afterwards).

− Recently, the approach in [136] proposes an architecture evaluation approach inspired by
CBAM [82] for run-time decision-making in self-adaptive systems that considers benefits
and costs of decisions. The approach adopts a weighted utility measure of the qualities that
the adaptation decisions can provide to the stakeholders. Although this approach seems
to provide continuous evaluation, it requires additional elements, such as online machine
learning techniques, and extra experimental evaluation for applicability and efficiency.

Real Options Analysis and Modern Portfolio theory have been used to inform that analysis
of software architecture in the presence of uncertainty. Though they have been used in
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various software engineering and design domains, such as [14, 60, 128, 132], to evaluate low
design decisions (e.g. modularity in design) using economics-based thinking; they were not
concerned with architecture evaluation. There are other few works (e.g. [12, 13, 112, 136])
which initiated the use of economics-based techniques in architecture evaluation. In this
context, in Table 10, we outlined the software architecture evaluation-related approaches (e.g.
[12, 13, 112, 136]) as they operate on widely used architecture frameworks such as ATAM
and CBAM, obtained from our search results and satisfy our inclusion/exclusion criteria.
− Net Present Value (NPV) [56, 97]: is a popular approach used to value software. It values the

software project by eliciting the probability of investing in an established discount rate
or interest. A positive NPV indicates that its financially beneficial to invest (i.e. deploy
this architecture decision) and negative NPV is the opposite. It has been originally used in
[49, 65].

− Modern Portfolio Theory (MPT) [100]: was first introduced by the Nobel prize winner
Markowitz in 1950s. MPT aims to improve the decision-making process by allocating
capital to a portfolio of diverse investment assets. MPT handles uncertainty through the
distribution of capital among assets to minimize risk and maximize the returns. In particular,
it provides a weighted combination (i.e. portfolio) of the assets, where the weight denotes
the investor’s share of capital in each asset. In this context, MPT seeks to demonstrate the
rewards of having a diversified portfolio of assets. MPT is well-known in finance domain
and has been also introduced in software engineering domain as a means to deal with
uncertainties. In software architecture [112], it has been adopted with CBAM to determine
which portfolio of architecture decisions will deliver value by considering sustainability
dimensions. Although this approach explicitly deals with uncertainty, yet it provides a
short-term value. It does not embed flexibility as real options analysis.

− Real Options Analysis (ROA) [8]: provides an analysis paradigm that emphasizes the value-
generating power of flexibility under uncertainty. An option is the right, but not the
obligation, to make an investment decision in accordance to given circumstances for a
particular duration into the future, ending with an expiration date [134]. Real options
are typically used for real assets (non-financial), such as a property or a new product
design. ROA treats uncertainty as an option which may provide future opportunities
to the project, which could be exercised when it provides a high option value. On the
contrary, MPT specifically deals with financial assets and considers uncertainty as a risk
that should be minimized. Real Options analysis has been used in software architecture in
[12, 13, 114]. Bahsoon et al. [12] used real options analysis along with CBAM to measure
the architecture’s stability. They then used their method to value scalability in distributed
architectures [13].

Summary and Reflection: NPV has been discouraged, because it ignores the value of the flexibility
under uncertainty [14, 59, 129]. Modern Portfolio Theory provides some treatments for uncertainty,
but for short-term evaluation. On the contrary, Real Options analysis methods could be used as a way
to manage uncertainty on the long-term. Further, in software architecture evaluation, few methods
embedded finance-inspired techniques to their analysis. However, we see great potentials for including
these techniques to the evaluation especially in high dynamic and unpredictable environments.

6. Learning-based: We define learning-based architecture evaluation methods as methods
which adopt machine learning techniques to improve the evaluation. In most cases, learning-
based approaches have been used to evaluate the architectures at run-time. "The effectiveness
of model-based reasoning about the properties of a software system depends on the accuracy
of the models used in the analysis" [29]. For example, some models may become obsolete
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due to evolution in the software architecture. The same applies to the use of utilities for
evaluation and decision-making. Therefore, machine learning could be adopted to better
enhance the evaluation through profiling the observations of the system properties over time,
as in the following studies [31, 61, 87, 106, 133].
− In the context of using reinforcement learning techniques, Tesauro et al. [133] integrated

queuing policies with reinforcement learning, forming a hybrid approach to enhance the
dynamic resource-allocation decision-making process in data centers. The approach suffers
from scalability and performance overhead. A reinforcement learning online planning
technique was used by Kim et al. [87] to improve a robot’s operation with respect to
changes in the environment, by dynamically discovering the appropriate adaptation plans.
However, it does not continuously evaluate the cost-effectiveness of architecture decisions
over time. These approaches [87, 133] tend to be domain-specific. Further, Calinescu et
al. [31] proposed initial attempts for the use of Bayesian learning and ageing coefficients
to update the model parameters, where the ageing coefficients may be a useful element
for a continuous evaluation approach. Because it may then allow the architect to tune the
sensitivity of approach to present/past observations. Though their work had potential, it
was still work-in-progress (i.e. initial evaluation for the approach has been performed and
hence it requires further analysis).

− FUSION [61] is another learning-based approach that adopts a machine learning algorithm
named Model Trees Learning (MTL) to tune the adaptation logic towards unpredictable
triggers, rather than using static analytical models. It also uses utility functions to determine
the benefit of models in question. The major benefit of FUSION is its ability to learn over
time and improve the adaptation actions due to the promising learning accuracy. However,
FUSION has the following limitations: (i) it is specifically tailored to feature modelling; and
(ii) it only detects goal violations, i.e. constraints, but does not have the ability to check if
the current architecture option is getting worse.

− In [127], a run-time architecture evaluation approach has been proposed, which is suited
for systems that exhibit uncertainty and dynamism in their operation. The method uses
machine learning and cost-benefit analysis at run-time to continuously profile the architec-
ture decisions made, to assess their added value. This approach is considered as a reactive
approach, as it ignores the future potentials of architecture decisions. This approach is
considered as one of the few attempts which explicitly evaluates software architectures at
run-time.

− Moreno et al. [106] proposed a proactive latency-aware adaptation approach that constructs
most of the Markov Decision Processes offline through stochastic dynamic programming.
Their method focuses on optimizing the latency of adaptation action based on forecasts,
without considering the cost of architecture decisions and multiple stakeholder concerns.

, Vol. 1, No. 1, Article . Publication date: April 2021.



1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Sobhy et al.

Summary and Reflection: The use of machine learning in architecture evaluation can be challeng-
ing. First, formulating the evaluation as a learning problem requires data that relate to historical
observations along with data evaluation for recency, decay, relevance, etc. Second, the problem with
any study involving machine learning is that the results may not generalise to other data sets, therefore,
the methods should be tested on various data sets with different input parameters. Further, comparative
studies should be provided to confirm the validity of the model. Accuracy and error metrics should also
be adopted to determine how far are the forecast values from the actual ones. The selected measures
should be unbiased towards under or over estimations. Additionally, the software architecture com-
munity can benefit from guidance on the type of learners that can be best suited for the evaluation of
software architectures under uncertainty, yet such guidance is lacking and bridging efforts are still
needed.

4.2.2 Stage of Evaluation. The evaluation could occur at design-time and/or run-time. Design-time
evaluation occurs before system deployment, where the stakeholders are more involved in reasoning
the system under study, whereas the run-time evaluation approaches use run-time and/or simulated
data (e.g. QoS) to capture the dynamic behaviour of architecture decisions under uncertainty and
use such information to profile or evaluate design decisions either during the prototyping stage or
post-deployment.

1. Design-time Evaluation: The design-time evaluation of software architectures aims at
eliciting a proper specification of the problem, which is the first step on the path of analysing
architecture decisions for suitability.

− Documented efforts on systematic design-time architecture evaluation approaches are best
linked to the seminal work of [19, 82, 83, 85]. These approaches focus on identifying design
decisions that best fit the quality requirements of interest and their trade-offs using scenarios
(i.e. scenario-based approaches).

− Other examples of design-time approaches are treated as utility-based (e.g. [18, 19, 63, 79,
82, 84, 95, 139, 145]), parametric-based (e.g. [5, 18, 84, 103, 145]), search-based (e.g. [5, 28, 63,
95, 102, 103]), and economics-based (e.g. [12, 13, 112, 114]). Since learning-based approaches
require run-time analysis, therefore, we have not found methods which are learning-based.
Table 10 summarises the included studies related to design-time architecture evaluation
approaches with respect to the proposed classification.
Summary and Reflection: Design-time evaluation has received significant attention over the years
and the subject is a relatively mature area. However, as we can see from the various discussed methods,
the evaluation is essentially human-reliant and the treatment for uncertainty has been left to the
evaluators; this can include their choice for the scenarios to steer the evaluation, the adopted models,
stakeholders involved, etc. The process can then suffer from subjectivity, bias and can never be complete.
Therefore, a systematic design-time evaluation approach that explicitly deals with uncertainty rather
than either relying on ad hoc evaluation or implicit mitigation of uncertainty is necessary.

2. Run-time Evaluation: By run-time evaluation, we refer to approaches that use run-time
and/or simulated data (e.g. QoS data) to capture the dynamic behaviour of architecture
decisions under uncertainty and to use such information to profile and evaluate design
decisions. Table 11 summarises the run-time architecture evaluation methods studied.
− In software architecture evaluation, utility functions are commonly used to select the

optimal architecture option. This approach has also been adopted to determine the stake-
holder’s preferences towards quality attributes of interest. Therefore, it is utilized as a way
to model trade-offs between quality attributes. Utility functions have been used at run-time
(i.e. utility-based) for self-adaptive and self-managed systems, such as [38, 40, 46, 61, 62, 67,
69, 75, 136, 141].
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− Other run-time evaluation approaches apply somemachine learning techniques (i.e. learning-
based) to improve the decision-making process through profiling the observations of the
system properties over time, as in the following studies [31, 61, 87, 133].

− [141] is one of the few attempts to extend scenario-based approaches at run-time. As
mentioned earlier, this approach lacks the ability to learn over time and hence cannot
forecast the future potentials of architecture decisions.

− To the best of our knowledge, there are no economics-based approaches that evaluate
architectures at run-time.

Summary and Reflection: As far as we know, the majority of run-time evaluation approaches rely
on models for the analysis, which may be subject to scalability and complexity concerns. For that,
these approaches have adopted some machine learning algorithms, such as Reinforcement learning, to
update their models at run-time. Despite their potential, these approaches suffer from the following
limitations: (i) they assume that the quality data about architecture decisions is available at every
timestep, which may not be true in non-stationary environments such as IoT; and (ii) they lack
the capability for checking whether the current architecture decision is getting worse. However, the
proposed method in [127] has provided some techniques to handle the above concerns but still requires
further investigation and more techniques are needed to enhance the evaluation. The most important
component in a continuous evaluation approach is the run-time approach to be included. Some of the
above approaches (e.g. [55, 127]) seem to provide important elements for a run-time approach in terms
of providing learning techniques. These techniques could aid the architect in predicting the impact of
architecture decisions on quality attributes under different scenarios of interest. On the contrary, few of
the approaches were explicitly used in the context of software architecture evaluation (e.g. [127]).

3. Continuous Evaluation:We define continuous evaluation as multiple evaluations of the
software architecture that begins at the early stages of the development and is periodically
and repeatedly performed throughout the lifetime of the software system.
− Continuous Performance Assessment of Software Architecture (CPASA) [117] is one the

few explicit attempts for continuous evaluation. It is an extension of PASA, with an explicit
focus on deployment in agile development process. It provides an interactive system
that aids the architect in the automatic assessment of performance attributes through
modelling of architecture decisions. They define "continuous" assessment as the production
of continuous performance evaluation tests. Despite the attempts in PASA and CPASA to
handle cost-benefit trade-offs, (i) the evaluation was incomplete; (ii) they are not using
any run-time information to refine their architecture decisions; and (iii) it lacks run-time
monitoring and forecasting of the performance of architecture decisions. In such cases
architecture is, at best, a modelling tool, which may (or may not) be applicable in dynamic
environments. Therefore, these approaches are still design-time evaluation approaches.

− Further, the approaches proposed in [69], [136] and [127] could seem to provide some
initial attempts for continuous evaluation, but they suffer from the concerns mentioned in
(ii) and (iii).
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Summary and Reflection: Continuous architecture evaluation approach starts at design-time and
continues to operate at run-time, with design-time architecture evaluation being at its earlier stages.
Continuous evaluation shall provide built-in support to deal with operational uncertainties and dynam-
icity, starting from design-time by predicting run-time behaviour and while calibrating its evaluation
at run-time and post deployment. Continuous evaluation can leverage machine learning to provide
predictive and proactive diagnostic capabilities; however, such improvement requires data that can
relate to the architecture design decisions, quality attributes performance, that might not be always
available or easy to extract from operational and maintenance logs. In the absence of real-time data,
the evaluation can, for example, benefit from info-symbiotica simulations and digital twins capabilities
to improve the prospect of the evaluation in dealing with uncertainties.

aa term that is widely used by the dynamic data driven simulation system community (e.g.
http://1dddas.org/InfoSymbiotics/DDDAS2020, https://sites.google.com/view/dddas-conf/home)

4.3 Quality Attribute Considerations
4.3.1 Addressing quality attributes: There are some evaluation methods which focus on a single
or multiple quality attributes. Based on the results, we have found that most of the software
architecture evaluation studies’ have addressed multiple quality attributes, e.g. modifiability with
portability and extensibility [83], stability with cost [12]. Other examples of studies are found in
Table 7- 9.

4.3.2 Supported Quality Attributes: we categorised the quality attributes supported into: general
and specific. For general, we consider the literature that discusses the support of any quality attribute,
such as performance, availability, reliability, etc. For instance, some studies propose generic methods
(62% of included studies) that can be generic enough and applicable to various quality attributes.
However, there are others that focus on specific quality attributes (e.g. performance only, i.e. any
QA) – 36% of included studies, whereas others focus on cost only – 49% of included studies. Based
on our review, for the approaches that evaluate the software architecture at design-time, some
studies (e.g. [43, 70, 79, 82, 84, 145]) accept generic quality attributes, whereas others focus on
specific quality attribute (e.g. [12, 18, 19, 79, 82–84, 96, 104, 145]). One remarkable investigation is
that very few run-time architecture evaluation approaches consider costs through the evaluation
process (e.g.[40, 61, 127, 136, 141]), as well as most of the run-time approaches evaluate with respect
to specific quality attributes (e.g. performance and energy consumption [32], and reliability and
performance [30, 31, 75]). As for the few continuous approaches, their proposed techniques could
be applied for generic quality attributes. Other examples of studies are found in Table 7- 9. The way
existing evaluation methods consider cost and value is not done in isolation but in alignment with
the qualities under consideration and their trade-offs. Our review holds examples from mainstream
architecture evaluation methods (e.g. [5, 34, 79, 82, 84, 139, 145]). Other examples are shown in
Table 7- 9.

4.3.3 Monitoring and treatment of quality attributes: This criterion is relevant to run-time and
continuous evaluation approaches where quality attribute values are either determined through
run-time monitoring or through prediction. Similarly for the treatment, there are two types [72,
93, 121]: reactive and proactive. A reactive approach triggers a switch after experiencing a drop
in performance, a goal violation, etc. A proactive approach switches architecture options without
experiencing a drop in performance; instead it is based on predictions that a significant change
in performance may occur in the near future. Based on our investigation, most of the approaches
used reactive monitoring and treatment of quality attributes (e.g. [30, 31, 61, 62, 67]), whereas very
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few approaches embedded proactivity to their architecture evaluation method (e.g [46, 69]). Other
examples of studies are found in Table 7- 9.
Summary and Reflection: Quality Attributes continue to be the driver for architecture evaluation
to test the architecture fitness with respect to the considered attributes. Considering multiple quality
attributes and their simultaneous effect on the architecture is still a challenging task, if the evaluation
would consider uncertainties that relate to the provision and support of these attributes. Research has
also to look at how the evaluation can consider multiple source of uncertainties that can relate to the
simultaneous provision of these attributes. Research can benefit from search-based and evolutionary
computing to provide the basis for automatic refinements of architecture in supporting quality attributes
and embracing for various sources of uncertainties. The challenge, however, is to construct sound fitness
functions and stopping criteria for managing the search. The support can goes beyond the classical
monitoring and reactive interventions to provide a holistic approach for proactive and preventive
diagnostic of software architecture, while having multiple qualities and their corresponding source of
uncertainties, as first class citizen in the evaluation.

4.4 Level of Autonomy
4.4.1 Management of Stakeholder Involvement in Evaluation: This category has been further cate-
gorised to human-reliant, semi-autonomous, and autonomous. We have to distinguish between: (i)
Human-reliant (i.e. totally dependent on stakeholders for evaluating the behaviour of candidate
architecture options); (ii) Semi-autonomous process for architecture evaluation, with human in the
loop (e.g. stakeholders and architects in the loop for interactive evaluation); (iii) Autonomous (i.e.
the evaluation is performed autonomously without human intervention). To further clarify those
categories, we consider the case of architecture evaluation in self-adaptive Systems (SAS): there are
human-reliant architecture design decisions (such as whether to introduce a self adaptation mecha-
nism), semi-autonomous (such as human in the loop participation in self-adaptive systems [33]), and
autonomous architecture design decisions (such as the SAS adapting and deploying components
to different servers at run-time). Another example of the use of autonomous architecture design
decisions is the incorporation of intelligent and learning mechanisms, evolutionary computations,
etc, to assist in the automatic evaluation of decisions. Continuous architecture evaluation can
monitor QAs and suggest re-configuration from a repository of candidate options, some of which
their technical viability has been established but requires further profiling and confirmation. The
evaluation process can then learn and suggest a suitable configuration; it can also call for further
refinements and/or phasing out of reconfiguration.

For classical design-time architecture evaluation approaches (e.g. scenario-based), most of them
tend to fully involve the stakeholders to their analysis, e.g. ATAM, CBAM, ATMIS, etc. Other design-
time approaches (e.g. utility-based, economics-based and search-based) are semi-autonomous, such
as [5, 12, 70, 95, 105, 113], in the context of requiring some inputs (e.g. utilities, users’ satisfaction
towards quality attributes, QoS constraints, etc) for evaluation from the architect. Since that run-
time architecture evaluation approaches occur at run-time (e.g. learning-based), most of these
approaches are autonomous (e.g. [31, 32, 40, 87, 133]), whereas few of them require some human
involvement (e.g. [30, 75, 141]). Other studies are depicted in Table 7- 9.

4.4.2 Management of Trade-offs: A common problem in selecting an optimal architecture decision
is the management of trade-offs [21]. For example, an architecture decision concerning a sensor
could provide high response time but with low energy efficiency. So one objective could be to
select an architecture decision that can satisfy both quality attributes. There are two types of
trade-off management: manual and automatic. Manual management denotes the adoption of tools
or techniques that require human-intervention, whereas automatic indicates the use of parametric
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models that automatically select and/or shortlist trade-off candidates. Some of the design-time
architecture evaluation approaches (e.g. ATAM, CBAM, ATMIS, and APTIA) handle trade-offs
manually through the analysis of trade-off points elicited from stakeholders or do not consider
it at all (e.g. SAAM, SBAR, SQUASH, and ALMA). As for the run-time architecture evaluation
approaches, some run-time approaches provide automatic management of trade-offs, such as
[30, 32, 40, 62, 87, 127], whereas one noticeable investigation is that many approaches have no
support for trade-off management, such as [31, 67, 69, 75, 141]. Other studies are shown in Table 7-
9.
Summary and Reflection: Providing semi- or fully-autonomous and automated techniques for
trade-off management is crucial in a continuous evaluation framework. In particular, research shall
look at how the evaluation can support continuous and seamless management for various quality
trade-offs and their corresponding uncertainties. In line with what we discussed in the quality attribute
considerations section, the seamless management may need to consider simultaneous qualities, their
inference, risks contributions and aversions. Additionally, the autonomous evaluation can operate
at various views (e.g. 4+1 views [92]) of the architecture, where the evaluation can then converge to
seamless negotiation of the various views for conflicts, reconcile these views while considering the
various uncertainties within the architecture and across the views - the ultimate objective is to provide
holistic seamless evaluation of the architecture.

4.5 Uncertainty Management
4.5.1 Source of Uncertainty: As aforementioned in Section 1.1, architecture can experience two
sources of uncertainty: aleatory and epistemic [15, 50, 66]. To summarise: aleatory conception of
uncertainty intends that uncertainty arises from variability in possible realisation of a stochastic
event, where unknown and different results could appear every time one runs an experiment under
similar conditions; epistemic conception of uncertainty denotes the rise of uncertainty due to lack
of confidence or missing knowledge to a fact which is either true or false. We analysed the works
based on the sources of uncertainty it addresses.

− We found that most of the design-time architecture evaluation approaches address epistemic
uncertainty (e.g. [18, 19, 43, 79, 82, 83]).

− Aleatory uncertainty is encountered in most of the run-time architecture evaluation ap-
proaches (e.g. [32, 40, 64, 87, 96, 133]).

− On the contrary, very few design-time (e.g. [64, 79, 104, 105]), run-time (e.g. [30, 40, 58, 61,
62, 136]), and continuous (e.g. [127]) approaches experience both epistemic and aleatory
uncertainties.

4.5.2 Treatment of Uncertainty: In the research literature there are approaches that deal with
explicit or implicit uncertainty. Explicit approaches are those that consider uncertainty to be a main
focus whereas other methods which do not mention uncertainty, but their tools and techniques
could be used to handle uncertainties (i.e. implicit). Next, we will summarise how the studied
architecture evaluation approaches dealt with uncertainty.

− Uncertainties and risks, linked to the deployment, are implicitly discussed and mitigated
through envisioning a set of scenarios, taking the form of use case, growth, and exploratory
scenarios [43, 85, 90] as defined by the ATAM (a design-time architecture evaluation approach).
A use case scenario reveals how stakeholders envision the system usage. A growth scenario
illustrates planned and foreseen refinements to the architecture, whereas an exploratory
scenario helps to probe the extent to which the architecture can adapt to future changes
(e.g. functionality upgrades, new quality attribute requirements). Hence, the evaluation and
its conclusions are highly dependent on the choice of these scenarios. The ATAM defines

, Vol. 1, No. 1, Article . Publication date: April 2021.



1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 29

Table 6. Summary of Contributions for the included studies with Respect to Approaches to Evaluation.

Stage Approaches to Evaluation
Utility-based Scenario-based Parametric-based Search-based Economics-based Learning-based

Design-time [18, 19, 63, 79, 82, 84, 95, 139, 145] [18, 19, 79, 82–84, 139, 145] [5, 18, 84, 103, 145] [5, 28, 63, 95, 102, 103] [12, 13, 112, 114] -
[5, 42, 57, 64, 70, 94, 96, 113] [63, 95, 112, 114] [102, 103, 105]
[86, 102–105]

Run-time [30–32, 40, 62, 75, 87, 133, 141] [141] [40, 58] [62, 67] - [61, 87, 106, 133]
[46, 58, 61, 67, 69, 106]

Continuous [69, 117, 127, 136] [136] [69] [69, 127] [127, 136] [127]

and records the risks that may threaten the achievement of quality attribute goals. These
include architecture decisions leading to subsequent problems in some quality attributes
(risks), architecture decisions where a slight alteration results in significant impact on quality
attribute responses (sensitivity points), and the simultaneous effect of a single decision on
multiple quality attributes (trade-off points) [81]. ATAM focuses on the risks and benefits
of architecture decisions and does not explicitly consider cost. CBAM extends ATAM by
considering cost-benefit trade-offs.

− To summarise, for the design-time scenario-based architecture evaluation approaches, ATAM,
CBAM, ATMIS, SQUASH and APTIA partially capture uncertainty through scenarios (as
mentioned in the previous point), despite that they do not conduct evaluation at run-time.
However, they suffer from the same drawbacks of design-time evaluation (i.e. high reliance on
stakeholders). ATMIS is also specifically tailored for security. ALMA is similar to ATAM and
CBAM, in the context of taking more utility-based perspective for the evaluation. It aids in per-
forming architecture evaluation more systematically than SBAR. Scenario-based approaches
do not provide explicit management for uncertainties, and include manual tools/techniques
which may not be effective at run-time.

− For the other architecture evaluation approaches, some approaches provided explicit man-
agement of uncertainty through the use of probability distributions (e.g. [103, 104]), Fuzzy
math (e.g. [62, 63]), Monte Carlo simulation (e.g. [95]), Modern Portfolio Theory (e.g.[112]),
Real Options Analysis (e.g. [12, 13, 114]), ageing coefficients (e.g. [31, 127]), AHP consistency
rate [86], utility theory (e.g. [41]), etc.

Summary and Reflection: The treatment for uncertainties, its sources and management has been
discussed in earlier sections in relation to qualities attribute management, trade offs, autonomy and
covering various stages, techniques (e.g., utility-based, economics-based, evolutionary, search-based,
etc) and various methods for evaluation(e.g., design and runtime). This is because the discussion and
treatments for uncertainties is orthogonal to all the above and cannot be discussed in isolation of the
solution domains. Interested reader can refer to the relevant summary and reflection sections. However,
the software architecture evaluation community may need to develop common language and knowledge
for eliciting architecture uncertainties at various levels and provide guidance from mitigating their
consequence on the software architecture. The community may also identify various techniques for
managing the uncertainties, covering various contexts, application domain, etc.

4.6 Limitations of the Review
Though this review was developed following the typical systematic literature review methodology
[88, 89, 116], there are some limitations that require clarification:

− The main threats to validity in this SLR is the selection bias when including the studies and
extracting the data. To resolve that in terms of determining the relevant studies a research
protocol (Section 2) was conducted. We applied this protocol to set out the objectives of the
review, the necessary background, the research questions, inclusion and exclusion criteria,
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Table 7. Summary of Contributions for Design-time Architecture Evaluation approaches with other categories.

Design-time

Category Representative
Contributions

Addressing QA Single [19, 104, 139]
Multiple [18, 28, 43, 79, 82, 83]

[70, 84, 86, 94, 102, 145]
[5, 12, 28, 95, 113, 117]
[13, 57, 103, 105, 112, 114]

Supported QA
General [28, 43, 79, 82, 84, 145]

[63, 70, 86, 94, 113]
[12, 57, 95, 105, 112, 117]

Specific (Cost) [5, 79, 82, 84, 139, 145]
[42, 70, 86, 94, 117]
[12, 13, 63, 95, 113]
[112, 114]

Specific (Other QA) [18, 19, 64, 83, 96, 102]
[12, 13, 103, 104, 139]

Management of stakeholder input
Full [43, 79, 82, 83, 86, 139]

[18, 19, 84, 96, 145]
[57, 64, 94, 117]

Semi-Autonomous [5, 12, 28, 70, 95, 105, 113]
[13, 42, 63, 102–104, 112, 114]

Management of Trade-offs Manual [43, 82, 84, 86, 145]
[12, 13, 64, 94, 117, 139]
[112, 114]

Automatic [5, 28, 42, 63, 70, 95, 102, 103, 113]
No Support [18, 19, 57, 79, 83, 96, 104, 105]

Treatment of Uncertainty Implicit [18, 19, 43, 82, 83]
[5, 70, 79, 84, 96]
[57, 117, 139]

Explicit [86, 94, 95, 102, 113, 145]
[12, 13, 28, 42, 64, 114]
[63, 103–105, 112]

Source of Uncertainty Epistemic [18, 19, 43, 79, 82, 83, 102, 139]
[5, 64, 84, 86, 94, 117, 145, 145]
[12, 13, 57, 63, 95, 113]
[42, 70, 105, 112, 114]
[18, 19, 28, 43, 82, 83, 104]

Aleatory [86, 94, 95, 113, 145]
[12, 13, 42, 64, 102, 114]
[63, 103–105, 112]

search strategy, data extraction and analysis of gathered data. The SLR protocol was arranged
by one author and then revised by other authors to verify and evaluate the research questions
and whether the search queries map to the review objectives and research questions. They
also checked the relevance between data to be extracted and research questions.
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Table 8. Summary of Contributions for Run-time Architecture Evaluation approaches with other categories.

Run-time

Category Representative
Contributions

Addressing QA Single [58, 67, 133]
Multiple [32, 40, 46, 75, 87, 106, 141]

[30, 31, 61, 62, 69]

Supported QA General [40, 46, 61, 62, 69, 87, 106, 141]
Specific (Cost) [40, 61, 141]
Specific (Other QA) [30, 31, 58, 67, 75, 133]

Management of stakeholder input Semi-Autonomous [30, 58, 62, 67, 69, 75, 141]
Autonomous [31, 32, 40, 46, 61, 87, 106, 133]

Management of Trade-offs Automatic [30, 32, 40, 46, 61, 62, 87]
No Support [31, 58, 67, 69, 75, 106, 133, 141]

Treatment of Uncertainty Implicit [32, 46, 58, 75, 141]
Explicit [31, 40, 62, 87, 133]

[30, 61, 67, 69, 106]

Source of Uncertainty Epistemic [18, 19, 43, 79, 82, 83, 114]
[5, 64, 84, 86, 94, 112, 145]
[12, 13, 42, 57, 63, 70, 95, 113]

Aleatory [32, 40, 64, 87, 96, 133]
[58, 61, 62, 67, 69, 75, 106, 136, 141]

Monitoring and Treatment of QAs Reactive [30, 32, 40, 75, 87, 133, 141]
[31, 61, 62, 67]

Proactive [46, 58, 69, 106]

Table 9. Summary of Contributions for Continuous Architecture Evaluation approaches with other categories.

Continuous

Category Representative
Contributions

Addressing QA Single -
Multiple [69, 117, 127, 136]

Supported QA General [69, 117, 127, 136]
Specific (Cost) [117, 127, 136]

Management of stakeholder input Human-Reliant [117]
Semi-Autonomous [69]
Autonomous [127, 136]

Management of Trade-offs Manual [117]
Automatic [127, 136]
No Support [69]

Treatment of Uncertainty Implicit [117]
Explicit [69, 127, 136]

Source of Uncertainty Epistemic [117, 127, 136]
Aleatory [69, 127, 136]

Monitoring and Treatment of QAs No treatment [117]
Reactive [127, 136]
Proactive [69]
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− Several junior and senior researchers (with up to 15-30 years of experience in architecture
evaluation) assessed and reviewed the SLR. They provided feedback which reduced the bias
of the formalisation of the protocol, due to the selection of search keywords. There is still a
risk of missing some related studies. This could occur in cases where software architecture
evaluation keywords are not standardized and clearly identified. For instance, continuous
evaluation is defined under different terms, such as continuous, run-time, dynamic, etc.
Therefore, we made an agreement with each other about the definitions of unclear keywords.
In some cases it was difficult to elaborate how the authors of reviewed studies interpreted
terms such as continuous or run-time or dynamic (Section 2.3.1). In this context, we tried our
best to include all the related terms that imply continuity. However, we cannot guarantee
completeness.

− We also used a data extraction form to select information for answering research questions
hence improving the consistency of data extraction (Section 2.6). To ensure that the findings
and results were credible, we conducted a quality assessment on related studies (Section 2.5).

− The limited number of included studies might open a question about the completeness and
coverage of the review, as compared to other SLRs (e.g. [7]). But the objective of this review
was to focus on a specific goal, i.e. the state-of-the-art in software architecture evaluation
approaches for uncertainty and to what extent continuous software architecture evaluation
approaches are used. This results in a narrowed scope for the review. This is analogous to
the case of [98] that conducted a review focusing on methods that handle multiple quality
attributes in architecture-based self-adaptive systems (54 included studies), and [99] that
studied the variability in quality attributes of service-based software systems (48 included
studies). The narrow scope of SLRs explains the limited number of search results and included
studies. We believe that the relevant studies to the research topic were indeed included.
Further, the quality of conferences, journals, and books of the included studies ensures the
significance of the analysis.

− In our search execution, some relevant studies may have not been shown in the search
results of the bibliographical sources. This may be due to the fact that automated searches
depend on the quality of the search engine. However, the selected bibliographical sources
are considered the largest and most significant sources for conducting SLRs and the most
used ones in software architecture and software engineering [27, 98]. We also performed
manual and automated searches through the most popular venues for software architecture
and software engineering [98]. Consequently, we are confident that the included studies are
the most relevant and important ones and others are unlikely to be missed.

− We applied our search on meta-data (i.e. abstract, title, and keywords) only and some studies
might have used architecture evaluation as a part of their proposed work without mentioning
that explicitly in abstract, title, and keywords. Since the authors identify the meta-data of
their studies, therefore, our included studies depend on the quality of the bibliographical
digital sources in classifying and indexing studies.

− One of the main threats to validity is the validation of the classification framework. In this
context, the development of the classification framework was guided by a method for building
taxonomies [110], where we have taken conceptual to empirical approach informed by the
SLR to capture the concepts of software architecture evaluation under uncertainty. The
process was iterative. We then applied subjective and objective evaluation to validate our
classification framework. Subjective evaluation of the process of building the classification
framework was inspired by [110]. In particular, our team members had several interactive
sessions (∼4 meetings) first to discuss the initial build-up of the classification framework.
Subsequent iterations and refinements were informed by three working and feedback sessions
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with team members (each taking an average of 2.5 hrs, one senior member with more than 30
years of experience in academic and industrial software architecture research and considered
to be one of the founders of the field of architecture evaluation, a second senior member with
more than 20 years experience in software architecture research and practice, and another two
with 5-6 years experience in software architecture and computational intelligence in software
engineering, covering uncertainties). Our team also consulted two external collaborators
with expertise in the area of the software architecture for additional feedback. The following
criteria, inspired by [110], informed our refinements and iterations: checks for the extent
to which the classification framework is concise (i.e. with limited number of dimensions
and limited number of characteristics for each dimension), robustness (i.e. with sufficient
dimensions and characteristics to determine software architecture evaluation approaches
under uncertainty), comprehensive (i.e. to categorize all known dimensions of architecture
evaluation approaches under uncertainty within the software architecture domain), exten-
sible (i.e. to allow the inclusion of additional dimensions and new characteristics within a
dimension when new types of architecture evaluation approaches under uncertainty appear)
and explanatory (i.e. by providing useful discussion of the architecture evaluation approaches
under uncertainty to facilitate the understanding of how to evaluate software architectures
under uncertainty). As for the objective evaluation inspired by [110], we ensured that every
category (e.g. Quality Evaluation, Quality Attributes Considerations, Level of Autonomy,
and Uncertainty Management) is unique and not repeated. All characteristics of architecture
evaluation under uncertainty have been examined and no new characteristics are needed for
addition.

− Our review focuses on architecture evaluation in the presence of uncertainty. In particular,
the focus of the survey is on how existing architecture evaluation methods and commonly
used approaches can provide ways for mitigating for uncertainties. For example, architec-
ture evaluation can take several forms: the methods can be bespoke, providing phases and
systematic guidance for architects to evaluate for the extent to which the architecture can
meet its non-functional goals and trade-offs - e.g. ATAM, CBAM, etc. These methods can
provide support for mitigating uncertainties. As an example, the use of exploratory and stress
scenarios in ATAM is a way to anticipate likely or extreme cases and to design the architecture
in a way that it can withstand these changes. Additionally, architecture evaluation can also
focus on one concern (e.g., performance, security), where the analysis can utilise low level
design models (e.g. state charts) and model-based analysis to analyse the system for specific
qualities. Though these approaches are often regarded to be design-level evaluation with
restricted focus on specific qualities (e.g. performance, security, reliability, liveliness, etc), the
feedback gathered from their low level design analysis can help the architects to refine the
software architecture under evaluation (e.g. ATMIS [64], performance modelling approaches
[76–78, 135], etc). Analysis using model-based approaches can help the architects to reach
more robust architectures against qualities of interest (e.g. security or performance) through
continuous refinements that can better cater for uncertainties. For example, the architect
can use performance models [76–78, 135] to inform refinements of the architecture that can
better cope with uncertainties. Model-based analysis are design-level analysis. This analysis
is often focused on the analysis on one or more sets of qualities using model-based modelling,
analysis and tooling. Though this analysis operates on lower level of abstraction of that the
architecture, the feedback of their analysis can help software architects and designers to
evaluate software architectures for uncertainties and to suggest refinements that can better
mitigate for uncertainties. These methods were not specifically discussed as either (i) methods
for architecture evaluation, nor (ii) methods for evaluating and mitigating for uncertainties.
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Nevertheless, we acknowledge their complementary role, if the architect would wish to utilise
their use. Henceforth, model-based analysis is not the core objective of our survey due to
their wide use of versatile and context-dependent use.

− Since the self-adaptive and self-managed domain is large, we did our best to include studies
which show architecture evaluation as part of their approach. In particular, we added studies
from a list of 5974 papers (the output of the search process in Figure 1) through search
databases and a snowballing process, in addition to some manual search. However we may
have missed some works unintentionally.

− Furthermore, a common threat to validity is the fact that there are some criteria—such as
dealing with uncertainty and management of trade-offs—where the paper’s authors do not
explicitly mention whether they are addressed or not. In this context, we attempted to infer
these criteria. Similarly, a common concern in the run-time approaches is that, in most cases,
"the proactiveness or reactiveness of the approaches are not explicitly discussed and it can
only be inferred from the adaptation strategies" [98]. Accordingly, we made our best effort to
infer the reactiveness and proactiveness of the examined approaches.

− Other approaches, such as self-healing works, were excluded. For example, self-healing refers
to the process of automatic recovery from failure. However, our SLR is concerned with the
extent to which the architecture design decisions, tactics, and architecture choices tend to
meet the quality requirements of the systems and their trade offs. As for uncertainty, it
refers to the evaluation of these decisions in situations where it is difficult to predict the
performance of these qualities due to dynamism in the system’s operations and/or adequate
understanding of the application domain. Though self-healing is not among the objectives of
the paper, it can represent a specific scenario for the evaluation, where the architects can
evaluate the extent to which the architecture design decisions can realise self-recovery for
faults under uncertainty.

− Some continuous approaches were excluded from the list of studies. As an example, for [17],
the focus has been primarily on development, whereas [146] focused on continuous testing
and their relevance to the inclusion criteria is weak. Nevertheless, these types of approaches
have motivated us to review and introduce continuous software architecture evaluation to
the software architecture community.

5 RELATED REVIEWS
In the area of design-time architecture evaluation, there are many studies, such as [11, 27, 53, 122].
For instance, Dobrica et al. [53] focused on surveying the most popular methods, such as ATAM
[85], CBAM [82], and ALMA [19]. Babar et al. [11] provided a framework for classifying design-
time software architecture evaluation methods and a comparative analysis for the scenario-based
approaches in specific in [10]. Roy et al. [122] extended the previous reviews and considered most
of the design-time evaluation methods at that time. The authors in [27] systematically reviewed
and classified architecture evaluation methods from the architecture evolution perspective.
Other surveys focused on run-time methods, such as self-adaptive systems [47, 93, 98], self-

managed systems [26], andmodels@run-time [131]. From [26, 47, 93, 98, 131], we found that none of
the studies explicitly demonstrated the use of run-time architecture evaluation principles. And none
of the works have examined continuous software architecture evaluation. This is surprising because
some research studies implicitly provide the elements for a continuous evaluation approach. Our
survey bridges this gap by rethinking architecture evaluation and providing classifications that can
do the following: (i) help architects to conduct the evaluation in continuous settings by determining
the elements of a continuous evaluation approach; (ii) help in identifying common approaches for
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this type of evaluation; (iii) identify common concerns for systems that can benefit from this type
of evaluation; (iv) point out the strengths and weaknesses of these types of approaches.

6 DISCUSSION AND RECOMMENDATIONS FOR FUTURE RESEARCH
Based on the SLR, it is clear that the area of software architecture evaluation has received substantial
attention in recent years. Nevertheless, the results demonstrate some observations which could
lead to future research. In particular, this SLR has identified several gaps in relation to architecture
evaluation for uncertainty with respect to decisions which relate to designing dynamic and complex
systems, such as IoT, cloud, and volunteer computing. In this context, this section aims to address
the third question: RQ3: What are the current trends and future directions in software architecture
evaluation for uncertainty and their consideration for continuous evaluation? This question aims to
show how we can benefit from the existing approaches to draw inspiration from the requirements and
address the pitfalls when developing a continuous evaluation approach. In Section 6.1, we present
the architecture evaluation research area maturation stages and classification. We then highlight
the important objectives that should be accomplished by the research community to advance this
research area (Section 6.2 and 6.3). This is inline with the summary and reflection sections shown
in Section 4.

6.1 Research Area Maturation
In this systematic review, we aim to investigate the extent to which architecture evaluation for
uncertainty and the consideration for continuous evaluation have matured as a discipline. For this
purpose, we examine the included studies with respect to the Redwine-Riddle model [119]. The
latter provides six stages for technology (research area) maturity. These stages are [119]:

1. Basic Research: investigating the ideas and concepts; and providing a clear articulation of
problem’s scope.

2. Concept Formulation: presenting a comprehensive evaluation of solution approach through
seminal paper or a demonstration system.

3. Development and Extension: preliminary using the ideas and extending the general approach
to a broader solution.

4. Internal Enhancement and Exploration: extending the general approach to solve real problems
in other research areas.

5. External Enhancement and Exploration: creating a broader group and involving them in
decision-making to provide a substantial evidence of value and applicability.

6. Popularization: showing production-quality, providing supported versions, as well as market-
ing and commercializing the technology.

Initially, one author has classified the 48 included studies against Redwine-Riddle model, and the
outcome was revised independently by other authors. Discussions and agreements were carried
out in cases of discrepancies between the authors’ categorizations. Figure 5 shows the results
of classification. It is clear that almost 80% of the studies are still in early maturity stages (Basic
Research and Concept Formulation), whereas almost 20% have been extended to broader problem
domains and applied in practice. Among those approaches that are already adopted by industry,
none of them are deployed at run-time; they only focus on design-time evaluation. In particular,
maturity has only been proven for design-time approaches, such as ATAM and CBAM. This explains
why 4% (2) of approaches are still in the popularization stage. In Appendix B, we tabulate the
studies with respect to domain maturity level.
We have seen some examples of continuous evaluation that are either implicit, partial, or ex-

plicit, such as CPASA and DevOps. However, these research efforts have not demonstrated and
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Fig. 5. Distribution of the included studies over the domain maturity classification model (The maturity
distribution are shown in percentage).

documented how to adapt those practices in the evaluation of software architectures for uncer-
tainty. Therefore, to mature the architecture evaluation research area with continuous evaluation
approaches, we need a set of guidelines, tools, systematic procedures, acceptance from (and case
studies with) real-world organizations, and shared benchmarks across companies for best practices.

6.2 Leveraging Existing Approaches To Develop A Continuous Evaluation Framework
Having done this SLR, we observe that elements from different approaches could be combined to
develop a continuous software architecture evaluation framework. We briefly present our views on
potential ones that seem worthwhile to be further explored below:

• Architecture capabilities that can better cope and respond to uncertainty: examples
of these capabilities are architecture design diversification [51], tactics for meeting non-
functional requirements, etc. Consider diversification as one of the capabilities that could
enrich the architecture to cater for uncertainty and provide means for reliability and continu-
ously meeting the behavioural requirements. Such capability require the software architecture
community to leverage findings on design diversity in software engineering to develop fun-
damentals for software architecture diversity for uncertainties, covering styles, decisions,
tactics, etc, which is inline of our earlier work - [126, 127], as well as rethinking architecture
evaluation to consider dynamism and uncertainty. In this context, a systematic design-time
evaluation approach that can deal with these capabilities and handle uncertainties is neces-
sary. This is an important foundation of a continuous evaluation framework. Some initial
works have discussed these potentials [126], but it still requires further investigations.

• The use of economics-based approaches in architecture evaluation: based on the ex-
isting approaches, we infer that there is a lack of well-documented, real-world examples
for economics-based approaches in the context of design-time evaluations (Table 6 and 10:)
In particular, these approaches ([12, 13, 114]) have not been used to deal with cost-benefit
trade-offs in dynamic environments, such as IoT. Further, they have not been explored from
the perspective of forecasting the long-term value of architecture decisions to determine
whether the complex design decisions, such as diversity in design [51], can handle uncertain-
ties that can be attributed to dynamic changes in the environment. As mentioned previously,
the CBAM [82] is a scenario-based design-time evaluation method, which determines the
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influence of architecture decisions on the cost-benefit trade-offs. The CBAM provides an
implicit mitigation for uncertainty through different types of scenarios. However, this type
of evaluation approach would not be suitable for the emerging technologies and paradigms,
such as IoT and cloud-based systems. We believe that economics-based approaches, such as
real options analysis [8] and modern portfolio theory [100], could be combined with CBAM
to support the analysis. Real Options Analysis is one of the few design-time techniques that
can embed flexibility under uncertainty. Therefore, it can aid the architect in predicting the
impact of architecture decisions on quality attributes of interest. It can also shortlist the
candidate options for deployment at run-time and thus reduce unnecessary costs. This is still
very much a research area that requires further investigation in the context of design-time
evaluation, as an initial stage for continuous evaluation.

• Newmethods for continuous architecture evaluation that interleave and intertwine
design and run-time architecture evaluation:we found that most of the architecture eval-
uation approaches focus on design-time (about 60% of the approaches) and less on run-time
(about 40% of the approaches). Evaluation approaches also tend to focus on development (i.e.
mostly human-centric activities) and lack a consolidated approach that integrates design-time
and run-time considerations. On the contrary, in the context of architecting and evaluating
dynamic and complex systems, a more continuous approach that starts at the early stages
of development and continues to evaluate the architecture options during the lifetime of
the system at run-time is necessary to cope with operational uncertainties, such as high
fluctuations in QoS, sensor ageing effects, etc.

6.3 Finding The Necessary Ingredients For Developing A Continuous Evaluation
Framework

Modern software system environments, such as IoT, cloud, volunteer computing, and microservices,
are a challenge for existing software architecture evaluation methods. Such systems are largely
data-driven, characterised by their dynamism, unpredictability in operation, hyper-connectivity,
and scalability. Properties, such as performance, delayed delivery, and scalability, are acknowledged
to pose great risk and are difficult to evaluate at design-time only. Therefore, a run-time evaluation
approach is necessary to complement design-time analysis. This run-time stage should be able to
handle different sources of uncertainty and evaluate complex design-time decisions. In this regard,
we need to determine the necessary ingredients for this run-time stage. We briefly present our
views on potential directions for run-time stage that seem worthwhile to be further explored below:

• Analysing the cost as a quality concern when developing a continuous evaluation
approach: one interesting observation is that just 25% of run-time approaches address cost
as a concern (Table 11 and 6). Since the management of cost-benefit trade-offs is essential in
dynamic environments [71], cost will highly influence the value of architecture decisions.
When evaluating software architectures, therewould be some conflictingQoS goals. Therefore,
when designing a continuous evaluation approach, one could benefit from the literature with
respect to multi-objective optimisation under uncertainty, such as the use of Pareto-Optimal
in [44, 70], Genetic Algorithms in [138], Fuzzy Logic in [144], etc.

• The need to incorporate change detection tests to the evaluation: based on the results
of our review (Table 11), most of the run-time approaches handle uncertainty either by
checking goal violations or providing some probabilistic estimations. However, in contexts
of highly dynamic environments such as [4, 37, 71, 108, 109], this is not sufficient. Even if the
currently deployed architecture decision is not violating any goal, this does not mean that it
has good performance. For example, in some cases, an architecture decision is meeting its
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quality constraints but it is providing poor performance. In this context, a change detection
test is a necessary component in a continuous evaluation framework to determine significant
drifts in the architecture decisions. This type of test can provide the architect with the
flexibility of adjusting the sensitivity to changes. Therefore, determining the type of test and
its efficiency could be a potential future direction. In [127], one type of change detection test
was used, however, we see potentials of exploring other change detection tests [52] to handle
different forms of uncertainty.

• The need for ageing parameters for data analysis:most of the existing run-timemethods
rely on historical data or online data to perform the evaluation, but they do not consider
the age of data. Therefore, embedding some ageing parameters to emphasise the relative
importance of older versus more recent data could potentially improve the analysis [31].
Further investigations, related to the use of these parameters and how the architect could
tune these parameters to enhance the evaluation are required.

• Theneed for newproactive approaches for continuous architecture evaluation: from
the run-time perspective (Table 11 and 6), it is clear that most of the current approaches (e.g.
[31, 61, 143], etc) tend to be reactive when simplistic learning, partial or incomplete knowledge
is used. Thus they may suggest incorrect decisions due to unexpected future environment
changes and recommend unnecessary switches due to the lack of future knowledge about
the candidate architecture decisions. This in turn may affect the architecture’s stability and
overall behaviour. To bridge the gap, further proactive approaches are necessary to improve
the continuous evaluation process.

• Embedding machine learning and forecasting techniques to the continuous evalu-
ation framework: our analysis shows that just 25% of the run-time approaches embed
machine learning principles in the decision-making process. Using machine learning ap-
proaches in decision-making has shown great improvements to the decision-making (e.g.
[20]). Therefore, another important element when developing a continuous architecture
evaluation framework is leveraging machine learning techniques. There are methods (e.g.
[58, 117]) that explicitly mention continuous architecting and assessment, and others that im-
plicitly adopt it (e.g. [17]). These approaches can benefit from further investigations in terms
of how continuous evaluation could dynamically track and forecast architecture decisions
and automatically manage cost-benefit trade-offs.

• Consider scalability when designing a continuous evaluation framework: the liter-
ature depicts that there are some approaches (e.g. [46, 58, 69, 106]) that are proactive in
terms of failure prediction and recommending alternatives. These approaches may, however,
experience scalability problems. Moreover, these approaches assume that the impact of archi-
tecture decisions on QoS is available at run-time, which is not always the case for uncertain
environments such as IoT. To this end, novel solutions are required to determine how QoS
monitoring challenges could be handled.

7 CONCLUSION
Continuous evaluation has been discussed under different labels, such as run-time, dynamic,
continuous, etc, along with assessment and analysis. The common characteristic among these
efforts is that they start at design-time (even if they do not mention that explicitly) and continue
to evaluate architecture decisions during the life-time of system by observing environmental
conditions. In this review we have attempted to unify these efforts. We performed a systematic
literature review to examine existing architecture evaluation methods that deal with uncertainty
either design-time or run-time. We also provided guidelines for the necessary elements to develop
and conduct a continuous architecture evaluation approach. We both automatically and manually
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searched well-known venues for software architecture and engineering, other related systematic
reviews and mapping studies, and significant bibliographical data sources. In addition we applied a
snowballing process to collect our primary studies.
The results of our investigation are the following: (a) design-time architecture evaluation ap-

proaches garnered more attention than run-time ones, though the latter are increasingly important
to handle the dynamism and increasing complexity in software systems; (b) there is a lack of
examples on demonstrating how continuous evaluation approaches can realised and conducted;
(c) few methods focus on managing trade-offs between benefits and costs at run-time; (d) few
methods focus on adopting machine learning techniques to the evaluation; (e) most of the run-time
approaches tend to be reactive (and may recommend unnecessary switches and hence increase
deployment costs).

In summary, based on ourmain findings listed in Tables 10, 11, 6, and 7, 8, we suggest the following
opportunities for future work in this area: (i) employ economics-based approaches (i.e. forecasting
the long-term value of complex architecture decisions); (ii) adopt economics-based principles in the
design-time evaluation approach (the initial stage of a continuous evaluation approach) because
it embeds flexibility under uncertainty; (iii) perform additional research in analysing the use of
machine learning techniques to improve architecture evaluation at run-time (the ongoing stage in a
continuous evaluation approach); (iv) investigate the development of proactivity in the architecture
evaluation process; (v) explore how tuning the input parameters for the continuous evaluation (e.g.
sensitivity to changes, monitoring intervals, the relative importance of present/past data) could
affect the evaluation and what are the most suitable parameters to improve the decision-making;
(vi) analyze the use of continuous architecture evaluation in dynamic environments, such as IoT
and cloud systems.

A THE LIST OF INCLUDED STUDIES WITH RESPECT TO CLASSIFICATION
FRAMEWORK

In this appendix, we tabulate the list of included studies with respect to classification framework in
Table 10-12.

B THE INCLUDED STUDIES AND THEIR MATURITY LEVEL
In this appendix, we first tabulate the studies with respect to domain maturity level in Table 13 and
then provide a list of included studies in the systematic literature review in Table 14, 15, and 16.
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Table 10. Representative Contributions for Design-time Architecture Evaluation.

Study Approaches Addressing Supported Management of Management Treatment Source
to QA QA stakeholder of of of
Evaluation input trade-offs uncertainty uncertainty

[83] Scenario-based Multiple Specific (Modifiability, Portability, Human-Reliant No Support Implicit Epistemic
Extensibility)

[43] Utility-based Multiple General Human-Reliant Manual Implicit Epistemic
Scenario-based

[82] Utility-based Multiple General + Specific (Cost) Human-Reliant Manual Implicit Epistemic
Scenario-based

[18] Utility-based Multiple Specific (Performance, Human-Reliant No Support Implicit Epistemic
Scenario-based Fault-tolerance, Maintainability,
Parametric-based Reusability)

[19] Utility-based Single Specific (Modifiability) Human-Reliant No Support Implicit Epistemic
Scenario-based

[79] Utility-based Multiple General + Specific (Cost) Human-Reliant No Support Implicit Epistemic
Scenario-based + Aleatory

[84] Utility-based Multiple General + Specific (Cost) Human-Reliant Manual Implicit Epistemic
Scenario-based
Parametric-based

[139] Utility-based Single Specific (Performance+Cost) Human-Reliant Manual Implicit Epistemic
Scenario-based

[145] Utility-based Multiple General + Specific (Cost) Human-Reliant Manual Explicit Epistemic
Scenario-based
Parametric-based

[5] Utility-based Multiple General + Specific (Cost) Semi-Autonomous Automatic Implicit Epistemic
Parametric-based
Search-based

[70] Utility-based Multiple General + Specific (Cost) Semi-Autonomous Automatic Implicit Epistemic
[86] Utility-based Multiple General + Specific (Cost) Human-Reliant Manual Explicit Epistemic

Parametric-based
[96] Utility-based Multiple Specific (Dependability, Reliability Human-Reliant No Support Implicit Aleatory

and Maintainability)
[94] Utility-based Multiple General + Specific (Cost) Human-Reliant Manual Explicit Epistemic
[42] Utility-based Multiple General + Specific (Cost) Semi-Autonomous Automatic Explicit Epistemic
[64] Utility-based Multiple General + Human-Reliant Manual Explicit Epistemic

+ Aleatory
[113] Utility-based Multiple General + Specific (Cost) Semi-Autonomous Automatic Explicit Epistemic
[57] Utility-based Multiple General Human-Reliant No Support Implicit Epistemic
[63] Utility-based Multiple General + Specific (Cost) Semi-Autonomous Automatic Explicit Epistemic

Scenario-based
Search-based

[95] Utility-based Multiple General + Specific (Cost) Semi-Autonomous Automatic Explicit Epistemic
Scenario-based
Search-based

[12] Economics-based Multiple Specific (Stability) + Specific (Cost) Semi-Autonomous Manual Explicit Epistemic
[13] Economics-based Multiple Specific (Scalability) + Specific (Cost) Semi-Autonomous Manual Explicit Epistemic
[114] Economics-based Multiple General + Specific (Cost) Semi-Autonomous Manual Explicit Epistemic

Scenario-based
[112] Economics-based Multiple General + Specific (Cost) Semi-Autonomous Manual Explicit Epistemic

Scenario-based
[104] Utility-based Single Specific (Reliability) Semi-Autonomous No Support Explicit Epistemic

Parametric-based + Aleatory
[103] Utility-based Multiple Specific (Reliability) Semi-Autonomous Automatic Explicit Aleatory

Parametric-based
Search-based

[102] Utility-based Multiple Specific (Reliability + Performance) Semi-Autonomous Automatic Explicit Epistemic
Parametric-based
Search-based

[28] Utility-based Multiple Generic Semi-Autonomous Automatic Explicit Epistemic
Search-based

[105] Utility-based Multiple Generic Semi-Autonomous No Support Explicit Epistemic
Parametric-based + Aleatory
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Table 11. Representative Contributions for Run-time Architecture Evaluation.

Study Approaches Addressing Supported Management of Management Treatment Source Monitoring &
to QA QA stakeholder of of of Treatment
Evaluation input trade-offs uncertainty uncertainty of QAs

[40] Utility-based Multiple General + Specific (Cost) Autonomous Automatic Explicit Epistemic Reactive
Parametric-based + Aleatory

[133] Utility-based Single Specific (Performance) Autonomous No Support Explicit Aleatory Reactive
Learning-based

[32] Utility-based Multiple Specific (Performance, Autonomous Automatic Implicit Aleatory Reactive
Energy Consumption)

[87] Utility-based Multiple General Autonomous Automatic Explicit Aleatory Reactive
Learning-based

[75] Utility-based Multiple Specific (Reliability and Performance) Semi-Autonomous No Support Implicit Aleatory Reactive
[141] Utility-based Multiple General + Specific (Cost) Semi-Autonomous No Support Implicit Aleatory Reactive

Scenario-based
[31] Utility-based Multiple Specific (Reliability and Performance) Autonomous No Support Explicit Aleatory Reactive
[30] Utility-based Multiple Specific (Reliability and Performance) Semi-Autonomous Automatic Explicit Epistemic Reactive

+ Aleatory
[62] Utility-based Multiple General Semi-Autonomous Automatic Explicit Epistemic Reactive

Search-based + Aleatory
[61] Utility-based Multiple General + Specific (Cost) Autonomous Automatic Explicit Epistemic Reactive

Learning-based + Aleatory
[67] Utility-based Single Specific (Energy Consumption) Semi-Autonomous No Support Explicit Aleatory Reactive

Search-based
[58] Utility-based Single Specific (Reliability) Semi-Autonomous No Support Implicit Epistemic Proactive

Parametric-based + Aleatory
[69] Utility-based Multiple General Semi-Autonomous No Support Explicit Aleatory Proactive
[46] Utility-based Multiple Specific (Reliability and Efficiency) Autonomous Automatic Implicit Aleatory Proactive
[106] Utility-based Multiple Specific (Performance) Autonomous No Support Explicit Aleatory Proactive

Learning-based

Table 12. Representative Contributions for Continuous Architecture Evaluation.

Study Approaches Addressing Supported Management of Management Treatment Source Monitoring &
to QA QA stakeholder of of of Treatment
Evaluation input trade-offs uncertainty uncertainty of QAs

[117] Utility-based Multiple General + Specific (Cost) Human-Reliant Manual Implicit Epistemic No treatment
[69] Utility-based Multiple General Semi-Autonomous No Support Explicit Aleatory Proactive

Parametric-based
Search-based

[136] Utility-based Multiple General + Specific (Cost) Autonomous Automatic Explicit Epistemic Reactive
Economics-based + Aleatory

[127] Utility-based Multiple General + Specific (Cost) Autonomous Automatic Explicit Epistemic Reactive
Search-based + Aleatory
Scenario-based
Learning-based
Economics-based

Table 13. Studies with respect to Domain maturation level.

Domain Maturation Level Studies # of Studies
Basic Research [28, 83, 113, 117] 4
Concept Formulation [5, 12, 40, 70, 79, 84, 86, 104, 105, 114, 133, 139, 145] 35

[13, 30–32, 46, 58, 61, 62, 75, 87, 94, 96, 141]
[48, 67, 69, 95, 102, 103, 106, 112, 136]

Development and Extension [18, 57] 2
Internal Enhancement [63, 64] 2
External Enhancement [19, 42] 2
Popularization [43, 82] 2

Total 48
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Table 14. Studies included in the review.
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S3 [82] R. Kazman, J. Asundi, 2001 Quantifying the costs and benefits of
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S4 [139] L. Williams & C. Smith 2002 PASASM: A Method for the Performance

Assessment of Software Architectures
S5 [43] R. Kazman, M. Klein, 2003 Evaluating software architectures

P. Clements & others
S6 [19] P. Bengtsson, N. Lassing, 2004 Architecture-level modifiability analysis

J. Bosch, & H. Vliet (ALMA)
S7 [12] R. Bahsoon & W. Emmerich 2004 Evaluating architectural stability
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S8 [40] S. Cheng 2004 Rainbow: cost-effective software
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S9 [79] M. Ionita, P. America, 2004 A Scenario-Driven Approach for Value,

D. Hammer, H. Obbink Risk, and Cost Analysis in
& J. Trienekens System Architecting for Innovation

S10 [145] L. Zhu, A. Aurum, 2005 Tradeoff and sensitivity analysis in software
I. Gorton, & R. Jeffery architecture evaluation using analytic

hierarchy process
S11 [5] T. Al-Naeem, I. Gorton, 2005 A quality-driven systematic

M. Babar, F. Rabhi approach for architecting
& B. Benatallah distributed software applications

S12 [84] R. Kazman, L. Bass 2006 The essential components of software
& M. Klein architecture design and analysis

S13 [70] L. Grunske 2006 Identifying good architectural design alternatives
with multi-objective optimization strategies

S14 [133] G. Tesauro 2007 Reinforcement learning in autonomic computing:
A manifesto and case studies

S15 [114] I. Ozkaya, R. Kazman 2007 Quality-attribute based economic
& M. Klein valuation of architectural patterns

S16 [86] C. Kim, D. Lee, 2007 A Lightweight Value-based Software
I. Ko & J. Baik Architecture Evaluation

S17 [13] R. Bahsoon & W. Emmerich 2008 An economics-driven approach for valuing
scalability in distributed architectures

S18 [96] Y. Liu, M. Babar 2008 Middleware Architecture Evaluation for
& I. Gorton Dependable Self-managing Systems

[8] Martha Amram, Nalin Kulatilaka, et al. 1998. Real Options:: Managing Strategic Investment in an Uncertain World.
OUP Catalogue (1998).
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Table 15. Studies included in the review (Continued).

Study# Ref Author(s) Year Title
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S20 [87] D. Kim & S. Park 2009 Reinforcement learning-based dynamic

adaptation planning method for architecture-
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S21 [141] J. Yang, G. Huang, W. Zhu, 2009 Quality attribute tradeoff through
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S22 [94] J. Lee, S. Kang 2009 Software architecture evaluation methods
& C. Kim based on cost benefit analysis

and quantitative decision making
S23 [58] I. Epifani, C. Ghezzi, 2009 Model evolution by run-time

R. Mirandola parameter adaptation
& G. Tamburrelli

S24 [32] R. Calinescu 2009 Using quantitative analysis to implement
& M. Kwiatkowska autonomic IT systems

S25 [42] He. Christensen, K. Hansen 2011 Lightweight and continuous architectural
& B. LindstrÃÿm software quality assurance using

the asqa technique
S26 [117] R. Pooley & A. Abdullatif 2010 Cpasa: continuous performance assessment of

software architecture
S27 [64] F. Faniyi, R. Bahsoon, 2011 Evaluating security properties of architectures

A. Evans & R. Kazman in unpredictable environments:
A case for cloud

S28 [62] N. Esfahani, E. Kouroshfar 2011 Taming uncertainty in self-adaptive software
& S. Malek

S29 [31] R. Calinescu, K. Johnson 2011 Using observation ageing to
& Y. Rafiq improve Markovian model learning

in QoS engineering
S30 [30] R. Calinescu, L. Grunske, 2011 Dynamic QoS management and optimization

M. Kwiatkowska, in service-based systems
R. Mirandola
& G. Tamburrelli

S31 [104] I. Meedeniya, I. Moser, A. Aleti, 2011 Architecture-based reliability
& L. Grunske evaluation under uncertainty

S32 [103] I. Meedeniya, I. Moser, A. Aleti, 2011 Architecture-driven reliability optimization
& L. Grunske with uncertain model parameters

[10] Muhammad Ali Babar and Ian Gorton. 2004. Comparison of scenario-based software architecture evaluation methods.
In Software Engineering Conference, 2004. 11th Asia-Pacific. IEEE, 600–607.
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[12] Rami Bahsoon and Wolfgang Emmerich. 2004. Evaluating architectural stability with real options theory. In Software
Maintenance, 2004. Proceedings. 20th IEEE International Conference on. IEEE, 443–447.

[13] Rami Bahsoon and Wolfgang Emmerich. 2008. An economics-driven approach for valuing scalability in distributed
architectures. In Software Architecture, 2008. WICSA 2008. Seventh Working IEEE/IFIP Conference on. IEEE, 9–18.
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Table 16. Studies included in the review (Continued).

Study# Ref Author(s) Year Title
S33 [102] I. Meedeniya, A. Aleti, I. Avazpour 2012 Robust ArcheOpterix: Architecture

& A. Amin Optimization of Embedded Systems
Embedded Systems under uncertainty

S34 [113] M. Osterlind, P. Johnson, 2013 Enterprise architecture evaluation
K. Karnati, R. Lagerstrom using utility theory
& M. Valja

S35 [63] N. Esfahani, S. Malek 2013 GuideArch: guiding the exploration of
& K. Razavi architectural solution space

under uncertainty
S36 [46] D. Cooray, E. Kouroshfar, 2013 Proactive self-adaptation for improving

S. Malek & R. Roshandel embedded, the reliability of
mission-critical, and mobile software

S37 [61] N. Esfahani, A. Elkhodary 2013 A learning-based framework for
& S. Malek engineering feature-oriented self-adaptive

software systems
S38 [69] C. Ghezzi & A. Sharifloo 2013 Dealing with non-functional requirements

for adaptive systems via dynamic
software product-lines

S39 [67] E. Fredericks, B. DeVries 2014 Towards run-time adaptation of test
& B. Cheng cases for self-adaptive systems in

the face of uncertainty
S40 [95] E. Letier, D. Stefan 2014 Uncertainty, risk, and information value

& E. Barr in software requirements and architecture
S41 [105] I. Meedeniya, A. Aleti, 2014 Evaluating probabilistic models with

& L. Grunske uncertain model parameters
S42 [57] V. Eloranta, U. Heesch, 2015 Lightweight Evaluation of Software

P. Avgeriou, N. Harrison Architecture Decisions
& K. Koskimies

S43 [112] B. Ojameruaye, R. Bahsoon 2016 Sustainability debt: a portfolio-based
& L. Duboc approach for evaluating sustainability

requirements in architectures
S44 [106] G. Moreno, J. Camara, 2016 Efficient decision-making under uncertainty

D. Garlan & B. Schmerl for proactive self-adaptation
S45 [136] V. Donckt, M. Jeroen, 2018 Cost-Benefit Analysis at Runtime for

D. Weyns, M. Iftikhar Self-Adaptive Systems Applied to an
& R. Singh Internet of Things Application

S46 [48] M. De Sanctis, R. Spalazzese, 2019 Qos-based formation of software
& C. Trubiani architectures in the internet of things

S47 [28] A. Busch, D. Fuchß, 2019 Peropteryx: Automated improvement of
& A. Koziolek software architectures

S48 [127] D. Sobhy, L. Minku, R. Bahsoon 2020 Run-time evaluation of architectures:
T. Chen & R. Kazman A case study of diversification in IoT
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