

University of Birmingham

Evaluation of software architectures under
uncertainty
Sobhy, Dalia; Bahsoon, Rami; Minku, Leandro; Kazman, Rick

DOI:
10.1145/3464305

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Sobhy, D, Bahsoon, R, Minku, L & Kazman, R 2021, 'Evaluation of software architectures under uncertainty: a
systematic literature review', ACM Transactions on Software Engineering and Methodology, vol. 30, no. 4, 51.
https://doi.org/10.1145/3464305

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© ACM 2021. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of
Record was published in ACM Transactions on Software Engineering and Methodology, https://doi.org/10.1145/3464305.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 06. May. 2024

https://doi.org/10.1145/3464305
https://doi.org/10.1145/3464305
https://birmingham.elsevierpure.com/en/publications/14b804b9-ad04-4caf-91fa-118a9b10dc6f

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review

DALIA SOBHY, Computer Engineering Department, Arab Academy of Science and Technology and
Maritime Transport, Egypt
RAMI BAHSOON, School of Computer Science, University of Birmingham and FRSA, UK
LEANDRO MINKU, School of Computer Science, University of Birmingham, UK
RICK KAZMAN, Information Technology Management, University of Hawaii and SEI/CMU, USA

Context: Evaluating software architectures in uncertain environments raises new challenges, which require
continuous approaches. We define continuous evaluation as multiple evaluations of the software architecture
that begins at the early stages of the development and is periodically and repeatedly performed throughout
the lifetime of the software system. Numerous approaches have been developed for continuous evaluation;
to handle dynamics and uncertainties at run-time, over the past years, these approaches are still very few,
limited, and lack maturity.
Objective: This review surveys efforts on architecture evaluation and provides a unified terminology and
perspective on the subject.
Method:We conducted a systematic literature review to identify and analyse architecture evaluation approaches
for uncertainty including continuous and non-continuous, covering work published between 1990-2020. We
examined each approach and provided a classification framework for this field. We present an analysis of the
results and provide insights regarding open challenges.
Major results and conclusions: The survey reveals that most of the existing architecture evaluation approaches
typically lack an explicit linkage between design-time and run-time. Additionally, there is a general lack of
systematic approaches on how continuous architecture evaluation can be realised or conducted. To remedy
this lack, we present a set of necessary requirements for continuous evaluation and describe some examples.

Additional Key Words and Phrases: Continuous Software Architecture Evaluation, Design-time Software
Architecture Evaluation, Run-time Software Architecture Evaluation, Uncertainty.

Reference Format:
Dalia Sobhy, Rami Bahsoon, Leandro Minku, and Rick Kazman. 2021. Evaluation of Software Architectures
under Uncertainty: A Systematic Literature Review. 1, 1 (April 2021), 50 pages.

1 INTRODUCTION
Architecture evaluation is a milestone in the decision-making process. It aims at justifying the
extent to which architecture design decisions meet a system’s quality requirements and their
trade-offs, particularly in the face of operational uncertainties and changing requirements. The
evaluation can aid in early identification and mitigation of design risks; the exercise is typically
done in an effort to save integration, testing and evolution costs [124]. Examples of seminal work
include Architecture Tradeoff Analysis Method (ATAM) [85], and Cost Benefit Analysis Method
(CBAM) [82].

Authors’ addresses: Dalia Sobhy, Computer Engineering Department, Arab Academy of Science and Technology and
Maritime Transport, Alexandria, Egypt, dalia.sobhi@aast.edu; Rami Bahsoon, School of Computer Science, University
of Birmingham and FRSA, Birmingham, UK, r.bahsoon@cs.bham.ac.uk; Leandro Minku, School of Computer Science,
University of Birmingham, Birmingham, UK, l.l.minku@cs.bham.ac.uk; Rick Kazman, Information Technology Management,
University of Hawaii and SEI/CMU, Hawaii, USA, kazman@hawaii.edu.

© 2021
XXXX-XXXX $

, Vol. 1, No. 1, Article . Publication date: April 2021.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Sobhy et al.

Software architectures that operate in dynamic and non-stationary environments (e.g., IoT and
cloud applications) require a fundamental shift in the way evaluations are conducted. This is due
to unforeseen factors that may affect the evaluation, including (but not limited to), fluctuations in
QoS, multi-tenancy, hyper-connectivity, sensor ageing effects, etc [71, 109, 130].
Though existing design-time evaluation approaches promise to evaluate flexibility in architec-

tures under uncertainty and their responses in enabling change [19, 82, 85], in contexts of highly
dynamic environments these approaches tend to be limited because there may be emerging sce-
narios where the architect cannot rely solely on design-time evaluation. Such scenarios require
a run-time evaluation to inform and calibrate the design-time decisions. In this context, a more
continuous approach would benefit the evaluation process. We define continuous software architec-
ture evaluation as multiple evaluations of the software architecture that begins at the early stages of
the development and is periodically and repeatedly performed throughout the lifetime of the software
system. Continuous evaluation is performed either continuously or sporadically covering either
one feature (e.g. QoS) or multiple features.

There have been many research studies aimed at evaluating software architectures to deal with
uncertainty which may implicitly or explicitly adopt continuous approaches (e.g. DevOps [17]). The
field has attracted a wide range of researchers and practitioners. However, continuous evaluation
has not been viewed as a key area within software architecture research. We still lack a clear vision
regarding the elements of a continuous software architecture evaluation approach.

In past years, many research studies have reviewed design-time architecture evaluation methods
(e.g. [27, 53, 122]), while some have attempted to review run-time methods without addressing
them from the context of continuous architecture evaluation (e.g. [26, 47, 93, 98, 131]). In particular,
to date there is no systematic literature review for software architecture evaluation approaches
for uncertainty which may implicitly or explicitly adopt continuous approaches. A systematic
literature review (SLR) is a methodological mean to aggregate empirical studies, to systematically
investigate a research topic, answer specific research questions, and finally determine the gaps and
research directions for the research topic [88, 89, 116].
The objective of this study is to (i) provide a basic classification schema which categorises

software architecture evaluation approaches under uncertainty; (ii) categorise the current design-
time and run-time approaches for evaluating software architectures based on this schema; (iii)
determine the necessary guidelines for developing a continuous evaluation approach; (iv) point
out current gaps and directions for future research in software architectures for environments
characterised by uncertainty, where we consider both design-time and run-time evaluation that
take into account the possibility of uncertainties in the environment where the system will operate
/ is operating. Concretely, we aim to provide answers for the following research questions:

(1) How can the current research on software architecture evaluation under uncertainty be
categorised and what are the current state-of-the-art approaches with respect to this cate-
gorisation? The goal is to provide a categorisation of existing architecture evaluation approaches
under uncertainty and classify the state-of-the-art approaches under this categorisation.

(2) What are the actions taken by these architecture evaluation approaches to deal with un-
certainty? The aim of this question is to demonstrate and discuss how the existing approaches
deal with uncertainty and whether these actions can contribute to developing more continuous
approaches.

(3) What are the current trends and future directions in software architecture evaluation for
uncertainty and their consideration for continuous evaluation? This question aims to show
how researchers and practitioners can benefit from the existing approaches to draw inspiration

, Vol. 1, No. 1, Article . Publication date: April 2021.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 3

on the essential requirements and address the pitfalls when developing a continuous evaluation
approach.

The manuscript is structured as follows: Section 1.1 identifies and explains the necessary con-
cepts to ease the understanding of the review. Section 2 demonstrates the systematic literature
review process, Section 3 provides an overview of the included studies from the chronological and
distribution perspectives. Section 4 categorises the included studies with respect to a classification
framework and presents the limitations of review. The related reviews are discussed in Section
5. New trends and research directions are discussed in Section 6. Finally, Section 7 concludes the
work.

1.1 Preliminaries and Basic Concepts
In this section, we list descriptions of the main concepts used in this review to ease the analysis.

1.1.1 Architecture Design Decisions. The foundation of an architecture is in the set of taken
[25, 80, 137]. The architects define the possible set of candidate architectures to serve a particular
concern and then based on their experience and knowledge they choose the best candidate [35].
For example, in an IoT application, the architect could prefer processing the data in the cloud rather
than the fog devices to improve the energy consumption. However, this design decision could
have a negative impact on the performance. This motivates the need for software architecture
evaluation.

1.1.2 Software Architecture. In the literature, software architecture is defined in many ways. In our
work, we use the definition introduced by ISO/IEC/IEEE 42010:2011: "the fundamental concepts
or properties of a system in its environment embodied in its elements, relationships, and in the
principles of its design and evolution". This definition is complementary to [115, 125] and later ones
[16]. In this context, a software architecture represents the abstractions for a software system by
defining its structure, behaviour, and key properties [125]. These include software components (i.e.
processing and computational elements), connectors (i.e. interaction elements), and their relation
to the environmental conditions [16, 115].

1.1.3 Architecture Evaluation. It is a milestone in the decision-making process. Classical approaches
to architecture evaluation are generally a human-centric, where architects and various stakeholders
(e.g. developers, managers, etc) are involved to evaluate the extent to which the architecture design
decisions and adopted styles can meet quality attributes of interest and their trade-offs. The exercise
also involves analysis of costs and likely added value of the decisions. Classical approaches heavily
rely on experts’ judgement; they utilise human generated inputs, such as scenarios for evaluating
the architecture. Evaluation is conducted at design-time and before the system is built, covering the
statics of an architecture (e.g. style, structure and topology) and its dynamics (e.g. likely performance
and scalability).

1.1.4 Design-time Architecture Evaluation. It is the process where humans, tools, and methods are
used to reason about the architecture of the system-to-be. The evaluation can cover both static
aspects of the architecture relating to structure, topology, environment, and style, etc and dynamic
analysis that relates to behavioural properties of the architecture, such as performance, scalability,
etc. The evaluation can heavily rely on stakeholders involvement and their estimates. Estimation
can be backed up by experts judgement about the domain, historical data and benchmarks that
relates to the likely performance of similar systems, or what-if analysis of simulated instances for
the projected deployment environments, predicted or eventual load (before the system is deployed).

, Vol. 1, No. 1, Article . Publication date: April 2021.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Sobhy et al.

1.1.5 Run-time Architecture Evaluation. It means the execution of the architecture under study;
this can be a typical execution profile or it can be the actual deployed system implementing the
architecture for the objectives of profiling, refinements or enrichment. For either cases, architects
can collect dynamic, near real or real time information about the performance of QA of interest to
inform the evaluation or further tuning of the running system. In other cases, simulated data (e.g.
QoS data) are used to capture the dynamic behaviour of architecture decisions under uncertainty
at run-time and to use such information to profile and evaluate design decisions, if full deployment
was expensive. The evaluation can leverage simulation tools with inputs from the running system
to perform anticipatory evaluation of key design decisions and their possible variants based on the
run-time contextual requirements.

1.1.6 Continuous Architecture Evaluation. It goes beyond the classical architecture evaluation
approaches to include additional run-time information that can assist the evaluation and help in
tuning the parameters. Several flavors can implement this category of evaluation: for example,
info-symbiotic simulation1 can be linked to the architecture to simulate how an architecture can
behave if implemented and deployed in particular environment. The run-time information can be
then fed into the evaluation to tune the parameters. This step can involve a self-adaptive mechanism
and can leverage components of the MAPE-K to tune the parameters. As for the actors involved
in the evaluation - these can be various stakeholders (architects, developers, etc) and automated
agents (taking the form of monitoring agents for the environment, analysis, planning and actuating
for the observed inputs - these can be automatic and/or interactive etc).
We see continuous architecture evaluation to include two activities: design-time and run-time

evaluation. In particular, design-time evaluation can be used to support the necessary initial system
design and deployment based on estimations only. After that, run-time evaluation can assist
continuous architecture evaluation in monitoring QAs and suggesting re-configuration from a
repository of candidate options, some of which their technical viability has been established but
requires further profiling and confirmation following continuous monitoring at run-time. The
recommendation can utilise learning and suggest a suitable configuration; it can also call for further
refinements and/or phasing out of existing reconfiguration. Once the architecture is adopted, it is
very expensive to change the architecture or amend its structural design. Would the architecture
appear to lag behind optimality, for this case, run-time evaluation may recommend more structural
changes to the architecture, which can be very expensive to deal with following deployment, unless
the context is aimed as prototyping and learning through prototypes. In other words, the evaluation
can be also used to repeatedly assess to what extent the architecture options created at design-time,
as well as other potential architecture options, perform well at run-time. This enables architects
to make informed decisions on potential changes to the architecture, so that its performance
remains good over time. In other contexts, evaluations can be intertwined and interleaved between
design-time and run-time. Consider, for example, in modern incremental software development
(e.g. DevOps), microservices, etc, the design of each change to the system when evolving it again is
"design-time".

1.1.7 Uncertainty in Architecture Evaluation. A common issue in architecture evaluation is the
presence of uncertainty. In architecture evaluation and decision-making, uncertainty is the lack of
full knowledge about the outcomes of deploying the architecture options [95]. For instance, the
architects may be uncertain about the effect of a proposed software architecture on benefit (e.g.
performance, availability, etc) and cost. Uncertainty also may arise due to unpredictable situations

1a term that is widely used by the dynamic data driven simulation system community (e.g. http://1dddas.org/InfoSymbiotics/
DDDAS2020, https://sites.google.com/view/dddas-conf/home)

, Vol. 1, No. 1, Article . Publication date: April 2021.

http://1dddas.org/InfoSymbiotics/DDDAS2020
http://1dddas.org/InfoSymbiotics/DDDAS2020
https://sites.google.com/view/dddas-conf/home

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 5

in dynamic applications, such as IoT. For instance, sensors ageing effects, the varying internet
connectivity and mobility of sensors, fluctuations in QoS and so forth [1, 71, 108, 109].
Architecture can experience two sources of uncertainty: aleatory and epistemic [15, 50, 66].

Aleatory conception of uncertainty intends that uncertainty arises from variability in possible
realisation of a stochastic event, where unknown and different results could appear every time one
runs an experiment under similar conditions. It is also defined as "the inherent variation associated
with the physical system or environment under consideration" [111]. This type of uncertainty is
more common in run-time. In other words, it is the uncertainties occurring in the later execution
environment. For instance, in IoT systems, new types of sensors with new communication behaviour
might be introduced, which do not match the workloadmodel assumed for a system. This knowledge
will only become available after running the system. Epistemic conception of uncertainty denotes
the rise of uncertainty due to lack of confidence or missing knowledge to a fact which is either
true or false. It is also defined as "uncertainty of the outcome due to the lack of knowledge or
information in any phase or activity of the modelling process" [111]. This type of uncertainty
is more common in design-time. In particular, this may occur due to the impact of decisions at
design-time that are not yet known (e.g. designing new way of communication, without knowing
yet how much performance can be improved in a distributed and parallel setup by this decision,
which one needs to implement and measure to find out). In some contexts, this type of uncertainty
could be partially reduced at design-time.

1.1.8 Quality Attribute. We adopt the definition introduced by the IEEE Standard for Software
Quality Metrics [45], where a quality attribute is "a characteristic of software, or a generic term
applying to quality factors, quality sub-factors, or metric values". Examples of quality attributes are
performance, reliability, energy consumption, availability, security, and so forth.

1.1.9 Stakeholder. We adopt the notion used by ISO/IEC/IEEE 42010:2011: "an individual, team,
organization, or classes thereof, having an interest in a system". In this context, stakeholders have a
stake in the success of the architecture, and of any systems that are derived from the architecture. So
this could include customers, programmers, testers, reusers, architects, integrators, users, managers,
etc. An architect is just one stakeholder among many, whose needs are less important (and hence
lower priority) than the needs of many of the other stakeholders.

2 SYSTEMATIC LITERATURE REVIEW PROCESS
In this section, we will discuss the SLR protocol, how the systematic review process has been
carried out, and finally the existing architecture evaluation approaches with respect to criteria and
review objectives.

2.1 SLR Protocol
We have followed the systematic literature review guidelines and procedures [116] and the work of
[27] to develop our review protocol. In particular, the protocol identifies the objectives of the review,
the necessary background, research questions, inclusion and exclusion criteria, search strategy, data
extraction and analysis of gathered data. One author has developed the review protocol and then
the outcome has been revised by other authors to limit bias. The review objectives, background, and
the research questions are discussed in Section 1, whereas other procedures are described below.

2.2 Inclusion and Exclusion Criteria
Initially, we needed to set up a criteria to aid in the search process and filtration of irrelevant studies.
We considered English papers published in peer-reviewed journals, conferences, and workshops
from 1990 and early 2019. This time frame was chosen because one of the earlier well-known

, Vol. 1, No. 1, Article . Publication date: April 2021.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Sobhy et al.

architecture evaluation approaches (e.g. SAAM [83]) was published in 1994. We excluded studies
that do not have software architecture evaluation as one of its main contributions. We also excluded
editorials, opinion, keynote, abstract, tutorial summary, position paper, panel discussion, or technical
reports, panels and poster sessions. Moreover, we found that some studies are duplicated in different
versions that appear as books, journal papers, conference and workshop papers. In this context, we
included only the latest and most complete version. We provide a summary of the inclusion and
exclusion criteria below. Publications are included if they cover all the inclusion criteria in Section
2.2.1, and publications are excluded if they fit any of the exclusion criteria in Section 2.2.2.

2.2.1 Inclusion Criteria.

• Studies published between 1990 and early 2020.
• Studies in the domain of software architecture evaluation. In particular, the study should
include a software architecture evaluation method as one of its contributions.

• Studies that discuss architecture evaluation approaches with explicit focus on high-level
architecture design (e.g. component level, style, architecture design decisions and tactics),
covering design-, run-time and continuous evaluation; we exclude approaches which discuss
low-level structural design (e.g. code and class refactoring).

• Studies that report on software architecture evaluation supported by quantitative analy-
sis/models (e.g, using utility theory as part of ATAM; using cost-benefit analysis as part of
CBAM, etc.)

2.2.2 Exclusion Criteria.

• Studies that do not explicitly consider architecture evaluation. For example, some self-adaptive
system studies may make use of architecture evaluation to inform self-adaptation, but may
not explicitly refer to this as architecture evaluation. Such studies were excluded.

• Studies that are non-peer reviewed.
• Studies not written in English and not accessible in full-text.

2.3 Search Strategy
The search strategy was performed to identify the studies through the following:

1. Applying an initial search to determine the current systematic reviews and mapping studies,
and hence identifying significantly related primary studies.

2. Using the concept of "quasi-gold" standard, as introduced by Zhang and Babar [142], where
we performed a manual scan for the most well-known venues of the software architecture
and software engineering domains to cross-check the automated search results.

3. Performing several trials using different combinations of keywords derived from the main
objectives of the review (i.e. automated search from recognised bibliographical data sources).

4. Performing an additional search to manually check and analyse the related references (snow-
balling) [140] to ensure that we did not miss any important study and hence guarantee a
representative set of studies.

All the prior procedures aided us in defining valid search strings along with other procedures
discussed in Section 2.3.1. For the venues, we manually searched the following:

− International Conference on Software Engineering (ICSE).
− International Conference on Software Architecture (ICSA) 2.
− European Conference on Software Architecture (ECSA).

2Formerly the Working IEEE/IFIP Conference on Software Architecture (WICSA) and International Conference Series on
the Quality of Software Architectures (QoSA).

, Vol. 1, No. 1, Article . Publication date: April 2021.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 7

Our manual search included the title, keywords, and abstract of each publication. After finishing
the manual and automatic searches, we checked the differences between the results to guarantee
the most appropriate coverage of the domain. We found that all the manual results were a subset of
the automatic results (i.e. meeting the "quasi-gold" standard).

2.3.1 Keyword Selection. As mentioned above, we used both automatic and manual search. In
the automatic search, we tried several keywords on search engines of electronic bibliographical
sources. Manual search is not a practical procedure as it retrieves thousands of results, which is
difficult to manually filter. However, we still performed a manual search (to meet the "quasi-gold"
standard [142]) to ensure that we used the most suitable search queries.
One of the main challenges identified through our automatic search is a lack of well-defined

terminology for the process of continuous architecture evaluation. As an example, some self-*
systems can implicitly incorporate some principles that resemble architecture evaluation. To avoid
missing any relevant studies, we used some generic keywords in the search query of automatic
search (e.g. "run-time", "dynamic", etc). This led to retrieving some studies that were actually relevant
to our search. We have also performed a manual search for the studies, which could seem to be a
run-time architecture evaluation approach. To obtain our search query, we applied the following
procedures:

1. Extract the major keywords from the objectives of review and main research topics.
2. Determine and try different spellings, related terms and synonyms for major keywords, if

applicable.
3. Use the "advanced" search option to insert the complete search query and filter by date, if

the bibliographical source allows for that (Section 2.3.2).
4. Pilot various combinations of search keywords in test queries.
5. Validate the results of (4) with "quasi-gold" standard.
From our pilot testing, we found that the notion of "continuous" architecture evaluation is

used in different forms in the context of software architecture and software engineering with
other closely-related alternative terms, such as run-time and dynamic. This is because the term
"continuous" is not clearly defined. We also incorporated additional keywords which may implicitly
refer to continuous evaluation, such as design-time and static (i.e. the state-of-the-art approaches
for architecture evaluation). Furthermore, in other contexts, architecture evaluation is interpreted
as architecture assessment or architecture analysis. Therefore, we tried to consider these related
keywords in our search query and used them in an interchangeable manner.

The search query is composed of five major terms, ContinuousAND SoftwareANDArchitecture
AND Evaluation AND Uncertainty. To generate the main search query, we used the alternate
keywords listed above. This is performed by connecting these terms through logical OR as follows:
(design-time OR run-time OR design time OR runtime OR static OR dynamic OR continuous)
AND SoftwareAND (architectureOR architectural)AND (evaluationOR analysisOR assessment)
AND uncertainty

2.3.2 Bibliographical Sources. The selected databases present the most important and highest
impact journals and conference proceedings. They also provided us with the ability to perform
expert search with a variety of Boolean operations and limit the search on the Title, Abstract and
Keywords fields and time frame, which returned more relevant results as compared to searching
all the fields. For instance, this allowed us to use Boolean "OR" to try different spellings and
synonyms, and use Boolean "AND" to link the major keywords (e.g. software AND architecture
AND evaluation).
The electronic bibliographical sources used include:

, Vol. 1, No. 1, Article . Publication date: April 2021.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Sobhy et al.

Table 1. Summary of Search Results and Included Studies from each database. Note that the number of
included studies listed for each of the databases excludes studies that have already been included by a former
database. A total of 48 unique studies have been included.

Database Search Results # Included Studies
IEEE Xplorer 994 11
ACM digital library 2108 8
SpringerLink 999 3
ScienceDirect 524 5
GoogleScholar 1000 7
Other
Snowballing Process 349 14
Total 48

− IEEE Xplorer (http://ieeexplore.ieee.org/Xplore/)
− ACM digital library (http://portal.acm.org/)
− SpringerLink (http://www.springerlink.com/)
− ScienceDirect (http://www.sciencedirect.com/)
− GoogleScholar (http://scholar.google.com/)

Note that we included Google Scholar as there are some of works in software architecture
evaluation (e.g. ATAM), which were not retrieved in the first four databases. we have found that
Google retrieves many irrelevant results after the first pages of retrieved results. This is because
Google enables retrieval of results that do not match the search query completely. Therefore, we
have limited the Google scholar results to 1000. Other works (e.g. [2]) have also limited the Google
scholar results to specific number of pages.

2.4 Search Execution
In this stage, we executed the search process in Figure 1, realising the procedures in Section
2.3. Initially, we manually searched in the current systematic reviews and mapping studies (e.g.
[11, 27, 53, 98, 122]) to identify significantly related primary studies (13 results). We then performed
manual search (17 results) to determine the set of studies to be compared with automatic search list
(i.e. "quasi-gold" standard). After that, we searched through all the search engines and bibliographical
sources mentioned in Section 2.3.2 using search queries created in Section 2.3.1. All the search
engines provided the option to save the results to excel spreadsheets, except for Springer which
exports only the first 999 relevant results and ScienceDirect which does not have that option and
hence a manual scan was performed. We then filtered the 5,625 primary studies using title, abstract,
full-text (when needed), inclusion and exclusion criteria. We also snowballed the primary studies
[140], where we scanned the list of references for the primary studies and the citations to add
related works (349 results), which were not identified by the bibliographical engines. In the end we
included 48 studies. The search results and number of included studies from each database and
snowballing process are listed in Table 1.

2.5 Quality Assessment
To assess the quality of the findings, we adopted similar quality criteria to the ones used by [27].
The following criteria show the credibility of an individual study when analyzing the results:

, Vol. 1, No. 1, Article . Publication date: April 2021.

http://ieeexplore.ieee.org/Xplore/
http://portal.acm.org/
http://www.springerlink.com/
http://www.sciencedirect.com/
http://scholar.google.com/

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 9

Fig. 1. Search Execution.

, Vol. 1, No. 1, Article . Publication date: April 2021.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Sobhy et al.

Table 2. Data Extraction Criteria.

Extracted Data Description
Study Identification Unique ID for the study
Bibliographical references Author, title, publication type, source

and year
Study Type Book, journal paper, conference paper

workshop paper
Study Focus Main area and study objectives
Strengths and Limitations Identified strengths and limitations of

the approach and its application and
its potentials for future directions

Fig. 2. Distribution of the publication types.

1. The study provides evidence or theoretical reasoning for their experimental evaluation and
data analysis rather than relying on non-justified or adhoc statements.

2. The study describes the context in which the research was conducted.
3. The design and implementation of the research is mapped to the study objectives.
4. The study provides full description of their data collection process.

All 48 studies identified in the search described above met the quality assessment criteria.

2.6 Data Extraction process
In this process, we performed a thorough scan for the 48 included papers to extract the relevant
data, which were managed by Excel spreadsheets and bibliographical management tool BibTeX. The
data extraction for the 48 studies was driven by the form depicted in Table 2 and the classification
framework in Section 4.1. For the data analysis, we investigated the extracted data with respect
to their relationships. The results of this process is given in the subsequent sections. The list of
included studies are presented in Appendix B.

, Vol. 1, No. 1, Article . Publication date: April 2021.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 11

3 OVERVIEW OF THE INCLUDED STUDIES
Here we provide an overview of the included studies with respect to their distribution along
publication channels, over the years, and their ranks.

Table 3. Distribution of included studies along with the publication channels.

Publication Channel No. of
Studies

IEEE International Conference on Software Engineering 8
(ICSE)
International Conference on Software Architecture (ICSA) 3 7
Software Engineering for Self-Adaptive Systems (SEAMS) 4
Journal of Systems and Software (JSS) 5
Book 3
IEEE Transactions on Software Engineering (TSE) 2
IEEE Internet Computing 1
Software Quality Journal 1
Empirical Software Engineering 1
European Conference of Software Architecture (ECSA) 2
IEEE International Conference on Software Maintenance (ICSM) 1
ACM Joint European Software Engineering Conference and Symposium on the 1
Foundations of Software Engineering (ESEC/FSE)
IEEE International Conference on Autonomic Computing (ICAC) 1
ACM/SPEC International Conference on Performance Engineering (ICPE) 1
International Conference on Software Reuse (ICSR) 1
International Conference on Quality of Software Architectures (QoSA) 2
IEEE International Conference and Workshops on Engineering of 1
Computer-Based Systems (ECBS)
International Conference on Evaluation of Novel Approaches to Software 1
Engineering (ENASE)
IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, 1
Networking and Parallel/Distributed Computing (SNPD)
International Workshop on the Economics of Software and Computation (ESC) 1
IEEE International Enterprise Distributed Object Computing Conference 1
Workshops (EDOC)
Proceedings of the 3rd international workshop on Software and performance (WOSP) 1
Software and Systems Modeling (Springer) 1
International Workshop on Software Engineering for Embedded Systems (SEES) 1
Total 48

3.1 Distribution of Studies over Publication Channels
Most of the included studies (i.e. 48 studies) were published in the most well-known and prominent
journals and conferences. In Table 3, we provide an overview of the included studies with respect
to their publication channels and the number of studies per channel. We have checked the included
3Formerly the Working IEEE/IFIP Conference on Software Architecture (WICSA) and International Conference Series on
the Quality of Software Architectures (QoSA).

, Vol. 1, No. 1, Article . Publication date: April 2021.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Sobhy et al.

Fig. 3. Distribution of the publication types among the years.

Table 4. An overview of citation rate of included studies.

Cited by <10 10-50 50-100 >100
Number of Studies 8 21 5 14

(Total = 48)

studies against the criteria for quality assessment and confirmed that they indeed fulfil the quality
criteria introduced in Section 2.5. We have also plotted the distribution of the included studies
related to the publication channel (i.e. conference, journal, etc) in Figure 2. From these results, we
found that there are a significant number of studies published in conferences (about 62%), followed
by a smaller number of studies (19%) in journals. There are limited studies published in workshops
(roughly 13%) and books (about 6%). This indicates that architecture evaluation approaches are
still presented in conferences, and some of them have matured and published through books and
journals.

3.2 Distribution of Included Studies Through the Years
By analysing the studies by year of publication, as depicted in Figure 3, we observe an increasing
trend in the domain of software architecture evaluation starting from 2003 till 2013 (with some
oscillation). Though it may seem that interest in architecture evaluation has decreased in the past
four years, there were recent studies that provided new architecture evaluation approaches, which
are included in this survey (e.g., [127, 136]).

3.3 Citation Rate of Included Studies
We list in Table 4 the citation rate for the included studies, which was obtained from Google
Scholar4. The citation rate is not meant for comparing studies; instead we use it to provide a rough
estimate of the quality of papers. In particular, almost five studies were cited by fewer than 10
sources. Two of them were cited in 2004 and 2010 and hence we do not expect that they will be
cited further, whereas the others are relatively new. Almost 45% of the studies (21 publications)
4http://www.googlescholar.com

, Vol. 1, No. 1, Article . Publication date: April 2021.

http://www.googlescholar.com

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 13

Table 5. Featuring the most cited studies above 100 citations.

Rank Ref Author(s) Year Title
1 [43] R. Kazman, M. Klein, 2003 Evaluating software architectures

P. Clements and others
2 [83] R. Kazman, L. Bass, 1994 SAAM: A method for analyzing the

G. Abowd, & M. Webb properties of software architectures
3 [19] P. Bengtsson, N. Lassing, 2004 Architecture-level modifiability analysis

J. Bosch, and H. Vliet (ALMA)
4 [30] R. Calinescu, L. Grunske, 2011 Dynamic QoS management and optimization

M. Kwiatkowska, in service-based systems
R. Mirandola,
& G. Tamburrelli

5 [58] I. Epifani, C. Ghezzi, 2009 Model evolution by run-time
R. Mirandola, parameter adaptation
& G. Tamburrelli

6 [82] R. Kazman, J. Asundi, 2001 Quantifying the costs and benefits
& P. Clements of architectural decisions

7 [139] G. Williams,U. Smith 2002 PASA: A Method for the Performance
Assessment of Software Architectures

8 [18] P. Bengtsson,J. Bosch 1998 Scenario-based software
architecture reengineering

9 [133] G. Tesauro 2007 Reinforcement learning in autonomic computing:
A manifesto and case studies

10 [40] S. Cheng 2004 Rainbow: cost-effective software
architecture-based self-adaptation

11 [5] T. Al-Naeem, I. Gorton, 2005 A quality-driven systematic approach for
and M. Babar architecting distributed software applications

12 [62] N. Esfahani, E. Kouroshfar, 2011 Taming uncertainty in self-adaptive software
& S. Malek

13 [145] L. Zhu, A. Aurum, 2005 Tradeoff and sensitivity analysis in
I. Gorton, & R. Jeffery software architecture evaluation using

analytic hierarchy process
14 [32] R. Calinescu 2009 Using quantitative analysis to

& M. Kwiatkowska implement autonomic IT systems

were cited by 10-50 other sources, and five studies were cited 50-100 times. Fourteen studies have
very high rates with more than 100 citations and the first ranked study was cited almost 1578 times.
This shows that the included studies are, in general, highly cited, which signifies their quality
and impact. In Table 5, we present the most cited publications. The first study is a book, and the
remainder are journal and conference papers.

4 DATA EXTRACTION RESULTS
This section aims to provide answers for the first and second research question: (1) How can the
current research on software architecture evaluation under uncertainty be categorised and what are
the current state-of-the-art approaches with respect to this categorisation? ; (2) What are the actions
taken by these architecture evaluation approaches to deal with uncertainty? Our analysis of research

, Vol. 1, No. 1, Article . Publication date: April 2021.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Sobhy et al.

topics addressed in each study and the systematic reviews and surveys found in literature (e.g.
[11, 27, 53, 93, 98]) helped us in developing the following classification framework. This classification
aided us in filtering, mapping, and understanding the architecture evaluation domain. We also
discuss how the included evaluation approaches deal with uncertainty.

4.1 Classification Framework
Next, we will explain in detail the criteria presented in Figure 4.

1. Quality Evaluation: Architecture evaluation is typically done as a milestone review that
aims at justifying the extent to which the architecture design decisions meet the quality
requirements and their trade-offs. The evaluation can aid in early identification and miti-
gation of design risks. The point of the exercise is to avoid poor decisions, identify a stable
architecture and thus save integration, testing and evolution costs that can be attributed
to design decisions that are not fit in meeting the changes [124]. We review Stage of Eval-
uation, covering design-time, run-time and continuous along with Approaches to Evaluation
covering major efforts including utility-based, scenario-based, parametric-based, search-based,
economics-based, and learning-based.

2. Quality Attributes Considerations: Our literature review aims to show how the studied
software architecture evaluation methods addressing quality attributes (i.e. focus on single
versus multiple QAs), as well as what are the supported quality attributes. Examples of quality
attributes are performance, reliability, security, cost, etc. Further monitoring and treatment
of quality attributes is an important aspect to discuss, which could provide the architects
and architecture evaluaters with the necessary elements to design a continuous architecture
evaluation framework.

3. Level of Autonomy: In software architecture evaluation, the level of autonomy is an im-
portant aspect while designing a continuous architecture evaluation framework. In this
context, we will review how the studies performed the management of stakeholder input and
management of trade-offs between conflicting requirements.

4. Uncertainty Management: In this category, we focus on discussing the sources of uncer-
tainty and how the literature has treated uncertainty.

In Section 4.2 to 4.5, we aim to provide answers for the review’s research questions mentioned
earlier. We classify the architecture evaluation approaches as design-time and run-time. In each
category we further classify and explain the existing architecture evaluation approaches with
respect to the framework (answering research question 1). We also discuss the actions taken by
these architecture evaluation approaches to deal with uncertainty (answering research question 2).
Table 6- 12 provide a summary of the representative contributions with respect to the classification
framework.

4.2 Quality Evaluation
4.2.1 Approaches to Evaluation Under Uncertainty. Architecture evaluation methods can take
several forms: the methods can be bespoke, providing phases and systematic guidance for architects
to evaluate the extent to which the architecture can meet its non-functional goals and trade-offs -
e.g. ATAM [85], CBAM [82], etc. Additionally, the architects can utilise generic frameworks for
quality assessment, which can be used to evaluate any artefact under consideration, where the
software architecture can be a beneficiary. Regardless of the type of evaluation used, the architects
can adopt one of the below commonly approaches to evaluate architecture design decisions and
choices in the presence of uncertainty. The commonly used approaches can be categorised as
utility-based, scenario-based, parametric-based, search-based, economics-based, and learning-based.

, Vol. 1, No. 1, Article . Publication date: April 2021.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 15

Fig. 4. The proposed classification of architecture evaluation approaches.

1. Utility-based: This category focuses on approaches to architecture evaluation methods that
adopt utility functions for decision-making when justifying architecture design decisions,
adopting a tactic and style among alternative candidates, etc. Utility functions are used in
two contexts. First, it is a measure of the extent to which the candidate solution satisfy
the set of quality attributes in question. Second, it can be used to provide a stakeholder’s
preferences over a set of quality attributes, which is called aWeighted Utility function. Various
methods have adopted utility theory to shortlist the candidate architectures operating under
uncertainty, such as [63, 95, 113].
− Osterlind et al. [113] used utility theory to balance quality attributes against each other to

obtain the best possible architecture.
− GuideArch [63] is an architecture framework that explicitly models the uncertainty of

architecture decisions using fuzzy logic to rank and determine the optimal architecture
decision. However, the use of fuzzy logic cannot be empirically evaluated and adjusted.

− Letier et al. [95] designed a method, based on GuideArch and CBAM, to deal with uncer-
tainty. Utility theory and Monte Carlo simulation were used to calculate the costs and
benefits of candidate architecture decisions under uncertainty. The latter approach made

, Vol. 1, No. 1, Article . Publication date: April 2021.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Sobhy et al.

an assumption that the probability distributions of model attributes are accurate; this may
affect its applicability, particularly in dynamic environments.

− The architecture evaluation approach in [96] focuses on middleware and design pattern
integration for developing adaptive self-managing architectures at design-time that is able
to recover from failures. This approach suffers from the same limitation of design-time
approaches: the design-time patterns (i.e. decision) may not be able to handle the changing
environmental conditions at run-time. Architecture Software Quality Assurance (aSQA)
[42] is an evaluation method that uses metrics to determine the user’s satisfaction towards
prioritized quality requirements, especially in agile software projects. Despite it focuses on
a single point of evaluation to lighten the evaluation process, yet it misses the main aim of
evaluation (i.e. assess the impact of architecture decisions on quality attributes).

− Decision-centric software architecture evaluation method (DACAR) [57] assesses the ar-
chitecture decisions made or to be made independently using utility functions based on
stakeholders’ beliefs, rather than evaluating the whole architecture. The method could be
potentially adopted in agile projects, since the architecture decisions could be evaluated
as they appear in the process. However, the approach is not as flexible as scenario-based
methods in obtaining the novel paradigms and significant change domains from stakehold-
ers.

− Heaven et al. [75] reported on an approach tailored for self-managed software systems.
The approach provides the following features: high-level task planning, architecture config-
uration and reconfiguration, and component-based control. Their approach uses weighted
utility functions to represent quality attributes and determine the total utility of configura-
tions by taking into account reliability and performance concerns.

− Esfani et al. [62] proposed an approach that elicits from stakeholders their beliefs regard-
ing uncertainty with respect to attributes such as network bandwidth. In particular, the
stakeholders provide an estimate for the range of uncertainty with respect to the expected
level of input variation. The approach also quantifies the uncertainty through profiling by
comparing the actual values with estimates from stakeholders and hence provides proba-
bility distributions for the variation in data collection. After that the overall uncertainty is
computed using fuzzy math.

− Veritas [67] is another utility-based approach which adopts utility functions for the man-
agement of run-time test cases to improve the adaptation procedure.

− Cooray et al. [46] proposed a proactive approach, which continuously updates reliability
predictions in response to environmental changes. The approach has proved its efficiency
in adapting the system before it experiences a significant performance drop. However, the
approach does not consider cost and suffers from scalability issues.

− Models@run.time [22, 39, 107] includes built-in mechanism for evaluating the behaviour
of software systems through continuous monitoring, planning, and model transforma-
tion. However, the effort was not discussed from the architecture evaluation angle. In
particular, the authors state that "models of the functional and/or non-functional software
behaviour are analysed at run-time, in order to select system configurations that satisfy the
requirements" [29]. Models@run.time operates on the assumption that possible run-time
configurations have already been evaluated and encoded in the system, where evaluation
can be an afterthought through profiling configurations and recommending alternatives.
It aims to "reevaluate requirements satisfaction while the system is evolving" [54]. In the
spirit of models@run.time, several approaches which are architecture-centric have been
discussed in the context of self-adaptive and managed architectures [36, 47, 68, 91, 131].

, Vol. 1, No. 1, Article . Publication date: April 2021.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 17

Examples of these approaches include [7, 30, 40, 46, 58, 69], which formally analyse their
architectural models.
– The Rainbow framework [40] uses Markov processes to determine the likely aggregated
impact of each strategy on each quality attribute. It requires high human intervention
to determine the effects of strategies with respect to quality attributes (i.e. predefined
probabilities) [41].

– Epifani et al. [58] proposed a utility-based approach leveraging a Discrete Time Markov
Chain approach and Bayesian estimators to provide continuous automatic verification of
requirements at run-time and support failure detection and prediction. Their approach
does not consider multiple quality attributes, switching cost, and variance in run-time
data.

– In [104], Meedeniya et al. proposed a Discrete Markov Chain approach that performs
MonteCarlo simulations to predict the reliability of heterogeneous software architectures.
The approach also adjusts the number of architecture evaluations with respect to partic-
ular performance levels. They then extended the work to deal with different sources of
uncertainty, which occur in different software architecture evaluation models [105]. One
major concern in this approach is its assumption that all software architectures can be
modelled as Markov chains, which may not be true in some contexts due to complexity.

– Ghezzi et al’s [69] method is one of the few that complement design-time with run-
time analysis. At design-time, the approach integrates goal-refinement methodologies
with Discrete Markov Time Chains to determine all possible execution paths for the
goal. At run-time, it exploits utility functions to measure the utility of paths, based on
assumptions. For example, the utility for a 5ms response time is 1 and so forth. Given
these assumptions, a hill climbing algorithm is used to select the optimal goal. We will
discuss [7, 30, 46] in learning-based section.

– Other utility-based approaches are found in Table 6.
Summary and Reflection: Generally, the major problems of the prior approaches are: (i) the high
reliance of stakeholders for utility estimations, which is subject to their experience; (ii) the utility
functions are hard to define; (iii) there is complexity and uncertainty in the quantification of utility
values. This motivated the need to integrate learning techniques to learn over time and hence improve
the analysis (discussed in the learning-based section).

2. Scenario-based: The foundation of most architecture evaluation approaches rests on sce-
narios [27, 53, 122]. These approaches use quantitative evaluation to determine the fitness of
operational quality attributes. They elicit from stakeholders the utilities of architecture deci-
sions and their effect on quality attributes of interest. Some of the scenario-based approaches
have been validated and used in industry over the past decades [53].
− Software Architecture Analysis Method (SAAM) [83]: is the first well-known architecture

evaluation method that aimed to reify quality attributes via a set of scenarios as a means to
evaluate architecture design decisions under concern and identify risks in an architecture.
It assesses the extent to which the architecture satisfies the quality goals. It was originally
used for assessing modifiability, but it has been applied for other quality attributes, such as
portability and extensibility. SAAM takes as input: business goals, software architecture
description, and quality requirements that illustrate the interaction between stakeholders
and the system being analysed. It then maps between scenarios and architecture compo-
nents to assess anticipated changes to the system. This mapping can also be employed to
estimate the amount of effort needed to handle these changes. The SAAM does not explicitly

, Vol. 1, No. 1, Article . Publication date: April 2021.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Sobhy et al.

deal with trade-offs between quality attributes. The lack of trade-offs management has
contributed to the evolution of Architectural Trade-off Analysis Method.

− Architectural Trade-off Analysis Method (ATAM) [43]: is the most popular architecture
evaluation method. It is an evolved version of SAAM. Unlike SAAM, the ATAM focuses
on a comprehensive evaluation of quality attributes rather than just concentrating on
modifiability, portability, and extensibility. ATAM is a generic design-time architecture
evaluation method that uses scenarios to assess the value of architecture design decisions.
Specifically, it aims to reveal the degree to which an architecture will meet its quality
requirements (e.g. availability, security, usability, and modifiability), and the interaction
between those goals through trade-off analysis.

− Cost-Benefit analysis method (CBAM) [82]: is an architecture evaluation method that extends
ATAM to provide cost/benefit analysis of architecture design decisions. The CBAM was
created to "develop a process that helps a designer choose amongst architectural options,
during both initial design and its subsequent periods of upgrade, while being constrained to
finite resources" [9]. Although CBAMuses cost/benefit information to value the architecture
design decisions and to justify their selection, this method is unable to dynamically profile
the added value of architecture decisions, which is essential for applications operating
in uncertain environments (such as IoT). It only deals with uncertainty through set of
scenarios, similar to ATAM.

− Scenario-Based Architecture Re-engineering (SBAR) [18]: is another scenario-based architec-
ture evaluation method that uses different techniques to assess the quality attributes of
interest and implicitly deal with uncertainty: scenarios, simulation, and mathematical mod-
eling. For example, if a quality attribute is concerned with development and design-time
properties, such as maintainability and reusability, scenario-based techniques can be best
utilized. Scenario-based analysis can be still used for behavioral and run-time properties,
such as performance and fault-tolerance, simulation and/or mathematical models can better
provide meaningful insights and can complement scenario-based ones. A major concern in
SBAR is its use of impractical assumptions. For instance, to address the reusability concern,
the architect has to define all the scenarios related to the reuse of parts of the architecture,
which is not feasible.

− Architecture-Level Modifiability Analysis (ALMA) [19]: Unlike ATAM and CBAM, ALMA
focuses on a single quality attribute, and hence it does not consider trade-offs. It utilizes
probabilities to determine the likelihood of the impact of scenarios at the software archi-
tecture level with respect to modifiability concern (e.g. maintenance cost prediction and
risk assessment).

− Systematic Quantitative Analysis of Scenarios’ Heuristics (SQUASH) [79]: is a systematic
quantitative method for scenario-based value, risk, and cost analysis. The method focuses
on evaluating the relative benefits of proposed scenarios in early stages of architecting.
The method extends some steps from CBAM by providing extensive evaluations of the
internal structure of the scenarios to predict the quality attributes of architecture decisions.
In this context, the approach relies more on stakeholders than CBAM and hence it may not
be easy to apply in practical settings.

− Analytic Principles and Tools for the Improvement of Architectures (APTIA) [84]: is an archi-
tecture improvement method that combines existing architecture evaluation methods (such
as ATAM, CBAM, etc.) through: "quality attribute models, design principles in the form of
tactics, scenario-based quality attribute elicitation and analysis, and explicit elicitation of
the costs and benefits of architecture decisions from stakeholders" [84] as well as the use of
architecture documentation templates. It also adds new steps to the analysis. Particularly, it

, Vol. 1, No. 1, Article . Publication date: April 2021.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 19

identifies design decisions linked to the analysis rather than stating their future problems.
It was able to aid the team of architects to propose architecture design decisions for a
complex system and in a short period of time.

− Architectural Tradeoff Method using Implied Scenario (ATMIS) [64]: is an extension of ATAM
through the adoption of Implied Scenarios for security testing [3]. The main aim of this
approach is to apply trade-off analysis between security and any other quality attribute
through the use of implied scenarios.

− Further, there is another scenario-based method which is different from the commonly used
scenario-based architecture evaluation methods. The method is named Performance Assess-
ment of Software Architecture (PASA) [139]. In PASA, the architect uses the architecture
specification to form performance models. The generated models are then utilised to assess
whether the performance objectives are met. ATAM uses scenarios to determine, prioritise
and refine the key quality attributes by constructing a utility tree, where each leaf in tree
represents a scenario. PASA instead employs scenarios in the form UML and sequence
diagrams to demonstrate how the software architecture will achieve the performance
objectives.

− Finally, Yang et al. [141] proposed a utility-based approach that extends the scenario-based
approaches (e.g. ATAM, CBAM) and profiles the run-time information to better manage the
QA trade-offs. It aims to improve decision-making and handle the uncertainty which may be
better managed at run-time. In particular, their approach determines the potential QA trade-
off points, designs the adaptive architecture decisions, and finally deploys their system on
a middleware platform to collect run-time information. Though the latter approach is one
of the few attempts to extend scenario-based approaches at run-time, it lacks the ability to
learn over time and hence cannot forecast the future potentials of architecture decisions.

Summary and Reflection: Scenario-based evaluation approaches can be described as best-effort,
where the evaluators’ expertise, choice of stakeholders, etc., are all factors that influence the evaluation.
In particular, these approaches heavily rely on human inputs and expert judgement. These processes
can thus suffer from subjectivity, bias and can never be complete. As for the their effectiveness for
evaluating for uncertainties, these methods advocate the use of exploratory, growth and stress and the
like of scenarios that can test for the likelihood of an issue (e.g., sudden spike in load; downtime in part
of the network; hostile attack, etc) to be confronted by the architecture along its response and quality
trade-offs affected and the soundness of the architecture design decision and choices in responding
to these issues. The choice of these scenarios can be critical input to the evaluation process and its
conclusion on the extent to which the architecture can be resilient to uncertainty. Henceforth, the
soundness of the evaluation for uncertainty can be influenced by human expertise, judgement and their
skills and experience in identifying of uncertainty revealing scenarios to steer the evaluation exercise.

3. Parametric-based: The previous scenario-based approaches used simplistic mathematical
models and relied heavily on stakeholders for the elicitation of scenarios and on expert evalu-
ators for the impact of these scenarios on quality attributes. Here, we will discuss approaches
that assess architecture decisions using parametric models - parameterised mathematical
models with parameters identified and supplied that can aid decision-making. Stakehold-
ers often provide values for these parameters (i.e. design-time and interactive approaches)
or can be provided or calibrated at run-time through observing relevant concerns of the
parameterised functions.
− Analytic Hierarchy Process (AHP) [123] is a mathematical modelling tool used in deal-

ing with complex decision-making. AHP has been used in two contexts for architecture
evaluation: managing trade-offs and determining the relative importance of scenarios and

, Vol. 1, No. 1, Article . Publication date: April 2021.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Sobhy et al.

decisions. Zhu et al. [145] adopted AHP to explicitly determine the trade-offs being made
and the relative size of these trade-offs. It has been used with CBAM to determine the
relative importance of scenarios through pair-wise comparisons [94]. It relies on eliciting
the benefits and costs from stakeholders, and hence suffers from the same limitations of
scenario-based approaches.

− ArchDesigner [5] is an architecture framework that first adopts AHP to elicit from stakehold-
ers their preferred architecture decisions. It then uses Integer programming to determine
the optimal architecture decision, which satisfies conflicting stakeholder quality goals
subject to project constraints, such as cost and time.

− LiVASAE [86] (a lightweight value-based architecture evaluation technique) attempts to
measure the level of uncertainty using AHP and also provides three simplified evaluation
procedures as compared to the CBAM. All these approaches rely on stakeholders for
evaluating the candidate architecture decisions as well as their benefits and costs.

− Other approaches include [40, 58, 103–105] (mentioned in utility-based approaches section),
can also satisfy the parametric-based evaluation, as they use Markov Chains to determine
the QoS of architectures.

Summary and Reflection: Though all the prior approaches provide some management for uncer-
tainties, they suffer from the same concerns: the high reliance on stakeholders for the elicitation of the
relative importance (i.e. rank) of architecture decisions and their impact on quality attributes.

4. Search-based: This category focuses on showing how search-based techniques have been
used to complement architecture evaluation (but not related to work on search-based tech-
niques in software architecture unless the work is evaluation-related). Search-based software
engineering is "the application of metaheuristic search techniques, such as genetic algorithms,
simulated annealing and tabu search" to the analysis [73]. In software architecture, it is used
to solve complex problems in terms of searching for the most suitable (i.e. optimal) candidate
architecture choice [73]. In this context, it is sometimes called search-based optimisation
[74].
− Evolutionary Algorithms are generally adopted for decision-making in software systems

[7]. For example, ArcheOpetrix [6] is a tool that exploits evolutionary algorithms for
multi-objective optimization of an embedded system’s architecture.

− Grunske et al. [70] proposed a method to automate the trade-off management process
using an evolutionary algorithm. The aim of the approach was to rank design decisions
(architecture refactorings) by taking into consideration competing quality goals. However,
this was an initial attempt without a complete evaluation (i.e. it has not been applied on
architecture evaluation methods).

− As aforementioned in utility-based section, Ghezzi et al’s [69] method uses a hill climbing
algorithm to select the optimal goal, which could also be seen as a search-based technique.

− Among the notable excluded work is [6], as the work does not explicitly or implicitly
address uncertainties in architecture evaluation though they have covered some phases of
design-time and run-time evaluation. However, we have included their subsequent work
[102] as it addresses uncertainty in architecture evaluation decision-making. In particular,
Meedeniya et al. [102] proposed a Robust ArcheOpterix framework that can determine
the uncertain information related to system parameters and hence search for the most
optimal and robust candidate architecture. The framework provides the architect with
the flexibility to choose the most suitable optimisation algorithm from the following list
[101, 118]: Multi-Objective Genetic Algorithm (MOGA), Non-dominated Sorting Genetic
Algorithm (NSGA-II), Pareto Ant Colony Algorithm (P-ACO), Simulated Annealing (SA),

, Vol. 1, No. 1, Article . Publication date: April 2021.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 21

Hill Climbing, Bayesian Heuristic for Component Deployment optimization (BHCDO),
Random Search Algorithm, and Brute-Force Algorithms. The used software architecture
evaluation model is based on their previous work [104].

− PerOpteryx [28] is an automated tool based on Palladio framework [120] for selecting
the optimal candidate architecture. This approach performs evaluation at design-time. So
still run-time monitoring is important to complement the design-time decisions. However,
we see potentials in extending PerOpteryx tool with run-time analysis to develop the
continuous evaluation framework.

− Other approaches include [5, 62, 63, 67, 95, 103, 127] (mentioned in other sections), can
also satisfy the search-based evaluation, as they adopt some search-based algorithms for
the analysis.

Summary and Reflection: Search-based techniques, which are fundamentally optimisation-based,
have been used to evaluate architecture design decisions and choices. These techniques often rely on
the assumption that fitness functions guide the search. These techniques suffer from the following
limitations: stopping criteria for the search is often difficult to confirm with confidence and solutions
tend to provide "good enough" optima. Additionally, as much of the work on architecture evaluation
are scenario-based, mapping the concerns of the scenarios into search-based objective functions along
their constraints can be complex to abstract if one would be seeking a search that would reflect on these
scenarios. Nevertheless, search-based techniques can be specifically useful if one would use the search
and evolutionary techniques to generate new styles and architecture configurations that could better
meet the requirements of interest.

5. Economics-based: This category presents approaches that inform architecture evaluation
using economics and finance inspired methods; these approaches quantitatively evaluate the
worthiness, short- and long-term benefits, option, risks and costs of the architecture design
decisions. Though these approaches can be essentially utility-based and/or parametric, we
are discussing the economics-driven approaches that were utilised in steering these efforts.
In most cases, economics-based approaches have been used to evaluate the architectures at
design-time.
− Traditional cost-benefit analysis methods have been used to evaluate software. For instance,

Cellini et al. [34] computed the net benefit of a software through the deduction of total costs
from total benefits. These attributes have been obtained from software architects through
a group of questions (e.g. "what is the state of the world in the absence of the program
?"). CBAM [82] is a utility-based architecture evaluation method that uses cost-benefit to
analyse the impact of architecture decisions on quality attributes of interest. This approach
partially capture uncertainties which motivated the need to integrate some finance-inspired
approaches into the software engineering field. Boehm [23, 24] was among the first to
introduce economics and finance theories to evaluate software design decisions. Examples
of these approaches: Net Present Value (NPV) [56, 97], Modern Portfolio Theory (MPT)
[100], and Real Options Analysis (ROA) [8] (which will be discussed afterwards).

− Recently, the approach in [136] proposes an architecture evaluation approach inspired by
CBAM [82] for run-time decision-making in self-adaptive systems that considers benefits
and costs of decisions. The approach adopts a weighted utility measure of the qualities that
the adaptation decisions can provide to the stakeholders. Although this approach seems
to provide continuous evaluation, it requires additional elements, such as online machine
learning techniques, and extra experimental evaluation for applicability and efficiency.

Real Options Analysis and Modern Portfolio theory have been used to inform that analysis
of software architecture in the presence of uncertainty. Though they have been used in

, Vol. 1, No. 1, Article . Publication date: April 2021.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Sobhy et al.

various software engineering and design domains, such as [14, 60, 128, 132], to evaluate low
design decisions (e.g. modularity in design) using economics-based thinking; they were not
concerned with architecture evaluation. There are other few works (e.g. [12, 13, 112, 136])
which initiated the use of economics-based techniques in architecture evaluation. In this
context, in Table 10, we outlined the software architecture evaluation-related approaches (e.g.
[12, 13, 112, 136]) as they operate on widely used architecture frameworks such as ATAM
and CBAM, obtained from our search results and satisfy our inclusion/exclusion criteria.
− Net Present Value (NPV) [56, 97]: is a popular approach used to value software. It values the

software project by eliciting the probability of investing in an established discount rate
or interest. A positive NPV indicates that its financially beneficial to invest (i.e. deploy
this architecture decision) and negative NPV is the opposite. It has been originally used in
[49, 65].

− Modern Portfolio Theory (MPT) [100]: was first introduced by the Nobel prize winner
Markowitz in 1950s. MPT aims to improve the decision-making process by allocating
capital to a portfolio of diverse investment assets. MPT handles uncertainty through the
distribution of capital among assets to minimize risk and maximize the returns. In particular,
it provides a weighted combination (i.e. portfolio) of the assets, where the weight denotes
the investor’s share of capital in each asset. In this context, MPT seeks to demonstrate the
rewards of having a diversified portfolio of assets. MPT is well-known in finance domain
and has been also introduced in software engineering domain as a means to deal with
uncertainties. In software architecture [112], it has been adopted with CBAM to determine
which portfolio of architecture decisions will deliver value by considering sustainability
dimensions. Although this approach explicitly deals with uncertainty, yet it provides a
short-term value. It does not embed flexibility as real options analysis.

− Real Options Analysis (ROA) [8]: provides an analysis paradigm that emphasizes the value-
generating power of flexibility under uncertainty. An option is the right, but not the
obligation, to make an investment decision in accordance to given circumstances for a
particular duration into the future, ending with an expiration date [134]. Real options
are typically used for real assets (non-financial), such as a property or a new product
design. ROA treats uncertainty as an option which may provide future opportunities
to the project, which could be exercised when it provides a high option value. On the
contrary, MPT specifically deals with financial assets and considers uncertainty as a risk
that should be minimized. Real Options analysis has been used in software architecture in
[12, 13, 114]. Bahsoon et al. [12] used real options analysis along with CBAM to measure
the architecture’s stability. They then used their method to value scalability in distributed
architectures [13].

Summary and Reflection: NPV has been discouraged, because it ignores the value of the flexibility
under uncertainty [14, 59, 129]. Modern Portfolio Theory provides some treatments for uncertainty,
but for short-term evaluation. On the contrary, Real Options analysis methods could be used as a way
to manage uncertainty on the long-term. Further, in software architecture evaluation, few methods
embedded finance-inspired techniques to their analysis. However, we see great potentials for including
these techniques to the evaluation especially in high dynamic and unpredictable environments.

6. Learning-based: We define learning-based architecture evaluation methods as methods
which adopt machine learning techniques to improve the evaluation. In most cases, learning-
based approaches have been used to evaluate the architectures at run-time. "The effectiveness
of model-based reasoning about the properties of a software system depends on the accuracy
of the models used in the analysis" [29]. For example, some models may become obsolete

, Vol. 1, No. 1, Article . Publication date: April 2021.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 23

due to evolution in the software architecture. The same applies to the use of utilities for
evaluation and decision-making. Therefore, machine learning could be adopted to better
enhance the evaluation through profiling the observations of the system properties over time,
as in the following studies [31, 61, 87, 106, 133].
− In the context of using reinforcement learning techniques, Tesauro et al. [133] integrated

queuing policies with reinforcement learning, forming a hybrid approach to enhance the
dynamic resource-allocation decision-making process in data centers. The approach suffers
from scalability and performance overhead. A reinforcement learning online planning
technique was used by Kim et al. [87] to improve a robot’s operation with respect to
changes in the environment, by dynamically discovering the appropriate adaptation plans.
However, it does not continuously evaluate the cost-effectiveness of architecture decisions
over time. These approaches [87, 133] tend to be domain-specific. Further, Calinescu et
al. [31] proposed initial attempts for the use of Bayesian learning and ageing coefficients
to update the model parameters, where the ageing coefficients may be a useful element
for a continuous evaluation approach. Because it may then allow the architect to tune the
sensitivity of approach to present/past observations. Though their work had potential, it
was still work-in-progress (i.e. initial evaluation for the approach has been performed and
hence it requires further analysis).

− FUSION [61] is another learning-based approach that adopts a machine learning algorithm
named Model Trees Learning (MTL) to tune the adaptation logic towards unpredictable
triggers, rather than using static analytical models. It also uses utility functions to determine
the benefit of models in question. The major benefit of FUSION is its ability to learn over
time and improve the adaptation actions due to the promising learning accuracy. However,
FUSION has the following limitations: (i) it is specifically tailored to feature modelling; and
(ii) it only detects goal violations, i.e. constraints, but does not have the ability to check if
the current architecture option is getting worse.

− In [127], a run-time architecture evaluation approach has been proposed, which is suited
for systems that exhibit uncertainty and dynamism in their operation. The method uses
machine learning and cost-benefit analysis at run-time to continuously profile the architec-
ture decisions made, to assess their added value. This approach is considered as a reactive
approach, as it ignores the future potentials of architecture decisions. This approach is
considered as one of the few attempts which explicitly evaluates software architectures at
run-time.

− Moreno et al. [106] proposed a proactive latency-aware adaptation approach that constructs
most of the Markov Decision Processes offline through stochastic dynamic programming.
Their method focuses on optimizing the latency of adaptation action based on forecasts,
without considering the cost of architecture decisions and multiple stakeholder concerns.

, Vol. 1, No. 1, Article . Publication date: April 2021.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Sobhy et al.

Summary and Reflection: The use of machine learning in architecture evaluation can be challeng-
ing. First, formulating the evaluation as a learning problem requires data that relate to historical
observations along with data evaluation for recency, decay, relevance, etc. Second, the problem with
any study involving machine learning is that the results may not generalise to other data sets, therefore,
the methods should be tested on various data sets with different input parameters. Further, comparative
studies should be provided to confirm the validity of the model. Accuracy and error metrics should also
be adopted to determine how far are the forecast values from the actual ones. The selected measures
should be unbiased towards under or over estimations. Additionally, the software architecture com-
munity can benefit from guidance on the type of learners that can be best suited for the evaluation of
software architectures under uncertainty, yet such guidance is lacking and bridging efforts are still
needed.

4.2.2 Stage of Evaluation. The evaluation could occur at design-time and/or run-time. Design-time
evaluation occurs before system deployment, where the stakeholders are more involved in reasoning
the system under study, whereas the run-time evaluation approaches use run-time and/or simulated
data (e.g. QoS) to capture the dynamic behaviour of architecture decisions under uncertainty and
use such information to profile or evaluate design decisions either during the prototyping stage or
post-deployment.

1. Design-time Evaluation: The design-time evaluation of software architectures aims at
eliciting a proper specification of the problem, which is the first step on the path of analysing
architecture decisions for suitability.

− Documented efforts on systematic design-time architecture evaluation approaches are best
linked to the seminal work of [19, 82, 83, 85]. These approaches focus on identifying design
decisions that best fit the quality requirements of interest and their trade-offs using scenarios
(i.e. scenario-based approaches).

− Other examples of design-time approaches are treated as utility-based (e.g. [18, 19, 63, 79,
82, 84, 95, 139, 145]), parametric-based (e.g. [5, 18, 84, 103, 145]), search-based (e.g. [5, 28, 63,
95, 102, 103]), and economics-based (e.g. [12, 13, 112, 114]). Since learning-based approaches
require run-time analysis, therefore, we have not found methods which are learning-based.
Table 10 summarises the included studies related to design-time architecture evaluation
approaches with respect to the proposed classification.
Summary and Reflection: Design-time evaluation has received significant attention over the years
and the subject is a relatively mature area. However, as we can see from the various discussed methods,
the evaluation is essentially human-reliant and the treatment for uncertainty has been left to the
evaluators; this can include their choice for the scenarios to steer the evaluation, the adopted models,
stakeholders involved, etc. The process can then suffer from subjectivity, bias and can never be complete.
Therefore, a systematic design-time evaluation approach that explicitly deals with uncertainty rather
than either relying on ad hoc evaluation or implicit mitigation of uncertainty is necessary.

2. Run-time Evaluation: By run-time evaluation, we refer to approaches that use run-time
and/or simulated data (e.g. QoS data) to capture the dynamic behaviour of architecture
decisions under uncertainty and to use such information to profile and evaluate design
decisions. Table 11 summarises the run-time architecture evaluation methods studied.
− In software architecture evaluation, utility functions are commonly used to select the

optimal architecture option. This approach has also been adopted to determine the stake-
holder’s preferences towards quality attributes of interest. Therefore, it is utilized as a way
to model trade-offs between quality attributes. Utility functions have been used at run-time
(i.e. utility-based) for self-adaptive and self-managed systems, such as [38, 40, 46, 61, 62, 67,
69, 75, 136, 141].

, Vol. 1, No. 1, Article . Publication date: April 2021.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 25

− Other run-time evaluation approaches apply somemachine learning techniques (i.e. learning-
based) to improve the decision-making process through profiling the observations of the
system properties over time, as in the following studies [31, 61, 87, 133].

− [141] is one of the few attempts to extend scenario-based approaches at run-time. As
mentioned earlier, this approach lacks the ability to learn over time and hence cannot
forecast the future potentials of architecture decisions.

− To the best of our knowledge, there are no economics-based approaches that evaluate
architectures at run-time.

Summary and Reflection: As far as we know, the majority of run-time evaluation approaches rely
on models for the analysis, which may be subject to scalability and complexity concerns. For that,
these approaches have adopted some machine learning algorithms, such as Reinforcement learning, to
update their models at run-time. Despite their potential, these approaches suffer from the following
limitations: (i) they assume that the quality data about architecture decisions is available at every
timestep, which may not be true in non-stationary environments such as IoT; and (ii) they lack
the capability for checking whether the current architecture decision is getting worse. However, the
proposed method in [127] has provided some techniques to handle the above concerns but still requires
further investigation and more techniques are needed to enhance the evaluation. The most important
component in a continuous evaluation approach is the run-time approach to be included. Some of the
above approaches (e.g. [55, 127]) seem to provide important elements for a run-time approach in terms
of providing learning techniques. These techniques could aid the architect in predicting the impact of
architecture decisions on quality attributes under different scenarios of interest. On the contrary, few of
the approaches were explicitly used in the context of software architecture evaluation (e.g. [127]).

3. Continuous Evaluation:We define continuous evaluation as multiple evaluations of the
software architecture that begins at the early stages of the development and is periodically
and repeatedly performed throughout the lifetime of the software system.
− Continuous Performance Assessment of Software Architecture (CPASA) [117] is one the

few explicit attempts for continuous evaluation. It is an extension of PASA, with an explicit
focus on deployment in agile development process. It provides an interactive system
that aids the architect in the automatic assessment of performance attributes through
modelling of architecture decisions. They define "continuous" assessment as the production
of continuous performance evaluation tests. Despite the attempts in PASA and CPASA to
handle cost-benefit trade-offs, (i) the evaluation was incomplete; (ii) they are not using
any run-time information to refine their architecture decisions; and (iii) it lacks run-time
monitoring and forecasting of the performance of architecture decisions. In such cases
architecture is, at best, a modelling tool, which may (or may not) be applicable in dynamic
environments. Therefore, these approaches are still design-time evaluation approaches.

− Further, the approaches proposed in [69], [136] and [127] could seem to provide some
initial attempts for continuous evaluation, but they suffer from the concerns mentioned in
(ii) and (iii).

, Vol. 1, No. 1, Article . Publication date: April 2021.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Sobhy et al.

Summary and Reflection: Continuous architecture evaluation approach starts at design-time and
continues to operate at run-time, with design-time architecture evaluation being at its earlier stages.
Continuous evaluation shall provide built-in support to deal with operational uncertainties and dynam-
icity, starting from design-time by predicting run-time behaviour and while calibrating its evaluation
at run-time and post deployment. Continuous evaluation can leverage machine learning to provide
predictive and proactive diagnostic capabilities; however, such improvement requires data that can
relate to the architecture design decisions, quality attributes performance, that might not be always
available or easy to extract from operational and maintenance logs. In the absence of real-time data,
the evaluation can, for example, benefit from info-symbiotica simulations and digital twins capabilities
to improve the prospect of the evaluation in dealing with uncertainties.

aa term that is widely used by the dynamic data driven simulation system community (e.g.
http://1dddas.org/InfoSymbiotics/DDDAS2020, https://sites.google.com/view/dddas-conf/home)

4.3 Quality Attribute Considerations
4.3.1 Addressing quality attributes: There are some evaluation methods which focus on a single
or multiple quality attributes. Based on the results, we have found that most of the software
architecture evaluation studies’ have addressed multiple quality attributes, e.g. modifiability with
portability and extensibility [83], stability with cost [12]. Other examples of studies are found in
Table 7- 9.

4.3.2 Supported Quality Attributes: we categorised the quality attributes supported into: general
and specific. For general, we consider the literature that discusses the support of any quality attribute,
such as performance, availability, reliability, etc. For instance, some studies propose generic methods
(62% of included studies) that can be generic enough and applicable to various quality attributes.
However, there are others that focus on specific quality attributes (e.g. performance only, i.e. any
QA) – 36% of included studies, whereas others focus on cost only – 49% of included studies. Based
on our review, for the approaches that evaluate the software architecture at design-time, some
studies (e.g. [43, 70, 79, 82, 84, 145]) accept generic quality attributes, whereas others focus on
specific quality attribute (e.g. [12, 18, 19, 79, 82–84, 96, 104, 145]). One remarkable investigation is
that very few run-time architecture evaluation approaches consider costs through the evaluation
process (e.g.[40, 61, 127, 136, 141]), as well as most of the run-time approaches evaluate with respect
to specific quality attributes (e.g. performance and energy consumption [32], and reliability and
performance [30, 31, 75]). As for the few continuous approaches, their proposed techniques could
be applied for generic quality attributes. Other examples of studies are found in Table 7- 9. The way
existing evaluation methods consider cost and value is not done in isolation but in alignment with
the qualities under consideration and their trade-offs. Our review holds examples from mainstream
architecture evaluation methods (e.g. [5, 34, 79, 82, 84, 139, 145]). Other examples are shown in
Table 7- 9.

4.3.3 Monitoring and treatment of quality attributes: This criterion is relevant to run-time and
continuous evaluation approaches where quality attribute values are either determined through
run-time monitoring or through prediction. Similarly for the treatment, there are two types [72,
93, 121]: reactive and proactive. A reactive approach triggers a switch after experiencing a drop
in performance, a goal violation, etc. A proactive approach switches architecture options without
experiencing a drop in performance; instead it is based on predictions that a significant change
in performance may occur in the near future. Based on our investigation, most of the approaches
used reactive monitoring and treatment of quality attributes (e.g. [30, 31, 61, 62, 67]), whereas very

, Vol. 1, No. 1, Article . Publication date: April 2021.

http://1dddas.org/InfoSymbiotics/DDDAS2020
https://sites.google.com/view/dddas-conf/home

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 27

few approaches embedded proactivity to their architecture evaluation method (e.g [46, 69]). Other
examples of studies are found in Table 7- 9.
Summary and Reflection: Quality Attributes continue to be the driver for architecture evaluation
to test the architecture fitness with respect to the considered attributes. Considering multiple quality
attributes and their simultaneous effect on the architecture is still a challenging task, if the evaluation
would consider uncertainties that relate to the provision and support of these attributes. Research has
also to look at how the evaluation can consider multiple source of uncertainties that can relate to the
simultaneous provision of these attributes. Research can benefit from search-based and evolutionary
computing to provide the basis for automatic refinements of architecture in supporting quality attributes
and embracing for various sources of uncertainties. The challenge, however, is to construct sound fitness
functions and stopping criteria for managing the search. The support can goes beyond the classical
monitoring and reactive interventions to provide a holistic approach for proactive and preventive
diagnostic of software architecture, while having multiple qualities and their corresponding source of
uncertainties, as first class citizen in the evaluation.

4.4 Level of Autonomy
4.4.1 Management of Stakeholder Involvement in Evaluation: This category has been further cate-
gorised to human-reliant, semi-autonomous, and autonomous. We have to distinguish between: (i)
Human-reliant (i.e. totally dependent on stakeholders for evaluating the behaviour of candidate
architecture options); (ii) Semi-autonomous process for architecture evaluation, with human in the
loop (e.g. stakeholders and architects in the loop for interactive evaluation); (iii) Autonomous (i.e.
the evaluation is performed autonomously without human intervention). To further clarify those
categories, we consider the case of architecture evaluation in self-adaptive Systems (SAS): there are
human-reliant architecture design decisions (such as whether to introduce a self adaptation mecha-
nism), semi-autonomous (such as human in the loop participation in self-adaptive systems [33]), and
autonomous architecture design decisions (such as the SAS adapting and deploying components
to different servers at run-time). Another example of the use of autonomous architecture design
decisions is the incorporation of intelligent and learning mechanisms, evolutionary computations,
etc, to assist in the automatic evaluation of decisions. Continuous architecture evaluation can
monitor QAs and suggest re-configuration from a repository of candidate options, some of which
their technical viability has been established but requires further profiling and confirmation. The
evaluation process can then learn and suggest a suitable configuration; it can also call for further
refinements and/or phasing out of reconfiguration.

For classical design-time architecture evaluation approaches (e.g. scenario-based), most of them
tend to fully involve the stakeholders to their analysis, e.g. ATAM, CBAM, ATMIS, etc. Other design-
time approaches (e.g. utility-based, economics-based and search-based) are semi-autonomous, such
as [5, 12, 70, 95, 105, 113], in the context of requiring some inputs (e.g. utilities, users’ satisfaction
towards quality attributes, QoS constraints, etc) for evaluation from the architect. Since that run-
time architecture evaluation approaches occur at run-time (e.g. learning-based), most of these
approaches are autonomous (e.g. [31, 32, 40, 87, 133]), whereas few of them require some human
involvement (e.g. [30, 75, 141]). Other studies are depicted in Table 7- 9.

4.4.2 Management of Trade-offs: A common problem in selecting an optimal architecture decision
is the management of trade-offs [21]. For example, an architecture decision concerning a sensor
could provide high response time but with low energy efficiency. So one objective could be to
select an architecture decision that can satisfy both quality attributes. There are two types of
trade-off management: manual and automatic. Manual management denotes the adoption of tools
or techniques that require human-intervention, whereas automatic indicates the use of parametric

, Vol. 1, No. 1, Article . Publication date: April 2021.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Sobhy et al.

models that automatically select and/or shortlist trade-off candidates. Some of the design-time
architecture evaluation approaches (e.g. ATAM, CBAM, ATMIS, and APTIA) handle trade-offs
manually through the analysis of trade-off points elicited from stakeholders or do not consider
it at all (e.g. SAAM, SBAR, SQUASH, and ALMA). As for the run-time architecture evaluation
approaches, some run-time approaches provide automatic management of trade-offs, such as
[30, 32, 40, 62, 87, 127], whereas one noticeable investigation is that many approaches have no
support for trade-off management, such as [31, 67, 69, 75, 141]. Other studies are shown in Table 7-
9.
Summary and Reflection: Providing semi- or fully-autonomous and automated techniques for
trade-off management is crucial in a continuous evaluation framework. In particular, research shall
look at how the evaluation can support continuous and seamless management for various quality
trade-offs and their corresponding uncertainties. In line with what we discussed in the quality attribute
considerations section, the seamless management may need to consider simultaneous qualities, their
inference, risks contributions and aversions. Additionally, the autonomous evaluation can operate
at various views (e.g. 4+1 views [92]) of the architecture, where the evaluation can then converge to
seamless negotiation of the various views for conflicts, reconcile these views while considering the
various uncertainties within the architecture and across the views - the ultimate objective is to provide
holistic seamless evaluation of the architecture.

4.5 Uncertainty Management
4.5.1 Source of Uncertainty: As aforementioned in Section 1.1, architecture can experience two
sources of uncertainty: aleatory and epistemic [15, 50, 66]. To summarise: aleatory conception of
uncertainty intends that uncertainty arises from variability in possible realisation of a stochastic
event, where unknown and different results could appear every time one runs an experiment under
similar conditions; epistemic conception of uncertainty denotes the rise of uncertainty due to lack
of confidence or missing knowledge to a fact which is either true or false. We analysed the works
based on the sources of uncertainty it addresses.

− We found that most of the design-time architecture evaluation approaches address epistemic
uncertainty (e.g. [18, 19, 43, 79, 82, 83]).

− Aleatory uncertainty is encountered in most of the run-time architecture evaluation ap-
proaches (e.g. [32, 40, 64, 87, 96, 133]).

− On the contrary, very few design-time (e.g. [64, 79, 104, 105]), run-time (e.g. [30, 40, 58, 61,
62, 136]), and continuous (e.g. [127]) approaches experience both epistemic and aleatory
uncertainties.

4.5.2 Treatment of Uncertainty: In the research literature there are approaches that deal with
explicit or implicit uncertainty. Explicit approaches are those that consider uncertainty to be a main
focus whereas other methods which do not mention uncertainty, but their tools and techniques
could be used to handle uncertainties (i.e. implicit). Next, we will summarise how the studied
architecture evaluation approaches dealt with uncertainty.

− Uncertainties and risks, linked to the deployment, are implicitly discussed and mitigated
through envisioning a set of scenarios, taking the form of use case, growth, and exploratory
scenarios [43, 85, 90] as defined by the ATAM (a design-time architecture evaluation approach).
A use case scenario reveals how stakeholders envision the system usage. A growth scenario
illustrates planned and foreseen refinements to the architecture, whereas an exploratory
scenario helps to probe the extent to which the architecture can adapt to future changes
(e.g. functionality upgrades, new quality attribute requirements). Hence, the evaluation and
its conclusions are highly dependent on the choice of these scenarios. The ATAM defines

, Vol. 1, No. 1, Article . Publication date: April 2021.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 29

Table 6. Summary of Contributions for the included studies with Respect to Approaches to Evaluation.

Stage Approaches to Evaluation
Utility-based Scenario-based Parametric-based Search-based Economics-based Learning-based

Design-time [18, 19, 63, 79, 82, 84, 95, 139, 145] [18, 19, 79, 82–84, 139, 145] [5, 18, 84, 103, 145] [5, 28, 63, 95, 102, 103] [12, 13, 112, 114] -
[5, 42, 57, 64, 70, 94, 96, 113] [63, 95, 112, 114] [102, 103, 105]
[86, 102–105]

Run-time [30–32, 40, 62, 75, 87, 133, 141] [141] [40, 58] [62, 67] - [61, 87, 106, 133]
[46, 58, 61, 67, 69, 106]

Continuous [69, 117, 127, 136] [136] [69] [69, 127] [127, 136] [127]

and records the risks that may threaten the achievement of quality attribute goals. These
include architecture decisions leading to subsequent problems in some quality attributes
(risks), architecture decisions where a slight alteration results in significant impact on quality
attribute responses (sensitivity points), and the simultaneous effect of a single decision on
multiple quality attributes (trade-off points) [81]. ATAM focuses on the risks and benefits
of architecture decisions and does not explicitly consider cost. CBAM extends ATAM by
considering cost-benefit trade-offs.

− To summarise, for the design-time scenario-based architecture evaluation approaches, ATAM,
CBAM, ATMIS, SQUASH and APTIA partially capture uncertainty through scenarios (as
mentioned in the previous point), despite that they do not conduct evaluation at run-time.
However, they suffer from the same drawbacks of design-time evaluation (i.e. high reliance on
stakeholders). ATMIS is also specifically tailored for security. ALMA is similar to ATAM and
CBAM, in the context of taking more utility-based perspective for the evaluation. It aids in per-
forming architecture evaluation more systematically than SBAR. Scenario-based approaches
do not provide explicit management for uncertainties, and include manual tools/techniques
which may not be effective at run-time.

− For the other architecture evaluation approaches, some approaches provided explicit man-
agement of uncertainty through the use of probability distributions (e.g. [103, 104]), Fuzzy
math (e.g. [62, 63]), Monte Carlo simulation (e.g. [95]), Modern Portfolio Theory (e.g.[112]),
Real Options Analysis (e.g. [12, 13, 114]), ageing coefficients (e.g. [31, 127]), AHP consistency
rate [86], utility theory (e.g. [41]), etc.

Summary and Reflection: The treatment for uncertainties, its sources and management has been
discussed in earlier sections in relation to qualities attribute management, trade offs, autonomy and
covering various stages, techniques (e.g., utility-based, economics-based, evolutionary, search-based,
etc) and various methods for evaluation(e.g., design and runtime). This is because the discussion and
treatments for uncertainties is orthogonal to all the above and cannot be discussed in isolation of the
solution domains. Interested reader can refer to the relevant summary and reflection sections. However,
the software architecture evaluation community may need to develop common language and knowledge
for eliciting architecture uncertainties at various levels and provide guidance from mitigating their
consequence on the software architecture. The community may also identify various techniques for
managing the uncertainties, covering various contexts, application domain, etc.

4.6 Limitations of the Review
Though this review was developed following the typical systematic literature review methodology
[88, 89, 116], there are some limitations that require clarification:

− The main threats to validity in this SLR is the selection bias when including the studies and
extracting the data. To resolve that in terms of determining the relevant studies a research
protocol (Section 2) was conducted. We applied this protocol to set out the objectives of the
review, the necessary background, the research questions, inclusion and exclusion criteria,

, Vol. 1, No. 1, Article . Publication date: April 2021.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Sobhy et al.

Table 7. Summary of Contributions for Design-time Architecture Evaluation approaches with other categories.

Design-time

Category Representative
Contributions

Addressing QA Single [19, 104, 139]
Multiple [18, 28, 43, 79, 82, 83]

[70, 84, 86, 94, 102, 145]
[5, 12, 28, 95, 113, 117]
[13, 57, 103, 105, 112, 114]

Supported QA
General [28, 43, 79, 82, 84, 145]

[63, 70, 86, 94, 113]
[12, 57, 95, 105, 112, 117]

Specific (Cost) [5, 79, 82, 84, 139, 145]
[42, 70, 86, 94, 117]
[12, 13, 63, 95, 113]
[112, 114]

Specific (Other QA) [18, 19, 64, 83, 96, 102]
[12, 13, 103, 104, 139]

Management of stakeholder input
Full [43, 79, 82, 83, 86, 139]

[18, 19, 84, 96, 145]
[57, 64, 94, 117]

Semi-Autonomous [5, 12, 28, 70, 95, 105, 113]
[13, 42, 63, 102–104, 112, 114]

Management of Trade-offs Manual [43, 82, 84, 86, 145]
[12, 13, 64, 94, 117, 139]
[112, 114]

Automatic [5, 28, 42, 63, 70, 95, 102, 103, 113]
No Support [18, 19, 57, 79, 83, 96, 104, 105]

Treatment of Uncertainty Implicit [18, 19, 43, 82, 83]
[5, 70, 79, 84, 96]
[57, 117, 139]

Explicit [86, 94, 95, 102, 113, 145]
[12, 13, 28, 42, 64, 114]
[63, 103–105, 112]

Source of Uncertainty Epistemic [18, 19, 43, 79, 82, 83, 102, 139]
[5, 64, 84, 86, 94, 117, 145, 145]
[12, 13, 57, 63, 95, 113]
[42, 70, 105, 112, 114]
[18, 19, 28, 43, 82, 83, 104]

Aleatory [86, 94, 95, 113, 145]
[12, 13, 42, 64, 102, 114]
[63, 103–105, 112]

search strategy, data extraction and analysis of gathered data. The SLR protocol was arranged
by one author and then revised by other authors to verify and evaluate the research questions
and whether the search queries map to the review objectives and research questions. They
also checked the relevance between data to be extracted and research questions.

, Vol. 1, No. 1, Article . Publication date: April 2021.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 31

Table 8. Summary of Contributions for Run-time Architecture Evaluation approaches with other categories.

Run-time

Category Representative
Contributions

Addressing QA Single [58, 67, 133]
Multiple [32, 40, 46, 75, 87, 106, 141]

[30, 31, 61, 62, 69]

Supported QA General [40, 46, 61, 62, 69, 87, 106, 141]
Specific (Cost) [40, 61, 141]
Specific (Other QA) [30, 31, 58, 67, 75, 133]

Management of stakeholder input Semi-Autonomous [30, 58, 62, 67, 69, 75, 141]
Autonomous [31, 32, 40, 46, 61, 87, 106, 133]

Management of Trade-offs Automatic [30, 32, 40, 46, 61, 62, 87]
No Support [31, 58, 67, 69, 75, 106, 133, 141]

Treatment of Uncertainty Implicit [32, 46, 58, 75, 141]
Explicit [31, 40, 62, 87, 133]

[30, 61, 67, 69, 106]

Source of Uncertainty Epistemic [18, 19, 43, 79, 82, 83, 114]
[5, 64, 84, 86, 94, 112, 145]
[12, 13, 42, 57, 63, 70, 95, 113]

Aleatory [32, 40, 64, 87, 96, 133]
[58, 61, 62, 67, 69, 75, 106, 136, 141]

Monitoring and Treatment of QAs Reactive [30, 32, 40, 75, 87, 133, 141]
[31, 61, 62, 67]

Proactive [46, 58, 69, 106]

Table 9. Summary of Contributions for Continuous Architecture Evaluation approaches with other categories.

Continuous

Category Representative
Contributions

Addressing QA Single -
Multiple [69, 117, 127, 136]

Supported QA General [69, 117, 127, 136]
Specific (Cost) [117, 127, 136]

Management of stakeholder input Human-Reliant [117]
Semi-Autonomous [69]
Autonomous [127, 136]

Management of Trade-offs Manual [117]
Automatic [127, 136]
No Support [69]

Treatment of Uncertainty Implicit [117]
Explicit [69, 127, 136]

Source of Uncertainty Epistemic [117, 127, 136]
Aleatory [69, 127, 136]

Monitoring and Treatment of QAs No treatment [117]
Reactive [127, 136]
Proactive [69]

, Vol. 1, No. 1, Article . Publication date: April 2021.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Sobhy et al.

− Several junior and senior researchers (with up to 15-30 years of experience in architecture
evaluation) assessed and reviewed the SLR. They provided feedback which reduced the bias
of the formalisation of the protocol, due to the selection of search keywords. There is still a
risk of missing some related studies. This could occur in cases where software architecture
evaluation keywords are not standardized and clearly identified. For instance, continuous
evaluation is defined under different terms, such as continuous, run-time, dynamic, etc.
Therefore, we made an agreement with each other about the definitions of unclear keywords.
In some cases it was difficult to elaborate how the authors of reviewed studies interpreted
terms such as continuous or run-time or dynamic (Section 2.3.1). In this context, we tried our
best to include all the related terms that imply continuity. However, we cannot guarantee
completeness.

− We also used a data extraction form to select information for answering research questions
hence improving the consistency of data extraction (Section 2.6). To ensure that the findings
and results were credible, we conducted a quality assessment on related studies (Section 2.5).

− The limited number of included studies might open a question about the completeness and
coverage of the review, as compared to other SLRs (e.g. [7]). But the objective of this review
was to focus on a specific goal, i.e. the state-of-the-art in software architecture evaluation
approaches for uncertainty and to what extent continuous software architecture evaluation
approaches are used. This results in a narrowed scope for the review. This is analogous to
the case of [98] that conducted a review focusing on methods that handle multiple quality
attributes in architecture-based self-adaptive systems (54 included studies), and [99] that
studied the variability in quality attributes of service-based software systems (48 included
studies). The narrow scope of SLRs explains the limited number of search results and included
studies. We believe that the relevant studies to the research topic were indeed included.
Further, the quality of conferences, journals, and books of the included studies ensures the
significance of the analysis.

− In our search execution, some relevant studies may have not been shown in the search
results of the bibliographical sources. This may be due to the fact that automated searches
depend on the quality of the search engine. However, the selected bibliographical sources
are considered the largest and most significant sources for conducting SLRs and the most
used ones in software architecture and software engineering [27, 98]. We also performed
manual and automated searches through the most popular venues for software architecture
and software engineering [98]. Consequently, we are confident that the included studies are
the most relevant and important ones and others are unlikely to be missed.

− We applied our search on meta-data (i.e. abstract, title, and keywords) only and some studies
might have used architecture evaluation as a part of their proposed work without mentioning
that explicitly in abstract, title, and keywords. Since the authors identify the meta-data of
their studies, therefore, our included studies depend on the quality of the bibliographical
digital sources in classifying and indexing studies.

− One of the main threats to validity is the validation of the classification framework. In this
context, the development of the classification framework was guided by a method for building
taxonomies [110], where we have taken conceptual to empirical approach informed by the
SLR to capture the concepts of software architecture evaluation under uncertainty. The
process was iterative. We then applied subjective and objective evaluation to validate our
classification framework. Subjective evaluation of the process of building the classification
framework was inspired by [110]. In particular, our team members had several interactive
sessions (∼4 meetings) first to discuss the initial build-up of the classification framework.
Subsequent iterations and refinements were informed by three working and feedback sessions

, Vol. 1, No. 1, Article . Publication date: April 2021.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 33

with team members (each taking an average of 2.5 hrs, one senior member with more than 30
years of experience in academic and industrial software architecture research and considered
to be one of the founders of the field of architecture evaluation, a second senior member with
more than 20 years experience in software architecture research and practice, and another two
with 5-6 years experience in software architecture and computational intelligence in software
engineering, covering uncertainties). Our team also consulted two external collaborators
with expertise in the area of the software architecture for additional feedback. The following
criteria, inspired by [110], informed our refinements and iterations: checks for the extent
to which the classification framework is concise (i.e. with limited number of dimensions
and limited number of characteristics for each dimension), robustness (i.e. with sufficient
dimensions and characteristics to determine software architecture evaluation approaches
under uncertainty), comprehensive (i.e. to categorize all known dimensions of architecture
evaluation approaches under uncertainty within the software architecture domain), exten-
sible (i.e. to allow the inclusion of additional dimensions and new characteristics within a
dimension when new types of architecture evaluation approaches under uncertainty appear)
and explanatory (i.e. by providing useful discussion of the architecture evaluation approaches
under uncertainty to facilitate the understanding of how to evaluate software architectures
under uncertainty). As for the objective evaluation inspired by [110], we ensured that every
category (e.g. Quality Evaluation, Quality Attributes Considerations, Level of Autonomy,
and Uncertainty Management) is unique and not repeated. All characteristics of architecture
evaluation under uncertainty have been examined and no new characteristics are needed for
addition.

− Our review focuses on architecture evaluation in the presence of uncertainty. In particular,
the focus of the survey is on how existing architecture evaluation methods and commonly
used approaches can provide ways for mitigating for uncertainties. For example, architec-
ture evaluation can take several forms: the methods can be bespoke, providing phases and
systematic guidance for architects to evaluate for the extent to which the architecture can
meet its non-functional goals and trade-offs - e.g. ATAM, CBAM, etc. These methods can
provide support for mitigating uncertainties. As an example, the use of exploratory and stress
scenarios in ATAM is a way to anticipate likely or extreme cases and to design the architecture
in a way that it can withstand these changes. Additionally, architecture evaluation can also
focus on one concern (e.g., performance, security), where the analysis can utilise low level
design models (e.g. state charts) and model-based analysis to analyse the system for specific
qualities. Though these approaches are often regarded to be design-level evaluation with
restricted focus on specific qualities (e.g. performance, security, reliability, liveliness, etc), the
feedback gathered from their low level design analysis can help the architects to refine the
software architecture under evaluation (e.g. ATMIS [64], performance modelling approaches
[76–78, 135], etc). Analysis using model-based approaches can help the architects to reach
more robust architectures against qualities of interest (e.g. security or performance) through
continuous refinements that can better cater for uncertainties. For example, the architect
can use performance models [76–78, 135] to inform refinements of the architecture that can
better cope with uncertainties. Model-based analysis are design-level analysis. This analysis
is often focused on the analysis on one or more sets of qualities using model-based modelling,
analysis and tooling. Though this analysis operates on lower level of abstraction of that the
architecture, the feedback of their analysis can help software architects and designers to
evaluate software architectures for uncertainties and to suggest refinements that can better
mitigate for uncertainties. These methods were not specifically discussed as either (i) methods
for architecture evaluation, nor (ii) methods for evaluating and mitigating for uncertainties.

, Vol. 1, No. 1, Article . Publication date: April 2021.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Sobhy et al.

Nevertheless, we acknowledge their complementary role, if the architect would wish to utilise
their use. Henceforth, model-based analysis is not the core objective of our survey due to
their wide use of versatile and context-dependent use.

− Since the self-adaptive and self-managed domain is large, we did our best to include studies
which show architecture evaluation as part of their approach. In particular, we added studies
from a list of 5974 papers (the output of the search process in Figure 1) through search
databases and a snowballing process, in addition to some manual search. However we may
have missed some works unintentionally.

− Furthermore, a common threat to validity is the fact that there are some criteria—such as
dealing with uncertainty and management of trade-offs—where the paper’s authors do not
explicitly mention whether they are addressed or not. In this context, we attempted to infer
these criteria. Similarly, a common concern in the run-time approaches is that, in most cases,
"the proactiveness or reactiveness of the approaches are not explicitly discussed and it can
only be inferred from the adaptation strategies" [98]. Accordingly, we made our best effort to
infer the reactiveness and proactiveness of the examined approaches.

− Other approaches, such as self-healing works, were excluded. For example, self-healing refers
to the process of automatic recovery from failure. However, our SLR is concerned with the
extent to which the architecture design decisions, tactics, and architecture choices tend to
meet the quality requirements of the systems and their trade offs. As for uncertainty, it
refers to the evaluation of these decisions in situations where it is difficult to predict the
performance of these qualities due to dynamism in the system’s operations and/or adequate
understanding of the application domain. Though self-healing is not among the objectives of
the paper, it can represent a specific scenario for the evaluation, where the architects can
evaluate the extent to which the architecture design decisions can realise self-recovery for
faults under uncertainty.

− Some continuous approaches were excluded from the list of studies. As an example, for [17],
the focus has been primarily on development, whereas [146] focused on continuous testing
and their relevance to the inclusion criteria is weak. Nevertheless, these types of approaches
have motivated us to review and introduce continuous software architecture evaluation to
the software architecture community.

5 RELATED REVIEWS
In the area of design-time architecture evaluation, there are many studies, such as [11, 27, 53, 122].
For instance, Dobrica et al. [53] focused on surveying the most popular methods, such as ATAM
[85], CBAM [82], and ALMA [19]. Babar et al. [11] provided a framework for classifying design-
time software architecture evaluation methods and a comparative analysis for the scenario-based
approaches in specific in [10]. Roy et al. [122] extended the previous reviews and considered most
of the design-time evaluation methods at that time. The authors in [27] systematically reviewed
and classified architecture evaluation methods from the architecture evolution perspective.
Other surveys focused on run-time methods, such as self-adaptive systems [47, 93, 98], self-

managed systems [26], andmodels@run-time [131]. From [26, 47, 93, 98, 131], we found that none of
the studies explicitly demonstrated the use of run-time architecture evaluation principles. And none
of the works have examined continuous software architecture evaluation. This is surprising because
some research studies implicitly provide the elements for a continuous evaluation approach. Our
survey bridges this gap by rethinking architecture evaluation and providing classifications that can
do the following: (i) help architects to conduct the evaluation in continuous settings by determining
the elements of a continuous evaluation approach; (ii) help in identifying common approaches for

, Vol. 1, No. 1, Article . Publication date: April 2021.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 35

this type of evaluation; (iii) identify common concerns for systems that can benefit from this type
of evaluation; (iv) point out the strengths and weaknesses of these types of approaches.

6 DISCUSSION AND RECOMMENDATIONS FOR FUTURE RESEARCH
Based on the SLR, it is clear that the area of software architecture evaluation has received substantial
attention in recent years. Nevertheless, the results demonstrate some observations which could
lead to future research. In particular, this SLR has identified several gaps in relation to architecture
evaluation for uncertainty with respect to decisions which relate to designing dynamic and complex
systems, such as IoT, cloud, and volunteer computing. In this context, this section aims to address
the third question: RQ3: What are the current trends and future directions in software architecture
evaluation for uncertainty and their consideration for continuous evaluation? This question aims to
show how we can benefit from the existing approaches to draw inspiration from the requirements and
address the pitfalls when developing a continuous evaluation approach. In Section 6.1, we present
the architecture evaluation research area maturation stages and classification. We then highlight
the important objectives that should be accomplished by the research community to advance this
research area (Section 6.2 and 6.3). This is inline with the summary and reflection sections shown
in Section 4.

6.1 Research Area Maturation
In this systematic review, we aim to investigate the extent to which architecture evaluation for
uncertainty and the consideration for continuous evaluation have matured as a discipline. For this
purpose, we examine the included studies with respect to the Redwine-Riddle model [119]. The
latter provides six stages for technology (research area) maturity. These stages are [119]:

1. Basic Research: investigating the ideas and concepts; and providing a clear articulation of
problem’s scope.

2. Concept Formulation: presenting a comprehensive evaluation of solution approach through
seminal paper or a demonstration system.

3. Development and Extension: preliminary using the ideas and extending the general approach
to a broader solution.

4. Internal Enhancement and Exploration: extending the general approach to solve real problems
in other research areas.

5. External Enhancement and Exploration: creating a broader group and involving them in
decision-making to provide a substantial evidence of value and applicability.

6. Popularization: showing production-quality, providing supported versions, as well as market-
ing and commercializing the technology.

Initially, one author has classified the 48 included studies against Redwine-Riddle model, and the
outcome was revised independently by other authors. Discussions and agreements were carried
out in cases of discrepancies between the authors’ categorizations. Figure 5 shows the results
of classification. It is clear that almost 80% of the studies are still in early maturity stages (Basic
Research and Concept Formulation), whereas almost 20% have been extended to broader problem
domains and applied in practice. Among those approaches that are already adopted by industry,
none of them are deployed at run-time; they only focus on design-time evaluation. In particular,
maturity has only been proven for design-time approaches, such as ATAM and CBAM. This explains
why 4% (2) of approaches are still in the popularization stage. In Appendix B, we tabulate the
studies with respect to domain maturity level.
We have seen some examples of continuous evaluation that are either implicit, partial, or ex-

plicit, such as CPASA and DevOps. However, these research efforts have not demonstrated and

, Vol. 1, No. 1, Article . Publication date: April 2021.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Sobhy et al.

Fig. 5. Distribution of the included studies over the domain maturity classification model (The maturity
distribution are shown in percentage).

documented how to adapt those practices in the evaluation of software architectures for uncer-
tainty. Therefore, to mature the architecture evaluation research area with continuous evaluation
approaches, we need a set of guidelines, tools, systematic procedures, acceptance from (and case
studies with) real-world organizations, and shared benchmarks across companies for best practices.

6.2 Leveraging Existing Approaches To Develop A Continuous Evaluation Framework
Having done this SLR, we observe that elements from different approaches could be combined to
develop a continuous software architecture evaluation framework. We briefly present our views on
potential ones that seem worthwhile to be further explored below:

• Architecture capabilities that can better cope and respond to uncertainty: examples
of these capabilities are architecture design diversification [51], tactics for meeting non-
functional requirements, etc. Consider diversification as one of the capabilities that could
enrich the architecture to cater for uncertainty and provide means for reliability and continu-
ously meeting the behavioural requirements. Such capability require the software architecture
community to leverage findings on design diversity in software engineering to develop fun-
damentals for software architecture diversity for uncertainties, covering styles, decisions,
tactics, etc, which is inline of our earlier work - [126, 127], as well as rethinking architecture
evaluation to consider dynamism and uncertainty. In this context, a systematic design-time
evaluation approach that can deal with these capabilities and handle uncertainties is neces-
sary. This is an important foundation of a continuous evaluation framework. Some initial
works have discussed these potentials [126], but it still requires further investigations.

• The use of economics-based approaches in architecture evaluation: based on the ex-
isting approaches, we infer that there is a lack of well-documented, real-world examples
for economics-based approaches in the context of design-time evaluations (Table 6 and 10:)
In particular, these approaches ([12, 13, 114]) have not been used to deal with cost-benefit
trade-offs in dynamic environments, such as IoT. Further, they have not been explored from
the perspective of forecasting the long-term value of architecture decisions to determine
whether the complex design decisions, such as diversity in design [51], can handle uncertain-
ties that can be attributed to dynamic changes in the environment. As mentioned previously,
the CBAM [82] is a scenario-based design-time evaluation method, which determines the

, Vol. 1, No. 1, Article . Publication date: April 2021.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 37

influence of architecture decisions on the cost-benefit trade-offs. The CBAM provides an
implicit mitigation for uncertainty through different types of scenarios. However, this type
of evaluation approach would not be suitable for the emerging technologies and paradigms,
such as IoT and cloud-based systems. We believe that economics-based approaches, such as
real options analysis [8] and modern portfolio theory [100], could be combined with CBAM
to support the analysis. Real Options Analysis is one of the few design-time techniques that
can embed flexibility under uncertainty. Therefore, it can aid the architect in predicting the
impact of architecture decisions on quality attributes of interest. It can also shortlist the
candidate options for deployment at run-time and thus reduce unnecessary costs. This is still
very much a research area that requires further investigation in the context of design-time
evaluation, as an initial stage for continuous evaluation.

• Newmethods for continuous architecture evaluation that interleave and intertwine
design and run-time architecture evaluation:we found that most of the architecture eval-
uation approaches focus on design-time (about 60% of the approaches) and less on run-time
(about 40% of the approaches). Evaluation approaches also tend to focus on development (i.e.
mostly human-centric activities) and lack a consolidated approach that integrates design-time
and run-time considerations. On the contrary, in the context of architecting and evaluating
dynamic and complex systems, a more continuous approach that starts at the early stages
of development and continues to evaluate the architecture options during the lifetime of
the system at run-time is necessary to cope with operational uncertainties, such as high
fluctuations in QoS, sensor ageing effects, etc.

6.3 Finding The Necessary Ingredients For Developing A Continuous Evaluation
Framework

Modern software system environments, such as IoT, cloud, volunteer computing, and microservices,
are a challenge for existing software architecture evaluation methods. Such systems are largely
data-driven, characterised by their dynamism, unpredictability in operation, hyper-connectivity,
and scalability. Properties, such as performance, delayed delivery, and scalability, are acknowledged
to pose great risk and are difficult to evaluate at design-time only. Therefore, a run-time evaluation
approach is necessary to complement design-time analysis. This run-time stage should be able to
handle different sources of uncertainty and evaluate complex design-time decisions. In this regard,
we need to determine the necessary ingredients for this run-time stage. We briefly present our
views on potential directions for run-time stage that seem worthwhile to be further explored below:

• Analysing the cost as a quality concern when developing a continuous evaluation
approach: one interesting observation is that just 25% of run-time approaches address cost
as a concern (Table 11 and 6). Since the management of cost-benefit trade-offs is essential in
dynamic environments [71], cost will highly influence the value of architecture decisions.
When evaluating software architectures, therewould be some conflictingQoS goals. Therefore,
when designing a continuous evaluation approach, one could benefit from the literature with
respect to multi-objective optimisation under uncertainty, such as the use of Pareto-Optimal
in [44, 70], Genetic Algorithms in [138], Fuzzy Logic in [144], etc.

• The need to incorporate change detection tests to the evaluation: based on the results
of our review (Table 11), most of the run-time approaches handle uncertainty either by
checking goal violations or providing some probabilistic estimations. However, in contexts
of highly dynamic environments such as [4, 37, 71, 108, 109], this is not sufficient. Even if the
currently deployed architecture decision is not violating any goal, this does not mean that it
has good performance. For example, in some cases, an architecture decision is meeting its

, Vol. 1, No. 1, Article . Publication date: April 2021.

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

38 Sobhy et al.

quality constraints but it is providing poor performance. In this context, a change detection
test is a necessary component in a continuous evaluation framework to determine significant
drifts in the architecture decisions. This type of test can provide the architect with the
flexibility of adjusting the sensitivity to changes. Therefore, determining the type of test and
its efficiency could be a potential future direction. In [127], one type of change detection test
was used, however, we see potentials of exploring other change detection tests [52] to handle
different forms of uncertainty.

• The need for ageing parameters for data analysis:most of the existing run-timemethods
rely on historical data or online data to perform the evaluation, but they do not consider
the age of data. Therefore, embedding some ageing parameters to emphasise the relative
importance of older versus more recent data could potentially improve the analysis [31].
Further investigations, related to the use of these parameters and how the architect could
tune these parameters to enhance the evaluation are required.

• Theneed for newproactive approaches for continuous architecture evaluation: from
the run-time perspective (Table 11 and 6), it is clear that most of the current approaches (e.g.
[31, 61, 143], etc) tend to be reactive when simplistic learning, partial or incomplete knowledge
is used. Thus they may suggest incorrect decisions due to unexpected future environment
changes and recommend unnecessary switches due to the lack of future knowledge about
the candidate architecture decisions. This in turn may affect the architecture’s stability and
overall behaviour. To bridge the gap, further proactive approaches are necessary to improve
the continuous evaluation process.

• Embedding machine learning and forecasting techniques to the continuous evalu-
ation framework: our analysis shows that just 25% of the run-time approaches embed
machine learning principles in the decision-making process. Using machine learning ap-
proaches in decision-making has shown great improvements to the decision-making (e.g.
[20]). Therefore, another important element when developing a continuous architecture
evaluation framework is leveraging machine learning techniques. There are methods (e.g.
[58, 117]) that explicitly mention continuous architecting and assessment, and others that im-
plicitly adopt it (e.g. [17]). These approaches can benefit from further investigations in terms
of how continuous evaluation could dynamically track and forecast architecture decisions
and automatically manage cost-benefit trade-offs.

• Consider scalability when designing a continuous evaluation framework: the liter-
ature depicts that there are some approaches (e.g. [46, 58, 69, 106]) that are proactive in
terms of failure prediction and recommending alternatives. These approaches may, however,
experience scalability problems. Moreover, these approaches assume that the impact of archi-
tecture decisions on QoS is available at run-time, which is not always the case for uncertain
environments such as IoT. To this end, novel solutions are required to determine how QoS
monitoring challenges could be handled.

7 CONCLUSION
Continuous evaluation has been discussed under different labels, such as run-time, dynamic,
continuous, etc, along with assessment and analysis. The common characteristic among these
efforts is that they start at design-time (even if they do not mention that explicitly) and continue
to evaluate architecture decisions during the life-time of system by observing environmental
conditions. In this review we have attempted to unify these efforts. We performed a systematic
literature review to examine existing architecture evaluation methods that deal with uncertainty
either design-time or run-time. We also provided guidelines for the necessary elements to develop
and conduct a continuous architecture evaluation approach. We both automatically and manually

, Vol. 1, No. 1, Article . Publication date: April 2021.

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 39

searched well-known venues for software architecture and engineering, other related systematic
reviews and mapping studies, and significant bibliographical data sources. In addition we applied a
snowballing process to collect our primary studies.
The results of our investigation are the following: (a) design-time architecture evaluation ap-

proaches garnered more attention than run-time ones, though the latter are increasingly important
to handle the dynamism and increasing complexity in software systems; (b) there is a lack of
examples on demonstrating how continuous evaluation approaches can realised and conducted;
(c) few methods focus on managing trade-offs between benefits and costs at run-time; (d) few
methods focus on adopting machine learning techniques to the evaluation; (e) most of the run-time
approaches tend to be reactive (and may recommend unnecessary switches and hence increase
deployment costs).

In summary, based on ourmain findings listed in Tables 10, 11, 6, and 7, 8, we suggest the following
opportunities for future work in this area: (i) employ economics-based approaches (i.e. forecasting
the long-term value of complex architecture decisions); (ii) adopt economics-based principles in the
design-time evaluation approach (the initial stage of a continuous evaluation approach) because
it embeds flexibility under uncertainty; (iii) perform additional research in analysing the use of
machine learning techniques to improve architecture evaluation at run-time (the ongoing stage in a
continuous evaluation approach); (iv) investigate the development of proactivity in the architecture
evaluation process; (v) explore how tuning the input parameters for the continuous evaluation (e.g.
sensitivity to changes, monitoring intervals, the relative importance of present/past data) could
affect the evaluation and what are the most suitable parameters to improve the decision-making;
(vi) analyze the use of continuous architecture evaluation in dynamic environments, such as IoT
and cloud systems.

A THE LIST OF INCLUDED STUDIES WITH RESPECT TO CLASSIFICATION
FRAMEWORK

In this appendix, we tabulate the list of included studies with respect to classification framework in
Table 10-12.

B THE INCLUDED STUDIES AND THEIR MATURITY LEVEL
In this appendix, we first tabulate the studies with respect to domain maturity level in Table 13 and
then provide a list of included studies in the systematic literature review in Table 14, 15, and 16.

REFERENCES
[1] 2017. (July 2017). https://techbeacon.com/5-challenges-performance-engineering-iot-apps?amp
[2] Amritanshu Agrawal, Tim Menzies, Leandro L Minku, Markus Wagner, and Zhe Yu. 2020. Better software analytics

via" DUO": Data mining algorithms using/used-by optimizers. Empirical Software Engineering 25, 3 (2020), 2099–2136.
[3] Sarah Al-Azzani and Rami Bahsoon. 2010. Using implied scenarios in security testing. In Proceedings of the 2010 ICSE

Workshop on Software Engineering for Secure Systems. ACM, 15–21.
[4] Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, and Philippe Merle. 2018. Elasticity in cloud computing: state of

the art and research challenges. IEEE Transactions on Services Computing 11, 2 (2018), 430–447.
[5] Tariq Al-Naeem, Ian Gorton, Muhammed Ali Babar, Fethi Rabhi, and Boualem Benatallah. 2005. A quality-driven

systematic approach for architecting distributed software applications. In Proceedings of the 27th international conference
on Software engineering. ACM, 244–253.

[6] Aldeida Aleti, Stefan Bjornander, Lars Grunske, and Indika Meedeniya. 2009. ArcheOpterix: An extendable tool for
architecture optimization of AADL models. In Model-Based Methodologies for Pervasive and Embedded Software, 2009.
MOMPES’09. ICSE Workshop on. IEEE, 61–71.

[7] Aldeida Aleti, Barbora Buhnova, Lars Grunske, Anne Koziolek, and Indika Meedeniya. 2013. Software architecture
optimization methods: A systematic literature review. IEEE Transactions on Software Engineering 39, 5 (2013), 658–683.

, Vol. 1, No. 1, Article . Publication date: April 2021.

https://techbeacon.com/5-challenges-performance-engineering-iot-apps?amp

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

40 Sobhy et al.

Table 10. Representative Contributions for Design-time Architecture Evaluation.

Study Approaches Addressing Supported Management of Management Treatment Source
to QA QA stakeholder of of of
Evaluation input trade-offs uncertainty uncertainty

[83] Scenario-based Multiple Specific (Modifiability, Portability, Human-Reliant No Support Implicit Epistemic
Extensibility)

[43] Utility-based Multiple General Human-Reliant Manual Implicit Epistemic
Scenario-based

[82] Utility-based Multiple General + Specific (Cost) Human-Reliant Manual Implicit Epistemic
Scenario-based

[18] Utility-based Multiple Specific (Performance, Human-Reliant No Support Implicit Epistemic
Scenario-based Fault-tolerance, Maintainability,
Parametric-based Reusability)

[19] Utility-based Single Specific (Modifiability) Human-Reliant No Support Implicit Epistemic
Scenario-based

[79] Utility-based Multiple General + Specific (Cost) Human-Reliant No Support Implicit Epistemic
Scenario-based + Aleatory

[84] Utility-based Multiple General + Specific (Cost) Human-Reliant Manual Implicit Epistemic
Scenario-based
Parametric-based

[139] Utility-based Single Specific (Performance+Cost) Human-Reliant Manual Implicit Epistemic
Scenario-based

[145] Utility-based Multiple General + Specific (Cost) Human-Reliant Manual Explicit Epistemic
Scenario-based
Parametric-based

[5] Utility-based Multiple General + Specific (Cost) Semi-Autonomous Automatic Implicit Epistemic
Parametric-based
Search-based

[70] Utility-based Multiple General + Specific (Cost) Semi-Autonomous Automatic Implicit Epistemic
[86] Utility-based Multiple General + Specific (Cost) Human-Reliant Manual Explicit Epistemic

Parametric-based
[96] Utility-based Multiple Specific (Dependability, Reliability Human-Reliant No Support Implicit Aleatory

and Maintainability)
[94] Utility-based Multiple General + Specific (Cost) Human-Reliant Manual Explicit Epistemic
[42] Utility-based Multiple General + Specific (Cost) Semi-Autonomous Automatic Explicit Epistemic
[64] Utility-based Multiple General + Human-Reliant Manual Explicit Epistemic

+ Aleatory
[113] Utility-based Multiple General + Specific (Cost) Semi-Autonomous Automatic Explicit Epistemic
[57] Utility-based Multiple General Human-Reliant No Support Implicit Epistemic
[63] Utility-based Multiple General + Specific (Cost) Semi-Autonomous Automatic Explicit Epistemic

Scenario-based
Search-based

[95] Utility-based Multiple General + Specific (Cost) Semi-Autonomous Automatic Explicit Epistemic
Scenario-based
Search-based

[12] Economics-based Multiple Specific (Stability) + Specific (Cost) Semi-Autonomous Manual Explicit Epistemic
[13] Economics-based Multiple Specific (Scalability) + Specific (Cost) Semi-Autonomous Manual Explicit Epistemic
[114] Economics-based Multiple General + Specific (Cost) Semi-Autonomous Manual Explicit Epistemic

Scenario-based
[112] Economics-based Multiple General + Specific (Cost) Semi-Autonomous Manual Explicit Epistemic

Scenario-based
[104] Utility-based Single Specific (Reliability) Semi-Autonomous No Support Explicit Epistemic

Parametric-based + Aleatory
[103] Utility-based Multiple Specific (Reliability) Semi-Autonomous Automatic Explicit Aleatory

Parametric-based
Search-based

[102] Utility-based Multiple Specific (Reliability + Performance) Semi-Autonomous Automatic Explicit Epistemic
Parametric-based
Search-based

[28] Utility-based Multiple Generic Semi-Autonomous Automatic Explicit Epistemic
Search-based

[105] Utility-based Multiple Generic Semi-Autonomous No Support Explicit Epistemic
Parametric-based + Aleatory

, Vol. 1, No. 1, Article . Publication date: April 2021.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 41

Table 11. Representative Contributions for Run-time Architecture Evaluation.

Study Approaches Addressing Supported Management of Management Treatment Source Monitoring &
to QA QA stakeholder of of of Treatment
Evaluation input trade-offs uncertainty uncertainty of QAs

[40] Utility-based Multiple General + Specific (Cost) Autonomous Automatic Explicit Epistemic Reactive
Parametric-based + Aleatory

[133] Utility-based Single Specific (Performance) Autonomous No Support Explicit Aleatory Reactive
Learning-based

[32] Utility-based Multiple Specific (Performance, Autonomous Automatic Implicit Aleatory Reactive
Energy Consumption)

[87] Utility-based Multiple General Autonomous Automatic Explicit Aleatory Reactive
Learning-based

[75] Utility-based Multiple Specific (Reliability and Performance) Semi-Autonomous No Support Implicit Aleatory Reactive
[141] Utility-based Multiple General + Specific (Cost) Semi-Autonomous No Support Implicit Aleatory Reactive

Scenario-based
[31] Utility-based Multiple Specific (Reliability and Performance) Autonomous No Support Explicit Aleatory Reactive
[30] Utility-based Multiple Specific (Reliability and Performance) Semi-Autonomous Automatic Explicit Epistemic Reactive

+ Aleatory
[62] Utility-based Multiple General Semi-Autonomous Automatic Explicit Epistemic Reactive

Search-based + Aleatory
[61] Utility-based Multiple General + Specific (Cost) Autonomous Automatic Explicit Epistemic Reactive

Learning-based + Aleatory
[67] Utility-based Single Specific (Energy Consumption) Semi-Autonomous No Support Explicit Aleatory Reactive

Search-based
[58] Utility-based Single Specific (Reliability) Semi-Autonomous No Support Implicit Epistemic Proactive

Parametric-based + Aleatory
[69] Utility-based Multiple General Semi-Autonomous No Support Explicit Aleatory Proactive
[46] Utility-based Multiple Specific (Reliability and Efficiency) Autonomous Automatic Implicit Aleatory Proactive
[106] Utility-based Multiple Specific (Performance) Autonomous No Support Explicit Aleatory Proactive

Learning-based

Table 12. Representative Contributions for Continuous Architecture Evaluation.

Study Approaches Addressing Supported Management of Management Treatment Source Monitoring &
to QA QA stakeholder of of of Treatment
Evaluation input trade-offs uncertainty uncertainty of QAs

[117] Utility-based Multiple General + Specific (Cost) Human-Reliant Manual Implicit Epistemic No treatment
[69] Utility-based Multiple General Semi-Autonomous No Support Explicit Aleatory Proactive

Parametric-based
Search-based

[136] Utility-based Multiple General + Specific (Cost) Autonomous Automatic Explicit Epistemic Reactive
Economics-based + Aleatory

[127] Utility-based Multiple General + Specific (Cost) Autonomous Automatic Explicit Epistemic Reactive
Search-based + Aleatory
Scenario-based
Learning-based
Economics-based

Table 13. Studies with respect to Domain maturation level.

Domain Maturation Level Studies # of Studies
Basic Research [28, 83, 113, 117] 4
Concept Formulation [5, 12, 40, 70, 79, 84, 86, 104, 105, 114, 133, 139, 145] 35

[13, 30–32, 46, 58, 61, 62, 75, 87, 94, 96, 141]
[48, 67, 69, 95, 102, 103, 106, 112, 136]

Development and Extension [18, 57] 2
Internal Enhancement [63, 64] 2
External Enhancement [19, 42] 2
Popularization [43, 82] 2

Total 48

, Vol. 1, No. 1, Article . Publication date: April 2021.

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

42 Sobhy et al.

Table 14. Studies included in the review.

Study Ref Author(s) Year Title
S1 [83] R. Kazman, L. Bass, 1994 SAAM: A method for analyzing

G. Abowd, & M. Webb the properties of software architectures
S2 [18] P. Bengtsson & J. Bosch 1998 Scenario-based software

architecture reengineering
S3 [82] R. Kazman, J. Asundi, 2001 Quantifying the costs and benefits of

& P. Clements architectural decisions
S4 [139] L. Williams & C. Smith 2002 PASASM: A Method for the Performance

Assessment of Software Architectures
S5 [43] R. Kazman, M. Klein, 2003 Evaluating software architectures

P. Clements & others
S6 [19] P. Bengtsson, N. Lassing, 2004 Architecture-level modifiability analysis

J. Bosch, & H. Vliet (ALMA)
S7 [12] R. Bahsoon & W. Emmerich 2004 Evaluating architectural stability

with real options theory
S8 [40] S. Cheng 2004 Rainbow: cost-effective software

architecture-based self-adaptation
S9 [79] M. Ionita, P. America, 2004 A Scenario-Driven Approach for Value,

D. Hammer, H. Obbink Risk, and Cost Analysis in
& J. Trienekens System Architecting for Innovation

S10 [145] L. Zhu, A. Aurum, 2005 Tradeoff and sensitivity analysis in software
I. Gorton, & R. Jeffery architecture evaluation using analytic

hierarchy process
S11 [5] T. Al-Naeem, I. Gorton, 2005 A quality-driven systematic

M. Babar, F. Rabhi approach for architecting
& B. Benatallah distributed software applications

S12 [84] R. Kazman, L. Bass 2006 The essential components of software
& M. Klein architecture design and analysis

S13 [70] L. Grunske 2006 Identifying good architectural design alternatives
with multi-objective optimization strategies

S14 [133] G. Tesauro 2007 Reinforcement learning in autonomic computing:
A manifesto and case studies

S15 [114] I. Ozkaya, R. Kazman 2007 Quality-attribute based economic
& M. Klein valuation of architectural patterns

S16 [86] C. Kim, D. Lee, 2007 A Lightweight Value-based Software
I. Ko & J. Baik Architecture Evaluation

S17 [13] R. Bahsoon & W. Emmerich 2008 An economics-driven approach for valuing
scalability in distributed architectures

S18 [96] Y. Liu, M. Babar 2008 Middleware Architecture Evaluation for
& I. Gorton Dependable Self-managing Systems

[8] Martha Amram, Nalin Kulatilaka, et al. 1998. Real Options:: Managing Strategic Investment in an Uncertain World.
OUP Catalogue (1998).

[9] Jayatirtha Asundi, Rick Kazman, and Mark Klein. 2001. Using economic considerations to choose among architecture
design alternatives. Technical Report. DTIC Document.

, Vol. 1, No. 1, Article . Publication date: April 2021.

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 43

Table 15. Studies included in the review (Continued).

Study# Ref Author(s) Year Title
S19 [75] W. Heaven, D. Sykes, 2009 A case study in goal-driven

J. Magee & J. Kramer architectural adaptation
S20 [87] D. Kim & S. Park 2009 Reinforcement learning-based dynamic

adaptation planning method for architecture-
based self-managed software

S21 [141] J. Yang, G. Huang, W. Zhu, 2009 Quality attribute tradeoff through
X. Cui & H. Mei adaptive architectures at runtime

S22 [94] J. Lee, S. Kang 2009 Software architecture evaluation methods
& C. Kim based on cost benefit analysis

and quantitative decision making
S23 [58] I. Epifani, C. Ghezzi, 2009 Model evolution by run-time

R. Mirandola parameter adaptation
& G. Tamburrelli

S24 [32] R. Calinescu 2009 Using quantitative analysis to implement
& M. Kwiatkowska autonomic IT systems

S25 [42] He. Christensen, K. Hansen 2011 Lightweight and continuous architectural
& B. LindstrÃÿm software quality assurance using

the asqa technique
S26 [117] R. Pooley & A. Abdullatif 2010 Cpasa: continuous performance assessment of

software architecture
S27 [64] F. Faniyi, R. Bahsoon, 2011 Evaluating security properties of architectures

A. Evans & R. Kazman in unpredictable environments:
A case for cloud

S28 [62] N. Esfahani, E. Kouroshfar 2011 Taming uncertainty in self-adaptive software
& S. Malek

S29 [31] R. Calinescu, K. Johnson 2011 Using observation ageing to
& Y. Rafiq improve Markovian model learning

in QoS engineering
S30 [30] R. Calinescu, L. Grunske, 2011 Dynamic QoS management and optimization

M. Kwiatkowska, in service-based systems
R. Mirandola
& G. Tamburrelli

S31 [104] I. Meedeniya, I. Moser, A. Aleti, 2011 Architecture-based reliability
& L. Grunske evaluation under uncertainty

S32 [103] I. Meedeniya, I. Moser, A. Aleti, 2011 Architecture-driven reliability optimization
& L. Grunske with uncertain model parameters

[10] Muhammad Ali Babar and Ian Gorton. 2004. Comparison of scenario-based software architecture evaluation methods.
In Software Engineering Conference, 2004. 11th Asia-Pacific. IEEE, 600–607.

[11] Muhammad Ali Babar, Liming Zhu, and Ross Jeffery. 2004. A framework for classifying and comparing software
architecture evaluation methods. In Software Engineering Conference, 2004. Proceedings. 2004 Australian. IEEE, 309–318.

[12] Rami Bahsoon and Wolfgang Emmerich. 2004. Evaluating architectural stability with real options theory. In Software
Maintenance, 2004. Proceedings. 20th IEEE International Conference on. IEEE, 443–447.

[13] Rami Bahsoon and Wolfgang Emmerich. 2008. An economics-driven approach for valuing scalability in distributed
architectures. In Software Architecture, 2008. WICSA 2008. Seventh Working IEEE/IFIP Conference on. IEEE, 9–18.

, Vol. 1, No. 1, Article . Publication date: April 2021.

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

44 Sobhy et al.

Table 16. Studies included in the review (Continued).

Study# Ref Author(s) Year Title
S33 [102] I. Meedeniya, A. Aleti, I. Avazpour 2012 Robust ArcheOpterix: Architecture

& A. Amin Optimization of Embedded Systems
Embedded Systems under uncertainty

S34 [113] M. Osterlind, P. Johnson, 2013 Enterprise architecture evaluation
K. Karnati, R. Lagerstrom using utility theory
& M. Valja

S35 [63] N. Esfahani, S. Malek 2013 GuideArch: guiding the exploration of
& K. Razavi architectural solution space

under uncertainty
S36 [46] D. Cooray, E. Kouroshfar, 2013 Proactive self-adaptation for improving

S. Malek & R. Roshandel embedded, the reliability of
mission-critical, and mobile software

S37 [61] N. Esfahani, A. Elkhodary 2013 A learning-based framework for
& S. Malek engineering feature-oriented self-adaptive

software systems
S38 [69] C. Ghezzi & A. Sharifloo 2013 Dealing with non-functional requirements

for adaptive systems via dynamic
software product-lines

S39 [67] E. Fredericks, B. DeVries 2014 Towards run-time adaptation of test
& B. Cheng cases for self-adaptive systems in

the face of uncertainty
S40 [95] E. Letier, D. Stefan 2014 Uncertainty, risk, and information value

& E. Barr in software requirements and architecture
S41 [105] I. Meedeniya, A. Aleti, 2014 Evaluating probabilistic models with

& L. Grunske uncertain model parameters
S42 [57] V. Eloranta, U. Heesch, 2015 Lightweight Evaluation of Software

P. Avgeriou, N. Harrison Architecture Decisions
& K. Koskimies

S43 [112] B. Ojameruaye, R. Bahsoon 2016 Sustainability debt: a portfolio-based
& L. Duboc approach for evaluating sustainability

requirements in architectures
S44 [106] G. Moreno, J. Camara, 2016 Efficient decision-making under uncertainty

D. Garlan & B. Schmerl for proactive self-adaptation
S45 [136] V. Donckt, M. Jeroen, 2018 Cost-Benefit Analysis at Runtime for

D. Weyns, M. Iftikhar Self-Adaptive Systems Applied to an
& R. Singh Internet of Things Application

S46 [48] M. De Sanctis, R. Spalazzese, 2019 Qos-based formation of software
& C. Trubiani architectures in the internet of things

S47 [28] A. Busch, D. Fuchß, 2019 Peropteryx: Automated improvement of
& A. Koziolek software architectures

S48 [127] D. Sobhy, L. Minku, R. Bahsoon 2020 Run-time evaluation of architectures:
T. Chen & R. Kazman A case study of diversification in IoT

, Vol. 1, No. 1, Article . Publication date: April 2021.

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 45

[14] Carliss Young Baldwin and Kim B Clark. 2000. Design rules: The power of modularity. Vol. 1. MIT press.
[15] Linden J Ball, Balder Onarheim, and Bo T Christensen. 2010. Design requirements, epistemic uncertainty and solution

development strategies in software design. Design Studies 31, 6 (2010), 567–589.
[16] Len Bass, Paul Clements, and Rick Kazman. 2012. Software architecture in practice. Addison-Wesley Professional.
[17] Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A Software Architect’s Perspective. Addison-Wesley Professional.
[18] PerOlof Bengtsson and Jan Bosch. 1998. Scenario-based software architecture reengineering. In Software Reuse, 1998.

Proceedings. Fifth International Conference on. IEEE, 308–317.
[19] PerOlof Bengtsson, Nico Lassing, Jan Bosch, and Hans van Vliet. 2004. Architecture-level modifiability analysis

(ALMA). Journal of Systems and Software 69, 1 (2004), 129–147.
[20] Amel Bennaceur, Valérie Issarny, Daniel Sykes, Falk Howar, Malte Isberner, Bernhard Steffen, Richard Johansson, and

Alessandro Moschitti. 2012. Machine learning for emergent middleware. In International Workshop on Eternal Systems.
Springer, 16–29.

[21] Patrik Berander, Lars-Ola Damm, Jeanette Eriksson, TonyGorschek, Kennet Henningsson, Per Jönsson, SimonKågström,
Drazen Milicic, Frans Mårtensson, Kari Rönkkö, et al. 2005. Software quality attributes and trade-offs. Blekinge Institute
of Technology (2005).

[22] Gordon Blair, Nelly Bencomo, and Robert B France. 2009. Models@ run. time. Computer 42, 10 (2009).
[23] Barry W Boehm et al. 1981. Software engineering economics. Vol. 197. Prentice-hall Englewood Cliffs (NJ).
[24] Barry W Boehm and Kevin J Sullivan. 2000. Software economics: a roadmap. In Proceedings of the conference on The

future of Software engineering. ACM, 319–343.
[25] Jan Bosch. 2004. Software architecture: The next step. In European Workshop on Software Architecture. Springer,

194–199.
[26] Jeremy S Bradbury, James R Cordy, Juergen Dingel, and Michel Wermelinger. 2004. A survey of self-management

in dynamic software architecture specifications. In Proceedings of the 1st ACM SIGSOFT workshop on Self-managed
systems. ACM, 28–33.

[27] Hongyu Pei Breivold, Ivica Crnkovic, and Magnus Larsson. 2012. A systematic review of software architecture
evolution research. Information and Software Technology 54, 1 (2012), 16–40.

[28] Axel Busch, Dominik Fuchß, and Anne Koziolek. 2019. Peropteryx: Automated improvement of software architectures.
In 2019 IEEE International Conference on Software Architecture Companion (ICSA-C). IEEE, 162–165.

[29] Radu Calinescu. 2013. Emerging techniques for the engineering of self-adaptive high-integrity software. In Assurances
for Self-Adaptive Systems. Springer, 297–310.

[30] Radu Calinescu, Lars Grunske, Marta Kwiatkowska, Raffaela Mirandola, and Giordano Tamburrelli. 2011. Dynamic
QoS management and optimization in service-based systems. IEEE Transactions on Software Engineering 37, 3 (2011),
387–409.

[31] Radu Calinescu, Kenneth Johnson, and Yasmin Rafiq. 2011. Using observation ageing to improve Markovian model
learning in QoS engineering. In Proceedings of the 2nd ACM/SPEC International Conference on Performance engineering.
ACM, 505–510.

[32] Radu Calinescu and Marta Kwiatkowska. 2009. Using quantitative analysis to implement autonomic IT systems. In
Software Engineering, 2009. ICSE 2009. IEEE 31st International Conference on. IEEE, 100–110.

[33] Javier Cámara, Gabriel Moreno, and David Garlan. 2015. Reasoning about human participation in self-adaptive systems.
In 2015 IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems. IEEE,
146–156.

[34] Stephanie Riegg Cellini and James Edwin Kee. 2015. Cost-effectiveness and cost-benefit analysis. Handbook of practical
program evaluation 4 (2015).

[35] Humberto Cervantes and Rick Kazman. 2016. Designing software architectures: a practical approach. Addison-Wesley
Professional.

[36] Franck Chauvel, Nicolas Ferry, Brice Morin, Alessandro Rossini, and Arnor Solberg. 2013. Models@ Runtime to
Support the Iterative and Continuous Design of Autonomic Reasoners.. In MoDELS@ Run. time. 26–38.

[37] Lianping Chen. 2018. Microservices: architecting for continuous delivery and DevOps. In 2018 IEEE International
Conference on Software Architecture (ICSA). IEEE, 39–397.

[38] Tao Chen, Ke Li, Rami Bahsoon, and Xin Yao. 2018. FEMOSAA: Feature-Guided and Knee-Driven Multi-Objective
Optimization for Self-Adaptive Software. ACM Trans. Softw. Eng. Methodol. 27, 2, Article 5 (June 2018), 50 pages.
https://doi.org/10.1145/3204459

[39] Betty HC Cheng, Kerstin I Eder, Martin Gogolla, Lars Grunske, Marin Litoiu, Hausi A Müller, Patrizio Pelliccione,
Anna Perini, Nauman A Qureshi, Bernhard Rumpe, et al. 2014. Using models at runtime to address assurance for
self-adaptive systems. In Models@ run. time. Springer, 101–136.

[40] Shang-Wen Cheng. 2008. Rainbow: cost-effective software architecture-based self-adaptation. ProQuest.

, Vol. 1, No. 1, Article . Publication date: April 2021.

https://doi.org/10.1145/3204459

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

46 Sobhy et al.

[41] Shang-Wen Cheng. 2008. Rainbow: Cost-effective Software Architecture-based Self-adaptation. Ph.D. Dissertation.
Pittsburgh, PA, USA. Advisor(s) Garlan, David. AAI3305807.

[42] Henrik Bærbak Christensen, Klaus Marius Hansen, and Bo Lindstrøm. 2010. Lightweight and continuous architectural
software quality assurance using the asqa technique. In European Conference on Software Architecture. Springer,
118–132.

[43] Paul Clements, Rick Kazman, Mark Klein, et al. 2003. Evaluating software architectures. Tsinghua University Press
Beijing.

[44] David W Coit, Tongdan Jin, and Naruemon Wattanapongsakorn. 2004. System optimization with component reliability
estimation uncertainty: a multi-criteria approach. IEEE transactions on reliability 53, 3 (2004), 369–380.

[45] Software Engineering Standards Committee et al. 1998. IEEE Standard for a software quality metrics methodology, Std.
1061-1998. Technical Report. Technical Report.

[46] Deshan Cooray, Ehsan Kouroshfar, Sam Malek, and Roshanak Roshandel. 2013. Proactive self-adaptation for improving
the reliability of mission-critical, embedded, and mobile software. IEEE Transactions on Software Engineering 39, 12
(2013), 1714–1735.

[47] Rogério De Lemos, Holger Giese, Hausi A Müller, Mary Shaw, Jesper Andersson, Marin Litoiu, Bradley Schmerl,
Gabriel Tamura, Norha M Villegas, Thomas Vogel, et al. 2013. Software engineering for self-adaptive systems: A
second research roadmap. In Software Engineering for Self-Adaptive Systems II. Springer, 1–32.

[48] Martina De Sanctis, Romina Spalazzese, and Catia Trubiani. 2019. Qos-based formation of software architectures in
the internet of things. In European Conference on Software Architecture. Springer, 178–194.

[49] Mark Denne and Jane Cleland-Huang. 2004. The incremental funding method: Data-driven software development.
IEEE software 21, 3 (2004), 39–47.

[50] Armen Der Kiureghian and Ove Ditlevsen. 2009. Aleatory or epistemic? Does it matter? Structural Safety 31, 2 (2009),
105–112.

[51] Yves Deswarte, Karama Kanoun, and Jean-Claude Laprie. 1998. Diversity against accidental and deliberate faults. In
csda. IEEE, 171.

[52] Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar. 2015. Learning in nonstationary environments: A
survey. IEEE Computational Intelligence Magazine 10, 4 (2015), 12–25.

[53] Liliana Dobrica and Eila Niemela. 2002. A survey on software architecture analysis methods. IEEE Transactions on
software Engineering 28, 7 (2002), 638–653.

[54] Donia El Kateb, François Fouquet, Grégory Nain, Jorge Augusto Meira, Michel Ackerman, and Yves Le Traon. 2014.
Generic cloud platform multi-objective optimization leveraging models@ run.time. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing. ACM, 343–350.

[55] Ahmed Elkhodary, Naeem Esfahani, and Sam Malek. 2010. FUSION: a framework for engineering self-tuning self-
adaptive software systems. In Proceedings of the eighteenth ACM SIGSOFT international symposium on Foundations of
software engineering. ACM, 7–16.

[56] Salah E Elmaghraby, Willy S Herroelen, et al. 1990. The scheduling of activities to maximize the net present value of
projects. European Journal of Operational Research 49, 1 (1990), 35–49.

[57] Veli-Pekka Eloranta, Uwe van Heesch, Paris Avgeriou, Neil Harrison, and Kai Koskimies. 2015. Lightweight Evaluation
of Software Architecture Decisions. In Relating System Quality and Software Architecture. Elsevier, 157–179.

[58] Ilenia Epifani, Carlo Ghezzi, Raffaela Mirandola, and Giordano Tamburrelli. 2009. Model evolution by run-time
parameter adaptation. In Proceedings of the 31st International Conference on Software Engineering. IEEE Computer
Society, 111–121.

[59] Hakan Erdogmus. 2002. A Real Options Perspective of Software Reuse. In International Workshop on Reuse Economics
âĂĲRedirecting Reuse EconomicsâĂİ Tuesday.

[60] Hakan Erdogmus and Jennifer Vandergraaf. 1999. Quantitative approaches for assessing the value of COTS-centric
development. (1999).

[61] NaeemEsfahani, Ahmed Elkhodary, and SamMalek. 2013. A learning-based framework for engineering feature-oriented
self-adaptive software systems. IEEE transactions on software engineering 39, 11 (2013), 1467–1493.

[62] Naeem Esfahani, Ehsan Kouroshfar, and Sam Malek. 2011. Taming uncertainty in self-adaptive software. In Proceedings
of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software engineering. ACM,
234–244.

[63] Naeem Esfahani, Sam Malek, and Kaveh Razavi. 2013. GuideArch: guiding the exploration of architectural solution
space under uncertainty. In Software Engineering (ICSE), 2013 35th International Conference on. IEEE, 43–52.

[64] Funmilade Faniyi, Rami Bahsoon, Andy Evans, and Rick Kazman. 2011. Evaluating security properties of architectures
in unpredictable environments: A case for cloud. In 2011 Ninth Working IEEE/IFIP Conference on Software Architecture.
IEEE, 127–136.

, Vol. 1, No. 1, Article . Publication date: April 2021.

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 47

[65] John Favaro. 1996. A comparison of approaches to reuse investment analysis. In Software Reuse, 1996., Proceedings
Fourth International Conference on. IEEE, 136–145.

[66] Craig R Fox and Gülden Ülkümen. 2011. Distinguishing two dimensions of uncertainty. Perspectives on thinking,
judging, and decision making (2011), 21–35.

[67] Erik M Fredericks, Byron DeVries, and Betty HC Cheng. 2014. Towards run-time adaptation of test cases for self-
adaptive systems in the face of uncertainty. In Proceedings of the 9th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems. ACM, 17–26.

[68] David Garlan and Bradley Schmerl. 2004. Using architectural models at runtime: Research challenges. In European
Workshop on Software Architecture. Springer, 200–205.

[69] Carlo Ghezzi and Amir Molzam Sharifloo. 2013. Dealing with non-functional requirements for adaptive systems via
dynamic software product-lines. In Software Engineering for Self-Adaptive Systems II. Springer, 191–213.

[70] Lars Grunske. 2006. Identifying good architectural design alternatives with multi-objective optimization strategies. In
Proceedings of the 28th international conference on Software engineering. ACM, 849–852.

[71] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami. 2013. Internet of Things (IoT): A
vision, architectural elements, and future directions. Future Generation Computer Systems 29, 7 (2013), 1645–1660.

[72] Marcus Handte, Gregor Schiele, Verena Matjuntke, Christian Becker, and Pedro José Marrón. 2012. 3PC: System
support for adaptive peer-to-peer pervasive computing. ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 7, 1 (2012), 10.

[73] Mark Harman and Bryan F Jones. 2001. Search-based software engineering. Information and software Technology 43,
14 (2001), 833–839.

[74] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-based software engineering: Trends, techniques
and applications. ACM Computing Surveys (CSUR) 45, 1 (2012), 1–61.

[75] William Heaven, Daniel Sykes, Jeff Magee, and Jeff Kramer. 2009. A case study in goal-driven architectural adaptation.
In Software Engineering for Self-Adaptive Systems. Springer, 109–127.

[76] Robert Heinrich. 2016. Architectural run-time models for performance and privacy analysis in dynamic cloud
applications. ACM SIGMETRICS Performance Evaluation Review 43, 4 (2016), 13–22.

[77] Robert Heinrich, Christian Zirkelbach, and Reiner Jung. 2017. Architectural Runtime Modeling and Visualization for
Quality-Aware DevOps in Cloud Applications. In 2017 IEEE International Conference on Software Architecture Workshops
(ICSAW). IEEE, 199–201.

[78] Nikolaus Huber, Fabian Brosig, Simon Spinner, Samuel Kounev, and Manuel Bähr. 2016. Model-based self-aware
performance and resource management using the descartes modeling language. IEEE Transactions on Software
Engineering 43, 5 (2016), 432–452.

[79] Mugurel T Ionita, Pierre America, Dieter K Hammer, Henk Obbink, and Jos JM Trienekens. 2004. A scenario-driven
approach for value, risk, and cost analysis in system architecting for innovation. In Software Architecture, 2004. WICSA
2004. Proceedings. Fourth Working IEEE/IFIP Conference on. IEEE, 277–280.

[80] Anton Jansen and Jan Bosch. 2005. Software architecture as a set of architectural design decisions. In Software
Architecture, 2005. WICSA 2005. 5th Working IEEE/IFIP Conference on. IEEE, 109–120.

[81] Lawrence G Jones and Anthony J Lattanze. 2001. Using the architecture tradeoff analysis method to evaluate a wargame
simulation system: A case study. Technical Report. DTIC Document.

[82] Rick Kazman, Jai Asundi, and Mark Klein. 2001. Quantifying the costs and benefits of architectural decisions. In
Proceedings of the 23rd international conference on Software engineering. IEEE Computer Society, 297–306.

[83] Rick Kazman, Len Bass, Gregory Abowd, and Mike Webb. 1994. SAAM: A method for analyzing the properties of
software architectures. In Software Engineering, 1994. Proceedings. ICSE-16., 16th International Conference on. IEEE,
81–90.

[84] Rick Kazman, Len Bass, and Mark Klein. 2006. The essential components of software architecture design and analysis.
Journal of Systems and Software 79, 8 (2006), 1207–1216.

[85] Rick Kazman, Mark Klein, and Paul Clements. 2000. ATAM: Method for architecture evaluation. Technical Report. DTIC
Document.

[86] Chang-Ki Kim, Dan-Hyung Lee, In-Young Ko, and Jongmoon Baik. 2007. A lightweight value-based software architec-
ture evaluation. In Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2007.
SNPD 2007. Eighth ACIS International Conference on, Vol. 2. IEEE, 646–649.

[87] Dongsun Kim and Sooyong Park. 2009. Reinforcement learning-based dynamic adaptation planning method for
architecture-based self-managed software. In 2009 ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems. IEEE, 76–85.

[88] Barbara Kitchenham, O Pearl Brereton, David Budgen,Mark Turner, John Bailey, and Stephen Linkman. 2009. Systematic
literature reviews in software engineering–a systematic literature review. Information and software technology 51, 1
(2009), 7–15.

, Vol. 1, No. 1, Article . Publication date: April 2021.

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

48 Sobhy et al.

[89] Barbara Kitchenham, Rialette Pretorius, David Budgen, O Pearl Brereton, Mark Turner, Mahmood Niazi, and Stephen
Linkman. 2010. Systematic literature reviews in software engineering–a tertiary study. Information and Software
Technology 52, 8 (2010), 792–805.

[90] Heiko Koziolek. 2011. Sustainability evaluation of software architectures: a systematic review. In Proceedings of the
joint ACM SIGSOFT conference–QoSA and ACM SIGSOFT symposium–ISARCS on Quality of software architectures–QoSA
and architecting critical systems–ISARCS. ACM, 3–12.

[91] Jeff Kramer and Jeff Magee. 2007. Self-managed systems: an architectural challenge. In 2007 Future of Software
Engineering. IEEE Computer Society, 259–268.

[92] Philippe B Kruchten. 1995. The 4+ 1 view model of architecture. IEEE software 12, 6 (1995), 42–50.
[93] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele, and Christian Becker. 2015. A survey

on engineering approaches for self-adaptive systems. Pervasive and Mobile Computing 17 (2015), 184–206.
[94] Jihyun Lee, Sungwon Kang, and Chang-Ki Kim. 2009. Software architecture evaluation methods based on cost benefit

analysis and quantitative decision making. Empirical Software Engineering 14, 4 (2009), 453–475.
[95] Emmanuel Letier, David Stefan, and Earl T Barr. 2014. Uncertainty, risk, and information value in software requirements

and architecture. In Proceedings of the 36th International Conference on Software Engineering. ACM, 883–894.
[96] Yan Liu, Muhammad Ali Babar, and Ian Gorton. 2008. Middleware architecture evaluation for dependable self-managing

systems. In International Conference on the Quality of Software Architectures. Springer, 189–204.
[97] Timothy A Luehrman. 1998. Strategy as a portfolio of real options. Harvard business review 76 (1998), 89–101.
[98] Sara Mahdavi-Hezavehi, Vinicius HS Durelli, Danny Weyns, and Paris Avgeriou. 2017. A systematic literature review

on methods that handle multiple quality attributes in architecture-based self-adaptive systems. Information and
Software Technology 90 (2017), 1–26.

[99] Sara Mahdavi-Hezavehi, Matthias Galster, and Paris Avgeriou. 2013. Variability in quality attributes of service-based
software systems: A systematic literature review. Information and Software Technology 55, 2 (2013), 320–343.

[100] Harry Markowitz. 1959. Portfolio Selection, Cowles Foundation Monograph No. 16. John Wiley, New York. S. Moss
(1981). An Economic theory of Business Strategy, Halstead Press, New York. TH Naylor (1966). The theory of the firm: a
comparison of marginal analysis and linear programming. Southern Economic Journal (January) 32 (1959), 263–74.

[101] R Timothy Marler and Jasbir S Arora. 2004. Survey of multi-objective optimization methods for engineering. Structural
and multidisciplinary optimization 26, 6 (2004), 369–395.

[102] Indika Meedeniya, Aldeida Aleti, Iman Avazpour, and Ayman Amin. 2012. Robust archeopterix: Architecture
optimization of embedded systems under uncertainty. In 2012 Second International Workshop on Software Engineering
for Embedded Systems (SEES). IEEE, 23–29.

[103] Indika Meedeniya, Aldeida Aleti, and Lars Grunske. 2012. Architecture-driven reliability optimization with uncertain
model parameters. Journal of Systems and Software 85, 10 (2012), 2340–2355.

[104] Indika Meedeniya, Irene Moser, Aldeida Aleti, and Lars Grunske. 2011. Architecture-based reliability evaluation
under uncertainty. In Proceedings of the joint ACM SIGSOFT conference–QoSA and ACM SIGSOFT symposium–ISARCS
on Quality of software architectures–QoSA and architecting critical systems–ISARCS. ACM, 85–94.

[105] Indika Meedeniya, Irene Moser, Aldeida Aleti, and Lars Grunske. 2014. Evaluating probabilistic models with uncertain
model parameters. Software & Systems Modeling 13, 4 (2014), 1395–1415.

[106] Gabriel A Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2016. Efficient decision-making under
uncertainty for proactive self-adaptation. In Autonomic Computing (ICAC), 2016 IEEE International Conference on. IEEE,
147–156.

[107] Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey, and Arnor Solberg. 2009. Models@ run. time to
support dynamic adaptation. Computer 42, 10 (2009).

[108] Klara Nahrstedt, Hongyang Li, Phuong Nguyen, Siting Chang, and Long Vu. 2016. Internet of mobile things: Mobility-
driven challenges, designs and implementations. In Internet-of-Things Design and Implementation (IoTDI), 2016 IEEE
First International Conference on. IEEE, 25–36.

[109] Nanjangud Narendra and Prasant Misra. 2016. Research Challenges in the Internet of Mobile Things. (March 2016).
https://iot.ieee.org/newsletter/march-2016/research-challenges-in-the-internet-of-mobile-things.html

[110] Robert C Nickerson, Upkar Varshney, and Jan Muntermann. 2013. A method for taxonomy development and its
application in information systems. European Journal of Information Systems 22, 3 (2013), 336–359.

[111] William L Oberkampf, Jon C Helton, Cliff A Joslyn, Steven F Wojtkiewicz, and Scott Ferson. 2004. Challenge problems:
uncertainty in system response given uncertain parameters. Reliability Engineering & System Safety 85, 1-3 (2004),
11–19.

[112] Bendra Ojameruaye, Rami Bahsoon, and Leticia Duboc. 2016. Sustainability debt: a portfolio-based approach for
evaluating sustainability requirements in architectures. In Proceedings of the 38th International Conference on Software
Engineering Companion. ACM, 543–552.

, Vol. 1, No. 1, Article . Publication date: April 2021.

https://iot.ieee.org/newsletter/march-2016/research-challenges-in-the-internet-of-mobile-things.html

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

Evaluation of Software Architectures under Uncertainty:
A Systematic Literature Review 49

[113] Magnus Osterlind, Pontus Johnson, Kiran Karnati, Robert Lagerstrom, and Margus Valja. 2013. Enterprise architecture
evaluation using utility theory. In 2013 17th IEEE International Enterprise Distributed Object Computing Conference
Workshops. IEEE, 347–351.

[114] Ipek Ozkaya, Rick Kazman, and Mark Klein. 2007. Quality-attribute based economic valuation of architectural
patterns. In Economics of Software and Computation, 2007. ESC’07. First International Workshop on the. IEEE, 5–5.

[115] Dewayne E Perry and Alexander L Wolf. 1992. Foundations for the study of software architecture. ACM SIGSOFT
Software Engineering Notes 17, 4 (1992), 40–52.

[116] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for conducting systematic mapping studies
in software engineering: An update. Information and Software Technology 64 (2015), 1–18.

[117] RJ Pooley and AAL Abdullatif. 2010. Cpasa: continuous performance assessment of software architecture. In
Engineering of Computer Based Systems (ECBS), 2010 17th IEEE International Conference and Workshops on. IEEE, 79–87.

[118] Aurora Ramirez, José Raúl Romero, and Sebastian Ventura. 2019. A survey of many-objective optimisation in
search-based software engineering. Journal of Systems and Software 149 (2019), 382–395.

[119] Samuel T Redwine Jr and William E Riddle. 1985. Software technology maturation. In Proceedings of the 8th
international conference on Software engineering. IEEE Computer Society Press, 189–200.

[120] Ralf H Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne Koziolek, Heiko Koziolek, Max Kramer, and
Klaus Krogmann. 2016. Modeling and simulating software architectures: The Palladio approach. MIT Press.

[121] Matthias Rohr, Simon Giesecke, Marcel Hiel, Willem-Jan van den Heuvel, Hans Weigand, and Wilhelm Hasselbring.
2006. A classification scheme for self-adaptation research. (2006).

[122] Banani Roy and TC Nicholas Graham. 2008. Methods for evaluating software architecture: A survey. School of
Computing TR 545 (2008), 82.

[123] Thomas L Saaty. 2008. Decision making with the analytic hierarchy process. International journal of services sciences
1, 1 (2008), 83–98.

[124] Software Engineering Institute (SEI). 2018. Reduce Risk with Architecture Evaluation. Technical Report. SEI/CMU.
[125] Mary Shaw and David Garlan. 1996. Software architecture: perspectives on an emerging discipline. Vol. 1. Prentice Hall

Englewood Cliffs.
[126] Dalia Sobhy, Rami Bahsoon, Leandro Minku, and Rick Kazman. 2016. Diversifying Software Architecture for

Sustainability: A Value-based Perspective. Proceedings of 2016 the European Conference on Software Architecture (ECSA)
(2016).

[127] Dalia Sobhy, Leandro Minku, Rami Bahsoon, Tao Chen, and Rick Kazman. 2020. Run-time evaluation of architectures:
A case study of diversification in IoT. Journal of Systems and Software 159 (2020), 110428.

[128] Kevin J Sullivan, Prasad Chalasani, Somesh Jha, and Vibha Sazawal. 1999. Software design as an investment activity:
a real options perspective. Real options and business strategy: Applications to decision making (1999), 215–262.

[129] Kevin J Sullivan, William G Griswold, Yuanfang Cai, and Ben Hallen. 2001. The structure and value of modularity in
software design. In ACM SIGSOFT Software Engineering Notes, Vol. 26. ACM, 99–108.

[130] Harald Sundmaeker, Patrick Guillemin, Peter Friess, and Sylvie Woelfflé. 2010. Vision and challenges for realising the
Internet of Things. (2010).

[131] Michael Szvetits and Uwe Zdun. 2016. Systematic literature review of the objectives, techniques, kinds, and architec-
tures of models at runtime. Software & Systems Modeling 15, 1 (2016), 31–69.

[132] Brendan Tansey and Eleni Stroulia. 2007. Valuating software service development: integrating COCOMO II and real
options theory. In Economics of Software and Computation, 2007. ESC’07. First International Workshop on the. IEEE, 8–8.

[133] Gerald Tesauro. 2007. Reinforcement learning in autonomic computing: A manifesto and case studies. IEEE Internet
Computing 11, 1 (2007), 22–30.

[134] Lenos Trigeorgis. 1996. Real options: Managerial flexibility and strategy in resource allocation. MIT press.
[135] Catia Trubiani, Indika Meedeniya, Vittorio Cortellessa, Aldeida Aleti, and Lars Grunske. 2013. Model-based per-

formance analysis of software architectures under uncertainty. In Proceedings of the 9th international ACM Sigsoft
conference on Quality of software architectures. ACM, 69–78.

[136] M Jeroen Van Der Donckt, Danny Weyns, M Usman Iftikhar, and Ritesh Kumar Singh. 2018. Cost-Benefit Analysis
at Runtime for Self-adaptive Systems Applied to an Internet of Things Application.. In Proceedings of ENASE 2018,
Portugal.

[137] Jan Salvador van der Ven, Anton GJ Jansen, Jos AG Nijhuis, and Jan Bosch. 2006. Design decisions: The bridge
between rationale and architecture. In Rationale management in software engineering. Springer, 329–348.

[138] Naruemon Wattanapongskorn and David W Coit. 2007. Fault-tolerant embedded system design and optimization
considering reliability estimation uncertainty. Reliability Engineering & System Safety 92, 4 (2007), 395–407.

[139] Lloyd G Williams and Connie U Smith. 2002. PASA SM: a method for the performance assessment of software
architectures. In Proceedings of the 3rd international workshop on Software and performance. ACM, 179–189.

, Vol. 1, No. 1, Article . Publication date: April 2021.

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

50 Sobhy et al.

[140] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software
engineering. In Proceedings of the 18th international conference on evaluation and assessment in software engineering.
ACM, 38.

[141] Jie Yang, Gang Huang, Wenhui Zhu, Xiaofeng Cui, and Hong Mei. 2009. Quality attribute tradeoff through adaptive
architectures at runtime. Journal of Systems and Software 82, 2 (2009), 319–332.

[142] He Zhang and Muhammad Ali Babar. 2010. On searching relevant studies in software engineering. (2010).
[143] Dongbin Zhao and Zhaohui Hu. 2011. Supervised adaptive dynamic programming based adaptive cruise control. In

2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). IEEE, 318–323.
[144] Ruiqing Zhao and Baoding Liu. 2004. Redundancy optimization problems with uncertainty of combining randomness

and fuzziness. European Journal of Operational Research 157, 3 (2004), 716–735.
[145] Liming Zhu, Aybüke Aurum, Ian Gorton, and Ross Jeffery. 2005. Tradeoff and sensitivity analysis in software

architecture evaluation using analytic hierarchy process. Software Quality Journal 13, 4 (2005), 357–375.
[146] Peter Zimmerer. 2018. Strategy for continuous testing in iDevOps. In Proceedings of the 40th International Conference

on Software Engineering: Companion Proceeedings. ACM, 532–533.

, Vol. 1, No. 1, Article . Publication date: April 2021.

	Abstract
	1 Introduction
	1.1 Preliminaries and Basic Concepts

	2 Systematic Literature Review Process
	2.1 SLR Protocol
	2.2 Inclusion and Exclusion Criteria
	2.3 Search Strategy
	2.4 Search Execution
	2.5 Quality Assessment
	2.6 Data Extraction process

	3 Overview of the included studies
	3.1 Distribution of Studies over Publication Channels
	3.2 Distribution of Included Studies Through the Years
	3.3 Citation Rate of Included Studies

	4 Data Extraction Results
	4.1 Classification Framework
	4.2 Quality Evaluation
	4.3 Quality Attribute Considerations
	4.4 Level of Autonomy
	4.5 Uncertainty Management
	4.6 Limitations of the Review

	5 Related Reviews
	6 Discussion and Recommendations for Future Research
	6.1 Research Area Maturation
	6.2 Leveraging Existing Approaches To Develop A Continuous Evaluation Framework
	6.3 Finding The Necessary Ingredients For Developing A Continuous Evaluation Framework

	7 Conclusion
	A The list of included studies with respect to classification framework
	B The Included Studies and their maturity level
	References

