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Abstract

Plant morphology emerges from cellular growth and structure. The
turgor-driven diffuse growth of a cell can be highly anisotropic: signifi-
cant longitudinally and negligible radially. Such anisotropy is ensured
by cellulose microfibrils (CMF) reinforcing the cell wall in the hoop
direction. To maintain the cell’s integrity during growth, new wall
material including CMF must be continually deposited. We develop
a mathematical model representing the cell as a cylindrical pressure
vessel and the cell wall as a fibre-reinforced viscous sheet, explicitly
including the mechano-sensitive angle of CMF deposition. The model
incorporates interactions between turgor, external forces, CMF re-
orientation during wall extension, and matrix stiffening. Using the
model, we reinterpret some recent experimental findings, and reex-
amine the popular hypothesis of CMF/microtubule alignment. We
explore how the handedness of twisting cell growth depends on ex-
ternal torque and intrinsic wall properties, and find that cells twist
left-handedly ‘by default’ in some suitable sense. Overall, this study
provides a unified mechanical framework for understanding left- and
right-handed twist-growth as seen in many plants.

Keywords: twist growth, cell wall anisotropy, fibre reorientation, fibre-
reinforced fluid, matrix stiffening
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1 Introduction

To attain a fundamental understanding of plant growth is an attractive fron-
tier of developmental biology, as it can help to ensure that plants thrive in
adverse climatic and agricultural environments (Lynch and Wojciechowski,
2015). It is therefore imperative to improve predictive capabilities and mech-
anistic insight for growth and morphogenesis based on findings of biologi-
cal structure and function (Mirabet et al., 2011). Mathematical modelling
holds the key to a quantitative framework for explaining and predicting plant
growth phenomena across different scales: from cellular through tissue to or-
ganismic (Bruce, 2003; Ali et al., 2014; Jensen and Fozard, 2015). Here, we
focus on the cellular level.

Broadly speaking, plant cell growth can be of two types: tip growth,
where growth occurs at a tip of the cell; and diffuse growth, where growth
occurs over the whole cell. In this work we focus on the latter. A com-
mon example of diffuse growth is found in the primary root of Arabidopsis
thaliana, predominantly within the elongation zone (EZ) of the root. We
view the simplified structure of a cell as a pressure vessel which is approx-
imately cylindrical, bounded by a viscous fluid sheet representing the cell
wall. The cytoplasm imposes an internal turgor pressure, which acts on the
cell wall to induce irreversible expansion and hence growth. The cell wall
is reinforced by cellulose microfibrils (CMF) arranged in a hoop-like fashion
within a ground matrix made of pectin and hemicellulose. The CMF rein-
forcement produces growth anisotropy, with significant expansion along the
axial direction and little expansion in the radial direction (Baskin, 2005).
The CMF can resist ground matrix mobility in the hoop direction, thereby
preventing radial growth; they can also sustain high tensile forces and inhibit
growth along their length (Somerville et al., 2004). The model presented here
will incorporate all of the effects outlined above.

One of the simplest and most widely-used theoretical models of plant cell
growth was devised by Lockhart (1965). According to the Lockhart equation,
turgor pressure, P , can initiate growth (i.e. a positive relative elongation
rate, or RER, for a cell of length l at time t) only beyond a threshold value
Y , and the growth reflects a viscoplastic behaviour through an extensibility
parameter Φ, such that

RER ≡ 1

l

dl

dt
= Φ (P − Y ) , for P > Y. (1)
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Some work has been done to express the threshold value Y and the extensibil-
ity parameter Φ in terms of structural components of the cell (Passioura and
Fry, 1992; Veytsman and Cosgrove, 1998; Dyson et al., 2012); see Smithers
et al. (2019) for more details.

A major defect of the Lockhart equation (1) is its globalness: it does not
link biological structure to local growth mechanics. Alternatives to, or varia-
tions on, the Lockhart model have been proposed. Ortega (1985) augmented
the Lockhart equation to include elastic effects. More recently, Dyson and
Jensen (2010) adopted a bottom-up approach, modelling the structural com-
ponents of the cell and properly accounting for stresses based on fundamental
mechanical principles. The proposed fibre-reinforced viscous fluid model of
the cell wall, with particular focus on the orientation of the CMF, was similar
in spirit to an earlier work for tip growth by Dumais et al. (2006). Progress
has also been made in upscaling cell-level properties to the tissue-level in
order to study organ elongation and bending (Dyson et al., 2014). Further-
more, Huang et al. (2012, 2015) developed a rigorous hyperelastic-viscoplastic
model of cell growth incorporating the effects of reorienting microfibrils, wall
loosening and hardening, and anisotropic material properties. These studies
built on a number of previous growth models that had employed elasticity
theories of shells and membranes (Boudaoud, 2003; Goriely and Tabor, 2008).
A detailed critique and comparison of these and other models of growth of
walled cells may be found in some excellent reviews (Geitmann and Ortega,
2009; Ortega and Welch, 2013; Smithers et al., 2019).

Despite their broad scope, these models cannot capture all aspects of
biological reality, and one such aspect of great importance is helical or twist-
ing growth. Understanding organ-level twist growth matters because of its
ecological and economic implications. For example, helical mutants of crops
tend to be smaller than straight-growing wild-types; on the flipside, twist-
ing roots may push through soil more efficiently (Chen et al., 2003). Since
single-cell twisting can translate into organ helicity, models of twisting cell
growth may serve as proxies for organ-level phenomena (Schulgasser and
Witztum, 2004; Buschmann et al., 2009). Indeed, helical organ growth may
be a relaxation mechanism to resolve the conflict between single cell ten-
dencies to twist and cell-cell adhesion forces (Verger et al., 2019). Twisting
cells have been studied experimentally and with simple models (Probine,
1963; Abraham et al., 2012), but a model that incorporates the interplay
between cell twist and CMF reorientation is currently lacking. We present
here a model that incorporates left- and right-handed twisting growth under
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a unified framework, responding to the fact that the two orientations are
not pathway-separated (Buschmann and Borchers, 2019). The model inte-
grates cell wall components, since handedness may be an intrinsic property
of the cell wall (Landrein et al., 2013) and pectin may counteract the cell
wall chirality (Saffer et al., 2017). The stiffening of pectin gels in the ground
matrix, which may be a function of pectin methylesterases, is also considered
(Peaucelle et al., 2015).

In this study, we build on and extend the formulation of Dyson and Jensen
(2010) to develop a more general framework incorporating dynamic evolution
of CMF deposition angle and matrix stiffening effects. A temporally varying
deposition angle is compatible with varying fibre orientation across the cell
wall thickness, which can result from different extents to which reorientation
occurs during cell expansion (Anderson et al., 2010). Crucially, we show
that the interaction between orientation variations and mechanical forces
regulates twisting growth behaviour.

The rest of this paper is organised as follows. In Section 2, we present
our governing equations in the most general form. We describe the axisym-
metric geometry to model the cell, set up the co-ordinate system, specify
kinematic constraints, and present the nondimensionalisation. In Section
3, we simplify the system of equations through asymptotic techniques, pre-
senting leading-order dynamical equations for cell elongation, cell twist and
fibre re-orientation, and provide a brief analysis of the system including con-
straints on the parameter space. We also describe the types of initial and
boundary conditions that will be imposed. In particular, we describe two
choices of CMF-deposition regime, both of which are justified by experimen-
tal observations. We then solve the equations numerically and present results
in Section 4. We investigate the effect on growth of various model param-
eters, including viscosity coefficients, external torque, and matrix stiffening
rate. Finally, in Section 5, we draw conclusions and highlight the biological
implications of our results.

2 Model outline

We model the cell as an axisymmetric structure surrounded by a sheet of vis-
cous, incompressible fluid which represents a permanently yielded cell wall
(Figure 1). The sheet is attached to rigid end plates and subjected to a
uniform internal pressure P ∗. All external effects due to neighbouring cells
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Figure 1: Model geometry of a single cell whose wall is represented as an
axisymmetric sheet held between two rigid plates.

are captured through a longitudinal pressure, Q∗; a radial compressive pres-
sure, P ∗ext; and a torque (per unit area) Σ∗ applied to the top end of the
cell. The bottom end is assumed fixed. To simplify the formulation with-
out losing generality, we take P ∗ext = 0, implying that all other pressures are
represented with respect to the external compressive pressure. Thus, it is
the direct action of P ∗ that induces cell growth. This growth would lead
to the thinning of the cell wall; to compensate, new material is continually
deposited on the inner surface of the cell wall, which we model by an explicit
boundary condition.

2.1 Governing equations

Conservation of mass under the assumption of incompressibility is given by

∇∗ ·U ∗ = 0, (2)

where U ∗ is the fluid velocity. We will encode CMF deposition through a
kinematic boundary condition (to be detailed later). Conservation of mo-
mentum is given by

∇∗ · σ∗ = 0, (3)

where σ∗ is the Cauchy stress tensor.
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The stress tensor is related to the velocity through an appropriate con-
stitutive relation, which depends on the material make-up of the cell wall.
Here, we model the cell wall as a homogeneous material (denoting the pectin
matrix together with the hemicellulose links) reinforced by fibres (denoting
the CMF). We consider a single family of fibres with a director field a, such
that |a| = 1. To model this fibre-reinforced cell wall material, we choose a
phenomenological constitutive relation displaying transverse isotropy along
the director field (Ericksen, 1960),

σ∗ = −p∗I + 2µ∗0e
∗ + µ∗1a⊗ a+ µ∗2ζ

∗(a⊗ a)

+ 2µ∗3 (a⊗ (e∗a) + (e∗a)⊗ a) , (4)

where p∗ is the fluid pressure, I the identity tensor, µ∗0, µ
∗
2, and µ∗3 are viscosity

coefficients, µ∗1 the active tension along the fibre direction, and ζ∗ = aTe∗a
the strain-rate in the fibre direction with e∗ = (∇∗U ∗+∇∗U ∗T)/2 being the
rate-of-strain tensor. The constitutive relation for an incompressible isotropic
fluid can be recovered from (4) by setting µ∗1 = µ∗2 = µ∗3 = 0, so µ∗0 can be
interpreted as the isotropic component of the matrix viscosity modified by
the fibre volume fraction. Since the third term on the right-hand side of (4)
is independent of e∗, it contributes to the presence of a stress even when
the velocity is zero. Additionally, since this term involves only the director
field, the viscosity coefficient µ∗1 represents the stress in the fibres; this stress
can only be a tensile one because no stress is induced in the fibres under
compression. The coefficients µ∗2 and µ∗3 are interpreted by considering two-
dimensional deformations in the plane of the fibres. Parallel to the fibre
direction, we have the extensional viscosity µ∗‖ = µ∗0 + (µ∗2 + 4µ∗3)/2, while
orthogonal to the fibre direction, we have µ∗⊥ = µ∗0; furthermore, the shear
viscosity is µ∗s = µ∗0 + µ∗3 parallel to the fibre direction. Since µ∗2 contributes
only to µ∗‖, it is interpreted as an extensional viscosity; and µ∗3 serves to
distinguish between µ⊥ and µs. Since µ∗0 has been recognised as the isotropic
contribution, µ∗3 can be interpreted as the anisotropic contribution to the
shear viscosity. For further discussions, see Holloway et al. (2018).

The model allows all µ∗i to vary in space and time. In particular, we focus
here on solutions where µ∗0 varies spatial-temporally, encoding changes in
pectin or hemicellulose. To model this effect, we employ a minimal evolution
equation,

∂µ∗0
∂t∗

+ (U ∗ ·∇∗)µ∗0 = α∗, (5)
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where α∗ is some constant rate of matrix stiffening.
Finally, the director field itself evolves according to the transport equation

(Green and Friedman, 2008; Dyson et al., 2016),

∂a

∂t∗
+ (U ∗ ·∇∗)a+ ζ∗a = (a ·∇∗)U ∗, (6)

whereby the director field is convected, stretched and reoriented by the wall
material.

The governing equations (2–6) describe the dynamics of a cell. Clearly,
boundary and initial conditions are required for the system; we detail these
in Section 3.1, after simplifications of the equations. The general frame-
work we have presented allows us to investigate a rich array of phenomena,
by prescribing boundary conditions which are rooted in biological reality.
The novel ability to make these boundary conditions explicit and spatio-
temporally varying gives us a much larger toolbox with which to probe cell
growth mechanics.

2.2 Geometric simplification

Following van de Fliert et al. (1995) and Dyson and Jensen (2010), we express
the model in body-fitted coordinates, so that we can exploit the slender
geometry of the cell wall. We use a curvilinear coordinate system in the
fluid sheet, with the right-handed coordinate 3-tuple (s∗, θ, n∗) (Figure 1).
Here, s∗ denotes the arclength measured from the base plate along the centre-
surface of the fluid sheet; θ is the azimuthal angle increasing anticlockwise
as viewed from the top; and n∗ is the distance from the centre-surface taken
to be positive in the inward normal direction.

We assume that the cell is axisymmetric about the longitudinal axis,
so that ∂/∂θ ≡ 0. At any point (s∗, θ) on the centre-surface of the sheet,
the lateral distance from the longitudinal axis of the cell is the cell radius,
R∗(s∗, t∗), and the fluid sheet thickness is h∗(s∗, t∗). Since s∗ and n∗ are
fitted to the fluid sheet, we measure the flow using the velocity u∗ = U ∗−v∗
relative to the velocity v∗ of the centre-surface. The components v∗s , v

∗
θ , and

v∗n of this centre-surface velocity, measured along the three base vectors es,
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eθ and en respectively, satisfy the kinematic constraints

0 =
∂v∗s
∂s∗
− κ∗sv∗n, (7a)

∂R∗

∂t∗
= v∗s

∂R∗

∂s∗
−R∗κ∗θv∗n, (7b)

v∗θ
∂R∗

∂s∗
= R∗

∂v∗θ
∂s∗

, (7c)

where the azimuthal and axial curvatures of the centre-surface are given by

κ∗θ =
∆∗

R∗
, κ∗s = − 1

∆∗
∂2R∗

∂s∗2
, (8)

with ∆∗ =
(
1− (∂R∗/∂s∗)2

)1/2
. See Dyson and Jensen (2010) for further

details. Since we are using a curvilinear coordinate system, components of
all vectors and tensors must be converted using the scaling factors

ls = 1− κ∗sn∗, l∗θ = R∗(1− κ∗θn∗), ln = 1, (9)

where ls and ln are dimensionless.
Finally, we assume an = 0, i.e. the fibres lie in the tangential plane of

the fluid sheet, so that as = sinφ and aθ = cosφ with φ being the angle
made by a fibre with the horizontal. We let φ take values in −π/2 ≤ φ ≤
π/2, because the system must be invariant under φ → φ + π. Crucially, a
fibre with 0 < φ < π/2 has right-handed helicity, whereas −π/2 < φ < 0
corresponds to left-handed helicity. We will use the as, aθ and the φ notation
interchangeably, depending on context.

2.3 Nondimensionalisation

We nondimensionalise the system using the following scalings:

{R∗, s∗, l∗, l∗θ} = R∗0{R, s, l, lθ}, {n∗, h∗} = h∗0{n, h}, t∗ =
εM∗

0

P ∗0
t,

{U ∗,u∗,v∗,F∗} =
R∗0P

∗
0

εM∗
0

{U ,u,v,F}, {e∗, ζ∗} =
P ∗0
εM∗

0

{e, ζ},

{σ∗, p∗, µ∗1, α∗} =
P ∗0
ε
{σ, p, µ1, α}, {µ∗0, µ∗2, µ∗3} = M∗

0{µ0, µ2, µ3},

{P ∗, Q∗} = P ∗0 {P,Q}, Σ∗ = R∗0P
∗
0 Σ, {κ∗s, κ∗θ} =

1

R∗0
{κs, κθ}.


(10)
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Parameters
R∗0 (initial cell radius) 10 µm (Swarup et al., 2005)
h∗0 (initial cell wall thickness) 0.1 µm (Dyson et al., 2014)
P ∗0 (initial turgor pressure) 0.4 MPa (Dyson et al., 2014)
P ∗ (turgor pressure) 0.4 MPa (Assumed)
Q∗ (external longitudinal pressure) 0.2 MPa (Assumed)
P & Q (dimensionless pressures) 1 unit equals P ∗0 = 0.4 MPa
M∗

0 (initial matrix viscosity) 5 GPa·s (Tanimoto et al., 2000)
α∗ (matrix stiffening rate) 0 to 20 MPa (Assumed)

α (dimensionless stiffening rate) 1 unit equals
P ∗0
ε

= 40 MPa
µ∗2 & µ∗3 (viscosity parameters) 500 to 50000 GPa·s (Assumed)
µ2 & µ3 (dimensionless viscosities) 1 unit equals M∗

0 = 5 GPa·s
Σ∗ (anticlockwise torque per unit

area on top plate)
−2 to 2 N·m−1 (Assumed)

Σ (dimensionless torque per area) 1 unit equals R∗0P
∗
0 = 4 N·m−1

ε = h∗0/R
∗
0 0.01 (by definition)

Dimensionless variables
R & l (cell radius & length) 1 unit equals R∗0 = 10µm
h (cell wall thickness) 1 unit equals h∗0 = 0.1µm
s & n (centre-surface coordinates) 1 unit equals R∗0 & h∗0 respectively

t (time) 1 unit equals
εM∗0
P ∗0

= 2 mins

U & u (fluid velocity in lab frame
& in centre-surface frame)

v (centre-surface velocity)
F (wall deposition rate)

1 unit equals
R∗0P

∗
0

εM∗0
= 300µm·h−1

e (cell wall strain-rate)
ζ (cell wall strain-rate along fibre)

1 unit equals
P ∗0
εM∗0

= 30 h−1

σ (stress in cell wall)
p (pressure in cell wall)
µ1 (stress due to fibre extension)

1 unit equals
P ∗0
ε

= 40 MPa

µ0 (matrix viscosity) 1 unit equals M∗
0 = 5 GPa·s

κs, κθ (centre-sheet curvatures) 1 unit equals 1
R∗0

= 0.1 rad·µm−1

φ (fibre angle from horizontal) φ > 0: right-handed configuration
Θ (azimuthal cell-twist) Θ > 0: right-handed twist

Table 1: Variables and parameters.

9



Interpretations of the variables and parameters in (10) are given in Table
1. In particular, note that R∗0, h

∗
0,M

∗
0 and P ∗0 are all assumed to be spatially

uniform. Upon nondimensionalisation, the governing equations (2–6) retain
their form, as do (7) and (8). For the scaling factors ls and lθ, we have

ls = 1− εκsn, lθ = R(1− εκθn). (11)

Isolating the small parameter ε enables us to simplify the system further, to
such an extent that we can compute approximate solutions representing the
cell’s elongation, twist, and fibre orientation.

3 Equations for elongation, twist and fibre

reorientation

Exploiting the small ratio ε between initial cell wall thickness and initial cell
radius, we consider asymptotic expansions of the form

E ∼ E (0) + εE (1) + ε2E (2) . . . , (12)

which give rise to simplified equations for the leading-order dynamics of the
system. For notational convenience, we define the leading-order integral over
the cell wall thickness:

E ≡
∫ h(0)/2

−h(0)/2
E (0)dn. (13)

In order to model cells with highly anisotropic growth, such as those in the
root elongation zone (Baskin, 2005), we impose a constraint on the viscosity
parameters that suppresses variations in the cell radius. We also suppress
variations in cell wall thickness, by enforcing an appropriate value for the rate
at which material is deposited into the cell wall. Details of these conditions
are presented in A.

We partly follow van de Fliert et al. (1995) and Dyson and Jensen (2010)
in deriving the leading-order system. The derivation can be found in A; we
present only the resulting system of equations here. In contrast to the previ-
ous model, we allow fibre angles to evolve spatiotemporally without a small-
angle constraint, and we explicitly prescribe the angle of fibre deposition so
that control mechanisms can be tested. The resulting fibre reorientation then
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determines the overall cell twist via a novel equation for the relative twist
rate. Moreover, we show here that the rate of material deposition into the
cell wall must be an O(ε) quantity: F (0) = 0 and F (1) = ∂u

(0)
s /∂s, in order

to ensure that any variation in the cell wall thickness is at most O(ε). Thus,
the deposition rate is independent of the s-coordinate and proportional to
the cell’s RER.

We find that the fluid velocity components u
(0)
s , u

(0)
θ are related to the

fibre orientations via the viscosity parameters, as follows.

Ks
∂u

(0)
s

∂s
+Ksθ

∂u
(0)
θ

∂s
= T, (14a)

Ksθ
∂u

(0)
s

∂s
+Kθ

∂u
(0)
θ

∂s
= S, (14b)

where

Ks = 4µ0 + µ2a4s + 4µ3a2s, (15a)

Kθ = µ0 + µ2a2sa
2
θ + µ3, (15b)

Ksθ = µ2a3saθ + 2µ3asaθ, (15c)

represent the averaged directional viscosities, and

T =
P −Q

2
− µ1a2s, (16)

S = Σ− µ1asaθ, (17)

are the effective axial tension and azimuthal torque modified by any direc-
tional active behaviour of the fibres, respectively. Equations (14a,b) give

simultaneous equations for ∂u
(0)
s /∂s and ∂u

(0)
θ /∂s, with solution

∂u
(0)
s

∂s
=
TKθ − SKsθ

KsKθ −K2
sθ

, (18a)

∂u
(0)
θ

∂s
=
SKs − TKsθ

KsKθ −K2
sθ

. (18b)

The right-hand sides of (18a,b) are both independent of s; therefore u
(0)
s , u

(0)
θ

are both linear in s. Taking u
(0)
s = 0 at s = 0, we determine the cell length l
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via the axial flow velocity, as u
(0)
s = dl/dt at s = l. We therefore deduce the

relative elongation rate (RER) of the cell, which we denote by A:

1

l

dl

dt
=
TKθ − SKsθ

KsKθ −K2
sθ

≡ A(P,Q,Σ, µ0,1,2,3, φ). (19)

This is a Lockhart-type equation (Lockhart, 1965), relating the RER directly
to mechanical properties, but here including an additional dependence on
fibre angles.

The twist of the cell is related to u
(0)
θ . Taking u

(0)
θ = 0 on s = 0, we

calculate the angle of relative twist Θ between the top and bottom plates by
u
(0)
θ (s = l, t) = R(0)dΘ/dt, where R(0) = 1 (see A.3). Therefore, the relative

twist rate of the cell, denoted by B, is

1

l

dΘ

dt
=
SKs − TKsθ

KsKθ −K2
sθ

≡ B(P,Q,Σ, µ0,1,2,3, φ). (20)

The matrix stiffness µ
(0)
0 (n, t) evolves according to

∂µ
(0)
0

∂t
− A

(
n+

1

2

)
∂µ

(0)
0

∂n
= α, (21)

with α ≥ 0. If α = 0, then µ
(0)
0 is uniformly constant for all time. Finally,

the fibre angle φ(0)(n, t) evolves according to

∂φ(0)

∂t
− A

(
n+

1

2

)
∂φ(0)

∂n
= A sinφ(0) cosφ(0) −B sin2 φ(0). (22)

Since A, B contain integrals across the wall thickness of trigonometric func-
tions of φ(0), (22) is an integro-differential equation.

The complete leading-order system consists of (15–17,19–21). Given ap-
propriate initial and boundary conditions, which we detail in Section 3.1, we
solve the system by iterating the following procedure over small timesteps.
We solve (22) for φ(0), then use (15–17) to compute Ks, Kθ, Ksθ, T, S and
therefore A,B, from which the cell length l is determined via (19), the twist

Θ is determined via (20), and the isotropic component µ
(0)
0 of matrix viscosity

is found by (21). In practice when solving (19) and (20), we replace l with
l/l0 and Θ with Θ/l0, where l0 ≡ l(t = 0) is the initial cell length. By choice
of nondimensionalisation, length is measured in units of cell radius, so l0 is
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effectively a physical parameter relating to the initial shape (length:radius
ratio) of the cell.

We observe that the system is invariant under the transformation φ →
φ + π, which leaves Ks, Kθ, Ksθ, T and S unchanged. However the system
does not possess φ→ −φ invariance, because such a transformation modifies
Ksθ and S, both of which affect A and B. Thus, a reversal of the fibre helicity
generally affects both the elongation (through A) and twist (through B) of
the cell, unless S = 0, in which case flipping the fibre helicity reverses cell
twist (B → −B) without affecting elongation.

3.1 Initial and boundary conditions

The initial conditions for cell length and twist are l(0) = l0 and Θ(0) = 0.
For the fibres, we prescribe initially uniform orientation: φ(n, 0) = φi for
some φi, with φi = 0 representing initially transverse fibres. Here, φi need
not be small.

The boundary condition at n = 1/2 is dictated by the choice of fibre-
deposition regime, and in this study we investigate two distinct regimes.
In both cases, we assume the well-established theory that cortical micro-
tubules guide the deposition of CMF, acknowledging that some studies have
cast doubt on the CMF/microtubule co-alignment hypothesis (Himmelspach
et al., 2003; Sugimoto et al., 2003); although, in Section 4 we will reassess
that doubt in light of the current model.

Following seminal work by Hamant et al. (2008) who established that the
orientation of cortical microtubules is determined by the principal stress, we
consider a deposition regime whereby new fibres are laid down in alignment
with the principal stress direction in the cell wall. Mathematically, given any
triad of σss = (P −Q)/2, σθθ = P and σsθ = Σ, the principal stress direction
φprin is found by solving

tan(2φprin) =
2σsθ

σθθ − σss
=

4Σ

P +Q
. (23)

The fibre-deposition angle φb ≡ φ(0)(1/2, t) is then set equal to φprin:

φb =
1

2
tan−1

4Σ

P +Q
. (24)

This scheme allows φb to take values in −π/4 < φb < π/4. It is known
that in certain Arabidopsis mutants, microtubules manifest in fixed left- or
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right-handed arrays (Sedbrook and Kaloriti, 2008); this may be represented
by a nonzero constant φb, concomitant with a fixed, nonzero Σ.

The second deposition regime that we will consider is inspired by the ex-
perimental observation that, in wild-type Arabidopsis roots, cortical micro-
tubules begin rotating out of transverse when cells have moved some distance
up the EZ, eventually obtaining oblique orientations (Baskin et al., 2004) or
longitudinal ones (Sugimoto et al., 2000). Crucially, the handedness of mi-
crotubule reorientation is found to be consistently right-handed. To capture
this behaviour, and the assumption that CMF deposition is aligned with the
microtubules, we let

φb(t) =
2

3

(
tan−1 1 + tan−1

t− t0
t0

)
, (25)

which is a smooth step-function with φb(0) = 0 and φb(t)→ π/2 in the limit
t → ∞. The characteristic timescale t0 on which the variation in φb occurs
is set to t0 = 100, so that it coincides with the timescale of large elongation.

Finally, for (21), we prescribe initial condition µ
(0)
0 (n, 0) = 1, and assume

that newly deposited wall material has the same initial matrix stiffness as
the original cell wall, hence the boundary condition µ

(0)
0 (1/2, t) = 1.

3.2 The parameter space

On the relevant growth timescale, turgor pressure P and external pressure Q
can be assumed constant. In particular, P = 1 by choice of nondimensionali-
sation. We also assume the imposed torque Σ to be constant. The prescribed
viscosity coefficients µ2,3, assumed uniformly constant, must be sufficiently
large (see A.3). Fibres do not actively exert stress on the system, hence
µ1 = 0; therefore, the effective axial tension T = (P − Q)/2 and azimuthal

torque S = Σ are both constant. We let µ
(0)
0 be initially uniform, and either

α = 0 so that µ
(0)
0 remains at the initial value, or α > 0 so that µ

(0)
0 evolves

spatio-temporally, representing matrix stiffening, where newly deposited ma-
terial ages as it moves through the wall and reacts with enzymes. As each
layer of wall material becomes stretched by the cell elongation and pushed
outwards by new material, the fibres move with the matrix and reorient.

We are interested in elongating cells, so we require that A is initially
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positive, which constrains the parameters. The initial denominator of A is

Ks(0)Kθ(0)−Ksθ(0)2 = 4µ
(0)
0 (0)2 + 4µ

(0)
0 (0)

[
µ3 + µ2as(0)2aθ(0)2 + µ3as(0)2

]
+
[
µ
(0)
0 (0)µ2 + µ2µ3 + 4µ2

3

]
as(0)4 > 0. (26)

Thus, the numerator of A, i.e. (P − Q)Kθ/2 − ΣKsθ, must also be initially
positive. Let us first assume P > Q. The sign of Ksθ(0) coincides with the
sign of φi, therefore: if φi > 0 (φi < 0), then Ksθ(0) > 0 (Ksθ(0) < 0) and so
Σ has some positive upper bound (negative lower bound).

We can interpret this property as follows. A positive φi indicates an initial
tendency for the cell to twist left-handedly, or clockwise as seen from the top
of the cell (Verger et al., 2019). A positive Σ on the top plate counters this
tendency, because it causes anticlockwise elongational flow of the cell wall
material as seen from the top. If Σ is sufficiently large, it will cancel out
the flow entirely, stifling cell elongation. An analogous analysis applies to
the case φi < 0. It is interesting to note that even if P ≤ Q, i.e. if external
longitudinal pressure exceeds turgor, then elongation can still occur due to
the effect of the torque Σ, as long as there is some non-transverse initial fibre
configuration (φi 6= 0), of an appropriate orientation, interacting with the
torque. For the remainder of this study, we fix Q = 0.5 so that turgor is
greater than the external longitudinal pressure.

4 Twist-growth solutions and discussions

In this section, we solve the system numerically and interpret the results
in terms of twisting growth. We characterise all solutions by the temporal
evolutions of fibre angle φ(0), normalised length l/l0, and relative twist Θ/l.
Note that if fibres are transverse everywhere for all time, then (19) becomes
dl/dt ∝ T l, implying exponential cell elongation given constant T . This
scenario is modelled by the standard Lockhart equation, so we do not consider
it here. We will present results which are typical for a system dominated
by extensional viscosity (µ2 � µ3) and by shearing viscosity (µ3 � µ2),
respectively.

Regardless of fibre-deposition regime and parameter choices, the φ(0) so-
lutions exhibit a common property. Initially-present fibres remain uniformly
oriented but with an evolving common angle; newly-deposited fibres also re-
orient as they are transported through the wall, gaining spatial heterogeneity.
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A transition point n = N(t) separates the two populations of fibres, advect-
ing towards the outer surface over time. We find that N(t) is related to l(t)
as follows (see B for details):

N(t) = −1

2
+

l0
l(t)

. (27)

Thus, deposited fibres are moved towards the outer wall surface (N(t) de-
creasing) if and only if the cell is elongating.

4.1 No matrix stiffening (α = 0)

We first neglect matrix stiffening, thus setting α = 0, which implies µ
(0)
0 = 1

for all time. Under a constant fibre-deposition angle determined by princi-
pal stress, as per equation (24), the evolution of fibre orientations is highly
dependent on applied torque Σ and initial fibre angle φi (Figures 2ab, 3ab).
Fibres which are deposited at a positive (negative) angle reorient to larger
positive (negative) angles. All the while, initially-present fibres remain trans-
verse if initially transverse, or become more positively or negatively oriented
depending on initial orientation. By plotting the fibre angles across the cell
wall at a fixed time, we see an orientation field φ(0)(n) which is constant for
−1/2 ≤ n < N , and smoothly joins the value of φ(0)(1/2) = φb(Σ) through
a ‘kink’. The amplitude of this kink – which represents a sharp variation in
fibre angle – grows in time. Note that we do not consider the parameter com-
bination (Σ, φi) = (0, 0), because it causes fibres to be uniformly transverse
for all time and therefore induces exponential elongation.

If all other parameters are fixed while the torque and initial angle are
both sign-reversed (Σ→ −Σ, φi → −φi), then the resulting evolution of fibre
orientation is also reversed about the horizontal: φ(0)(n, t) → −φ(0)(n, t).
This phenomenon can be derived directly from the system of equations: when
Σ and φi are sign-reversed, A is unchanged (19) and B changes sign (20), in
which case (22) has φ(0) → −φ(0) symmetry. Thus, (Σ→ −Σ, φi → −φi) has
no effect on the cell elongation, which is determined by A, and reverses the
handedness of cell twist, which is determined by B (Figures 2cd, 3cd).

Given constant-angle deposition (24), if Σ > 0 (Σ < 0) so that φb > 0
(φb < 0), and if φi ≥ 0 (φi ≤ 0), then fibres will be oriented at posi-
tive (negative) angles throughout the cell wall at all times, forming a right-
handed (left-handed) configuration. The corresponding cell twist is always
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left-handed (right-handed), i.e. towards negative (positive) values of Θ (Fig-
ures 2d,3d). This behaviour is consistent with the phenomenon that in mu-
tants of Arabidopsis which exhibit twisted organ growth, tissue handedness
always opposes the handedness of CMT helices in individual cells (we assume
that cell twist orientation is consistent with organ twist) (Verger et al., 2019).
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Figure 2: Fibre angle evolution (φ

(0)
degrees as a function of t∗), cell

elongation, and cell twist, parameterised by the initial fibre angle
φi. Red lines (a,b,c,d): constant deposition angle determined
by principal stress, as per equation (24). Blue lines (e,f,g,h):
varying deposition angle determined by rotating microtubules, as
per equation (25). Parameters: P ∗ = 0.4 MPa; Q∗ = 0.2 MPa;
Σ∗ = 0.4 N·m−1; M∗

0 = 5 GPa·s; µ∗1 = 0; µ∗2 = 500 GPa·s;
µ∗3 = 5000 GPa·s; α∗ = 0 (see Table 1 for references).
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Figure 3: Fibre angle evolution (φ

(0)
degrees as a function of t∗), cell

elongation, and cell twist, parameterised by the initial fibre angle
φi. Red lines (a,b,c,d): constant deposition angle determined
by principal stress, as per equation (24). Blue lines (e,f,g,h):
varying deposition angle determined by rotating microtubules, as
per equation (25). Parameters: P ∗ = 0.4 MPa; Q∗ = 0.2 MPa;
Σ∗ = −0.4 N·m−1; M∗

0 = 5 GPa·s; µ∗1 = 0; µ∗2 = 500 GPa·s;
µ∗3 = 5000 GPa·s; α∗ = 0 (see Table 1 for references).
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Changing the fibre-deposition regime produces significant differences in
the model’s outputs. Under evolving-angle deposition (25), the fibre configu-
ration is predominantly determined by the deposition angle φb(t) and initial
angle φi, but not by the applied torque Σ, whose effect on φ(0)(n, t) is barely
discernible across the range of values −0.5 ≤ Σ ≤ 0.5 (though we only show
Σ = ±0.1 in Figures 2 and 3). In terms of cell elongation, variable deposition
causes faster growth initially with slower growth at large times, compared
to the same cell under constant, non-zero-angle deposition. This behaviour
reflects the fact that φb(t) is initially close to transverse, so that the entire
fibre configuration is initially close to transverse, leading to fast elongation;
and that at large times, more and more of the fibres approach a longitudinal
orientation, slowing elongation.

If we set Σ = φi = 0 (which gave trivial results under constant-deposition),
and take the shear viscosity µ3 to be very large, we find the following results
(Figure 4). At very large times, despite deposited fibres being longitudinal,
the majority of fibres in the cell wall are still nearly transverse; this is be-
cause the very large µ3 makes it very difficult for fibres to shear past each
other. Deposited fibres therefore mostly remain close to the inner surface
of the wall. This behaviour matches experimental observations reported by
Sugimoto et al. (2000), that CMF are predominantly transverse through-
out the EZ, even though cortical microtubules rotate out of transverse and
become longitudinal. The authors interpreted this observation as evidence
against the CMF/microtubule alignment hypothesis, but our results here
suggest that the hypothesis can still be true despite the mis-alignment of
the majority of CMF with microtubules. It is also remarkable that when
Σ = φi = 0, the cell twists left-handedly (Figure 4d). This result is coherent
with the theory that left-handed cell growth is intrinsically dominant over
right-handed cell growth (Landrein et al., 2013; Peaucelle et al., 2015).
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Figure 4: Fibre angle evolution (φ

(0)
degrees as a function of t∗),

cell elongation, and cell twist, given initially transverse fibres
(φi = 0◦) and a very large shear viscosity µ∗3. The deposition
angle is determined by rotating microtubules, as per equation
(25). Parameters: P ∗ = 0.4 MPa; Q∗ = 0.2 MPa; Σ∗ various;
M∗

0 = 5 GPa·s; µ∗1 = 0; µ∗2 = 500 GPa·s; µ∗3 = 5 × 104 GPa·s;
α∗ = 0 (see Table 1 for references). The different values of Σ∗

produce identical lines in (a,b,c).

We have examined the dependence of the cell’s elongation and twist on
the external torque, Σ, over the range −0.5 ≤ Σ ≤ 0.5 (see Table 1). Recall
that a positive Σ represents an right-handed rotational force on the top plate
of the cell. Under the variable-deposition regime of (25), the relationship
between elongation and Σ is monotonic (Figure 5ac). If φi < 0 (φi > 0),
then the speed of growth increases (decreases) with Σ. Meanwhile, cell twist
always increases monotonically with Σ, regardless of φi (Figure 5bd). That
is to say, a more positive Σ always makes the cell twist more in the right-
handed sense. However, a positive Σ does not necessarily result in right-
handed twist: if the fibre configuration is initially right-handed and therefore
remains right-handed for all time, then the cell twists left-handedly even if
a moderately large positive Σ is present (Figure 5d). In comparison, if the
fibre configuration is initially left-handed, then the handedness of cell twist
is much more symmetric with respect to the sign of Σ (Figure 5b). These
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1Figure 5: Dependence of cell elongation and twist on the applied
torque Σ∗. Parameters: P ∗ = 0.4 MPa; Q∗ = 0.2 MPa; M∗

0 = 5
GPa·s; µ∗1 = 0; µ∗2, µ

∗
3 various; α∗ = 0 (see Table 1 for references).

results strongly suggest that cell twist is intrinsically biased towards left-
handedness.

When the fibre deposition angle is constant, as per (24), we see no mono-
tonic relationship between any growth variable and Σ. Instead, there is a
value of Σ = Σopt that maximises elongation, and this value depends on the
viscosity parameters as well as on φi (Figure 5ac). The sign of Σopt always
coincides with that of φi. Not only does Σopt maximise elongation, it also
maximises the amount of cell twist (Figure 5bd). In other words, a more
positive Σ does not always make the cell twist more in the right-handed
sense. This result suggests that the fibres ‘compete’ with the mechanical
function of external torque. An intrinsic property of the system is that when
there is no imposed torque (Σ = 0), the cell still twists with exactly the
handedness that we expect, independent of fibre deposition regime or viscos-
ity parameters: right-handedly (left-handedly) if initial fibre configuration is
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left-handed (right-handed), i.e. if φi < 0 (φi > 0) (Figure 5bd).

4.2 Matrix stiffening (α > 0)

We consider a system with matrix stiffening over time, represented by α > 0.
With initial condition µ

(0)
0 (n, 0) = 1 and boundary condition µ

(0)
0 (1/2, t) = 1,

we solve (21) analytically, obtaining an implicit solution for µ
(0)
0 (n, t) and

hence an analytic expression for µ0 under the assumption that l(t) is strictly
increasing (see B for details):

µ0(t) = 1 +
α

l(t)

∫ t

0

l(t′)dt′. (28)

Thus, the averaged isotropic matrix viscosity is determined by the current
cell length and the history of cell elongation up to that time. As we show in
B, µ0 is monotonically increasing in time. In practice, we compute µ0 using
(28) with every instance of l replaced by the normalised length l/l0.

In Figure 6, we present results which are typical for an α > 0 system,
which is physically identical to figure 2 in all other aspects. With µ2 = 100
and α = 0.5, the µ

(0)
0 (n, t) solution (66) dictates that in the region n ≤ N of

initially-present wall material, µ
(0)
0 (n, 200) = 101; in other words, at t ≈ 200,

the isotropic matrix viscosity becomes comparable to the extensional viscos-
ity. The most striking finding is the ability of α = 0.5 to suppress cell twist,
given an initially transverse fibre configuration φi = 0 (Figure 6dh). More-
over, the correlation between cell twist amount and choice of fibre-deposition
regime is significantly reduced by matrix stiffening (see small differences be-
tween Figures 6dh versus large differences between Figures 2dh). The matrix
stiffening also reduces the correlation between cell elongation and choice of
fibre-deposition regime (Figure 6cg versus Figures 2cg).

Overall, the matrix stiffening effect becomes dominant over fibre deposi-
tion as the determining factor over the macroscopic growth variables l and
Θ, even though changing the deposition regime still has a significant im-
pact on the evolution of fibre configurations in the cell wall (Figure 6abef).
In the constant-deposition case, a system with matrix stiffening evolves in
such a way that the ‘kink’ in the fibre distribution pushes towards the outer
surface of the cell wall more slowly, compared to the system without ma-
trix stiffening (Figures 6ab versus Figures 2ab). This slowing-down of fibre-
reorientation occurs simply because the enlarging isotropic matrix viscosity
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makes it harder over time for fibres to move in any given direction. As for
the varying-deposition case, if fibres are initially transverse, then the matrix
stiffening causes the ‘kink’ in the fibre configuration to disappear entirely
(Figure 6ef).
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Figure 6: Fibre angle evolution (φ

(0)
degrees as a function of t∗), cell

elongation, and cell twist, parameterised by the initial fibre angle
φi. Red lines (a,b,c,d): constant deposition angle determined
by principal stress, as per equation (24). Blue lines (e,f,g,h):
varying deposition angle determined by rotating microtubules, as
per equation (25). Parameters: P ∗ = 0.4 MPa; Q∗ = 0.2 MPa;
Σ∗ = 0.4 N·m−1; M∗

0 = 5 GPa·s; µ∗1 = 0; µ∗2 = 500 GPa·s;
µ∗3 = 5000 GPa·s; α∗ = 20 MPa (see Table 1 for references).
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3 various; α∗ = 20 MPa (see Table 1 for

references).

With α = 0.5, a shear viscosity of µ3 = 1000 is sufficient to restrict most
of the initially present or early-deposited fibres to remain close to transverse,
despite later-deposited fibres becoming nearly longitudinal (Figure 6f). This
result supports our claim that a separation of reorientation dynamics between
fibres near the inner wall surface and fibres elsewhere need not invalidate the
CMF/microtubule alignment hypothesis.

Figure 7 represents systems which are identical to Figure 5 except for
matrix stiffening. For a positive stiffening rate α = 0.5, cell twist is more
positively correlated with the applied torque Σ than for α = 0 (Figure 7bd
versus Figure 5bd). Moreover, with matrix stiffening, the cell’s twist under
the constant deposition regime is barely distinguishable from its twist under
the varying deposition regime (Figure 7bd), suggesting that if the stiffening
rate is sufficiently large, then matrix viscosity becomes the dominant factor
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in determining twist. An optimal Σ inducing the greatest elongation is still
observed for α = 0.5, if the fibre deposition angle φb is constant (Figure 7ac).

5 Conclusions

We have presented a model to explain twisting plant cell growth using the
framework of fibre-reinforced fluid mechanics in the cell wall, with matrix
stiffening modelled by a simple transport equation for the isotropic viscosity.
Crucially, the model is capable of predicting left-handed and right-handed
twisting growth under the same theoretical framework, with different helici-
ties resulting simply from different parameter settings. The deposition of cell
wall material is modelled through explicit boundary conditions, including the
orientation of new CMF. The fibre-deposition angle is modelled to be either
constantly aligned with principal stress (Hamant et al., 2008) or rotating
out of transverse towards longitudinal via a prescribed smooth step-function
(Sugimoto et al., 2000). In both cases, we have assumed the well-known
hypothesis that cortical microtubules guide the deposition of new CMF.

One advantage of explicitly specifying the fibre-angle boundary condition
is that it can accommodate any deposition mechanism, even those not in-
volving CMF/microtubule alignment. For example, recent experiments have
shown that the cellulose synthases which lay down new CMF simply fol-
low existing synthase tracks when microtubule guidance is disrupted (Chan
and Coen, 2020). One can model this situation simply by setting the fibre-
deposition angle equal to the initial fibre angle for all time (φb = φi).

We have explained recent experimental findings using this theoretical
framework. If the isotropic component µ0 of cell wall matrix viscosity remains
uniformly constant, with fibre deposition constantly aligned with principal
stress, then the model predicts that: (a) reversing both the external torque
on the cell and the initial handedness of CMF in the cell wall causes re-
versal of the handedness of cell twist without affecting cell elongation; (b)
the handedness of fibre configurations will remain unchanged over time if it
is matched by that of newly-deposited fibres, in which case the cell grows
with the opposite handedness. The latter result is consistent with the recent
experimental report by Verger et al. (2019).

On the other hand, if µ0 is uniformly constant and the fibre-deposition
angle rotates out of transverse over a moderate timescale, then the model
predicts that a cell with no applied torque and large shear viscosity in the wall
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always grows left-handedly. This prediction is consistent with the hypothesis
that cells grow with left-handed twist ‘by default’ (Landrein et al., 2013;
Peaucelle et al., 2015). It is also consistent with the theory that when cell-
cell adhesion is disrupted (modelled by setting the imposed torque to zero),
cells exhibit twisting growth (Verger et al., 2019).

Through analysing how the twist depends on the applied torque, assum-
ing that the fibre deposition angle rotates right-handedly, we find further
evidence for an intrinsic left-handed bias of cell twist. If the fibre configura-
tion is initially right-handed, then they remain right-handed for all time and
cause left-handed cell twist, even if a torque is forcing the cell to twist the
other way. But if fibres are initially arranged left-handedly, then they do not
necessarily remain left-handed for all time, and the handedness of cell twist
is symmetric with respect to the directionality of the torque. We infer that
it is precisely the right-handedness of the rotation of fibre-deposition angle
that gives the cell its intrinsic bias towards left-handed twist.

In the model, there usually exists some optimal value of external torque
which induces the largest amount of elongation. In the absence of matrix
stiffening, this maximum elongation is accompanied by maximum cell twist;
however matrix stiffening cancels this twist-maximising effect. If the stiff-
ening coefficient is sufficiently large then it has the effect of suppressing cell
twist altogether, resulting in approximately straight growth.

Finally, we have found that when the shearing viscosity is large, the
fibres move with the matrix in such a way that the majority remain close to
transverse, even if the deposition angle has become longitudinal. This effect
matches experimental reports (Sugimoto et al., 2000), but raises questions
about the authors’ claim that their results invalidate the CMF/microtubule
alignment hypothesis.

The novel theoretical framework presented here enables reinterpretation
of existing experimental observations about twisting plant cell growth, in-
cluding the intrinsic left-handed bias of twist, and reasserts the validity of
the CMF/microtubule alignment hypothesis. Furthermore, the framework is
sufficiently flexible to test any proposed CMF deposition mechanism, provid-
ing a basis on which future experimental results can be explained.
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A Derivation of the leading-order system

We first derive the integrated incompressibility equation from (2), addressing
material deposition through a kinematic boundary condition. The asymp-
totic treatment leads naturally to the requisite deposition rate for maintain-
ing a constant cell wall thickness. Then, the development of the integrated
momentum conservation and constitutive equations from (3,4) follows exactly
from van de Fliert et al. (1995) and Dyson and Jensen (2010), so we use those
equations without repeating the lengthy derivations here. Furthermore, we
address the matrix stiffening and fibre transport equations (5,6) through a
proper asymptotic treatment. We will impose conditions which ensure that
both the cell radius R and cell wall thickness h remain constant and uniform.
Our choice of nondimensionalisation immediately leads to these values being
1. The turgor pressure P is also taken as constant and uniform throughout
this analysis, and thus is set to 1. However we will retain R, h and P in the
first instance, for ease of interpretation.

A.1 Mass equation

We expand (2) in terms of the coordinate variables and use the axisymmetry
condition to obtain (Aris, 1962):

ε
∂

∂s
(lθUs) +

∂

∂n
(lslθUn) = 0, (29)

where we have used ln = 1. Then, expanding (29) asymptotically with

l
(0)
s = 1, l

(0)
θ = R(0), we obtain

O(1) :
∂

∂n

(
R(0)U (0)

n

)
= 0, (30a)

O(ε) :
∂

∂s

(
R(0)U (0)

s

)
+

∂

∂n

(
l(1)s R(0)U (0)

n + l
(1)
θ U (0)

n +R(0)U (1)
n

)
= 0. (30b)

In particular, since ∂v
(0)
n /∂n = 0 by definition and U

(0)
n = u

(0)
n + v

(0)
n , inte-

grating (30a) over n yields u
(0)
n = 0.

Meanwhile, at the n-boundaries of the fluid sheet, we precribe kinematic
conditions defining the influx of new material by some deposition function
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F∗. In dimensionless form, the boundary conditions read

un =


−F +

ε

2

∂h

∂t
+

ε

2ls

∂h

∂s

[
us +

εh

2

(
κsvs +

∂vn
∂s

)]
, n =

h

2
,

− ε
2

∂h

∂t
− ε

2ls

∂h

∂s

[
us −

εh

2

(
κsvs +

∂vn
∂s

)]
, n = −h

2
,

(31)

where un = Un−vn and us = Us−vs; further details may be found in Howell
(1994) and van de Fliert et al. (1995). Expanding (31) asymptotically yields

O(1) : u(0)n =

{
−F (0), n = h(0)/2,

0, n = −h(0)/2,
(32a)

O(ε) : u(1)n =


−F (1) +

1

2

∂h(0)

∂t
+

1

2

∂h(0)

∂s
u
(0)
s , n = h(0)/2,

−1

2

∂h(0)

∂t
− 1

2

∂h(0)

∂s
u
(0)
s , n = −h(0)/2.

(32b)

Since U(0) = U(0) (s, t) and u
(0)
n = 0, we must therefore have F (0) = 0;

unsurprisingly the deposition of new wall material must be the same order
of magnitude as the thickness of the wall.

Integrating (30b) between the limits n = −h(0)/2 and n = h(0)/2, and

using l
(1)
s = −κ(0)s n and l

(1)
θ = R(1) −R(0)κ

(0)
θ n, we obtain

∂

∂t

(
R(0)h(0)

)
+

∂

∂s

(
R(0)h(0)u(0)s

)
= F (1)R(0). (33)

A similar approach allows us to calculate U
(1)
n which will appear in the fibre

evolution equation. Integrating (32b) between n = −h(0)/2 and an arbitrary
n, we obtain

U (1)
n = v(1)n −

1

R(0)

(
∂

∂t

(
R(0)

(
n+ h(0)/2

))
+

∂

∂s

(
R(0)

(
n+ h(0)/2

) (
U (0)
s − v(0)s

)))
. (34)

Cell wall thickness is approximately constant during elongation (Dyson et al.,
2014). To enforce this condition, we assume that the deposition of new ma-
terial is calibrated such that the wall thickness h(0) is constant and uniform.
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From (33) and the condition that R(0) is uniformly constant (which we en-
force independently in A.3), we require

F (1) =
∂u

(0)
s

∂s
. (35)

Thus, h(0) = 1 by our choice of nondimensionalisation.

A.2 Momentum equations

The leading-order momentum equations, found by integrating the three com-
ponents of (3) over the n-coordinate, are:

κ(0)s σss + κ
(0)
θ σθθ = P, (36a)

∂

∂s

(
(R(0))2κ

(0)
θ σss

)
= PR(0)∂R

(0)

∂s
, (36b)

∂

∂s

(
(R(0))2σsθ

)
= 0, (36c)

where σss, σθθ, and σsθ are the leading-order integrated stress components.
In particular, σss gives the longitudinal tension within the wall, σθθ is the
azimuthal tension, and σsθ is the tension caused by shear stresses. Here
(36a), (36b), and (36c) represent the conservation of momentum normal,
longitudinal, and azimuthal to the fluid sheet, respectively.

A.3 Constitutive equations

Computing the stress components σns and σnθ according to the constitutive
equation (4), we find ∂u

(0)
s /∂n = ∂u

(0)
θ /∂n = 0, respectively. Computing σnn

and evaluating at n = −h(0)/2, where σnn(−h(0)/2) ∼ O(ε), yields

p(0) = −2µ
(0)
0

R(0)

D(0)R(0)

Dt
− 2µ

(0)
0

∂u
(0)
s

∂s
, (37)

where

D(0)R(0)

Dt
≡ ∂R(0)

∂t
+
u
(0)
s

l
(0)
s

∂R(0)

∂s
, (38)

is the leading-order material derivative (∂/∂t + u · ∇)R. Equation (37) will
be used in the expressions for the integrated stress components that appear
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in (36). These integrated components are found by integrating (4) over the
n-coordinate:

σss = 2µ0

(
2
∂u

(0)
s

∂s
+

1

R(0)

D(0)R(0)

Dt

)
+ µ1a2s + µ2a2sζ

+ 4

(
µ3a2s

∂u
(0)
s

∂s
+

1

2
µ3asaθ

(
∂u

(0)
θ

∂s
− u

(0)
θ

R(0)

∂R(0)

∂s

))
, (39a)

σsθ = µ0

(
∂u

(0)
θ

∂s
− u

(0)
θ

R(0)

∂R(0)

∂s

)
+ µ1asaθ + µ2asaθζ

+ µ3

(
∂u

(0)
θ

∂s
− u

(0)
θ

R(0)

∂R(0)

∂s

)
+ 2

µ3asaθ
R(0)

(
D(0)R(0)

Dt
+R(0)∂u

(0)
s

∂s

)
, (39b)

σθθ = 2µ0

(
∂u

(0)
s

∂s
+

2

R(0)

D(0)R(0)

Dt

)
+ µ1a2θ + µ2a2θζ

+ 4

(
µ3a2θ
R(0)

D(0)R(0)

Dt
+

1

2
µ3asaθ

(
∂u

(0)
θ

∂s
− u

(0)
θ

R(0)

∂R(0)

∂s

))
, (39c)

where µ0 = h(0) = 1 if it is constant and uniform due to our choice of
nondimensionalisation.

Combining (36a) with (39c), and using the leading-order expression for
the strain-rate along the fibre director field:

ζ(0) = sin2 φ(0)∂u
(0)
s

∂s
+ sinφ(0) cosφ(0)

(
∂u

(0)
θ

∂s
− u

(0)
θ

R(0)

∂R(0)

∂s

)

+
cos2 φ(0)

R(0)

D(0)R(0)

Dt
, (40)

we find

κ(0)s σss + κ
(0)
θ

[
2µ0

(
∂u

(0)
s

∂s
+

2

R(0)

D(0)R(0)

Dt

)

+
(
µ2asa3θ + 2µ3asaθ

)(∂u(0)θ
∂s
− u

(0)
θ

R(0)

∂R(0)

∂s

)

+ µ1a2θ + µ2a2sa
2
θ

∂u
(0)
s

∂s
+
(
µ2a4θ + 4µ3a2θ

) 1

R(0)

D(0)R(0)

Dt

]
= P. (41)
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We note that if µ2a4θ+4µ3a2θ � 1, meaning that the fibres are highly resistant
to extension, then radial changes will be suppressed. We take this condition
to be sufficiently strong, and assume P ∼ O(1), so that DR(0)/Dt = 0
and DR(1)/Dt = 0, which when combined with spatially uniform initial and
boundary conditions leads to the solution

R(0) = 1, R(1) = 0. (42)

From (7) we therefore deduce

v(0)s = 0, v
(0)
θ = 0, v(0)n = 0, v(1)n = 0, (43)

meaning the centre surface of the fluid sheet remains stationary, and hence
U

(0)
s = u

(0)
s , U

(0)
θ = u

(0)
θ , U

(0)
n = u

(0)
n = 0. The first-order normal velocity can

then be calculated from (34), with R(0) = h(0) = 1, to give

u(1)n = U (1)
n = −

(
n+

1

2

)
∂u

(0)
s

∂s
. (44)

It also follows from (8) that the zeroth-order curvature components are

κ
(0)
θ =

(1− (∂R(0)/∂s)2)1/2

R(0)
= 1, κ(0)s = − ∂2R(0)/∂s2

(1− (∂R(0)/∂s)2)1/2
= 0, (45)

which further implies

σ
(0)
θθ = P, (46)

due to (36a).
Integrating (36b) with respect to s, and applying a force balance between

the tension in the cell wall and the net force due to internal and external
pressure on the rigid end plate at s = l(t), we find

σss =
(P −Q)

2
, (47)

where, from (39a),

σss = 4µ0
∂u

(0)
s

∂s
+ µ1a2s + µ2a2sζ + 4µ3a2s

∂u
(0)
s

∂s
+ 2µ3asaθ

∂u
(0)
θ

∂s
. (48)
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Similarly, integrating (36c) with respect to s, and imposing the condition
that the shear stress at s = l(t) is equal to the applied torque, we obtain

σsθ = Σ, (49)

where, from (39b),

σsθ = µ0
∂u

(0)
θ

∂s
+ µ1asaθ + µ2asaθζ + µ3

∂u
(0)
θ

∂s
+ 2µ3asaθ

∂u
(0)
s

∂s
. (50)

Noting that R(0) = 1 reduces (40) to

ζ(0) = sin2 φ(0)∂u
(0)
s

∂s
+ sinφ(0) cosφ(0)∂u

(0)
θ

∂s
, (51)

we collect the ∂u
(0)
s /∂s and ∂u

(0)
θ /∂s terms in (48,50), to produce (14).

A.4 Matrix stiffening

Equation (5) for the evolution of µ0 at O(1) reads

U (0)
n

∂µ
(0)
0

∂n
= 0; (52)

and at O(ε), we have

∂µ
(0)
0

∂t
+ U (0)

s

∂µ
(0)
0

∂s
+ U (0)

n

∂µ
(1)
0

∂n
+ U (1)

n

∂µ
(0)
0

∂n
= α. (53)

If there is no s-variation in the initial or boundary conditions for µ0, then
no s-variation can emerge from an evolution that is governed by (53). We

therefore conclude that ∂µ
(0)
0 /∂s = 0. Using U

(0)
n = 0 and (44), we finally

deduce (21), which governs the leading-order evolution of the matrix stiffness.

A.5 Fibre angle evolution

We consider the nondimensionalised version of (6) and expand it in compo-
nents. For as, we find

∂as
∂t

+
Us
ls

∂as
∂s

+
Un
ε

∂as
∂n
− as
ls

∂Us
∂s
− Unas

εls

∂ls
∂n

+ ζas = 0. (54)
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By asymptotically expanding Ui, ai and li in (54), we obtain

O(1) : U (0)
n

∂a
(0)
s

∂n
= 0, (55)

O(ε) : a
(0)
θ

(
∂φ(0)

∂t
+ U (0)

s

∂φ(0)

∂s
+ U (1)

n

∂φ(0)

∂n

)
+ ζ(0)a(0)s = a(0)s

∂U
(0)
s

∂s
,

(56)

where we have simplified (56) using l
(0)
s = 1, ∂l

(1)
s /∂n = κ

(0)
s = 0 and U

(0)
n = 0

(the final condition having been derived in A.3). Similarly the equation for
aθ is

∂aθ
∂t

+
Us
ls

∂aθ
∂s

+
Un
ε

∂aθ
∂n
− as
ls

∂Uθ
∂s

+
asUθ − Usaθ

lslθ

∂lθ
∂s
− Unaθ

εlθ

∂lθ
∂n

+ ζaθ = 0,

(57)

from which we obtain

O(1) : U (0)
n

∂a
(0)
θ

∂n
= 0, (58)

O(ε) : − a(0)s
(
∂φ(0)

∂t
+ U (0)

s

∂φ(0)

∂s
+ U (1)

n

∂φ(0)

∂n

)
+ ζ(0)a

(0)
θ = a(0)s

∂U
(0)
θ

∂s
,

(59)

where we have used l
(0)
θ = R(0) = 1.

By computing (56) ×a(0)θ − (59) ×a(0)s , then identifying a
(0)
s = sinφ(0),

a
(0)
θ = cosφ(0), U

(0)
s = u

(0)
s , and U

(0)
θ = u

(0)
θ , we deduce

∂φ(0)

∂t
+ u(0)s

∂φ(0)

∂s
+ U (1)

n

∂φ(0)

∂n
= sinφ(0) cosφ(0)∂u

(0)
s

∂s
− sin2 φ(0)∂u

(0)
θ

∂s
. (60)

According to (18), ∂u
(0)
s /∂s and ∂u

(0)
θ /∂s are independent of s. Thus, if there

is no s dependence in the initial or boundary conditions for φ(0), then no s
dependence can emerge and hence ∂φ(0)/∂s = 0. Invoking (44), we finally
obtain (22) which governs the leading-order evolution of the fibre orientation.

36



B Analytical expressions for N(t) and µ0

For equation (21), consider characteristic curves in the n-t space,

dn

dt
= −A

(
n+

1

2

)
. (61)

Along these curves, (21) is equivalent to

dµ
(0)
0

dt
= α. (62)

Now, (61) has two families of solutions. The first family,

n+
1

2
=

(
n0 +

1

2

)
exp

(
−
∫ t

0

A dt′
)
, (63)

emanates from the n-axis and is parametrised by n0. The second family,

n+
1

2
= exp

(
−
∫ t

t0

A dt′
)
, (64)

stems from the the line n = 1/2 and is parametrised by t0. The two families
share a common curve, which we find by setting either n0 = 1/2 in (63) or
t0 = 0 in (64), yielding n = −1/2 + exp(−

∫ t
0
Adt′) ≡ N . Thus, the n-t space

is divided into two regions by the N(t) curve. From
∫ t
0
A dt′ =

∫ t
0

1
l
dl
dt′

dt′ =
ln l(t)− ln l(0), it follows that

N(t) = −1

2
+

l0
l(t)

, (65)

where l0/l(t) < 1 is a decreasing function of t as long as the cell is growing.
In each region of the n-t space, solving (62) subject to either the initial or
boundary condition is trivial. The result is

µ
(0)
0 (n, t) =

{
αt+ 1, n ≤ N(t),

α (t− t0(n, t)) + 1, n > N(t),
(66)

where t0(n, t) ≤ t is the time at which l(t0) =
(
n+ 1

2

)
l(t). Thus, the evo-

lution of µ
(0)
0 can be described as follows. Within an outer region given by

37



−1/2 ≤ n ≤ N , µ
(0)
0 is uniform in space and increases linearly in time with

proportionality α; in the inner region, N < n ≤ 1/2, µ
(0)
0 varies in space,

decaying monotonically from µ
(0)
0 (N(t), t) to the boundary value of 1.

As long as l grows strictly monotonically, then there is an analytical

expression for µ0 ≡
∫ 1/2

−1/2 µ
(0)
0 dn, which is the only form in which µ

(0)
0 appears

in our growth equations. We have∫ 1/2

−1/2
µ
(0)
0 dn = (αt+ 1)− α

∫ 1
2

N

linv
((
n+ 1

2

)
l(t)
)

dn, (67)

where linv, the inverse function of l, is well-defined if l is strictly monotonic.
Using the bijective change of variables y = (n + 1

2
)l(t) (where t is treated

as a constant as far as the integral in (67) is concerned), and a theorem
concerning the integral of inverse functions (Key, 1994), we deduce

µ0 = (αt+ 1)− α

l(t)

∫ l(t)

l0

linv(y) dy

= (αt+ 1)− α

l(t)

[
ylinv(y)

]y=l(t)
y=l0

+
α

l(t)

[ ∫ linv(y)

0

l(t′)dt′
]y=l(t)
y=l0

= 1 +
α

l(t)

∫ t

0

l(t′)dt′, (68)

which is precisely (28).
Differentiating (68), we find

dµ0

dt
= α

(
1−

dl
dt

∫ t
0
l(t′)dt′

l(t)2

)
. (69)

We show that dµ0/dt > 0 as follows. Let y(t) ≡
∫ t
0
l(t′)dt′. The ODE y′′y −

(y′)2 = 0 has general solution y = c1 exp(c2t), with arbitrary constants c1, c2.

Thus, no solution can satisfy the initial conditions y(0) ≡
∫ 0

0
l(t′)dt′ = 0 and

y′(0) ≡ l(0) = l0 > 0. In other words, no function l(t) can make y′′y − (y′)2

vanish at any t. Since y′′(0)y(0)− (y′(0))2 = −l20 < 0 and y′′(t)y(t)− (y′(t))2

is continuous in t, it follows that y′′y − (y′)2 < 0 for all t. That is,

dl

dt

∫ t

0

l(t′)dt′ < l(t)2 for all t, (70)

hence dµ0/dt > 0.
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