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Abstract

Until recently, it was an important open problem in Fractal Geometry to determine
whether there exists an iterated function system acting on R with no exact overlaps for
which cylinders are super-exponentially close at all small scales. Iterated function systems
satisfying these properties were shown to exist by the author and by Barany and Kaenmaki.
In this paper we prove a general theorem on the existence of such iterated function systems
within a parameterised family. This theorem shows that if a parameterised family contains
two independent subfamilies, and the set of parameters that cause exact overlaps satisfies
some weak topological assumptions, then the original family will contain an iterated
function system satisfying the desired properties. We include several explicit examples of
parameterised families to which this theorem can be applied.

Mathematics Subject Classification 2010: 28 A80, 37C45.

Key words and phrases: Overlapping iterated function systems, self-similar measures, exact
overlaps.

1 Introduction

Let ® = {¢; : R? — R%},c7 denote a finite set of contracting similarities acting on R?. We call
® an iterated function system or IFS for short. Iterated function systems are useful tools for
generating fractal sets. A well known result due to Hutchinson [9] states that for any IFS @
there exists a unique non-empty compact set X C R? satisfying

X =Ja(x).

i€

We call X the self-similar set of ®. Self-similar sets often exhibit fractal properties. The middle-
third Cantor set and the von-Koch curve are well known examples of self-similar sets.

A well studied and difficult problem is to determine the Hausdorff dimension of a general
self-similar set. Given an IFS ® = {¢;};cz we denote by r; the similarity ratio of ¢;. We call
the unique s > 0 satisfying >, 777 = 1 the similarity dimension of ® and denote it by dimg ®.
The following upper bound for the Hausdorff dimension of a self-similar set is well known

dimg (X) < min{dimg @, d}. (1.1)



It is often the case that equality holds in (1.1). To make progress with the problem of determining
the Hausdorff dimension of a self-similar set one often uses self-similar measures. These are
defined as follows: Given an IFS ® and a probability vector p = (p;)iez, then there exists a
unique Borel probability measure up satisfying

szzpi'ﬂpOQS;l'
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We call up the self-similar measure corresponding to ® and p. We define the dimension of a
Borel probability measure p to be

dim p = inf{dimg(A) : u(4) = 1}.

We remark that there are other well-studied notions of dimension for measures. Importantly for
self-similar measures these alternative definitions typically give the same value as our definition.
This is a consequence of the exact dimensionality of self-similar measures (see [5]). The following
upper bound for the dimension of a self-similar measure is well known
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dim pp < min {

Note that if we take p = (T?ims ®)iez then equality in (1.2) implies equality in (1.1). Self-similar

measures are often easier to analyse than self-similar sets. As such, proving that equality holds
in (1.2) often provides an easier route to proving equality in (1.1).

Self-similar measures are well known examples of multifractal measures, i.e. measures which
exhibit different rates of scaling on small balls. A useful tool for describing the multifractal
behaviour of a measure is provided by the L¢ dimension. Let ¢ > 1 and p be a Borel probability
measure on R%, we define the L¢ dimension of y to be

_lO . . ~,2—n’ +12—n SO .'2_,”7 +12_n q
D(u, q) := liminf 822y, jaeze M (1+1) ) [ja (ja+1) ) ,

n—oo (¢—1)n

Let T'(up, q) be the unique solution to the equation >, 7 pfr."® = 1. The following upper bound
for the L? dimension of a self-similar measure always holds

D(pp,q) < min {W,d} : (1.3)

Determining when we have equality in (1.1), (1.2), and (1.3) is an active and important area
of research (see [6, 7, 8, 11, 12, 13, 14] and the references therein). When @ is an IF'S acting on R
the only known mechanism preventing equality in (1.1), (1.2), or (1.3) is the existence of distinct
a,b € Uy2 Z" such that ¢a = ¢,. When such an a and b exists we say that ® contains an exact
overlap. Here and throughout we adopt the notational convention that ¢4 := ¢, © - 0 ¢q,
for a = (ay,...,a,). In higher dimensions there are other mechanisms preventing equality. In
particular an IFS could force the self-similar set into a lower dimensional affine subspace of R¢
without it containing an exact overlap. For more on the mechanisms preventing equality in
higher dimensions see [8]. For iterated function systems acting on R, it is conjectured that the
only mechanism preventing equality in (1.1), (1.2), and (1.3) is the presence of an exact overlap.
This conjecture is commonly referred to as the exact overlaps conjecture. Significant progress
on this conjecture has been made in recent years. Rapaport in [11] proved that if ® is an IFS
acting on R with algebraic similarity ratios, then either & contains an exact overlap or we have
equality in (1.1) and (1.2) for all self-similar measures. Building upon the work of Hochman in
[7], Varju recently proved that for the unbiased Bernoulli convolution we have equality in (1.2)



when the underlying IFS does not contain an exact overlap [14]. The motivation behind this
work comes from two important results on this topic due to Hochman [7] and Shmerkin [13].
Combining their results it follows that if ® is an IF'S acting on R and we have strict inequality
in one of (1.1), (1.2), or (1.3), then ® comes extremely close to containing an exact overlap.
This notion of closeness is provided by the following distance function. Given two contracting
similarities ¢(z) = raz +t and ¢/(x) = 'z +t', we let

00 r#r
d(o,¢) = ’
(gb (b) {‘t—t/|, ?”:TI.
Importantly d(¢,¢’) = 0 if and only if ¢ = ¢'. Given an IFS @, for any n € N we let
A (P) := min{d(pa, Pp) : a,b € I", a # b}.

The results of Hochman and Shmerkin can now be more accurately summarised as follows.

Theorem 1.1. Let ® be an IFS acting on R.

e [7, Theorem 1.1] If limsup,,_, bgnA” > —o0 then we have equality in (1.1) and (1.2) for
all self-similar measures.

e [13, Theorem 6.6] If limsup,, lognA" > —oo then we have equality in (1.3) for all self-
simelar measures and q > 1.

With Theorem 1.1 and the exact overlaps conjecture in mind, it is natural to ask whether
there exists an IFS ®, such that ® does not contain an exact overlap yet A, (®) — 0 super-
exponentially fast. This question was posed by Hochman in [6]. If no such ® exists then Theorem
1.1 would imply the exact overlaps conjecture. Using ideas from [2] it was shown in [1] that such
® do exist. Interestingly it was shown that (A, (®))5%; can converge to zero arbitrarily fast
without ® containing an exact overlap. At the same time and using a different method Barany
and Kéenmaki obtained the same result [3]. Recently Chen [4] altered the construction given in
[1] to allow for algebraic contraction ratios.

In this paper we prove a general result for the existence of an IFS ® within a parameterised
family of IFSs such that (A, (®))>2, converges to zero arbitrarily fast and ® does not contain
an exact overlap. This serves several purposes. First of all, the argument given is more general
and intuitive than the one presented in [1]. The argument shows that if a parameterised family
of IF'Ss contains two independent subfamilies, then it is reasonable to expect that the original
family will contain a ® satisfying our desired properties. Secondly, our more general result
provides new examples of ® satisfying these properties. In the final section of this paper we
include several examples of families to which our result can be applied.

2 Preliminaries and our main result

In the statement of our main result we will be working in R% and so require a higher dimensional
analogue of d(-,-) and A, (+). It is a well known fact that any contracting similarity ¢ acting on
RY can be uniquely written as ¢(x) = r- Ox +t for some 7 € (0,1), O € O(d), and t € R?. Here
O(d) denotes the group of d x d orthogonal matrices. As such, given two contracting similarities
¢(x) =7r-Ox+tand ¢'(x) = r'O'x + t’ the following quantity is well defined

d(¢,¢') = [t —t'| + [logr —logr'| + |0 — O']|.



Here || - || denotes the operator norm. This is the distance function defined by Hochman in [8].
Importantly it has the property that d(¢,¢’) = 0 if and only if § = ¢'. Given an IFS ® and
n € N we define

Ay (®) := min{d(¢a, ¢¥p) : a,b € ", a # b}.

Note that the function d(-,-) behaves differently to the distance function defined previously for
similarities acting on R. With this new distance function it is possible for d(¢, ¢') to take small
values for ¢ and ¢’ with different similarity ratios. If we equip O(d) with the topology obtained
under the usual identification with a subset of R?*?¢ and identify the space of contracting
similarities with (0,1) x O(d) x R%, then d(-,-) is a continuous function from the space of pairs
of similarities into [0, 00). This fact will be important in our proofs.

Our main result will be phrased in terms of parameterised families of IFSs. The general
framework we use for such a parameterisation is as follows. Let U C R** and V C R*2 be open
subsets of their respective Euclidean spaces. Let Z;, Zo and Z3 be finite sets that are disjoint. We
assume that for each ¢ € Z; there exists continuous functions O; 1 : U — O(d), ri1 : U — (0,1),
and ;1 : U — R?. Similarly, for each i € Z we assume that there exists continuous functions
Oi2:V—=0(d), rig:V—(0,1),and t;2: V — R?. Also, for each i € I3 we assume that there
exists continuous functions O;3: U x V — O(d), ri3: U x V — (0,1), and t;3 : U x V — R4
Equipped with these functions we can define three parameterised families of iterated function
systems. Given u € U we let

Dy == {diu(x) = rix(u) - Oix(w)z + tia(u) bier,

and similarly given v € V' we let
D, 1= {in(x) =7i2(v) - Oi2(v)z + tin(v) biez,
Given (u,v) € U x V we define
Dy =Dy UDP, U{iun(x) =1i3(u,v) - O;3(u,v)x + t;3(u, v) iz,

Note that all three of these iterated function systems are acting on R%. In our applications we
may simply take Zg = () and @, = D, U ®,,.
We define
Hi(n) :={u€U: ¢ay = ¢p, for some a,b € I{",a # b}

and
Hi(n) := Hi(n) \ U}Z] Hy(j).

We use Ha(n) and Hj(n) to denote the corresponding sets for the family {®,},cv. We let
H3(n) = {(u,v) € U XV : payp = @by for some a,b € (Zy ULy UTZ3)",a # b}

and
H;(n) = Hy(n) \ U'= Hyf(j).

The following statement is the main result of this paper.

Theorem 2.1. Let {®y }uer, {Putvev, and {Puu}wv)cuxv be parameterised families of iterated
function systems as defined above. Suppose that the following properties are satisfied:

1. U2 Hi(n) # 0 and U2 Ha(n) # 0.

2. For anyu € Hi(no), v € Ha(myg), and € > 0, there exists uy € U;l”:max{nmmo}_i_lﬂf(n) such
that:



(a) |lu—ule <€
(b) For any € > 0, there exists v € U;‘Z":max{m’mo}ﬂH;(n) such that ||v—v1]lec < € and
(uy,v1) ¢ Hs(max{ng,mo}).

Then for any sequence (wp)2 of strictly positive real numbers, there exists (u*,v*) € U x V
such that Ay (Pyx o) < wy, for all n sufficiently large and @y« ,+ contains no exact overlaps.

We emphasise that the parameter ¢ appearing in 2b. can be chosen to depend upon u;. We
will use this fact in our proof.

Theorem 2.1 can be used to recover and strengthen the results of [1] and [4], see Example 3.1.
Importantly the argument given bypasses the need to rely on properties of continued fractions.
The following corollary is also implied by this theorem.

Corollary 2.2. Let {®y}uev, {Putvev and {Pu v} (u,v)cuxyv be parameterised families of iterated
function systems as defined above. Suppose that the following properties are satisfied:

1. U Hi(n) and U2 Ha(n) are dense in U and V' respectively.
2. For any n € N the sets Hi(n) and Ha(n) are both nowhere dense.
3. Let ng < ny. For any u € Hy(n1) the set
{v eV :bauv = Pbun for some a,b e (Z; ULy U I3)",a # b}
1s nowhere dense.

Then for any sequence (wy)>2 of strictly positive real numbers, there exists (u*,v*) € U x V
such that Ay (Pyx o) < wy for all n sufficiently large and @y« ,+ contains no exact overlaps.

The hypotheses appearing in Corollary 2.2 are natural. For many parameterised families of
overlapping IFSs the set of parameters causing exact overlaps are dense. For any n € N the set
Hi(n) is closed, and so if it failed to be nowhere dense then there would be an non-empty open
subset contained in Hj(n). Such a set would mean that there exists a sizeable part of U for
which the corresponding IFSs have overlaps of length n effectively built in. The same is true
for Ho(n). Similarly, if the third condition was not satisfied it would mean that there exists
v’ € Hf(ny) for which the parameterised family of IFSs given by {®, ,}scv would effectively
have exact overlaps of length ng built in within some non-empty open subset of V.

2.1 Proof of Theorem 2.1

The following lemma records several elementary facts that we will need in our proof. These facts
follow immediately from the definitions and their proofs are omitted.

Lemma 2.3. 1. For any IF'S ® the sequence (A, (®))>2 is decreasing.

2. Let ®1,®o, and ®3 be three IFSs satisfying ®1 C @3 and &5 C P3. Then for any n € N
we have
A (P3) < min{A,(P1), Ap(P2)}.

3. For any n € N the sets Hi(n), Ha(n), and H3(n) are closed.

The proof of Theorem 2.1 relies on a simple strategy that we outline here. Given a sequence
of positive real numbers (wy,), it is a relatively easy task to construct an element u* € U such
that A, (®y+) < w, for all n belonging to infinitely many long stretches of the natural numbers.
This can be achieved by requiring u* be extremely well approximated at infinitely many scales



by parameters that cause exact overlaps. The issue here is that there might exist gaps between
those stretches of natural numbers for which A, (®,+) < w, holds. The trick is to use the family
{®,}yev to find an element v* € V for which the set of n for which A,,(®,+) < w,, fills in these
gaps. Ensuring ®,- .+ contains no exact overlaps can be achieved by a topological argument.

In our proof we let B(x,r) denote the open ball of radius r centred at z with respect to the
infinity norm.

Proof of Theorem 2.1. Let us start by fixing (w,)5%; a sequence of strictly positive real
numbers. The element (u*, v*) we construct will belong to the countable intersection of a nested
collection of closed balls. We define these balls below via an inductive argument.

Base case. Pick uy € Hi(ng) and vy € Ha(mg) for some ng, mg € N. Both ug and vy exist by
property 1. By definition there exists distinct ag, by € Z7"° such that ¢aguy = Pbyu,- Since the
maps U; 1, 731, and ¢;1 are continuous, and the distance function d is continuous, there exists
€9 > 0 such that

B(ug, €p) C {u : d(bag,us Pbo,u) < min wn} )

no<n<max{no,mo}
It follows from the definition of A, (-) and Lemma 2.3.1 that
B(ug, €0) C{u: Ap(Py) < wy for all ng < n < max{ng,mo}}. (2.1)

Let u; € U be the element whose existence is guaranteed by property 2. for the choice of
parameters ug, vg and €. Therefore u; € H{(ny) for some n; > max{ng, mo} and u1 € B(uo, €o).

Since vy € Ha(my) there exists distinct ag, by € Z3" such that ¢q; ., = ¢py e+ By the same
reasoning as above, we may pick ¢, > 0 such that

B(vo, €) C{v: Ap(®,) < wy for all mpg <n <ny}. (2.2)

Since u; is the point whose existence is guaranteed by property 2, we know that there exists v; €
H3(my) for some my > max{ng, mo} such that vy € B(vo,€) and (u1,v1) ¢ Hz(max{ng, mo}).
By Lemma 2.3.3 we know that Hs(max{ng,mo}) is closed. Therefore there exists sufficiently
small §; > 0 such that

B((u1,v1),61) N Hz(max{ng, mo}) = 0. (2.3)

Moreover, since u; € B(ug,€p) and v; € B(vp, €p), we may also assume that d; is sufficiently
small that
B((u1,v1),01) € B(uo, €0) x B(vo, ).

Therefore by (2.1), (2.2), and Lemma 2.3.2, we may deduce that
Ay (Pyp) <wp forall ng <n <ny

for all (u,v) € B((u1,v1),01).

Inductive step. Suppose that we have constructed sequences (ug)f o, (vp)E ), (ng)E,,
(mi), and (6)E; such that the following properties are satisfied:

(a) ug € Hi(ng) and vy, € Hi(my,) for all 1 <k < K.
(b) Both (ng)K_, and (my)E_, are strictly increasing sequences.

(¢) (B((uk,vr),0x))E | is a nested sequence.



(d) B((ug,vg), ) N Hy(max{ng_1,mr_1}) =0 forall 1 <k < K.

(e) For all (u,v) € B((uk,vK), k) we have

Ap(Py ) <wp forall ng <n < ng.

In the base case we constructed the relevant sequences for K = 1. We now show how these
sequences are defined for K + 1.

By definition there exists distinct ag,bx € Z7"* such that ¢a, u, = @by ux- Therefore by
analogous reasoning to that given in the base case, there exists ex > 0 such that

Blug,er) € {u: Ap(Py) < w, for all ng <n <max{ng,mg}} N Blug, k). (2.4)

Let ugy1 € U be the element whose existence is guaranteed by property 2. for the choice of
parameters ug, vg, and ex. Therefore ug 1 € Hy (ng41) for some ng i1 > max{nx, mr} and
UK+1 € B(UK,GK).

Since v € Hj(mg) there exists distinct al, b € Z3" such that Dol v = Dbl o BY
analogous reasoning to that given in the base case, it follows that there exists €}, > 0 such that

B(vg,éx) C{v: Ap(Py) < €, for all my, <n < ngi1} N Bvk, dk). (2.5)

By the definition of w1, we know that there exists vgi11 € Hi(mg41) for some mgy; >
max{ng, mg} such that vgy1 € B(vk, €y ) and (ug41,vk+1) ¢ H3(max{ng, mg}). By Lemma
2.3.3 we know that the set Hs(max{ng,mg}) is closed. Therefore there exists dx1 > 0 such
that

B((ug+1,vK+1),0x+1) N Hy(max{ng,mg}) = 0.

Since ux4+1 € B(uk,€x) and vigy1 € B(vg, €)) we may also assume that dx; is sufficiently
small so that

B((uk+1,vi+1):0x+1) € B(uk, ex) x B(vk, €k ). (2.6)

It follows from Lemma 2.3.2, (2.4), (2.5), and (2.6) that if (u,v) € B((ur+1,VK+1),0K+1) then

An(q)u,'u) <ep for ng <n <ngqq.

Moreover, it follows from (2.4), (2.5), and (2.6) that B((ux+1,vK+1),0x+1) € B((uk,vK), k).
Therefore by property (e) we may conclude that

An((bu,v) <€, forng <n < NK+1

for all (u,v) € B((ug+1,VK+1),0K+1). For these choices of ug 11, VK41, MK+1,MKr+1 and dx 41
we see that properties (a) — (e) are satisfied for level K + 1. This completes our inductive step.

Conclusion of proof. Repeating the inductive step indefinitely we can define sequences
(ur)ior (VR)70s (n1)7gs (Mr)3ly, and (0x)72, such that properties (a) — (e) hold for any
choice of K.

Since (B((u,vk),0k))52, is a nested sequence of closed balls we have

() B((ur, ve), 0k) # 0.
k=1

Taking (u*,v*) in this intersection it follows from property (e) that Ay (®y« ) < wy, for all
n > ng. Moreover by property (d) we may also conclude that (u*,v*) ¢ Hs(max{ng, my}) for



any k € N. Since (n)%2, and (my)2 , are both strictly increasing sequences and Hs(n) C H3(n')
for n < n/, it follows that (u*,v*) ¢ H3(n) for any n. Therefore @, ,« also contains no exact
overlaps as required.

O

Remark 2.4. Adapting the proof of Theorem 2.1 it can be shown that the set
{(u,v) : ®,, contains no exact overlaps and A, (®,,) < wy, for all n sufficiently large}

is dense in U x V under the additional assumption that both U2, Hi(n) and Us2; Ha(n) are
dense in U and V respectively.

Remark 2.5. In the statement of Theorem 2.1 it is possible to strengthen the assertion
Ap(Pys 4+) < wy for all n sufficiently large. A careful inspection of the proof shows that we can
assert that there exists (u*, v*) such that A, (®yx ) < wy, for all n > min{n : Hi(n) # 0}.

3 Examples

In this section we detail two examples of parameterised families of IFSs to which we can apply
Theorem 2.1. Our first family does not impose any algebraic conditions on the similarity ratio
and this quantity can be taken to be transcendental. This is particularly relevant given the
aforementioned result of Rapaport [11] which establishes the exact overlaps conjecture when the
underlying contraction ratios are all algebraic. The second family is inspired by the Bernoulli
convolution and establishes the existence of a non-equicontractive IFS with super-exponentially
close cylinders and no exact overlaps.

Note that the function A, (-) appearing in Theorem 2.1 is defined using a distance function
for which similarities with different contraction ratios can be close. For the examples given below
we may insist Ay () be defined using the following stricter distance function and still guarantee
the existence of @y v+ without exact overlaps such that (A, (®yux v+))02; converges to zero at
any desired speed. Given two contracting similarities ¢(x) = r-Ox+t and ¢'(x) =" - O'x + ¢/
acting on R? we define our stricter distance function via the equation

00, r#1r" or O#0
[t—t'|, r=1r"and O=0".

(¢, ¢') = {

Example 3.1. In this example A € (0,1/2] is some fixed parameter. We could take U =V = R,
however for ease of exposition it is more convenient to set
U=V :={(z1,...,2q) ERd:a}j ¢ {0,1} for all 1 <j <dj}.
Given a vector u = (uy,...,uq) € U we associate the IFS
d
Oy =< A(x+a):ac H{O, Louj, 14+ uj}
j=1
Similarly, given v = (v1,...,v4) € V we let

d
Oy = AMx+a):ac [[{0,1,v;,1+v;}
j=1



Moreover, given u and v let Ty C R? be any finite set of vectors satisfying

d d d

1140, 1,0, 140 3T [0, 1,05, 140} € Tuy € [0, 1,15, v5, 14wy, L4, w45, Lu v}
j=1 j=1 j=1
Let

Ouv={Ax+a):acTyv}.

Notice that the translation vectors for ®, depend continuously on u, the translation vectors
for ®, depend continuously on of v, and the remaining translation vectors for ®,, depend
continuously on (u,v). Thus {®y}, {®Pyv} and {Py v} are three parameterised families of IFSs
as considered in Theorem 2.1.

After a little calculation it can be shown that u € Hy(n) if and only if!

d .
¢ Ufuetin = SR (i 001 & 1027\ (01 .

Obviously the same holds for Hy(n) with the parameter v replacing u. This shows that H;(n)
and Hs(n) are both non-empty for any n € N. Therefore property 1. from Theorem 2.1 holds
for these families.

To see that property 2 from Theorem 2.1 holds for this family we fix u € Hy(ng), v € Ha(mg)
and € > 0. Let Ly := max{ng, mo} and

D(u) = {j uj = ma for some (k)2 (8,);22; € {=1,0,1}"0\ {(O)LO}} :
=11

D(u) is the set of coordinate positions of u that give rise to an exact overlap caused by two
distinct words of length at most L. Since u € Hi(ng) it follows from the characterisation of
Hi(ng) above that the set D(u) is non-empty. For each N € N, if j € D(u) and

o ZZ 1 /<;Z)\Z

then we define
Zl L RN+ ANV
u]‘7N = T s
Zizol 5@')\1
and for all j ¢ D(u) we set uj n := u;. For each N € N we then let uy := (u1 n,...,uqn). The
set

{ 2501 R\ Lo Lo Lo Lo }
T ; for some (r;);2,, (d:);2, € {=1,0,1370\ {(0)™}
22 0N

is finite. Therefore for any N sufficiently large the parameter u;y does not belong to this
set for any j. It follows from the characterisation of Hj(n) stated above that uy ¢ Hi(Lo)
for N sufficiently large. Using the characterisation of Hj(n) stated above again, and the fact
Hy(Lo) = UX Hy(n), it follows that uy € U2 ro+1Hi(n) for N sufficiently large. Moreover,
we may also assume that N is sufficiently large that uy satisfies ||[u — uy||eo < €. We define
u; = uy for any N sufficiently large such that both of these properties hold.

'Here we use our assumption A € (0,1/2].



Let wy = (u1,1,...,uq4,1). We've shown that u; satisfies 2a from Theorem 2.1. To show that
property 2b holds for this choice of u; let us fix ¢ > 0. By a simple calculation, it can be shown
that for v* € V| if (uy,v*) € H3(Lg) then

d Lo i ) Lo 5: )\
vel {VGV:%‘: LI for some () € 1,014\ {01
j=1 i=1"i

and (k;), (0;) € {—1,0, 1}L°}.

For our previously fixed value of v let

/ . ZLB /@Z')\Z
D(v):{j:vj:zzjf—ollw\forsome( i), (6;) € {—1,0, 1}L0\{( )LO}}
and
Lo ke N s Lo i
D”(V) = {] “V = Zi:l 2 _I: L 'ZZ:l oA (i) € {-1,0, 1}L0 \ {(O)Lo}a (K1), (6;) € {-1,0, 1}L0} :
Zi:1 Vi

Since v € Ha(my) it follows that v € Hy(Lg) and therefore D’'(v) is non-empty.
For each N € N, if j € D'(v) and

L Zz 1 K;zAZ
U] B ZL_O]_ 5@)\1

then we define
Zl L RN+ AN

Zz‘L:OI i\’

VN P=

)

if j € D'(v)\ D'(v) and
Zz 1 RN+ 2501 i\’

vj = )
Zi:l ViN'
then define Z N
vjN::Z’lm)\ +A +UJ1211 7
7 Zizl YiN!
and if j ¢ D'(v) UD"(v) then
VN = Vj.
For each N € N set vy := (vi,n,...,VjN)-
The sets Loy
{% (k). (6) € {10, 1150\ {(0 )LO}}
and

Zz IK’Z)\ +u]121 1
Zi:1 YA

are both finite. Therefore for any N sufficiently large, v; v does not belong to either of these
sets for any j. Therefore vy € U2, 1 H3(n) and (w1, vy) ¢ H3(Lo) for N sufficiently large.
Moreover, for N sufficiently large we also have ||[v — vy|e < €. We take vi = vy for any
N sufficiently large such that each of these properties hold. For this choice of vi; we see that
property 2b from Theorem 2.1 is satisfied. As such this theorem can be applied to conclude that
given any sequence (wy) of strictly positive real numbers, there exists an IF'S ®« v+ within this
family without exact overlaps such that A, (®y«v+) < wy, for all n sufficiently large.

(%) € {=1,0.13"\ {(0)"°}, (k). (&) € {~1,0, 1}L°}
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Example 3.2. In this example U =V = (1/2,1). For v € (1/2,1) we let
O, = {u(x+1),u(x+2)},

and for v € (1/2,1) we let
O, :={v(x+1),v(z+2)}

Moreover, for (u,v) € (1/2,1) x (1/2,1) let
D, ={u(x+1),u(z+2),v(x+1),v(x+2)}

It is straightforward to show that u € Hi(n) if and only if

u € {u : Z/{iui = 0 for some (k;) € {—1,0,1}"\ {(O)”}} .

=1

An equivalent characterisation exists for Ha(n) with u replaced by v. The set of zeros of non-zero
polynomials with coefficients belonging to the set {—1,0, 1} is well known to be dense in (1/2,1).
For a proof of this statement see the proof of Corollary 3 from [10]. It follows that U Hy(n)
and US° ; Ha(n) are both non-empty and property 1 from Theorem 2.1 is satisfied. To show that
property 2 holds for this family fix u € H;(ng),v € Ha(mg) and € > 0. Let Ly = max{ng, mo}.
Since the set of zeros of non-zero polynomials with coefficients belonging to the set {—1,0,1} is
dense, we can choose uy € UpZ;  Hy(n) such that ||u — u1llec < € and uy is not a zero for any
non-zero polynomial of degree at most Ly with coefficients belonging to the set {—2,—1,0, 1, 2}.
Here we used the fact that the set of zeros of non-zero polynomials of degree at most Ly with
coefficients belonging to the set {—2,—1,0, 1,2} is a finite set. We’ve shown that property 2a
from Theorem 2.1 is satisfied by this choice of u;. It remains to show that property 2b. is also
satisfied. As such let us fix € > 0. For an arbitrary choice of v* € V one can check that if
(u1,v*) € H3(Lo), then there exists (kio), ..., (kiL,) € {—2,—1,0,1,2}70F such that one of
these sequences is non-zero and

Lo Lo Lo
Z /ﬁ;i’o(iﬂ)i + (Z Ii@l(ul)i) v* + - (Z Ri Lo (’U,l)l) (?}*)LO =0. (3.1)
=0 1=0 1=0

Equation (3.1) shows that if (u1,v*) € H3(Lo) then v* is the zero of a polynomial of degree
Ly with coefficients belonging to the set {Zfzﬂo ri(ur)’: (k) € {—2,—1,0,1,2}F0F1} Moreover,
since one of (Ki0),..., (ki r,) is non-zero and w; is not the zero of any polynomial of degree
at most Lo with coefficients belonging to the set {—2,—1,0,1,2}, we may conclude that if
(u1,v*) € H3(Lp) then v* is the root of a non-zero polynomial with coefficients belonging to the
set {30100 mi(ur)? (ki) € {=2,—1,0,1,2}20F1} of degree at most Ly. There are only finitely
many such v*. Therefore appealing to the density of Up2; Ha(n) we may pick vy € U2 1 H3(n)
such that ||v —v1]|eo < € and (u1,v1) ¢ Hs3(Lg). Therefore property 2b is satisfied for this choice
of v1. By Theorem 2.1 there exists ®y« v+ within this family with no exact overlaps such that
(Ap(Py= v+)) converges to zero arbitrarily fast.

Acknowledgements. The author would like to thank the anonymous referees for their useful
feedback.
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