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Spatial variation in community composition may be driven by a variety of processes,
including environmental filtering and dispersal limitation. While work has been conducted
on the relative importance of these processes on various taxa and at varying resolutions,
tests using high-resolution empirical data across large spatial extents are sparse. Here,
we use a dataset on the presence/absence of breeding bird species collected at
the 10 km × 10 km scale across the whole of Britain. Pairwise spatial taxonomic
and functional beta diversity, and the constituent components of each (turnover and
nestedness/richness loss or gain), were calculated alongside two other measures of
functional change (mean nearest taxon distance and mean pairwise distance). Predictor
variables included climate and land use measures, as well as a measure of elevation,
human influence, and habitat diversity. Generalized dissimilarity modeling was used
to analyze the contribution of each predictor variable to variation in the different beta
diversity metrics. Overall, we found that there was a moderate and unique proportion
of the variance explained by geographical distance per se, which could highlight the
role of dispersal limitation in community dissimilarity. Climate, land use, and human
influence all also contributed to the observed patterns, but a large proportion of
the explained variance in beta diversity was shared between these variables and
geographical distance. However, both taxonomic nestedness and functional nestedness
were uniquely predicted by a combination of land use, human influence, elevation, and
climate variables, indicating a key role for environmental filtering. These findings may
have important conservation implications in the face of a warming climate and future
land use change.

Keywords: avifauna, beta-diversity, community composition, GDM, spatial, climate

Frontiers in Ecology and Evolution | www.frontiersin.org 1 March 2021 | Volume 9 | Article 620062

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2021.620062
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fevo.2021.620062
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2021.620062&domain=pdf&date_stamp=2021-03-19
https://www.frontiersin.org/articles/10.3389/fevo.2021.620062/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-620062 March 15, 2021 Time: 17:43 # 2

Wayman et al. Spatial Drivers of Beta-Diversity

INTRODUCTION

Biodiversity is currently facing a multitude of global-scale
threats from human activity (Dirzo et al., 2014; McGill et al.,
2015). As the human footprint on the natural world grows,
it is becoming increasingly important to understand how
these factors are impacting ecological communities in order to
inform conservation efforts and make predictions about impacts
under future scenarios (Newbold, 2018; Soininen et al., 2018).
Analyzing spatial variation in species diversity is a powerful
means of assessing the impact of different environmental factors
on biodiversity as it provides us with information on what is
currently limiting species ranges and occupation of sites. The
analysis of spatial variation in biodiversity generally involves
focusing on taxonomic changes between sites in the form of alpha
(α) or, to a lesser extent, beta (β) diversity (Field et al., 2009;
Calderón-Patrón et al., 2016; Soininen et al., 2018).

Comparing the alpha diversity of two communities
separated in space provides a measure of the difference in
the number of species between these sites but ignores species
replacement/turnover (i.e., a species being extirpated from a
site and another species colonizing) and can therefore mask
biodiversity change (Gonzalez et al., 2016). In contrast, beta-
diversity provides a measure of community dissimilarity between
sites (Whittaker, 1960; Koleff et al., 2003). Various metrics have
been proposed to measure beta-diversity, which can be grouped
into variance-based approaches (the focus of the present study)
and diversity-partitioning approaches (Legendre and de Cáceres,
2013; Matthews et al., 2019). Recently, several variance-based
metrics (e.g., the Sørensen index) have been partitioned into
constituent components, such as species replacement/turnover
(that is independent of richness differences) and species richness
differences or ‘nestedness’ (Baselga, 2010). It has been argued
that the study of these partitions provides insight into the
drivers of compositional difference between sites (Baselga and
Leprieur, 2015). Nestedness in this context is not ‘true’ nestedness
[e.g., as measured by the nestedness metric based on overlap
and decreasing fill (NODF)], but rather nestedness resultant
dissimilarity that allows for the separation of dissimilarity due
to turnover from that of nestedness (Baselga, 2012). For ease,
we henceforth use the term ‘nestedness’ to describe nestedness
resultant dissimilarity.

Standard beta-diversity metrics (herein termed ‘taxonomic
beta-diversity’) assume all species are the same in terms of
the role they play within an ecosystem (Sekercioglu, 2006),
thereby ignoring the vital role that functional diversity plays
in assemblage dynamics (Devictor et al., 2010; Eskildsen
et al., 2015). Recently, several beta-diversity metrics have been
expanded to incorporate functional information (Cardoso et al.,
2014; Baselga and Leprieur, 2015) and can be used to shed light
on the biotic/abiotic factors that cause variation in functional
diversity between sites (Villéger et al., 2013; Cardoso et al., 2014).
This evidence can be used to inform conservation activities
such as protected area design and biological corridor selection
(Socolar et al., 2016), and help protect ecosystem services
(Şekercioǧlu et al., 2004; Cardinale et al., 2012; Galetti et al.,
2013). For example, bird communities play an important role

in providing services such as pollination, pest control, and
carrion removal (Whelan et al., 2008; Wenny et al., 2011),
which are critical services for humans and other taxa. Using
a beta-diversity measure that incorporates species traits, and
hence functionality, is therefore essential to gain a better
understanding of biodiversity change and its consequences
(Devictor et al., 2010; Jarzyna and Jetz, 2018; Tobias and Pigot,
2019; Carvalho et al., 2020).

Biological communities are predicted to vary spatially in
the absence of anthropogenic influences (i.e., the natural
pattern of distance decay in species similarity; Nekola and
White, 1999) due to both dispersal limitation and niche
filtering, among other factors (Lomolino et al., 2010). Dispersal
limitation is hypothesized to impact the spatial variation in
community composition by restricting the range of species
through distance alone (Dambros et al., 2017), independent of
environmental differences between the communities (Hubbell,
2001). Niche-filtering occurs when environmental gradients
constrain communities to those species adapted and able to
persist in local conditions (Weiher and Keddy, 1999; Cornwell
et al., 2006). In addition, human-induced change (e.g., land-use
change and climate change) are likely important drivers of both
spatial taxonomic and functional beta-diversity (Devictor et al.,
2007; Davey et al., 2012; Barnagaud et al., 2017).

The effect of dispersal on spatial beta-diversity can be assessed
through the analysis of the geographic distance between sites,
while the effect of environment can be tested by evaluating
measures of habitat and land use types (hereafter ‘land use’) and
climate (Luck et al., 2013; Wieczynski et al., 2019; Fluck et al.,
2020). However, due to the spatial structuring of environmental
gradients (i.e., a distance decay in environmental conditions),
it is difficult to partition the unique effects of each (Leibold
and Chase, 2017). Relating current land use and climate to
spatial variation in community composition will also enable
inferences to be made on how increases in the relative intensity
of these drivers may impact spatial variation in the future
(Barbet-Massin and Jetz, 2015).

The effect of land use on community composition is mostly
a result of niche filtering, where species which are adapted to
a specific land use type are unable to survive in contrasting
land use types (Weiher and Keddy, 1999; Cornwell et al., 2006).
Rapidly growing human populations (Tratalos et al., 2007)
have facilitated considerable land use changes via increasing
urbanization in some areas of the world (Seto et al., 2012),
and conversion of natural land to agriculture, as well as an
overall intensification of agricultural practices (Zabel et al., 2019).
There is strong evidence that these practices have disrupted
communities, leading to pools of generalist species in heavily
modified habitats via the exclusion, through filtering, of species
with narrower environmental requirements (i.e., specialists)
(McKinney, 2006; Vellend et al., 2007; Clavel et al., 2011; Flohre
et al., 2011; Barnagaud et al., 2017; Hagen et al., 2017). Thus, in
anthropogenic landscapes (such as those that occur across much
of the United Kingdom), turnover is predicted to be low across
large spatial scales, and communities are predicted to become
more nested, with high redundancy in functional diversity (Liang
et al., 2019; Weideman et al., 2020).
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Climate is also an important environmental filter and
can drive high spatial beta-diversity between regions due to
differences in energy availability (energy richness hypothesis;
Hutchinson, 1959; Currie, 1991; Hurlbert and Haskell, 2003),
variation in species tolerance (physiological tolerance hypothesis;
Root, 1988), and variation in speciation rates (the speciation rates
hypothesis; Currie et al., 2004; Hua and Wiens, 2013). While there
is mixed support for these hypotheses, substantial evidence exists
showing that differences in species composition between sites
are often correlated with climatic gradients (Currie et al., 2004).
Additional filtering impacts may occur where land use change
interacts with climate (Auffret and Thomas, 2019).

Better understanding the role of climate in driving spatial
beta-diversity is essential in order to accurately predict the
effects of future climate change on community composition.
For example, species populations have been found to expand or
contract their ranges in response to changing climatic conditions
(Fox et al., 2014; Batt et al., 2017). As well as range shifts,
shifting phenologies across the trophic web can lead to disruption
of communities through cascade effects due to altered species
interactions (Bell et al., 2019). Other impacts of a changing
climate, such as more frequent severe weather events, are also
increasingly recognized as significant drivers of spatial beta-
diversity (Maxwell et al., 2019).

There are thus many potential drivers of spatial beta-diversity.
However, few studies exist assessing the relative roles of these
different drivers (e.g., land use, climate, human impacts) in terms
of both taxonomic and functional beta-diversity, the aim of the
present study. We use generalized dissimilarity models (GDMs)
in combination with a dataset containing presence/absence data
of British breeding birds collected at the 100 km2 scale over
the entirety of the British Isles. We aim to (1) test the effect of
geographic distance and a range of environmental variables (e.g.,
land use type, climate) on the spatial taxonomic and functional
beta-diversity of British breeding bird communities and (2)
evaluate the role of human influence on spatial beta-diversity
patterns. While we do not set out to test the niche-filtering and
dispersal-limitation hypotheses directly, we interpret increasing
dissimilarity due to geographical distance as an indication
that dispersal limitation may play a role in the structuring
of communities. In contrast, increasing dissimilarity due to
climate, land use, or human influence would point to a role for
niche filtering.

MATERIALS AND METHODS

Data Collection
Species Composition Data
Data showing the summer (breeding) distributions of the British
avifauna (Gillings et al., 2019) were collected during April-July
over the period 2008–2011 (BA2010) by volunteers on behalf
of the British Trust of Ornithology (BTO) and the Scottish
Ornithologists’ Club (SOC). Some fieldwork effort was permitted
out of this field season, with specific instructions given on
what evidence was permitted (see Gillings et al., 2019, for
further information).

FIGURE 1 | Map displaying the study location (Great Britain) and its location
within Europe. The lower proportion of the island is gridded with the quadrats
used to sample the avifauna (only a sample is shown here and the whole
island was sampled).

The dataset summarizes the presence/absence of British bird
species within 10 km × 10 km (100 km2) quadrats covering
the British Isles on a continuous grid (Figure 1). Only species
designated as being “confirmed” or “probable” breeders (Gillings
et al., 2019) were retained here. Vagrant and pelagic species were
excluded, but we retained introduced breeding species for the
analysis (McInerny et al., 2018). While some introduced species’
occupied ranges may reflect in part their initial introduction sites,
many of these species are now established, so their presence
exerts an influence on community structure, resource use, and
competition (Lennon et al., 2000). Species under threat from
human persecution (particularly hunting or egg-collecting) were
also removed from the analyses as data for such species were
provided at larger spatial grains (i.e., larger than 100 km2) or
their locations were omitted entirely (Gillings et al., 2019). All
quadrats with less than 50% land and all island regions that
were considered disconnected from the mainland were removed.
A total of 2257 100 km2 quadrats remained with a species pool
containing 169 species (Supplementary Table 1).

Trait Data
Continuous morphometric variables were measured from
museum specimens or extracted from literature and used
to characterize the functional diversity of each community
(defined as all the species present in each quadrat). We
selected eight morphological traits to represent the functional
role of birds: two estimates of beak length (culmen from
tip-to-skull and tip-to-nares), beak width, beak depth, tarsus
length, wing chord length, tail length, and body mass,
with evidence showing all of these traits provide useful
information about avian dietary niche, locomotion and ecological
function (Trisos et al., 2014; Tobias and Pigot, 2019; Pigot
et al., 2020). Further information on measurements, including
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sampling per species and methods, are published separately
(Pigot et al., 2020).

A principal components analysis (PCA) was performed
using all eight traits, with the full eight axes extracted. All
the axes were then standardized to a mean of 0 and a
standard deviation of 1, producing a trait matrix (species
x traits) with eight trait axes for each species. To test for
the effect of raw trait variability, we also standardized the
traits prior to running the PCA. The results using both
the raw traits and the standardized traits in the PCAs were
comparable, so we report only the results using the raw traits
within the PCA here. All eight axes were included as it
has been shown that all the axes provide useful information,
with even minor axes capturing significant variation in traits
(Pigot et al., 2020).

Climate Data
Monthly temperature and precipitation data were downloaded
from the United Kingdom Met Office, which provides
climate data interpolated from local weather stations onto
a 1 km × 1 km grid across the United Kingdom (Hollis
et al., 2019). Data were downloaded from the period 2000–
2011. For the breeding season (defined as the start of May
to the end of July, as many arriving migrants in April will
not yet be breeding), key climate variables were selected
a priori, and averages calculated. Precipitation (mm) was
summed for each 100 km2 quadrat over the breeding
season for each year. The average temperature (◦C) was
calculated as the daily average temperature across the
quadrat and the breeding season. The range in temperature
was also calculated as the average mean maximum daily
temperature over the breeding season minus the average
mean minimum daily temperature. The mean of each of
these climatic variables was then calculated over the 2000
- 2011 period to reduce the influence of yearly variation,
leaving three measures of climate (Tavgmean, Precmean,
and Rangemean). Climate averages were also constructed
over a more extended period (1960–2011) to test if birds
were responding to longer-term climate variation. The
majority of the GDMs fitted using the shorter period
had a better fit, and thus we only report the results using
2000–2011 climate here.

Land Use Data
Data on land use were obtained from the EDINA environment
digimap service for 2007 (Land Cover Map, 2007). These data
provide land cover (23 land use classes) for the British Isles
at a 25 m scale. From these data, the percentage cover for
each land use within each 10 × 10 km quadrat was calculated.
The woodland classes (coniferous woodland and broadleaved
woodland) were grouped into one variable named ‘forest,’ as
were ‘grasslands’ (grouped from the improved grasslands and
semi-natural grasslands categories), and ‘urban areas’ (grouped
from the suburban and urban categories). Arable land was
also included as a predictor variable. Shannon’s diversity index
was calculated for each quadrat as a measure of land-use
heterogeneity (hereafter called Shan).

Human Influence Index (HII)
The Human Influence Index (HII) was used to assess the
contribution of human impact on the variation in community
composition (Wildlife Conservation Society-WCS, and Center
for International Earth Science Information Network-CIESIN-
Columbia University, 2005). The HII is derived from multiple
data sources on population density, infrastructure (railroads,
urban development, night-time lighting), and landcover ranging
in date collected 1994–2005 (although in this version about
half of the measures were collected around 2000 instead of
1995, as was the case for the first version). The measures
are each weighted differently in the methodology and then
standardized giving a measure of human impact ranging from
zero (no human impact) to 100 (maximum human impact
possible using the methodology). HII values were extracted
from each of the 1 km2 grid squares within each 100 km2

quadrat. The average was taken over these values to obtain
the mean HII within each quadrat. It is important to note
here that there is some temporal disparity in the period the
HII was developed over (see above) and the period the atlas
was conducted (2008–2011). However, even with this small
disparity, HII should provide a robust indication of the impact
human influences have on spatial variation in taxonomic and
functional composition.

Elevation Data
Elevation data were obtained from the shuttle radar topography
mission (SRTM; Jarvis et al., 2008). For each 100 km2 quadrat,
data were extracted using 400 equally spaced points. The
mean (Meanelev) and the standard deviation (SDelev) were then
calculated from these data as measures of elevation and variability
in the elevation across the area.

Testing for Multicollinearity
Pearson’s and Spearman’s correlations were used to test for
multicollinearity between the predictor variables. SDelev was
removed due to the variable being strongly correlated with
multiple other variables (Elevation, Tavgmean, and Precmean).
The climatic variables were found to be collinear with one
another, and with other variables (Supplementary Figures 1a,b).
Therefore, the climatic variables were combined using a PCA.
The PCA yielded three axes that explained all the variation
of the original three climatic variables [hereafter; Climate 1
(81.90%), Climate 2 (13.54%), and Climate 3 (4.56%)]. All
the axes were retained in the models to capture all the
variability that could be explained by climate. Scatter plots and
correlations between the PCA axes and the raw climate variable
showed that Climate 1 was positively correlated with average
temperature and negatively correlated with average precipitation
(Supplementary Figure 2). Climate 2 and Climate 3 had less
clear and more complex correlations with the original variables
(Supplementary Figure 2).

After substituting the climate variables with the PCA axes, all
variables had correlations < 0.70, with two exceptions: Elevation
and Climate 1, and urban land use and HII (Supplementary
Figures 1c,d). As a result, urban land use was removed from the
analysis and the human influence index, which is a composite
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measure including urban land use, was retained. Both elevation
and Climate 1 were retained because (1) both variables are known
to be significant predictors of spatial variation in breeding avian
communities, (2) the correlation was still below 0.8, and 3) GDM
is known to be robust to multicollinearity to a certain degree
(Glassman et al., 2017). A variance inflation factor test (VIF) was
also performed, with all remaining variables having VIF values
< 5 (Neter et al., 1983; Gareth et al., 2013).

Measuring Spatial Dissimilarity in
Community Composition
Spatial Taxonomic and Functional Beta-Diversity
To assess taxonomic dissimilarity between the assemblages,
pairwise taxonomic beta diversity was calculated for each
100 km2 quadrat using the function beta.pair from the package
‘betapart’ (Baselga and Orme, 2012). This function computes the
dissimilarity (here measured using Sørensen’s dissimilarity index,
βsor; Baselga, 2010; Koleff et al., 2003) between an assemblage and
every other assemblage present in the dataset to create a pairwise
dissimilarity matrix.

Using Sørensen’s dissimilarity, total beta-diversity can then
be partitioned into its two constituent components: dissimilarity
due to turnover (BDTURN) and nestedness resultant dissimilarity
(BDNEST), with BDTOTAL = BDTURN + BDNEST. Turnover is the
proportion of dissimilarity due to species replacement between
two assemblages, whereas nestedness is the proportion of the
dissimilarity due to one assemblage being a nested subset of
another assemblage through either species loss or gain (Baselga,
2010). It is important to note that, unlike BDTURN, BDTOTAL
and BDNEST are not independent of species richness changes, as
the measurements are dependent upon species richness gradients
(Baselga and Leprieur, 2015).

A measure of functional beta-diversity was then calculated
using Sørensen’s dissimilarity index and Baselga’s (2010)
partitioning framework (Phylosor). For this approach, a
global functional dendrogram was created containing all the
United Kingdom breeding species, using a Euclidean trait
distance matrix and the agglomerative hierarchical clustering
method (UPGMA). This method produces a rooted tree
with a constant weight assumption (i.e., where the distance
between the root to all tips is equal), and this then describes
the functional relationships between species (Petchey and
Gaston, 2002). The phylo.sor function in the ‘betapart’ package
(Baselga and Orme, 2012) was used to calculate functional
dissimilarity based on the shared branch length of the
functional dendrogram between each assemblage and every
other assemblage (hereafter called FDTOTAL). Although this
method is usually used on phylogenies, here it is used on a
functional dendrogram to give a functional measure analogous
to taxonomic beta-diversity, allowing for straightforward
comparison. In addition, using a convex hull approach (the
standard Baselga functional metric) was not possible here due to
the size of the dataset and the computational demands of such
an approach. FDTOTAL was also partitioned into its constituent
components of nestedness resultant dissimilarity (FDNEST) and
turnover (FDTURN).

A Pearson’s correlation was performed between the Euclidean
distances (in the trait distance matrix) and the cophenetic
distances (in the dendrogram) (Villéger et al., 2017). The resultant
correlation was high (Pearson’s r = 0.97), indicating that the
dendrogram provides an adequate measure of the functional
distances between species.

MNTD (Mean Nearest Taxon Distance) and MPD
(Mean Pairwise Distance)
As an alternative to Baselga’s functional beta-diversity framework,
mean nearest taxon distance (MNTD) and mean pairwise
distance (MPD) were calculated. While MNTD is also sensitive
to species richness differences, MPD is a measure that is mostly
independent of species differences between sites (Miller et al.,
2017). MNTD represents the mean distance (smallest non-
diagonal value) between species in a community and is most
sensitive to changes at the ‘tips’ of a dendrogram (Webb et al.,
2002). MPD is a similar measure but is calculated as the mean
between all non-diagonal elements between species within a
community (Webb, 2000; Webb et al., 2008), and so it is more
sensitive to changes at the roots of the functional dendrogram.
Here, the beta-diversity versions of MNTD and MPD, that
calculate the same measures but between assemblages are used.
For ease, we refer to these as MNTD and MPD (Miller et al.,
2017). MPD and MNTD were calculated using the comdist
and comdistnt functions, respectively, in the R package ‘picante’
(Webb et al., 2008). MNTD and MPD were standardized by
dividing each pairwise measure by the largest pairwise measure
to produce dissimilarity bounded between 0 and 1. Standardizing
MPD and MNTD in this way allowed the measures to be
modeled using GDMs.

Modelling Variation in Spatial
Beta-Diversity
As a first step, multidimensional scaling (MDS) was applied to
each of the pairwise measures. The first axes from the MDS
were taken and plotted. These were then assessed visually for any
pattern in the dissimilarity/similarity between assemblages.

Generalized dissimilarity modeling (GDM) was then used
to model functional and taxonomic beta-diversity. GDM is a
statistical technique (an extension of matrix regression) that can
be used for assessing the relationship between environmental
gradients and variation in community composition (Ferrier et al.,
2007). The modeling accommodates non-linearity that is present
in ecological datasets over large extents (Ferrier, 2002; Ferrier
et al., 2007) and can also incorporate geographical distance. This
is vital to include, as dispersal limitation modulated by distance
is known to be an important driver of community composition
(Keil et al., 2012). GDM can deal with higher multicollinearity
among predictor variables than many commonly used regression
models (Glassman et al., 2017), and uses monotonic I-splines
that constrain the coefficients of the regressions to be positive
for a non-decreasing fit and non-positive for a non-increasing
fit. The I-splines allow the evaluation of predictor effects on
the dissimilarity metrics through the height and slope. The
maximum height represents the total deviance explained by the
predictor while holding all the other predictors constant, while
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the slope displays the rate of compositional change across the
predictor’s range (Fitzpatrick et al., 2013; Fitzpatrick and Keller,
2015). We applied a modeling framework using GDM, aimed at
assessing the unique and shared roles of both geographic distance
and environmental factors on our measures of beta diversity
(Supplementary Figure 3).

A separate GDM was fitted with each of the taxonomic
and functional beta-diversity metrics (i.e., BDTOTAL, BDTURN,
BDNEST, FDTOTAL, FDTURN, FDNEST, MNTD, and MPD) as
response variables using the ‘gdm’ package in R (Fitzpatrick
et al., 2020). As a first step, matrix permutation was used to
assess the model significance and variable importance using
the gdm.varImp function. Due to the large amount of memory
and time required to model the full site-pair combinations
(N = 2,545,896) only a subset of the data could be used for
the matrix permutation and variable importance process (as
recommended for datasets with a large number of sites when
calculating variable importance; Fitzpatrick et al., 2020). First,
60% of the sites were randomly removed, leaving 407,253 site-
pairs. Another 60% of the site-pair combinations were then
removed from the remaining site-pairs, leaving a total of 162,901
site-pairs for analysis. The removal of the site-pairs, after the
initial site removal, removes site-pairs randomly but does not
remove all site-pair combinations (Fitzpatrick et al., 2020). The
predictor variables were not scaled, which allows assessment of
the impacts each of the predictors has along actual environmental
gradients (e.g., Fitzpatrick et al., 2013; Heino et al., 2019).

For the matrix permutation process, a GDM was first
run using all of the predictor variables. The rows of the
environmental data were then permuted, and a GDM model
was fitted to those data. Significance was then evaluated
by comparing the deviance of the model with unpermuted
data to the model using permuted data. Variable importance
was assessed by permuting each of the variables in turn
while holding the other variables constant (unpermuted).
Variable importance was then assessed as the difference in
deviance explained using the permuted and unpermuted
variable, with more important variables explaining a larger
proportion of the deviance when unpermuted. The process
was then repeated after dropping the least important
variable (backward elimination) with variable importance
and significance recalculated. All variable importance scores
reported in the text were calculated at this point. The first
model where all variables were significant (p < 0.05) was
identified, and this model was then fit using all the sites (i.e.,
the full dataset) (final model). One hundred permutations were
used for model significance testing and variable importance
scores (Ferrier et al., 2007; Heino et al., 2019). Uncertainty
in the I-splines was then evaluated using a bootstrapping
approach (Shryock et al., 2015). A total of 50% of the sites
were first removed randomly from the dataset. From these
data, a GDM model was fit, and the I-spline coefficients
extracted. For the bootstrapping, a further 80% of the sites
were randomly removed, and a GDM model fit. The process
was repeated 100 times. The I-splines were then plotted
with error bands showing the standard deviation from the
permutation process.

Variance shared between geographical distance and the
environmental variables was calculated for each model in turn
using the formula:

Vs = Vfull − (Vfull − Vg)− (Vfull −−Ve),

where Vs is the explained variance shared between the geographic
predictor and the environmental variables, Vfull is the variance
explained by the full model, Vg is the variance explained by the
geographic distance only model, and Ve is the variance explained
by the model containing only the environmental variables (Ray-
Mukherjee et al., 2014).

RESULTS

Taxonomic and Functional Beta-Diversity
of the British Avifauna
BDTOTAL was higher on average (0.313 ± 0.142) than FDTOTAL
(0.285 ± 0.126). In both cases, overall beta-diversity was
determined mostly by the turnover component (0.225 ± 0.121
(71.88% of the total) and 0.195 ± 0.108 (68.42% of the
total), for BDTURN and FDTURN, respectively). Nestedness was
responsible for a smaller proportion on average for both
measures (Figures 2A,B). Average MPD (0.799 ± 0.045)
was higher than MNTD (0.255 ± 0.125) (Figure 2C), as is
to be expected.

Spatial Variation in Taxonomic and
Functional Beta Diversity
Heat maps of the community metrics showed clear spatial
patterns in the different beta diversity metrics. A north-
south divide was present for BDTOTAL (Figure 3A) and
FDTOTAL (Figure 3E), and for the turnover component of each
(Figures 3B,F, respectively). Alternatively, this could also be
interpreted as a divide along the classic ‘Tees-exe line’ that
roughly divides the uplands and lowlands of Britain (Prakash
and Rumsey, 2018). The west of Wales was more similar to
the north of England and parts of Scotland than the south of
England for total beta diversity and turnover for both taxonomic
and functional metrics, representing elevation changes between
upland and lowland regions (Figures 3A,B,E,F). The eastern
coastal regions in Scotland were more congruent with southern
regions than with inland and west coast Scottish assemblages
(Figures 3A,B,E,F). Nestedness patterns generally mirror the
other metrics but the patterns were patchier (i.e., the divides
between regions (north/south and Tees-exe line) was less
delineated). The south-west of England and the west coast of
Wales were a closer match with most of Scotland than they were
with the majority of southern England (Figures 3C,G), again
closely matching the ‘Tees-exe line’ (Prakash and Rumsey, 2018).

The pattern for MNTD was largely the same as that found
for total taxonomic and functional beta-diversity and turnover
(Figure 3D). MPD showed a pattern similar to that of nestedness
for both taxonomic and functional beta diversity (Figure 3H).
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FIGURE 2 | Boxplots of pair-wise dissimilarity measures of community composition for British breeding birds. These are all on the same row (A) displays taxonomic
spatial dissimilarity (turnover, nestedness resultant dissimilarity, and total), (B) is functional pairwise dissimilarity (turnover, nestedness resultant dissimilarity, and total),
and (C) shows standardised mean pairwise distance (MPD) and standardised mean nearest taxon distance (MNTD). The horizontal line within the box represents the
median, the box indicates the inter-quartile range (IQR), and the whiskers show data 1.5 times the IQR. Points highlight outliers.

FIGURE 3 | Heat maps of community dissimilarity in British breeding birds based on the first axis from a Principal co-ordinate analysis analysis (PCoA) for taxonomic
and functional beta diversity, turnover, and nestedness resultant dissimilarity. Colors represent the ordering scores obtained from the PCoA, with areas displaying
similar colors more similar and areas with differing colors less similar in terms of community composition. The first three maps on the first row (A–C) are for
taxonomic beta-diversity (BDTOTAL, BDTURN, and BDNEST, respectively) and the first three maps on the second row (E–G) are for functional beta-diversity (FDTOTAL,
FDTURN, and FDNEST, respectively). Mean nearest taxon distance (D) and mean pairwise distance (H) are the last maps on each row, respectively.

Modelling the Drivers of Spatial
Beta-Diversity
Overall, the variance explained by all the final models (bar those
for MPD, FDNEST, and BDNEST) was high, with between 55.61%
and 68.45% variance explained (Table 1). The variance explained
by the final GDM models for MPD, FDNEST, and BDNEST was
lower (between 9.60% and 12.09%) (Table 1). The deviance
explained for the functional metrics was lower than for the
taxonomic metrics (Table 1).

For all final models, the deviance explained by GDM models
using only geographical distance as a predictor of dissimilarity
was lower than the deviance explained by the models run using
only the significant environmental variables (Table 1). However,
there was overlap in the deviance explained by geographical
distance and the environmental variables. Between 19.31% and

23.42% of the variance explained was shared within the MNTD,
taxonomic, and functional beta-diversity models, excluding the
FDNEST and BDNEST models (Table 1). For the nestedness
components, the geographical distance between sites explained
a low percentage of deviance (Table 1). Geographic distance was
non-significant in the MPD model.

Drivers of Taxonomic Beta-Diversity
The following results (and those in the ‘Drivers of functional
beta-diversity’ section) relate to the final models (i.e., the models
that have been simplified using the permutation approach
described in the methods).

BDTOTAL was most impacted by geographical distance,
Climate 1, Elevation, and HII (in order of decreasing importance,
Table 1). BDTOTAL rose gradually with geographical distance and
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TABLE 1 | Results of generalized dissimilarity models (GDMs) analyzing the spatial taxonomic and functional beta-diversity of British breeding birds as a function of
environmental variables and geographical distance.

Taxonomic Functional

Total Turn Nest Total Turn Nest MPD MNTD

GDM Deviance 74977 80731 143637 68867 85707 143167 25588 74664

Null Deviance 237649 213424 163388 196464 193057 159253 28306 202198

Variance Explained (%) 68.45 62.17 12.09 64.95 55.61 10.10 9.60 62.97

Intercept 0.13 0.06 0.06 0.12 0.05 0.06 1.53 0.10

Geographic Only (%) 28.04 29.72 1.43 27.95 28.17 1.22 0.00 26.30

Environment Only (%) 61.33 55.87 12.00 56.68 49.08 10.05 9.60 55.98

Shared (%) 20.92 23.42 1.34 19.68 21.64 1.17 0.00 19.31

Variable Importance

Geographic 10.83 9.95 0.04 9.16 11.42 1.87 0.00 9.68

Climate 1 6.57 3.71 25.05 5.56 3.48 31.64 7.01 10.72

Climate 2 0.00 0.35 0.00 0.27 0.45 0.00 0.00 0.00

Climate 3 0.00 0.00 0.00 0.38 0.13 4.39 0.00 0.26

Arable 1.55 2.88 0.00 0.95 2.83 0.00 0.00 1.00

Forest 1.46 1.82 6.92 0.58 0.74 6.40 0.00 1.09

Grass 0.95 0.52 0.00 0.82 0.46 0.00 0.00 0.90

Shan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Elevation 5.64 2.14 2.43 1.38 1.07 0.00 37.81 1.34

HII 1.61 1.19 4.51 2.60 1.48 5.12 15.22 3.48

Also included are the results from models analyzing mean pairwise distance (MPD) and mean nearest taxon distance (MNTD) between sites. Variable importance scores
were calculated using a subset of the data through permutation of each one of the predictors in turn, while holding all other predictors constant. The variable importance
is then the mean difference in variation described by the model including the non-permuted variable and the permuted variable. Therefore, the higher the importance
score the more important that variable is to explaining variation in the community dissimilarity metric. For individual variable descriptions, see the main text.

Elevation, with a sharper rise observed for Climate 1 initially,
followed by a leveling out (Figure 4A). HII had an initial effect
on total beta-diversity, with a small but sharp increase observed
over initial environmental dissimilarity, but then leveled off and
remained relatively constant (Supplementary Figure 1). Arable,
forest, and grass cover were also in the final BDTOTAL model
(Supplementary Figure 4).

Geographical distance, Climate 1, and arable land cover (in
order of decreasing importance) had similar impacts on BDTURN
as they did on BDTOTAL (Figure 4B). Elevation and forest cover
were the two other most important variables in regard to this
response variable, with turnover increasing sharply with forest
cover initially before leveling off, and a near-linear increase
with elevation (Supplementary Figure 5). HII, grass cover,
and Climate 2 were also included in the final BDTURN model
(Supplementary Figure 5).

Geographical distance was relatively unimportant for
predicting BDNEST, although it was included in the final model.
The best predictor (the predictors with the highest variable
importance values; Table 1) for BDNEST was Climate 1, and its
relationship was similar to that found for BDTOTAL (Figure 4C).
Forest cover, HII, and elevation were also in the final model
(Supplementary Figure 6).

Drivers of Functional Beta-Diversity
FDTOTAL had a similar relationship with geographic distance,
Climate 1 and HII as was observed with BDTOTAL, and they were
also the three most important predictors (Figure 5A). Elevation

had an almost linear relationship with FDTOTAL (Supplementary
Figure 7). Arable, grass, and forest cover, along with the other two
climate axes (Climate 2 and Climate 3), were also included in the
final FDTOTAL model (Supplementary Figure 7).

The main difference between the FDTURN and BDTURN final
models was the inclusion of Climate 3 for FDTURN, and a
slight difference in the ordering of the variable importance
(Table 1, Figure 5B and Supplementary Figure 8). FDNEST,
as with BDNEST, was also unaffected by geographical distance
(Table 1). FDNEST was impacted by Climate 1, forest cover,
HII, climate 3, and geographical distance (Figure 5C and
Supplementary Figure 9).

MNTD was mainly impacted by Climate 1, geographical
distance, HII, Elevation, and forest cover (Figure 6A and
Supplementary Figure 10). Overall, the final MNTD model
contained the same significant predictors as in the final
models for BDTOTAL and FDTOTAL, and similar relationships
were found with all the predictors, although the order was
slightly different (Supplementary Figure 10). MPD was the
only measure not predicted by geographical distance (Table 1).
MPD was found to sharply increase with Elevation before
leveling off around 100 m (Figure 6B). HII was the next
best predictor of MPD and its relationship was different
to that found with the other measures, with a curvilinear
increase observed midway through the gradient (Figure 6B).
The relationship between Climate 1 and MPD was also different
to that found between the predictor and the other response
variables, with a threshold effect found near the tail end of the
gradient (Figure 6B).
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FIGURE 4 | Plotted I-splines of the three most important variables (determined from the variable importance score) from generalized dissimilarity models analyzing
the relationship between environmental and geographic gradients, and spatial community composition in British breeding birds. Plots on row (A) are for total
Sorensen’s beta-diversity (BDTOTAL), (B) are for the turnover component (BDTURN), and (C) are for the nestedness resultant dissimilarity (BDNEST). Climate 1 is the
first axis from a principal component analysis calculated from the average temperature, range of temperature, and precipitation over the months May to July, across
the 2000–2011 period. Elevation is the average elevation across each 100 km2 quadrat. Forest and Arable are the percentage of each land use within each quadrat.
The human influence index (HII) is the average human influence across each quadrat. Geographic is the geographic distance between sites. Curves show the
relationship between the gradients and community dissimilarity obtained using I-splines. The most important variables are on the left with decreasing variable
importance to the right. Blue lines show the I-Spline correlations, with standard deviation (gray shaded area) calculated through bootstrapping (100 permutations) on
a portion of the dataset. A rug plot on the x axis shows the spread of the data. Note the varying y-axis for each measure.

It should be noted that a large majority of the predictors
were close in their variable importance scores across the models
(Table 1). The geographical distance between sites was the
exception across the models, as it was the most important
predictor by a large proportion in all but the two nestedness,
and MPD/MNTD models. It is also important to note that
although multicollinearity was assessed, geographic structuring
of certain predictors may mean that the permutation of the
variables may not have resulted in large importance values if
geographic distance was retained in the model.

DISCUSSION

We found that variation in overall spatial functional and
taxonomic beta-diversity (and their turnover components) of

British breeding avian assemblages is driven by a combination
of geographical distance per se and environmental gradients.
The environment-only models explained more deviance than the
geographic distance only models, but there was also a relatively
large, shared variance explained component. Previous studies
have suggested that this shared component be considered as
indirect effects of climate (climate distance, Mazel et al., 2017;
Qian et al., 2020). This may suggest that geographic distance
plays a comparatively small role in predicting compositional
differences between assemblages in contrast to environment.
This aligns with previous studies that have shown that spatial
variation in community composition, for a wide range of
taxa, can be attributed to a combination of deterministic
(including contemporary and historical), and stochastic factors
(Steinitz et al., 2006; Melo et al., 2009; Dobrovolski et al.,
2012; Vicente et al., 2014; Baselga et al., 2015; Glassman
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FIGURE 5 | Plotted I-splines of the three most important variables (determined from the variable importance score) from generalized dissimilarity models analyzing
the relationship between environmental and geographic gradients, and spatial community composition in British breeding birds. Plots on row (A) are for total
functional beta-diversity (FDTOTAL), (B) are for the turnover component (FDTURN), and (C) are for the nestedness resultant dissimilarity (FDNEST). Climate 1 is the first
axis from a principal component analysis calculated from the average temperature, range of temperature, and precipitation over the months May to July, across the
2000–2011 period. Forest and Arable are the percentage of each land use within each quadrat. The human influence index (HII) is the average human influence
across each quadrat. Geographic is the geographical distance between sites. Curves show the relationship between the gradients and community dissimilarity
obtained using I-splines. The most important variables are on the left with decreasing variable importance to the right. Blue lines show the I-Spline correlations, with
standard deviation (gray shaded area) calculated through bootstrapping (100 permutations) on a portion of the dataset. A rug plot on the x axis shows the spread of
the data. Note the varying y-axis for each measure.

et al., 2017; Carvalho et al., 2020). However, we also found
that the differences in species loss/gain between sites (as
measured by nestedness resultant dissimilarity) were explained
mostly by differences in climate, and to a lesser extent, land
use. Overall variation explained by the nestedness models
was, however, much lower than for the total beta-diversity
and turnover models. The lower explanatory power of the
nestedness models implies that other drivers not included
here may be impacting dissimilarity between sites due to
species loss and gains.

Geographical Distance
Both BDTOTAL and FDTOTAL were driven mostly by the
turnover component, highlighting that compositional

differences between communities in Britain are mainly a
result of different species being replaced. This is consistent
with other beta-diversity studies, across multiple taxa (see
Soininen et al., 2018). A slow initial increase followed by
a steeper rise in the slope of the I-splines of geographical
distance in respect to turnover highlights a north-
south divide, or a divide between the ‘Tees-exe’ line, in
community dissimilarity (Figure 1B). The observed impact of
distance could be due to dispersal limitation, geographical
barriers, or historical factors (Nekola and White, 1999;
Soininen et al., 2007; Dobrovolski et al., 2012; Barnagaud
et al., 2017). Here, we expect it is a combination of all
these factors, as well as an intertwining of distance with
climate and land use.
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FIGURE 6 | Plotted I-splines of the three most important variables (determined from the variable importance score) from generalized dissimilarity models analyzing
the relationship between environmental and geographic gradients, and spatial community composition in British breeding birds. Plots on row (A) are for standardised
mean nearest taxon distance (MNTD) and (B) are for standardised mean pairwise distance (MPD). Climate 1 is the first axis from a principal component analysis
calculated from the average temperature, range of temperature, and precipitation over the months May to July, across the 2000 – 2011 period. Elevation is the
average elevation across each 100 km2 quadrat. The human influence index (HII) is the average human influence across each quadrat. Geographic is the
geographical distance between sites. Curves show the relationship between the gradients and community dissimilarity obtained using I-splines. The most important
variables are on the left with decreasing variable importance to the right. Blue lines show the I-Spline correlations, with standard deviation (gray shaded area)
calculated through bootstrapping (100 permutations) on a portion of the dataset. A rug plot on the x axis shows the spread of the data. Note the varying y-axis for
each measure.

FDTURN was lower than BDTURN, indicating that the
species that are being turned over across communities
share some functional traits. Petchey et al. (2007) found
that many co-occurring species in British breeding
birds were functionally similar, indicating low functional
diversity across Britain as a whole and within individual
communities. The low functional alpha diversity
observed by Petchey et al. (2007) may partly explain
the lower functional turnover compared to taxonomic
turnover observed here.

Nestedness made up a lower proportion of the total
beta-diversity for both the taxonomic and functional
metrics. Functional nestedness was mostly on par with
taxonomic nestedness (Figure 2), highlighting that species
lost/gained between assemblages were not functionally
redundant (Petchey et al., 2007). The functional distinction
of species lost/gained spatially between communities’
highlights that there is a significant difference between
northern/southern communities. The observed pattern is
partially congruent with elevational peaks in Britain (the
Tees-exe line; Prakash and Rumsey, 2018). The pattern is
also supported by MPD, a measure independent of species
richness (Figure 3H). It is interesting to note that of the
variables that were significant in the MPD model, elevation
was the most important and had a threshold effect with any
communities over ∼100 m being dissimilar to those at lower
elevations (Figure 6B). The results found here align with
previous evidence that indicate the importance of elevational
gradients as environmental filters (Sanders and Rahbek, 2012;
Pigot et al., 2016).

Climate
Climate1 was included in the top three most important variables
for all the final models (Table 1). The impact of climate was
similar across all final models (except for the MPD model),
with an almost linear relationship observed with dissimilarity
before a leveling off. As the correlations with the original
climate variables showed a positive correlation with average
temperature and a negative correlation with precipitation, this
relates to a divide between warmer, drier, and wetter, cooler
regions. The near linear relationship between partial ecological
distance and Climate 1 for many of the metrics therefore
shows a divide in terms of assemblage composition between
these two types of regions. Climate was also the best predictor
of nestedness by a large margin. This may point to climatic
filtering of certain species, with a divide between north and
south Britain. However, the overall pattern for both measures
was patchy (Figures 2C,G). With global warming predicted to
change the seasonality and severity of rainfall within Britain in
the coming decades (Watts et al., 2015), these results indicate
that drier and hotter summers in the future could lead to shifts
in community composition.

Land Use and the Human Influence Index
While the overall impact of the different land-use types differed,
the form of the relationship between the various land-use
predictors and all the measures of beta-diversity were similar.
After an initial sharp increase in community dissimilarity over
the first small portion of the range of the environmental
gradient, the dissimilarity leveled out. This impact over the
initial environmental dissimilarity highlights the difference in

Frontiers in Ecology and Evolution | www.frontiersin.org 11 March 2021 | Volume 9 | Article 620062

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-620062 March 15, 2021 Time: 17:43 # 12

Wayman et al. Spatial Drivers of Beta-Diversity

community composition between areas with none of that land
cover, and those with just a small percentage.

HII impacted spatial variation in communities in much the
same way as the land-use predictors. After an initial increase
in dissimilarity between communities with increasing HII, there
was a leveling off. There are several reasons why this could be
the case. For example, Tratalos et al. (2007) found that richness
of all species initially increased faster with household densities
(one of the measures included in the HII) than urban adapted
species, but these then declined significantly after peaking at a
very low density. For urban areas, captured within HII, this could
highlight the initial homogenization impact of urbanization, with
urban areas similar after this initial disturbance driven by an
increase in generalists and loss of specialists (Davey et al., 2012).
However, as HII is a composite measure, this cannot be
conclusively confirmed from these results alone. The human
influence captured in this measure may also be masked at this
scale as it is likely that a remnant of suitable habitat with lower
human disturbance exists within a quadrat, or near to a quadrat
(Fattorini et al., 2016). As this study is also only considering
presence/absence, it also makes no inferences about abundance,
which is likely more sensitive to human influence, and which
could be very different between quadrats (Tratalos et al., 2007).

Future Climate and Land-use Change
The importance of both climate and land-use variables points
toward potential future disruption of community composition
if these drivers increase in intensity as is expected (Seto
et al., 2012; Watts et al., 2015). The latitudinal divide between
northern and southern (or highland and lowland) community
composition also indicates that future warming could see species
extirpations/extinctions from the colder, northern regions of the
United Kingdom (Tayleur et al., 2016). This would also likely
see an increased similarity of the northern communities with
southern communities as southern species extend their ranges
northward (Hickling et al., 2006). However, species extending
their ranges into the UK from Europe could obscure this impact,
so studies approaching this question should focus on species
identities. Indeed, this has already been observed in the study of
bird abundance within England, with resident and short-distance
migrants increasing in abundance through time potentially at the
expense of long-distance migrants, habitat specialists and cold-
associated species (Pearce-Higgins et al., 2015). With many rare
species also dispersal limited, future changes in land-use and
climate could potentially extirpate some of the few rare bird
species Britain has (Baur, 2014).

Limitations
While we consider a range of predictors, we have not included
measures of biotic interactions. Competitive interactions and
predator presence/abundance can all have an impact on spatial
beta-diversity (Wittwer et al., 2015; Koròan and Svitok, 2018).
Abundance differences between sites were also not directly
considered due to a lack of appropriate data. Given that a species’
abundance can be an important determinant of that species’
influence on ecosystem functioning (Winfree et al., 2015; Gaston
et al., 2018), future studies aiming to analyze spatial variation

in community and functional composition should attempt to
analyze measures of population size.

CONCLUSION

Spatial variation in both the taxonomic and functional
composition of United Kingdom breeding birds is driven
mainly by species turnover, which can be explained through a
combination of geographical distance per se and environmental
gradients. The unique variance explained by distance alone
could reflect an important role for dispersal limitation in
driving these patterns, but more work is needed, as this variance
component could also be due to a process not considered here.
In contrast, species loss/gain, observed through nestedness
between sites, was driven mainly by environmental factors.
Future climate warming and land-use change could lead to
an increase in the loss of species, particularly cold-adapted
or rare and dispersal-limited, from communities, particularly
in the north and in the uplands. With turnover driving these
patterns, broad-ranging conservation efforts would be preferable
to conservation focused on target areas (Si et al., 2016).

Future work should look for potential synergies between
climate and land-use in order to assess if future increases
in both could potentially have larger than expected impacts
on biodiversity based on the individual effects of each in
isolation (Brook et al., 2008; de Chazal and Rounsevell, 2009;
Mantyka-pringle et al., 2012; Frishkoff et al., 2016). Future
comparison between the results presented here and results
of similar tests from areas in different climate regions or
in less disturbed regions than the United Kingdom would
also be informative. For example, in tropical systems it
would be expected that, as the United Kingdom is a post-
perturbation system and rates of habitat loss will be higher
in the tropics, land use will play a larger role in driving
community composition dissimilarity between sites than found
here (Hansen et al., 2013). Another potential future research
direction could be to assess whether other taxonomic groups
within the British Isles have similar patterns of functional or
taxonomic beta-diversity, or whether the patterns observed here
are bird-specific.
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