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Abstract

In this paper we consider the problem of maximizing the Area under the ROC curve (AUC)
which is a widely used performance metric in imbalanced classification and anomaly detec-
tion. Due to the pairwise nonlinearity of the objective function, classical SGD algorithms
do not apply to the task of AUC maximization. We propose a novel stochastic proximal
algorithm for AUC maximization which is scalable to large scale streaming data. Our al-
gorithm can accommodate general penalty terms and is easy to implement with favorable
O(d) space and per-iteration time complexities. We establish a high-probability conver-
gence rate O(1/

√
T ) for the general convex setting, and improve it to a fast convergence

rate O(1/T ) for the cases of strongly convex regularizers and no regularization term (with-
out strong convexity). Our proof does not need the uniform boundedness assumption on
the loss function or the iterates which is more fidelity to the practice. Finally, we per-
form extensive experiments over various benchmark data sets from real-world application
domains which show the superior performance of our algorithm over the existing AUC
maximization algorithms.

Keywords: AUC maximization, imbalanced classification, stochastic gradient descent,
proximal operator

1. Introduction

Area under the ROC curve (AUC) (Hanley and McNeil, 1982) measures the probability
for a randomly drawn positive instance to have a higher decision value than a randomly
sampled negative instance. It is a widely used metric for measuring the performance of
machine learning algorithms in imbalanced classification and anomaly detection (Bradley,
1997; Cortes and Mohri, 2004; Fawcett, 2006; Narasimhan and Agarwal, 2017; Maurer and
Pontil, 2020). In particular, minimization of the rank loss in bipartite ranking is equivalent
to maximizing the AUC criterion (Agarwal et al., 2005; Güvenir and Kurtcephe, 2013;
Kotlowski et al., 2011). At the same time, we are experiencing the fundamental change of
the sheer size of commonly generated datasets where streaming data is continuously arriving
in a real time manner. Hence, it is of practical importance to develop efficient optimization
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algorithms for maximizing the AUC score which is scalable to large-scale streaming datasets
for real-time predictions.

Stochastic (proximal) gradient descent (SGD), also known as stochastic approxima-
tion or incremental gradient, has become the workhorse in machine learning (Bach and
Moulines, 2013; Bottou and Cun, 2004; Orabona, 2014; Rakhlin et al., 2012; Rosasco et al.,
2014; Srebro and Tewari, 2010; Denevi et al., 2019). It can be regarded as online learning
(Cesa-Bianchi and Lugosi, 2006; Hazan, 2016; Shalev-Shwartz, 2012; Orabona, 2019) in the
stochastic setting where the individual data point is assumed to be drawn randomly from a
(unknown) distribution. These algorithms are iterative and incremental in nature and pro-
cess each new sample (input) with a computationally cheap update, making them amenable
for streaming data analysis. The working mechanism behind classical SGD algorithms is
to perform gradient descent using unbiased (random) samples of the true gradient. In the
sense, the objective function is required to be linear in the sampling distribution. For exam-
ple, in binary classification, let ρ be a probability measure (sampling distribution) defined
on input/output space X × Y with X ⊆ Rd and Y = {±1}. The linearity with respect to
the sampling distribution ρ in this case means that the objective function (true risk) is the
expectation of a pointwise loss function ` : Rd ×X × Y → [0,∞), i.e.

R(w) = E[`(w, x, y)] =

∫∫
X×Y

`(w, x, y)dρ(x, y).

This linearity plays a pivotal role in studying the convergence of SGD and deriving many
of its appealing properties.

In contrast, the problem of AUC maximization involves the expectation of a pairwise
loss function which depends on pairs of data points. Consequently, the objective function
in AUC maximization is pairwise nonlinear with respect to the sampling distribution ρ. To
be more precise, recall (Hanley and McNeil, 1982; Clémençon et al., 2008) that the AUC
score of a function hw(x) = w>x is defined by

AUC(w) = Pr{w>x ≥ w>x′|y = +1, y′ = −1} = E
[
I[w>x≥w>x′]|y = +1, y′ = −1

]
, (1.1)

where E[·] is with respect to (x, y) and (x′, y′) independently drawn from ρ. Since the
indicator function I[·] is discontinuous, one often resorts to a convex surrogate loss ` :
R 7→ R+ and some common choices are the square loss `(a) = (1 − a)2, the hinge loss
`(a) = max{0, 1−a} (Zhao et al., 2011) and the exponential loss `(a) = exp(−a) (Rudin and
Schapire, 2009). In this paper, we consider the square loss since it is statistically consistent
with AUC (Gao and Zhou, 2015) and its specific structure allows us to reformulate the
pairwise learning problem as a pointwise learning problem (Ying et al., 2016; Liu et al., 2018;
Natole et al., 2018). As a comparison, AUC maximization based on other loss functions
requires to compare a pair of examples in updating models (Zhao et al., 2011; Kar et al.,
2013; Wang et al., 2012b), which causes expensive space and per-iteration complexity. Then,
we have

p(1− p)
[
1−AUC(w)

]
≤ f(w) :=p(1− p)E[(1−w>(x− x′))2|y = 1, y′ = −1]

=E
[
(1−w>(x− x′))2I[y=1,y′=−1]

]
, (1.2)
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where p = Pr(y = 1). As in Ying et al. (2016); Natole et al. (2018); Liu et al. (2018), the
idea of introducing the factor p(1− p) is to replace the conditional expectation in the AUC
score with the expectation, which is more convenient to deal with. Now the regularization
framework for maximizing the AUC score can be formulated as follows

min
w∈Rd

{
φ(w) := f(w) + Ω(w)

}
, (1.3)

where Ω : Rd 7→ R+ is a convex regularizer. This pairwise nonlinearity in the sampling
distribution makes the direct deployment of standard SGD infeasible.

1.1 Related Work

There are considerable efforts on developing optimization algorithms for AUC maxi-
mization, which can roughly be divided into three categories.

The first category is batch learning algorithms for AUC maximization with focus on
the empirical risk minimization (Cortes and Mohri, 2004) which use the training data at
once. For instance, the early work (Joachims, 2005; Herschtal and Raskutti, 2004) pro-
posed to use the cutting plane method and gradient descent algorithm, respectively. Zhang
et al. (2012) developed an appealing algorithmic framework for optimizing the multivari-
ate performance measures (Joachims, 2005) including the AUC score and precision-recall
break-even point. The algorithms there used the smoothing techniques (Nesterov, 2007)
and the Nesterov’s accelerated gradient algorithm (Nesterov, 1983). Support Vector Al-
gorithms were proposed to maximize the partial area under the ROC curve between any
two false positive rates, which is interesting in several applications, e.g., ranking, biometric
screening and medicine (Narasimhan and Agarwal, 2017). Such batch learning algorithms
generally require O

(
min

(
1
ε ,

1√
λε

))
iterations to achieve an accuracy of ε, but have a high

per-iteration cost of O(nd). Here, λ, n, and d are the regularization parameter, the number
of samples, and the dimension of the data, respectively. Such algorithms train the model on
the whole training data which are not suitable for analyzing massive streaming data that
arrives continuously.

The second category of work (Kar et al., 2013; Wang et al., 2012b; Ying and Zhou, 2016)
extended the classical online gradient descent (OGD) (Zinkevich, 2003; Hazan, 2016; Shalev-
Shwartz, 2012) to the setting of pairwise learning and hence is applicable to the problem
of AUC maximization. Regret bounds were established there which can be converted to
generalization bounds in the stochastic setting as shown by Kar et al. (2013); Wang et al.
(2012b). Such algorithms, however, need to compare the latest arriving data with previous
data which require to store the historic data. This leads to expensive space and per-iteration
complexities O(td) at the t-th iteration which is not feasible for streaming data. For the
specific square loss, Gao et al. (2013) developed an one-pass AUC maximization method
by updating the covariance matrices of the training data, which has O(d2) space and per-
iteration time complexity which could be problematic for high-dimensional data.

The third category of work (Ying et al., 2016; Liu et al., 2018; Natole et al., 2018;
Liu et al., 2020) considered the expected risk and used primal-dual SGD algorithms. In
particular, Ying et al. (2016); Natole et al. (2018) formulated AUC maximization (1.3) as
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a saddle point problem as follows

min
w,a,b∈R

max
α∈R

Ez
[
F (w, a, b, α; z)

]
+ Ω(w), (1.4)

where F (w, a, b, α; z) = p(1 − p) + (1 − p)(w>x − a)2I[y=1] + p(w>x − b)2I[y=−1] + 2(1 +

α)w>x
(
pI[y=−1]− (1−p)I[y=1]

)
−p(1−p)α2. Then, they proposed to perform SGD on both

the primal variables w, a and b, and the dual variable α. This algorithm has per-iteration
and space cost of O(d), making them amenable for streaming data analysis. It enjoys
a moderate convergence rate O(1/

√
T ). The most recent work by Liu et al. (2018) also

used this saddle point formulation and developed a novel multi-stage scheme for running
primal-dual stochastic gradient algorithms which enjoy a fast convergence of Õ(1/T )1 for
non-strongly-convex objective functions. Both algorithms in Ying et al. (2016); Liu et al.
(2018) require a critical assumption of uniform boundedness for model parameters. i.e.
‖w‖ ≤ R which might be difficult to adjust in practice. Natole et al. (2018) developed
a stochastic proximal algorithm for AUC maximization with a convergence rate Õ(1/T )
for strongly convex objective function. The potential limitation of this method is that it
assumes the conditional expectations E[x′|y′ = 1] and E[x′|y′ = −1] are known a priori
which is hard to satisfy in practice.

There are some other related work. For instance, Palaniappan and Bach (2016) devel-
oped an appealing stochastic primal-dual algorithm for saddle point problems with conver-
gence rate of O( 1

T ) which, as a by-product, can be applied to AUC maximization with the
square loss. However, their saddle point formulation focused on the empirical risk minimiza-
tion and cannot be applied to the population risk in our case. In addition, the primal-dual
algorithm there requires strong convexity on both the primal and dual variables, and the
algorithm has per-iteration complexity O(n + d) where n is the total number of training
samples and d is the dimension of the data.

Our work falls in the regime where the aim is to minimize an expected-valued objective
function which is nonlinear with respect to the sampling distribution. This research area is
attracting more and more attention in optimization and machine learning with important
applications to reinforcement learning and robust learning. For example, Wang et al. (2016,
2017) proposed a stochastic compositional gradient descent (SCGD) for solving the problem

min
w∈Ω

E[fv(E(gw(w)|v))], (1.5)

where Ω is a closed convex set of Rn, fv : Rm 7→ R and gw : Rn 7→ Rm are functions
parametrized by the random variables w and v. However, it is not clear how to formulate
the problem of AUC maximization as (1.5). In addition, the SCGD algorithms proposed in
(Wang et al., 2017, 2016) require that both the gradients of fv and gw are bounded which is
not the case for our setting since we use the square loss. As we show soon in the next section,
we explore the intrinsic structure of AUC maximization to show our proposed algorithms are
guaranteed to converge with high probability without boundedness assumptions. Moreover,
it can achieve a fast convergence rate of Õ( 1

T ) without strong convexity.

1. We use the notation Õ to hide polynomial of logarithms.
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Algorithm storage/per-iteration bound type rate penalty

OAM (Zhao et al., 2011) O(Bd) regret O(1/
√
T ) `2

OPAUC (Gao et al., 2013) O(d2) regret O(1/
√
T ) `2

SOLAM (Ying et al., 2016) O(d) w.h.p. O(1/
√
T ) `2- constraint

FSAUC (Liu et al., 2018) O(d) w.h.p. Õ(1/T ) `1- constraint

SPAM (Natole et al., 2018) O(d) expectation Õ(1/T ) strongly convex

SPAUC (this work) O(d) w.h.p. Õ(1/
√
T ) convex regularizer

SPAUC (this work) O(d) w.h.p. Õ(1/T )
strongly convex

or no regularizer

Table 1: Comparison of different AUC maximization methods. The notation B refers to
the buffer size in Zhao et al. (2011). For the bound type, “regret” refers to regret
bounds, “expectation” refers to convergence rates in expectation and “w.h.p.”
refers to convergence rates with high probability. If the bound type is “regret”, we
use the rate O(1/

√
T ) to mean regret bounds O(

√
T ) for a consistent comparison.

1.2 Main Contributions

In this paper, we propose novel SGD algorithms for AUC maximization which does
not need the boundedness assumptions and can achieve a fast convergence rate without
strong convexity. Our key idea is the new decomposition technique (see Proposition 1)
which directly works with the objective function motivated by the saddle point formulation
(Ying et al., 2016; Natole et al., 2018). From this new decomposition, we are able to design
approximately unbiased estimators for the true gradient ∇f(w). Our algorithms do not
need to store the previous data points in contrast to the approaches in Wang et al. (2012b);
Kar et al. (2013); Zhao et al. (2011) or accessing true conditional expectations as in Natole
et al. (2018). A comparison of our algorithm with other methods is summarized in Table 1.

From the side of technical novelty, we develop techniques to control the norm of iterates
with high probability for stochastic learning based on biased estimators of ∇f(w), and
hence there is no boundedness assumptions on the iterates. Our major contributions can
be summarized as follows.

• We propose a novel stochastic proximal algorithm for AUC maximization which ac-
commodates general convex regularizers with favorable O(d) space and per-iteration
time complexities. Our algorithm is gradient-based and hence is simple and easy to
implement which does not need the multi-stage design (Liu et al., 2018) and bound-
edness assumption on model parameters (Liu et al., 2018; Ying et al., 2016).

• We establish a convergence rate Õ(1/
√
T ) with high probability for our algorithm

with T iterations, and improve it to a fast convergence Õ(1/T ) for both cases of no
regularization term (non-strong convexity) and strongly convex regularizers.

• We perform a comprehensive empirical comparison against five state-of-the-art AUC
maximization algorithms over sixteen benchmark data sets from real-world applica-
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tion domains. Experimental results show that our algorithm can achieve superior
performance with a consistent and significant reduction in running time.

Organization of the paper. The remainder of this paper is organized as follows. We state the
algorithm with motivation in Section 2. Theoretical and experimental results are presented
in Section 3 and Section 4, respectively. We give some proofs in Section 5 and defer others
to the Appendix. We conclude the paper in Section 6.

2. Proposed Algorithm

Our objective is to develop efficient SGD-type algorithms for AUC maximization scal-
able to large-scale streaming data. In particular, we aim to design an (approximately)
unbiased estimator for the true gradient ∇f(w) with per-iteration cost O(d) to perform
SGD-type algorithms. In particular, our new design is mainly motivated by the saddle
point formulation in Ying et al. (2016); Natole et al. (2018).

To illustrate the main idea, let

F̃ (w; z) = p(1− p) + (1− p)
(
w>
(
x− E[x′|y′ = 1]

))2I[y=1]

+ p
(
w>
(
x− E[x′|y′ = −1]

))2I[y=−1] + 2p(1− p)w>
(
E[x′|y′ = −1]− E[x′|y′ = 1]

)
+ p(1− p)

(
w>
(
E[x′|y′ = −1]− E[x′|y′ = 1]

))2
. (2.1)

We will give an intuitive explanation of F̃ in Remark 2. It was shown in Ying et al.
(2016); Natole et al. (2018) that the saddle point formulation (1.4) implies that f(w) =
minw,a,b maxα E[F (w, a, b, α; z)]. In particular, for any fixed w the optima a, b, α have a
closed-form solution of a(w), b(w) and α(w) which are given by

a(w) = w>E[x′|y′ = 1], b(w) = w>E[x′|y′ = −1], α(w) = b(w)− a(w). (2.2)

Indeed, let F1(w; z) = F (w, a(w), b(w), α(w); z) and then

F1(w; z) = (1− p)
(
w>
(
x− E[x′|y′ = 1]

))2I[y=1] + p
(
w>
(
x− E[x′|y′ = −1]

))2I[y=−1]

+ 2
(
1 + w>

(
E[x′|y′ = −1]− E[x′|y′ = 1]

))
w>x

(
pI[y=−1] − (1− p)I[y=1]

)
+ p(1− p)− p(1− p)

(
w>
(
E[x′|y′ = −1]− E[x′|y′ = 1]

))2
.

Note that w>E
[
x
(
pI[y=−1] − (1 − p)I[y=1]

)]
= p(1 − p)w>

(
E[x′|y′ = −1] − E[x′|y′ = 1]

)
.

After organizing the terms, one can easily see that E[F̃ (w; z)] = E[F1(w; z)] = f(w) for any
w. Consequently, one can see that both ∇F̃ (w; z) and ∇F1(w, z) are unbiased estimators
of ∇f(w), i.e. E[∇F1(w; z)] = E[∇F̃ (w; z)] = ∇f(w). The work of Natole et al. (2018)
proposed to use ∇F (w, a(w), b(w), α(w); z) as an unbiased gradient estimator and the
convergence analysis was proved in expectation. It is easy to see that F1(w; z) is not
convex, i.e. the Hessian of F1(w; z) is not positive-semi-definite (PSD). The non-convexity
of F1(w; z) presents daunting difficulties to bound the iterates and deriving the convergence
of the algorithm with high probability using concentration inequalities. In contrast, the new
design of F̃ (w; z) is convex with respect to w which will enable us to prove convergence
with high probability.
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In a nutshell, we have the following important proposition. Motivated by the saddle-
point formulation in Ying et al. (2016); Natole et al. (2018) as mentioned above, we also
give an alternative but self-contained proof by writing the objective function as

(1−w>(x− x′))2 =
(
[1 + α(w)] + [w>x′ − b(w)]− [w>x− a(w)]

)2
=
([

1 + w>(E[x̃|ỹ = −1]− E[x̃|ỹ = 1])
]

+
[
w>(x′ − E[x̃|ỹ = −1])−w>(x− E[x̃|ỹ = 1])

])2
. (2.3)

Proposition 1 For any w, we have

E
[
F̃ (w; z)

]
= f(w) and E

[
F̃ ′(w; z)

]
= ∇f(w), (2.4)

where we use the abbreviation F̃ ′(w; z) := ∂F̃ (w;z)
∂w . Furthermore, for any z the function

F̃ (w; z) is a convex function of w.

Proof As indicated by (2.3), we write (1−w>(x− x′))2 as three terms:([
1 + w>(E[x̃|ỹ = −1]− E[x̃|ỹ = 1])

]
+
[
w>(x′ − E[x̃|ỹ = −1])−w>(x− E[x̃|ỹ = 1])

])2

=
{[

1 + w>(E[x̃|ỹ = −1]− E[x̃|ỹ = 1])
]2}

+
{[

w>(x′ − E[x̃|ỹ = −1])−w>(x− E[x̃|ỹ = 1])
]2}

+
{

2
[
1 + w>(E[x̃|ỹ = −1]− E[x̃|ỹ = 1])

][
w>(x′ − E[x̃|ỹ = −1])−w>(x− E[x̃|ỹ = 1])

]}
= I + II + III.

It suffices to estimate the above terms one by one. To this end, the first term is deterministic,
and hence

E[ I |y = 1, y′ = −1] = 2w>
(
E[x̃|ỹ = −1]− E[x̃|ỹ = 1]

)
+
(
w>
(
E[x̃|ỹ = −1]− E[x̃|ỹ = 1]

))2
+ 1. (2.5)

For the second term, noticing that E
[
w>(x′ − E[x̃|ỹ = −1])w>(x− E[x̃|ỹ = 1]) |y = 1, y′ =

−1
]

= E
[
w>(x′ − E[x̃|ỹ = −1]) |y′ = −1

]
E
[
w>(x − E[x̃|ỹ = 1]) |y = 1

]
= 0 as (x, y) and

(x′, y′) are independent, we have

E[ II |y = 1, y′ = −1]

= E
[(

w>(x′ − E[x̃|ỹ = −1])−w>(x− E[x̃|ỹ = 1])
)2|y = 1, y′ = −1

]
= E

[(
w>(x′ − E[x̃|ỹ = −1])

)2|y = 1, y′ = −1
]

+ E
[(

w>(x− E[x̃|ỹ = 1])
)2|y = 1, y′ = −1

]
= E

[(
w>(x′ − E[x̃|ỹ = −1])

)2|y′ = −1
]

+ E
[(

w>(x− E[x̃|ỹ = 1])
)2|y = 1

]
=

1

1− p
E
[(

w>(x′ − E[x̃|ỹ = −1])
)2I[y′=−1]

]
+

1

p
E
[(

w>(x− E[x̃|ỹ = 1])
)2I[y=1]

]
. (2.6)

For the third term,

E[ III |y = 1, y′ = −1] = 2
[
1 + w>(E[x̃|ỹ = −1]− E[x̃|ỹ = 1])

]
× E

[
w>(x′ − E[x̃|ỹ = −1])−w>(x− E[x̃|ỹ = 1])|y = 1, y′ = −1

]
= 0. (2.7)
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Combining equations (2.5),(2.6), and (2.7) together, we have

f(w) = p(1− p)E[(1−w>(x− x′))2|y = 1, y′ = −1]

= 2p(1− p)w>
(
E[x̃|ỹ = −1]− E[x̃|ỹ = 1]

)
+ p(1− p)

(
w>
(
E[x̃|ỹ = −1]− E[x̃|ỹ = 1]

))2
+ p(1− p)

+ pE
[(

w>(x′ − E[x̃|ỹ = −1])
)2I[y′=−1]

]
+ (1− p)E

[(
w>(x− E[x̃|ỹ = 1])

)2I[y=1]

]
,

which implies that f(w) = E[F̃ (w; z)].
The fact of E

[
F̃ ′(w; z)

]
= ∇f(w) follows directly from the Leibniz’s integral rule that

the derivative and the integral can be interchangeable as F is a quadratic function and the
input x is from a bounded domain.

For the last statement, notice that

∇2F̃ (w; z) = 2(1− p)
(
x− E[x̃|ỹ = 1]

)(
x− E[x̃|ỹ = 1]

)>I[y=1]

+ 2p(x− E[x̃|ỹ = −1])(x− E[x̃|ỹ = −1])>I[y=−1]

+ 2p(1− p)
(
E[x̃|ỹ = −1]− E[x̃|ỹ = 1]

)(
E[x̃|ỹ = −1]− E[x̃|ỹ = 1]

)>
.

It is clear that ∇2F̃ (w; z) is positive semi-definite, and hence F̃ (w; z) is a convex function
of w for any z. This completes the proof of the proposition.

Remark 2 We summarize the key idea in the proof. Let Ẽ[·] := E[·|y = 1, y′ = −1]. Then
the proof essentially shows

Ẽ
[(

1−w>(x− x′)
)2]

= Ẽ
[((

1−w>Ẽ[x− x′]
)

+ w>(Ẽ[x]− x) + w>(x′ − Ẽ[x′])
)2]

= Ẽ
[(

1−w>Ẽ[x− x′]
)2]

+ Ẽ
[(

w>(Ẽ[x]− x)
)2]

+ Ẽ
[(

w>(Ẽ[x′]− x′)
)2]

. (2.8)

Note that Ẽ
[(

w>(Ẽ[x] − x)
)2]

and Ẽ
[(

w>(Ẽ[x′] − x′)
)2]

are conditional variance of w>x

in the positive class and negative class, respectively. Therefore, the AUC score can be
considered as the summation of two conditional variances and a term depending on E[x|y =
1]−E[x′|y′ = −1]. This formulation motivates us to introduce F̃ in (2.1). Indeed, it is clear
that

1

p(1− p)
F̃ (w; z) =

(
1−w>

(
E[x′|y′ = 1]− E[x′|y′ = −1]

))2
+

1

p

(
w>
(
x− E[x′|y′ = 1]

))2I[y=1] +
1

1− p
(
w>
(
x− E[x′|y′ = −1]

))2I[y=−1].

Note that 1
p

(
w>
(
x−E[x′|y′ = 1]

))2I[y=1] is an unbiased estimator of the conditional variance

E[(w>(x − E[x|y = 1]))2|y = 1], and 1
1−p
(
w>
(
x − E[x′|y′ = −1]

))2I[y=−1] is an unbiased

estimator of the conditional variance E[(w>(x − E[x|y = −1]))2|y = −1]. Therefore, F̃ is
derived from (2.8) by replacing the conditional variances with their unbiased estimators.

8
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Proposition 1 indicates to use F̃ ′(w; z) as an unbiased estimator for the gradient ∇f(w).
However, the function F̃ requires the unknown information p,E[x′|y′ = 1] and E[x′|y′ = −1],
which is unknown in practice. We propose to replace them by their empirical counterpart
defined as follows

pt =

∑t−1
i=0 I[yi=1]

t
, ut =

∑t−1
i=0 xiI[yi=1]∑t−1
i=0 I[yi=1]

, vt =

∑t−1
i=0 xiI[yi=−1]∑t−1
i=0 I[yi=−1]

, (2.9)

where we reserve an example (x0, y0) drawn independently from ρ. The resulting estimator
for F at time t then becomes

F̂t(w; z) = (1− pt)
(
w>
(
x− ut

))2I[y=1] + pt
(
w>
(
x− vt

))2I[y=−1]

+ 2pt(1− pt)w>
(
vt − ut

)
+ pt(1− pt)

(
w>
(
vt − ut

))2
+ pt(1− pt).

It is easy to verify by computing its Hessian that F̂t(w; z) is convex with respect to w. Its
gradient can be directly computed as follows

F̂ ′t(w; z) :=
∂F̂t(w; z)

∂w
= 2(1−pt)

(
x−ut

)(
x−ut

)>
wI[y=1] + 2pt

(
x−vt

)(
x−vt

)>
wI[y=−1]

+ 2pt(1− pt)
(
vt − ut

)
+ 2pt(1− pt)

(
vt − ut

)(
vt − ut

)>
w. (2.10)

Note the stochastic gradient F̂ ′t(w; z) can be efficiently computed with an arithmetic cost
O(d) and we do not need to store covariance matrices.

Algorithm 1: Stochastic Proximal AUC Maximization (SPAUC)

Input: {ηt}t,Ω,w1 and T .
Output: an approximate solution of (1.3)

initialize: n+ ← 0, n− ← 0, s+ ← 0, s− ← 0
1 for t = 1, 2, . . . , T do
2 n+ ← n+ + I[yt=1]

3 n− ← n− + I[yt=−1]

4 s+ ← s+ + xtI[yt=1]

5 s− ← s− + xtI[yt=−1]

6 ut ← s+
n+
, vt ← s−

n−

7 calculate the stochastic gradient F̂ ′t(w; zt) according to (2.10)
8 update wt+1 according to (2.11)

Algorithm: We propose to solve this regularization problem (1.3) by the following Stochastic
proximal AUC maximization (SPAUC) algorithm with w1 = 0 and for any t ≥ 1,

wt+1 = arg min
w∈Rd

ηt
〈
w −wt, F̂

′
t(wt; zt)

〉
+ ηtΩ(w) +

1

2
‖w −wt‖22, (2.11)

where {ηt}t is a sequence of positive step sizes and zt is drawn independently from ρ at
the t-th iteration. At the t-th iteration, SPAUC builds a temporary objective function
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consisting of three components: a first order approximation of f(w) based on the stochastic
gradient F̂ ′t(w; z), a regularizer kept intact to preserve a composite structure and a term
1
2‖w−wt‖22 to make sure the upcoming iterate wt+1 not far away from the current iterate.
The pseudo-code of SPAUC is given in Algorithm 1.

We comment that Algorithm 1 differs from the standard stochastic proximal algorithm
(Duchi and Singer, 2009; Rosasco et al., 2014; Lei and Tang, 2018) in that F̂ ′t is a bi-
ased estimator of ∇f due to the use of pt, ut and vt. High-probability convergence rates of
standard stochastic proximal algorithms without boundedness assumptions were recently
established in Lei and Tang (2018). We extend the analysis in Lei and Tang (2018) by
building novel techniques to handle the bias of F̂ ′t . Although we only consider the develop-
ment of AUC maximization here, the developed techniques may apply to general stochastic
proximal algorithms based on approximately unbiased gradient estimators.

3. Main Convergence Results

In this section, we present theoretical convergence rates with high probability for SPAUC.
We consider two types of objective functions of the form (1.3): AUC maximization with
a convex φ and AUC maximization with φ satisfying a quadratic functional growth. Let
S∗ = {w ∈ Rd : φ(w) = minw̃ φ(w̃)} be the set of minimizers. For any w, we denote
by w∗ = arg minw̃∈S∗ ‖w − w̃‖2 the projection of w on to S∗, where for any p ≥ 1 and

w = (w1, . . . , wd)
>, we denote ‖w‖p =

[∑d
j=1 |wj |p

] 1
p . We always assume ‖w∗1‖2 <∞.

3.1 General Convergence Rates

In this subsection, we present convergence rates for the general regularization framework
for AUC maximization. To this aim, we need to impose a so-called self-bounding property
on the regularizers, meaning the subgradients can be bounded in terms of function values.
We denote by Ω′(w) a subgradient of Ω at w and assume Ω(0)=0.

Assumption 1 (Self-bounding property) There exist constants A1, A2 ≥ 0 such that
the convex regularizer Ω satisfies

‖Ω′(w)‖22 ≤ A1Ω(w) +A2, for all w ∈ Rd. (3.1)

Based on A1 and κ := max{1, supx∈X ‖x‖2}, we introduce a constant

C1 = max{A1, 16κ2}.

This self-bounding assumption above is very mild as many regularizers satisfy self-bounding
property, including all smooth regularizers and all Lipschitz regularizers. For example, if
Ω(w) = λ‖w‖22, then (3.1) holds with A1 = 4λ and A2 = 0. If Ω(w) = λ‖w‖1, then
(3.1) holds with A1 = 0 and A2 = λ2. It is reasonable to assume a small regularization
parameters in practice (e.g., λ ≤ 1), in which case we can take universal constants A1 and
A2 for the above mentioned regularizers.

Our theoretical analysis requires to estimate ‖wt‖2, which is achieved by the following
lemma to be proved in Section 5.3. Essentially, it shows that ‖wt‖2 is bounded (ignoring
logarithmic factors) if we consider step sizes satisfying (3.2). This result shows that the
complexity of wt is well controlled even if the iterates are updated in an unbounded domain.

10
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Theorem 3 Let {wt}t be produced by (2.11) with ηt ≤ (2C1)−1 and ηt+1 ≤ ηt. We suppose
Assumption 1 holds,

∞∑
t=1

ηt
√

log t/
√
t <∞ and

∞∑
t=1

η2
t <∞. (3.2)

Then for any δ ∈ (0, 1), there exists a constant C2 independent of T (explicitly given in the
proof and of the order of ‖w∗1‖22) such that the following inequality holds with probability at
least 1− δ

max
1≤t̃≤T

‖wt̃ −w∗1‖22 ≤ C2 log(2T/δ). (3.3)

We are now ready to present convergence rates for SPAUC applied to general AUC ob-
jectives. In Theorem 4 we present general convergence rates in terms of step sizes satisfying
(3.2), which are then instantiated in Corollary 5 by specifying step sizes. The convergence

rate O(T−
1
2 log

3+β
2

T
δ ) is optimal up to a logarithmic factor for stochastic algorithms applied

to general convex optimization problems (Agarwal et al., 2009).

Theorem 4 Let the conditions of Theorem 3 hold. Then, for any δ ∈ (0, 1) there exists
a constant C3 independent of T such that the following inequality holds with probability at
least 1− δ

φ(w̄
(1)
T )− inf

w
φ(w) ≤ C3

( T∑
t=1

ηt
)−1

max
{ T∑
t=1

η2
t ,

T∑
t=1

ηt/
√
t
}

log
3
2
T

δ
,

where w̄
(1)
T =

∑T
t=1 ηtwt/

∑T
t=1 ηt is a weighted average of the first T iterates.

Corollary 5 Let {wt}t be produced by (2.11) and δ ∈ (0, 1). Suppose Assumption 1 holds
and η1 ≤ (2C1)−1.

(1) If we choose ηt = η1t
−θ with θ > 1/2, then with probability at least 1 − δ we have

φ(w̄
(1)
T )− infw φ(w) = O

(
T θ−1 log

3
2
T
δ

)
;

(2) If we choose ηt = η1(t logβ(et))−
1
2 with β > 2, then with probability at least 1 − δ we

have φ(w̄
(1)
T )− infw φ(w) = O

(
T−

1
2 log

3+β
2

T
δ

)
.

The proofs for Theorem 4 and Corollary 5 can be found in Section 5.4.

3.2 Fast Convergence Rates

In this subsection, we show that a faster convergence rate is possible for SPAUC if a
quadratic functional growth condition is imposed to the objective function (Anitescu, 2000;
Necoara et al., 2018).

Assumption 2 (Quadratic functional growth) We assume the existence of σφ > 0
such that

φ(w)− φ(w∗) ≥ σφ‖w −w∗‖22, for all w ∈ Rd. (3.4)

11
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The quadratic functional growth assumption (3.4) means that the objective function
grows faster than the squared distance between any feasible point and the optimal set (Necoara
et al., 2018). This condition is milder than assuming a strong convexity of φ (Necoara et al.,
2018). Indeed, it holds if Ω(w) = λ‖w‖22. It also holds if we consider no regularization, i.e.,
Ω(w) = 0 as shown in the next proposition. We give the proof for completeness.

Proposition 6 The function φ(w) = f(w) satisfies Assumption 2.

Proof Indeed, the objective function can be written as

f(w) = p(1− p)
(
‖Aw‖22 + w>c+ 1

)
with A ∈ Rd×d being a symmetric matrix satisfying A2 = E[(x−x′)(x−x′)>|y = 1, y′ = −1]
and c = −2E[x − x′|y = 1, y′ = −1]. Analyzing analogously to the proof of Theorem
9 in Necoara et al. (2018), one can show that S∗ =

{
w : Aw = g∗

}
for some g∗ ∈

Rd. By the definition of w∗ we know that w − w∗ is orthogonal to the kernel of A2 and
therefore λmin(A2)‖w −w∗‖22 ≤ ‖Aw − Aw∗‖22, where λmin(A2) denotes the smallest non-
zero eigenvalue of A2. Furthermore, we know

p−1(1− p)−1
(
f(w)− f(w∗)

)
= ‖Aw‖22 − ‖Aw∗‖22 + (w −w∗)>c

= ‖Aw −Aw∗‖22 + 2
(
Aw −Aw∗

)>
Aw∗ + (w −w∗)>c = ‖Aw −Aw∗‖22,

where the last identity is due to the optimality condition 2A>Aw∗ + c = 0. It then follows
that f(w)− f(w∗) ≥ p(1− p)λmin(A2)‖w −w∗‖22. The proof is complete.

Under Assumption 2, we show with high probability that the suboptimality measured
by both the parameter distance and function values decay with the rate Õ(T−1), which
is optimal up to a logarithmic factor (Agarwal et al., 2009). Let σΩ ≥ 0 be a constant
satisfying

Ω(w)− Ω(w̃)− 〈w − w̃,Ω′(w̃)〉 ≥ 2−1σΩ‖w − w̃‖22, ∀w, w̃ ∈ Rd.

Note σΩ can be zero and therefore our results apply to non-strongly-convex regularizers,
e.g., Ω(w) = 0 for all w. Without loss of generality, we assume σf := σφ − σΩ ≥ 0.

Theorem 7 Let δ ∈ (0, 1). Suppose Assumption 1 and Assumption 2 hold. Let {wt}t be
the sequence produced by (2.11) with ηt = 2

σφt+2σf+σφt1
, where t1 ≥ 32C1σ

−1
φ log 2T

δ . Then,

the following inequality holds with probability at least 1− δ for t = 1, . . . , T (T > 2)

‖wt −w∗t ‖22 = Õ(1/t) and φ(w̄
(2)
t )− inf

w
φ(w) = Õ(1/t), (3.5)

where w̄
(2)
t is a weighted average of iterates defined by

w̄
(2)
t =

( t∑
k=1

(k + t1 + 1)
)−1

t∑
k=1

(k + t1 + 1)wk.

12
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The proof of Theorem 7 is postponed to Section C.

The following two corollaries follow directly from Theorem 7 by noting the quadratic
functional growth property of the associated objective functions and the self-bounding prop-
erty of the regularizers. We omit the proof here for brevity.

Corollary 8 Let δ ∈ (0, 1). Let {wt}t be produced by (2.11) with ηt = 2
σφt+2σf+σφt1

and

Ω(w) = λ‖w‖22/2, where t1 ≥ 32C1σ
−1
φ log 2T

δ . Then, (3.5) holds with probability 1− δ.

Corollary 9 Let δ ∈ (0, 1). Let {wt}t be produced by (2.11) with ηt = 2
σφt+2σf+σφt1

and

Ω(w) = 0, where t1 ≥ 32C1σ
−1
φ log 2T

δ . Then, (3.5) holds with probability 1− δ.

Remark 10 Our excess risk bounds are established for the square loss. There are some
existing studies on connecting the bounds measured by convex surrogate and the bounds
measured by AUC scores (Agarwal, 2013; Gao and Zhou, 2015). However, it is not clear
to us how to combine these results to derive excess risk bounds in terms of AUC. We
mention some difficulties in this direction as follows. First, the loss function F̃ (w; z) in
(2.1) is defined on the model parameter w instead of the predicted output w>x (note there
is w>E[x′|y′ = 1] in F̃ ), and therefore it is not clear to us how to define conditional risks
as in Agarwal (2013); Gao and Zhou (2015). Furthermore, we only consider linear models
and Proposition 1 only holds for linear models. It would be very interesting to study excess
risk bounds for the AUC score.

4. Experiments

In this section, we present experimental results to show the effectiveness of the proposed
algorithm in achieving a satisfactory AUC with a fast convergence speed. We first describe
the baseline methods used in our experimental comparison as well as the associated pa-
rameter setting in Section 4.1. Datasets used in the experiments and detailed experimental
results are presented in Section 4.2 and Section 4.3, respectively.

4.1 Baseline Methods

We compare SPAUC to several state-of-the-art online AUC maximization algorithms.
The algorithms we consider include

• the stochastic proximal AUC maximization (SPAUC) (2.11) with either no regularizers
Ω(w) = 0, an `1 regularizer Ω(w) = λ‖w‖1 or an `2 regularizer Ω(w) = λ‖w‖22;

• the stochastic proximal AUC maximization (SPAM) (Natole et al., 2018) with Ω(w) =
λ‖w‖22;

• the stochastic online AUC maximization (SOLAM) (Ying et al., 2016) based on a
saddle problem formulation;

• the one-pass AUC maximization (OPAUC) (Gao et al., 2013) which uses the first and
second-order statistics of training data to compute gradients;
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• the online AUC maximization based on the hinge loss function (OAM gra) (Zhao
et al., 2011);

• the fast stochastic AUC maximization (FSAUC) (Liu et al., 2018) which applies a
multi-stage stochastic optimization technique to a saddle problem formulation.

datasets # inst # feat datasets # inst # feat datasets # inst # feat datasets # inst # feat

diabetes 768 8 ijcnn1 141691 22 german 1000 24 satimage 6435 36

acoustic 78823 50 covtype 581012 54 a9a 32561 123 connect 67557 126

usps 9298 256 w8a 49749 300 mnist 60000 780 gisette 7000 5000

real-sim 72309 20958 protein h 145751 74 malware 71709 122 webspam u 350000 254

Table 2: Description of the datasets used in the experiments.

The performance of these algorithms depends on some parameters, which, as described
below, we tune with the five-fold cross-validation. For SPAUC, SPAM and SOLAM, we
consider step sizes of the form ηt = 2/(µt+ 1) and validate the parameter µ over the inter-
val 10{−7,−6.5,...,−2.5}. Both SPAM and SPAUC with the `1/`2 regularizer require another
regularization parameter to tune, which is validated over the interval 10{−5,−4,...,0}. SOLAM
involves the constraint on w, i.e. w belonging to `2-ball with radius R in Rd, for which we
tune over the interval 10{−1,0,...,5}. For OAM gra, we need to tune a parameter to weight
the comparison between released examples and bulk, which is validated over the interval
10{−3,−2.5,...,1.5}. As recommended in Zhao et al. (2011), we fix the buffer size to 100. For
OPAUC, we need to tune both the constant step size and the regularization parameter λ,
which are validated over the interval 10{−3.5,−3,...,1} and 10{−5,−4,...,0}, respectively. The
multi-stage scheme in FSAUC specifies how the step size decreases along the implementa-
tion of the algorithm and leave the initial step size as a free parameter to tune, which we
validate over the interval 10{−2.5,−2,...,2}. Furthermore, each iteration of FSAUC requires a
projection onto an `1-ball of radius of R, which we tune over the interval 10{−1,0,...,5}. It
should be noticed that both SPAUC with no regularizers and OAM gra only have a single
parameter to tune, while all other algorithms have two parameters to tune. To speed up
the training process, if the algorithm has two parameters p1, p2 to tune, we first construct
all the possible pairs (p1, p2) by enumerating all possible candidate values of p1 and p2,
out of which we randomly sample 15 pairs without replacement to tune. We repeat the
experiments 20 times and report the average of experimental results.

4.2 Datasets

We perform our experiments on several real-world datasets. We consider two types of
datasets: the UCI benchmark dataset and the dataset in the domain of anomaly detection.
The task of anomaly detection is to identify rare items, events or observations which raise
suspicions by differing significantly from the majority of the data. As such, this is suitable
to test the performance of AUC maximization methods since the class there is intrinsically
and highly imbalanced. We consider three datasets in the domain of anomaly detection:
protein h, webspam u and malware. In particular, webspam u is a subset used in the
Pascal Large Scale Learning Challenge (Wang et al., 2012a) to detect malicious web pages,
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protein h is a dataset in bioinformatics used to predict which proteins are homologous to a
query sentence (non-homologous sequences are labeled as anomalies) (Caruana et al., 2004),
and malware was collected in the Android Malware Genome Project used to detect mobile
malware app (Jiang and Zhou, 2012). The remaining UCI datasets can be downloaded
from the LIBSVM webpage (Chang and Lin, 2011). For each dataset, we use 80% of data
for training and the remaining 20% for testing. We transform datasets with multiple class
labels into datasets with binary class labels by grouping the first half of class labels into
positive labels, and grouping the remaining class labels into negative labels. We run each
algorithm until 15 passes of the training data are reached, and report the AUC values on
the test dataset. The information of the dataset is summarized in Table 2 where we list
the UCI datasets according to the dimensionality while datasets for anomaly detection are
listed at the end.

4.3 Experimental Results

In this section, we present the experimental results and discuss the comparisons of our
algorithm against other ones. In Figure 1, we plot the AUC values of the constructed models
on the test data versus execution time in seconds for SPAUC (without regularization),
SPAM, SOLAM, OPAUC, OAM gra and FSAUC. It is observed that SPAUC attains a
faster training speed than all baseline methods.

In particular, the curve of SOLAM fluctuates rapidly, especially in the early stage of the
optimization, which is perhaps due to the requirement of updating both primal and dual
variables. OAM gra behaves more robustly, which, however, requires a high computation
burden due to the requirement in updating a buffer and comparing the current example and
examples in the buffer per iteration. As one can see from Figure 1, SPAUC converges faster
than FSAUC on most of the datasets. The underlying reason could be two-fold. Firstly,
FSAUC requires a projection onto the intersection of an `1-ball and `2-ball which requires
an alternating projection step. Secondly, FSAUC requires to update both primal and dual
variables, which further increases the computational cost per iteration. OPAUC has a low
training speed due to the requirement in handling a covariance matrix, which is especially
unfavorable for high-dimensional datasets. For example, OPAUC has the slowest training
speed on USPS for which the dimensionality is 256. We do not run OPAUC on datasets
with dimensionality larger than 1000 due to the heavy dependency of its time complexity
on the dimensionality. The implementation of SPAM requires an accurate information of
p,E[x′|y′ = 1] and E[x′|y′ = −1], which we approximate with

p̂ =

∑n
i=1 I[yi=1]

n
, û =

∑n
i=1 xiI[yi=1]∑n
i=1 I[yi=1]

, v̂ =

∑n
i=1 xiI[yi=−1]∑n
i=1 I[yi=−1]

. (4.1)

It is observed that the AUC curve for SPAM attains a sharp increase at the beginning of
the curve and then moderately increases. The underlying reason is that we include the
computational cost of calculating p̂, û and v̂ in the curve, which requires to go through the
whole training set.

In Table 3, we also report detailed AUCs as well as the execution time per pass, both
in the form of mean ± standard deviation. We can see from Table 3 that SPAUC achieves
accuracies comparable to the state-of-the-art methods over all datasets. SPAUC (without
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(a) diabetes (b) ijcnn1 (c) german (d) satimage

(e) acoustic (f) covtype (g) a9a (h) connect

(i) usps (j) w8a (k) mnist (l) gisette

(m) real-sim (n) protein h (o) malware (p) webspam u

Figure 1: AUC versus time curves (in seconds) for SPAUC (without regularization), SPAM,
SOLAM and OPAUC, OAM gra and FSAUC.

regularization) and SPAM require comparable running time per iteration since both al-
gorithms require no projections and no updates on the dual variables. An advantage of
SPAUC with no regularization over SPAM is that SPAUC can deal with streaming data
in a truly online fashion, while SPAM needs to know the conditional expectations in (4.1)
and hence is not an online learning algorithm. Furthermore, the fast convergence of SPAM
requires the objective function to be strongly convex (Natole et al., 2018), which introduces
an additional regularization parameter to tune. Other baseline methods require longer per-
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datasets SPAUC SPAM SOLAM OPAUC OAM gra FSAUC

diabetes
AUC 0.8266±0.0284 0.8246±0.0303 0.8264±0.0308 0.7926±0.0462 0.8247±0.0266 0.8293±0.0375

Time 0.0075±0.0013 0.0071±0.0002 0.0141±0.0015 0.0121±0.0011 0.0201±0.0014 0.0210±0.0011

ijcnn1
AUC 0.9361±0.0019 0.9358±0.0018 0.9362±0.0019 0.9127±0.0021 0.9331±0.0031 0.9361±0.0015

Time 1.2881±0.0076 1.3080±0.0500 2.4498±0.0682 2.3807±0.0934 3.5811±0.1253 3.8352±0.0709

german
AUC 0.7938±0.0246 0.7943±0.0255 0.7879±0.0326 0.7932±0.0313 0.7890±0.0278 0.7933±0.0262

Time 0.0094±0.0011 0.0099±0.0015 0.0179±0.0010 0.0169±0.0007 0.0281±0.0026 0.0278±0.0015

satimage
AUC 0.9772±0.0029 0.9769±0.0040 0.9765±0.0028 0.9300±0.0066 0.9760±0.0029 0.9770±0.0041

Time 0.0609±0.0038 0.0589±0.0010 0.1181±0.0102 0.1212±0.0024 0.1802±0.0114 0.1826±0.0123

acoustic
AUC 0.8952±0.0026 0.8910±0.0028 0.8911±0.0032 0.8911±0.0026 0.8929±0.0028 0.8877±0.0076

Time 0.7281±0.0216 0.7304±0.0278 1.3972±0.0168 1.6672±0.0213 2.7367±0.2275 2.2063±0.1009

covtype
AUC 0.8236±0.0009 0.8235±0.0009 0.8228±0.0013 0.8233±0.0009 0.8134±0.0036 0.8233±0.0007

Time 5.4320±0.2447 5.4988±0.0629 10.5169±0.3023 13.1290±0.6334 19.303±3.6072 16.064±0.2350

a9a
AUC 0.9000±0.0033 0.9003±0.0042 0.9003±0.0033 0.8957±0.0028 0.8879±0.0043 0.9002±0.0031

Time 0.3123±0.0018 0.3120±0.0023 0.5862±0.0035 0.9417±0.0610 0.9686±0.1143 0.9273±0.0146

connect
AUC 0.8786±0.0031 0.8783±0.0023 0.8783±0.0032 0.8716±0.0027 0.8583±0.0035 0.8776±0.0036

Time 0.6520±0.0082 0.6532±0.0053 1.2386±0.0142 1.9633±0.0864 2.0464±0.2030 2.0307±0.0376

usps
AUC 0.9225±0.0048 0.9226±0.0046 0.9182±0.0065 0.8765±0.0105 0.9079±0.0069 0.9154±0.0050

Time 0.0947±0.0044 0.1026±0.0022 0.1821±0.0093 0.2851±0.0282 0.2638±0.0195 0.2949±0.0045

w8a
AUC 0.9694±0.0035 0.9692±0.0040 0.9663±0.0041 0.9454±0.0057 0.9640±0.0044 0.9695±0.0036

Time 0.5414±0.0069 0.5401±0.0262 0.9725±0.0119 1.6080±0.1558 1.5541±0.1302 1.5782±0.0228

mnist
AUC 0.9306±0.0020 0.9302±0.0017 0.9304±0.0027 0.8345±0.0086 0.8908±0.0047 0.9302±0.0015

Time 0.8272±0.0241 0.8409±0.0168 1.3983±0.0592 2.3366±0.2359 2.2333±0.2533 2.3376±0.0418

gisette
AUC 0.9970±0.0011 0.9969±0.0011 0.9940±0.0014 - 0.9931±0.0017 0.9908±0.0024

Time 0.2899±0.0224 0.2846±0.0208 0.3291±0.0253 - 0.8719±0.0807 0.5778±0.0423

real-sim
AUC 0.9955±0.0004 0.9959±0.0002 0.9936±0.0005 - 0.9842±0.0021 0.9934±0.0006

Time 8.6884±0.2815 9.5146±0.3872 8.9692±0.3466 - 25.505±0.7707 16.132±0.4540

protein h
AUC 0.9858±0.0029 0.9806±0.0030 0.9807±0.0054 0.9825±0.0040 0.9895±0.0017 0.9793±0.0036

Time 1.1807±0.0293 1.1943±0.0296 2.2331±0.0853 4.4396±0.4447 3.5537±0.7592 3.5484±0.1478

malware
AUC 0.9606±0.0122 0.9595±0.0126 0.9589±0.0143 0.9587±0.0129 0.9566±0.0152 0.9581±0.0114

Time 0.7291±0.0212 0.7296±0.0183 1.2822±0.0473 2.1483±0.2648 1.9903±0.1021 1.9604±0.0637

webspam u
AUC 0.9673±0.0008 0.9664±0.0007 0.9668±0.0005 0.9659±0.0006 0.9670±0.0012 0.9671±0.0006

Time 3.7163±0.2121 3.3759±0.1412 6.0562±0.3276 12.3849±0.9478 9.9146±0.1668 9.7933±0.5240

Table 3: Comparison of the testing AUC values and running time per pass (mean±std.).

pass running time due to the same reasons we mentioned above for explaining the AUC
curve in Figure 1. It can be seen that OAM gra requires longer per-pass running time than
OPAUC if the dimensionality is relatively small, while the reverse is the case for datasets
with a relatively large dimensionality. This is consistent with the dependency of the time
complexity on the dimensionality for these two methods, i.e., linear versus quadratic.
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(a) diabetes (b) ijcnn1 (c) german (d) satimage

(e) acoustic (f) covtype (g) a9a (h) connect

(i) usps (j) w8a (k) mnist (l) gisette

(m) real-sim (n) protein h (o) malware (p) webspam u

Figure 2: AUC versus time curves (in seconds) for SPAUC, SPAM, SOLAM and OPAUC
for objective functions with `2 regularizer Ω(w) = λ‖w‖22, λ = 10−6.

To show that SPAUC also works well with regularization, we consider (2.11) with either
Ω(w) = λ‖w‖22 or Ω(w) = λ‖w‖1 in our experiments. We compare our method with SPAM,
SOLAM and OPAUC. For the comparison of `2 regularization, we modify the original
SOLAM in Ying et al. (2016) by replacing the `2-constraint with an `2-regularizer. For
the comparison with `1 regularization, we modify the original implementation of SPAM,
SOLAM and OPAUC to handle the `1 regularizer. Therefore, these methods optimize
the same objective function. We fix the regularization parameter and tune the step-size
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(a) diabetes (b) ijcnn1 (c) german (d) satimage

(e) acoustic (f) covtype (g) a9a (h) connect

(i) usps (j) w8a (k) mnist (l) gisette

(m) real-sim (n) protein h (o) malware (p) webspam u

Figure 3: AUC versus time curves (in seconds) for SPAUC, SPAM, SOLAM and OPAUC
for objective functions with `1 regularizer Ω(w) = λ‖w‖1, λ = 10−6.

parameter µ by 5-fold cross validation. In Figure 2, we plot the AUC values as a function
of execution time (in seconds) for SPAUC, SPAM, SOLAM and OPAUC in the setting of
`2 regularization with λ = 10−6. In Figure 3, we plot the AUC values as a function of
execution time (in seconds) for SPAUC, SPAM, SOLAM and OPAUC in the setting of `1
regularization with λ = 10−6. It can be seen that SPAUC attains a faster convergence speed
as compared to the baseline methods. The same phenomenon also occurs for other choice
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of regularization parameters, e.g., λ = 10−2 and λ = 10−4. We omit these results to save
space.

5. Proofs

In this section, we present proofs for theoretical properties of SPAUC. We first give
a road-map to clarify the basic idea. An essential ingredient of our proof is to show the
almost boundedness of iterates. To this end, we first establish the self-bounding property
of F̂t (Lemma 11) and the one-step progress inequality (Lemma 12), based on which we
establish a crude bound of wt (Corollary 13). Then, we give high-probability bounds on
the bias of using F̂ ′t(wt; zit) as a gradient estimate (Lemma 14). We then use these results
and a Bernstein-type inequality to tackle a martingale difference sequence in the one-step
progress inequality, yielding a high-probability bound on the iterates (Theorem 3). This
bound on {wt} is further used to prove the convergence rate for general objective functions
and objective functions with a quadratic functional growth.

5.1 Preliminary Lemmas

We present here some preliminary lemmas. The following lemma shows that an approx-
imation of p,E[x′|y′ = 1] and E[x′|y′ = −1] by (2.9) still preserves the convexity. It also
establishes the self-bounding property of F̂t(w; z).

Lemma 11 For any w and z, we have

‖F̂ ′t(w; z)‖22 ≤ 16κ2F̂t(w; z) and F̂t(w; z) ≥ 0. (5.1)

Furthermore, for any z the function F̂t(w; z) is a convex function of w.

Proof The inequality F̂t(w; z) ≥ 0 follows directly from the Schwartz’s inequality:

F̂t(w; z) ≥ 2pt(1− pt)w>
(
vt − ut

)
+ pt(1− pt)

(
w>
(
vt − ut

))2
+ pt(1− pt) ≥ 0.

For any w and w̃, we have∥∥F̂ ′t(w; z)− F̂ ′t(w̃; z)
∥∥

2
≤ 2(1− pt)

∥∥(x− ut)(x− ut)>(w − w̃)
∥∥

2
I[y=1]

+ 2pt
∥∥(x− vt)(x− vt)>(w − w̃)

∥∥
2
I[y=−1]+

2pt(1− pt)
∥∥(vt − ut)(vt − ut)>(w − w̃)

∥∥
2
≤ 8κ2‖w − w̃‖2,

where in the last inequality we have used the definition of κ.
Therefore, it follows from the self-bounding property of non-negative smooth functions

(Lemma 17) that ‖F̂ ′t(w; z)‖22 ≤ 16κ2F̂t(w; z). This establishes (5.1).
It is clear that the Hessian matrix of F̂t(w; z) is

2(1−pt)
(
x−ut

)(
x−ut

)>I[y=1] +2pt
(
x−vt

)(
x−vt

)>I[y=−1] +2pt(1−pt)
(
vt−ut

)(
vt−ut

)>
,

which is a semi-positive definite matrix. Therefore, F̂t(·; z) is a convex function for any z.
The proof is complete.
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Our theoretical analysis roots its foundation on the following one-step progress inequality
measuring how the iterate would change after a single iteration of (2.11). The proof is
standard and is deferred to Appendix B.

Lemma 12 (One-step Progress Inequality) Let {wt}t be produced by (2.11). If As-
sumption 1 holds, then for any w ∈ Rd we have

‖wt+1 −w‖22 − ‖w −wt‖22 ≤ 2ηt
〈
w −wt, F̂

′
t(wt; zt)〉+ 2ηt

(
Ω(w)− Ω(wt)

)
− ηtσΩ‖w −wt+1‖22 + 2η2

t

(
C1F̂t(wt; zt) + C1Ω(wt) +A2

)
. (5.2)

Based on Lemma 12, we can derive several useful inequalities collected in the following
corollary. Eq. (5.3) provides a general bound on the norm of iterates in terms of step sizes.
Eqs. (5.4) and (5.5) show how the accumulation of function values can be controlled by
step sizes, which, according to Lemma 11 and Assumption 1, in turn give useful estimates
on
∑t

k=1 η
2
k

(
‖F̂ ′k(wk, zk)‖22 +‖Ω′(wk)‖22

)
and

∑t
k=1

(
‖F̂ ′k(wk, zk)‖22 +‖Ω′(wk)‖22

)
required to

handle in convergence analysis. Since similar ideas have been used in Lei and Tang (2018),
we defer the proof of Corollary 13 to Appendix B.

Corollary 13 Let {wt}t be produced by (2.11). Suppose ηt ≤ (2C1)−1 and Assumption 1
holds. Let C4 := C−1

1 A2 + 2−1. Then

‖wt+1‖22 ≤ C4

t∑
k=1

ηk. (5.3)

Furthermore, if ηt+1 ≤ ηt, then

t∑
k=1

η2
k

(
F̂k(wk; zk) + Ω(wk)

)
≤ C4

t∑
k=1

η2
k (5.4)

and
t∑

k=1

(
F̂k(wk; zk) + Ω(wk)

)
≤ C4t+ C4η

−1
t

t∑
k=1

ηk. (5.5)

5.2 Approximation of Stochastic Gradients

The implementation of SPAUC requires to approximate the unbiased stochastic gradi-
ent F̃ ′(wt; zt) by replacing the involved p,E[x′|y′ = 1],E[x′|y′ = −1] with their empirical
counterparts. The following lemma gives a quantitative measure on the accuracy of this
approximation.

Lemma 14 Let δ ∈ (0, 1). For any t ∈ N, the following inequality holds with probability at
least 1− δ

∥∥F̃ ′(wt; zt)−F̂ ′t(wt; zt)
∥∥

2
≤

2κ2
(
2 +

√
2 log(3/δ)

)
√
t

((
24+

8

p
I[yt=1]+

8

1− p
I[yt=−1]

)
‖wt‖2+3

)
.
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Before proving Lemma 14, we need to introduce the following preliminary lemma. For a
matrix A, we denote by ‖A‖op the operator norm of A, i.e., ‖A‖op = sup‖w‖2=1 ‖Aw‖2. For

any u, v ∈ Rd, there holds
‖uv>‖op ≤ ‖u‖2‖v‖2. (5.6)

Lemma 15 Let δ ∈ (0, 1). For any t ∈ N, with probability at least 1 − δ the following
inequalities hold simultaneously

|p− pt| ≤
(
2 +

√
2 log(3/δ)

)
/
√
t, (5.7)

‖E[x′|y′ = 1]− ut‖2 ≤
2κ(2 +

√
2 log(3/δ))

p
√
t

, (5.8)

‖E[x′|y′ = −1]− vt‖2 ≤
2κ(2 +

√
2 log(3/δ))

(1− p)
√
t

, (5.9)

∥∥∥(1− pt)(x− ut)(x− ut)> − (1− p)
(
x− E[x′|y′ = 1]

)(
x− E[x′|y′ = 1]

)>∥∥∥
op

≤
8κ2
(
2 +

√
2 log(3/δ)

)
p
√
t

, (5.10)

∥∥∥pt(x− vt)(x− vt)> − p(x− E[x′|y′ = −1]
)(
x− E[x′|y′ = −1]

)>∥∥∥
op

≤
8κ2
(
2 +

√
2 log(3/δ)

)
(1− p)

√
t

, (5.11)

∥∥p(1− p)(E[x′|y′ = −1]− E[x′|y′ = 1]
)
− pt(1− pt)(vt − ut)

∥∥
2
≤ 3κ

(
2 +

√
2 log(3/δ)

)
/
√
t,

(5.12)

∥∥∥p(1− p)(E[x′|y′ = −1]− E[x′|y′ = 1]
)(
E[x′|y′ = −1]− E[x′|y′ = 1]

)>−
pt(1− pt)(vt − ut)(vt − ut)>

∥∥∥
op
≤

24κ2
(
2 +

√
2 log(3/δ)

)
√
t

. (5.13)

Proof According to Lemma 18, with probability at least 1−δ the following three inequalities
hold simultaneously

|p− pt| ≤
2 +

√
2 log(3/δ)√
t

,

∥∥E[x′I[y′=1]]−
1

t

t−1∑
i=0

xiI[yi=1]

∥∥
2
≤

(2 +
√

2 log(3/δ))κ√
t

, (5.14)

∥∥E[x′I[y′=−1]]−
1

t

t−1∑
i=0

xiI[yi=−1]

∥∥
2
≤

(2 +
√

2 log(3/δ))κ√
t

. (5.15)
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We now prove (5.8). According to (2.9), we know

‖E[x′|y′ = 1]− ut‖2 =
1

p

∥∥∥pE[x′|y′ = 1]− ptut + ptut − put
∥∥∥

2

≤ 1

p

∥∥∥E[x′I[y′=1]]−
1

t

t−1∑
i=0

xiI[yi=1]

∥∥∥
2

+
‖ut‖2
p
|pt − p|.

Then we can apply (5.7) and (5.14) to derive (5.8) with probability at least 1− δ.

Eq. (5.9) can be proved in a similar manner and we omit the proof for brevity.

We now show (5.10). It is clear that

(1−pt)(x−ut)(x−ut)>−(1−p)
(
x−E[x′|y′ = 1]

)(
x−E[x′|y′ = 1]

)>
=
(
(1−pt)−(1−p)

)
(x−ut)(x−ut)>

+ (1− p)(x− ut)(x− ut)> − (1− p)(x− ut)
(
x− E[x′|y′ = 1]

)>
+ (1− p)(x− ut)

(
x− E[x′|y′ = 1]

)> − (1− p)
(
x− E[x′|y′ = 1]

)(
x− E[x′|y′ = 1]

)>
,

from which and (5.6) we derive∥∥∥(1−pt)(x−ut)(x−ut)>−(1−p)
(
x−E[x′|y′ = 1]

)(
x−E[x′|y′ = 1]

)>∥∥∥
op
≤ |p−pt|

∥∥∥(x−ut)(x−ut)>∥∥∥
op

+ (1−p)
∥∥∥(x−ut)

(
E[x′|y′ = 1]−ut

)>∥∥∥
op

+ (1−p)
∥∥∥(E[x′|y′ = 1]−ut

)(
x−E[x′|y′ = 1]

)>∥∥∥
op

≤ 4κ2|p− pt|+ 4κ(1− p)‖E[x′|y′ = 1]− ut‖2.

This together with (5.7) and (5.8) shows (5.10) with probability at least 1− δ.

Eq. (5.11) can be proved in a similar manner and we omit the proof for brevity.

We now prove (5.12). It is clear

p(1−p)
(
E[x′|y′ = −1]−E[x′|y′ = 1]

)
−pt(1−pt)(vt−ut) = pE[x′I[y′=−1]]−(1−p)E[x′I[y′=1]]

− pt
t

( t−1∑
i=0

xiI[yi=−1]

)
+

1− pt
t

( t−1∑
i=0

xiI[yi=1]

)
,

from which we derive∥∥p(1− p)(E[x′|y′ = −1]− E[x′|y′ = 1]
)
− pt(1− pt)(vt − ut)

∥∥
2

≤
∥∥∥pE[x′I[y′=−1]]−

pt
t

( t−1∑
i=0

xiI[yi=−1]

)∥∥∥
2

+
∥∥∥(1− p)E[x′I[y′=1]]−

(1− pt)
t

( t−1∑
i=0

xiI[yi=1]

)∥∥∥
2

≤ 2κ|p−pt|+ pt

∥∥∥E[x′I[y′=−1]]−
1

t

( t−1∑
i=0

xiI[yi=−1]

)∥∥∥
2

+ (1−pt)
∥∥∥E[x′I[y′=1]]−

1

t

( t−1∑
i=0

xiI[yi=1]

)∥∥∥
2
,

where we have used pE[x′I[y′=−1]] = (p− pt)E[x′I[y′=−1]] + ptE[x′I[y′=−1]]. We can then apply
(5.7), (5.14) and (5.15) to derive the bound (5.12) with probability 1− δ.
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We now prove (5.13). It is clear

p(1− p)
(
E[x′|y′ = −1]− E[x′|y′ = 1]

)(
E[x′|y′ = −1]− E[x′|y′ = 1]

)> − pt(1− pt)(vt − ut)(vt − ut)>
= p(1− p)

(
E[x′|y′ = −1]− E[x′|y′ = 1]

)((
E[x′|y′ = −1]− E[x′|y′ = 1]

)> − (vt − ut)>)
+ p(1− p)

((
E[x′|y′ = −1]− E[x′|y′ = 1]

)
−
(
vt − ut

))(
vt − ut

)>
+
(
p(1− p)− pt(1− pt)

)(
vt − ut

)(
vt − ut

)>
,

from which and (5.6) it follows that∥∥∥p(1−p)(E[x′|y′ = −1]−E[x′|y′ = 1]
)(
E[x′|y′ = −1]−E[x′|y′ = 1]

)>−pt(1−pt)(vt−ut)(vt−ut)>∥∥∥
op

≤ 4p(1− p)κ
∥∥∥(E[x′|y′ = −1]− E[x′|y′ = 1]

)
−
(
vt − ut

)∥∥∥
2

+ 4κ2|p− pt||p+ pt − 1|.

Furthermore, there holds that

p(1− p)
∥∥∥(E[x′|y′ = −1]− E[x′|y′ = 1]

)
−
(
vt − ut

)∥∥∥
2

≤
∥∥∥p(1−p)(E[x′|y′=−1]− E[x|y=1]

)
− pt(1−pt)(vt−ut)

∥∥∥
2

+
∣∣pt(1−pt)− p(1−p)‖‖vt−ut‖2

≤
∥∥∥p(1− p)(E[x′|y′ = −1]− E[x′|y′ = 1]

)
− pt(1− pt)(vt − ut)

∥∥∥
2

+ 2κ|p− pt||p+ pt − 1|.

Combining the above two inequalities and (5.7), (5.12) together then imply the stated in-
equality (5.13) with probability 1− δ. The proof is complete.

Proof of Lemma 14 It follows from (2.1) that

F̃ ′(w; z) = 2(1− p)
(
x− E[x′|y′ = 1]

)(
x− E[x′|y′ = 1]

)>
wI[y=1]+

2p(x−E[x′|y′ = −1])(x−E[x′|y′ = −1])>wI[y=−1] + 2p(1− p)
(
E[x′|y′ = −1]−E[x′|y′ = 1]

)
+ 2p(1− p)

(
E[x′|y′ = −1]− E[x′|y′ = 1]

)(
E[x′|y′ = −1]− E[x′|y′ = 1]

)>
w. (5.16)

This together with (2.10) shows that∥∥F̃ ′(wt; zt)− F̂ ′t(wt; zt)
∥∥

2
≤ 2
∥∥p(1− p)(E[x′|y′ = −1]− E[x′|y′ = 1]

)
− pt(1− pt)(vt − ut)

∥∥
2

+ 2
∥∥∥(1− p)

(
x− E[x′|y′ = 1]

)(
x− E[x′|y′ = 1]

)> − (1− pt)(x− ut)(x− ut)>
∥∥∥

op
‖wt‖2I[yt=1]

+ 2
∥∥∥p(x− E[x′|y′ = −1]

)(
x− E[x′|y′ = −1]

)> − pt(x− vt)(x− vt)>∥∥∥
op
‖wt‖2I[yt=−1]

+ 2
∥∥∥p(1−p)(E[x′|y′=−1]− E[x|y=1]

)(
E[x′|y′=−1]− E[x|y=1]

)> − pt(1−pt)(vt−ut)(vt−ut)>∥∥∥
op
‖wt‖2

:= I + II + III + IV.

We can apply (5.12), (5.10), (5.11), and (5.13) to develop upper bounds of I, II, III and IV
with probability at least 1 − δ, respectively. Also, note that the high probability is w.r.t.
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z1, . . . , zt−1, which is independent of zt. We can plug these high-probability bounds back
to the above inequality, and get the stated bound. The proof is complete.

5.3 Boundedness of Iterates

In this subsection, we prove Lemma 13 on the almost boundedness of iterates. To this
aim, we first establish a recursive inequality showing how ‖wt+1 −w∗1‖22 can be controlled
by ‖wk −w∗1‖22 for k = 1, . . . , t. Our basic idea is to control ‖wt+1 −w∗1‖22 by

O(1)
( t∑
k=1

ηk(φ(w∗1)−φ(wk)) +

t∑
k=1

ηk
〈
w∗1−wk, F̂

′
k(wk; zk)− F̃ ′(wk; zk)

〉
+

t∑
k=1

ξk

)
, (5.17)

where {ξk}k is a martingale difference sequence defined in (5.23). We apply Lemma 14 to
control

∑t
k=1 ηk

〈
w∗1−wk, F̂

′
k(wk; zk)−F̃ ′(wk; zk)

〉
, and apply Part (b) of Lemma 19 to show

with high probability that
∑t

k=1 ξk ≤
∑t

k=1 ηk(φ(wk)−φ(w∗1)) + C̃
∑t

k=1 η
2
k‖wk−w∗1‖22 for

a constant C̃ > 0. The key observation is that the partial variance
∑t

k=1 ηk(φ(wk)−φ(w∗1))
can be cancelled out by the term

∑t
k=1 ηk(φ(w∗1)− φ(wk)) in (5.17).

Proposition 16 Let {wt}t be produced by (2.11) with ηt ≤ (2C1)−1 and ηt+1 ≤ ηt. We
suppose Assumption 1 holds,

C5 = sup
k
ηk

k−1∑
j=1

ηj <∞, C6 = η1 sup
z
F̃ (w∗1, z)+2p(1−p)

(
7κ2C4C5+η1

(
1+2κ‖w∗1‖2+2κ2‖w∗1‖22

))
.

Then for any δ ∈ (0, 1) and ρ = min{1, (2C1)−1(η1‖w∗1‖22 + C4C5)−1C6}, the following
inequality holds with probability at least 1− δ simultaneously for all t = 1, . . . , T

‖wt+1 −w∗1‖22 ≤ ‖w∗1‖22 +

t∑
k=1

2Ck,δηk(‖wk −w∗1‖22 + 1)√
k

+
φ(w∗1)

C4C5

t∑
k=1

η2
k‖wk −w∗1‖22

+
2C6 log(2T/δ)

ρ
+ 2(C1C4 +A2)

t∑
k=1

η2
k,

where we introduce Cp = 8 max{p−1, (1− p)−1}+ 24 and

Ck,δ = 2κ2
(
2 +

√
2 log(12k2/δ)

)
max

{
Cp + 1, 4−1(Cp‖w∗1‖2 + 3)2

}
.

Proof Taking w = w∗1 in (5.2) gives

‖wt+1 −w∗1‖22 − ‖wt −w∗1‖22 ≤ 2ηt〈w∗1 −wt, F̂
′
t(wt, zt)〉+ 2ηt(Ω(w∗1)− Ω(wt))

+ 2η2
t

(
C1F̂t(wt; zt) + C1Ω(wt) +A2

)
.
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Taking a summation of the above inequality gives (w1 = 0)

‖wt+1 −w∗1‖22 − ‖w∗1‖22 =
t∑

k=1

[
‖wk+1 −w∗1‖22 − ‖wk −w∗1‖22

]
≤ 2

t∑
k=1

ηk〈w∗1 −wk, F̂
′
k(wk; zk)〉

+ 2

t∑
k=1

ηk(Ω(w∗1)− Ω(wk)) + 2

t∑
k=1

η2
k

(
C1F̂k(wk; zk) + C1Ω(wk) +A2

)
≤ 2

t∑
k=1

ηk〈w∗1 −wk, F̂
′
k(wk; zk)〉+ 2

t∑
k=1

ηk(Ω(w∗1)− Ω(wk)) + 2(C1C4 +A2)
t∑

k=1

η2
k,

(5.18)

where the last inequality is due to (5.4). We consider the following decomposition

t∑
k=1

ηk〈w∗1 −wk, F̂
′
k(wk; zk)〉 =

t∑
k=1

ηk
〈
w∗1 −wk, F̂

′
k(wk; zk)− F̃ ′(wk; zk)

〉
+

t∑
k=1

ηk
〈
w∗1 −wk, F̃

′(wk; zk)−∇f(wk)
〉

+

t∑
k=1

ηk〈w∗1 −wk,∇f(wk)〉. (5.19)

For any k ∈ N, by Lemma 14 the following inequality holds with probability at least
1− δ/(4k2)

∥∥F̃ ′(wk; zk)− F̂ ′k(wk; zk)
∥∥

2
≤

2κ2
(
2 +

√
2 log(12k2/δ)

)
√
k

(
Cp‖wk‖2 + 3

)
,

which together with union bounds and
∑∞

k=1 k
−2 ≤ 2 gives the following inequality with

probability 1− δ/2 simultaneously for all k = 1, . . . ,∞

∥∥F̃ ′(wk; zk)− F̂ ′k(wk; zk)
∥∥

2
≤

2κ2
(
2 +

√
2 log(12k2/δ)

)
√
k

(
Cp‖wk−w∗1‖2 +Cp‖w∗1‖2 +3

)
.

(5.20)

It then follows that the following inequality holds with probability at least 1− δ/2 simulta-
neously for all t = 1, . . . ,∞

t∑
k=1

ηk
〈
w∗1 −wk, F̂

′
k(wk; zk)− F̃ ′(w; zk)

〉
≤

t∑
k=1

ηk‖wk −w∗1‖2
∥∥F̂ ′k(wk; zk)− F̃ ′(wk; zk)

∥∥
2

≤ 2κ2
t∑

k=1

ηk
(
2 +

√
2 log(12k2/δ)

)Cp‖wk −w∗1‖22 + (Cp‖w∗1‖2 + 3)‖wk −w∗1‖2√
k

≤
t∑

k=1

ηkCk,δ(‖wk −w∗1‖22 + 1)/
√
k, (5.21)

where in the last step we have used the Schwartz’s inequality(
3 + Cp‖w∗1‖2

)
‖wk −w∗1‖2 ≤ ‖wk −w∗1‖22 + (3 + Cp‖w∗1‖2)2/4.
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It follows from the convexity of f that

t∑
k=1

ηk〈w∗1 −wk,∇f(wk)〉 ≤
t∑

k=1

ηk
(
f(w∗1)− f(wk)

)
. (5.22)

We now control the last second term of (5.19) with an application of a concentration in-
equality for a martingale difference sequence. Introduce a sequence of random variables

ξk := ηk
〈
w∗1 −wk, F̃

′(wk; zk)−∇f(wk)
〉
, k ∈ N. (5.23)

It follows from Proposition 1 that Ezk [ξk] = 0 and therefore {ξk}k is a martingale difference
sequence. Analogous to Lemma 11, we can show∥∥F̃ ′(wk; zk)

∥∥2

2
≤ 16κ2F̃ (wk, zk). (5.24)

Since E[(ξ − E[ξ])2] ≤ E[ξ2] for any real-valued random variable ξ, it then follows that

Ezk
[∣∣〈w∗1 −wk, F̃

′(wk; zk)−∇f(wk)
〉∣∣2] ≤ Ezk

[∣∣〈w∗1 −wk, F̃
′(wk; zk)

〉∣∣2]
≤ ‖wk −w∗1‖22Ezk

[∥∥F̃ ′(wk; zk)
∥∥2

2

]
≤ ‖wk −w∗1‖22Ezk

[
C1F̃ (wk, zk)

]
= C1f(wk)‖wk −w∗1‖22,

where we have used the definition of C1 and Proposition 1. It then follows that

t∑
k=1

Ezk
[(
ξk − Ezk [ξk]

)2]
=

t∑
k=1

η2
kEzk

[∣∣〈w∗1 −wk, F̃
′(wk; zk)−∇f(wk)

〉∣∣2]
≤

t∑
k=1

η2
k‖wk −w∗1‖22

(
C1φ(wk)− C1φ(w∗1)

)
+

t∑
k=1

η2
k‖wk −w∗1‖22C1φ(w∗1).

By (5.3), C5 = supk ηk
∑k−1

j=1 ηj <∞ and f(w) ≤ φ(w), we know

η2
k‖wk−w∗1‖22 ≤ 2η2

k(‖wk‖22+‖w∗1‖22) ≤ 2ηk

(
ηk‖w∗1‖22+C4ηk

k−1∑
j=1

ηj

)
≤ 2ηk

(
η1‖w∗1‖22+C4C5

)
.

Combining the above two inequalities together, we derive

t∑
k=1

Ezk
[(
ξk − Ezk [ξk]

)2] ≤
2C1

(
η1‖w∗1‖22 + C4C5

) t∑
k=1

ηk
(
φ(wk)− φ(w∗1))

)
+ C1φ(w∗1)

t∑
k=1

η2
k‖wk −w∗1‖22. (5.25)
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According to the convexity of F̃ established in Proposition 1, we know

ξk − Ezk [ξk] = ηk
〈
w∗1 −wk, F̃

′(wk; zk)
〉

+ ηk〈wk −w∗1,∇f(wk)〉

≤ ηk
[
F̃ (w∗1; zk)− F̃ (wk; zk)

]
+ ηk

(
‖wk‖2 + ‖w∗1‖2

)(
4p(1− p)κ+ 8p(1− p)κ2‖wk‖2

)
≤ ηkF̃ (w∗1; zk) + 4ηkp(1− p)

(
κ‖wk‖2 + κ‖w∗1‖2 + 2κ2‖wk‖22 + 2κ2‖wk‖2‖w∗1‖2

)
≤ ηkF̃ (w∗1; zk) + 2ηkp(1− p)

(
κ2‖wk‖22 + 1 + 2κ‖w∗1‖2 + 4κ2‖wk‖22 + 2κ2‖wk‖22 + 2κ2‖w∗1‖22

)
≤ ηkF̃ (w∗1; zk) + 2p(1− p)

(
7κ2ηkC4

k−1∑
j=1

ηj + ηk
(
1 + 2κ‖w∗1‖2 + 2κ2‖w∗1‖22

))
≤ C6,

where we have used the following inequality in the second inequality (∇f(w) = 2p(1 −
p)E
[
(1−w>(x− x′))(x− x′)|y = 1, y′ = −1

]
)

‖∇f(w)‖2 ≤ 4p(1− p)κ+ 8p(1− p)κ2‖w‖2, ∀w ∈ Rd, (5.26)

(5.3) and C5 = supk ηk
∑k−1

j=1 ηj < ∞ in the last inequality. The above bounds on magni-
tudes and variances of ξk together with Part (b) of Lemma 19 (see the Appendix) imply
the following inequality with probability 1− δ/2

t∑
k=1

ξk ≤
ρ

C6

(
2C1(η1‖w∗1‖22 +C4C5)

t∑
k=1

ηk
(
φ(wk)−φ(w∗1)

)
+C1φ(w∗1)

t∑
k=1

η2
k‖wk−w∗1‖22

)

+
C6 log(2/δ)

ρ
≤

t∑
k=1

ηk
(
φ(wk)− φ(w∗1)

)
+
φ(w∗1)

2C4C5

t∑
k=1

η2
k‖wk −w∗1‖22 +

C6 log(2/δ)

ρ
,

(5.27)

where we have used the inequality 2C1ρ(η1‖w∗1‖22 + C4C5) ≤ C6. Plugging (5.21), (5.22)
and (5.27) into (5.19) gives the following inequality with probability 1− δ

t∑
k=1

ηk〈w∗1 −wk, F̂
′
k(wk; zk)〉 ≤

t∑
k=1

Ck,δηk(‖wk −w∗1‖22 + 1)/
√
k+

t∑
k=1

ηk
(
f(w∗1)− f(wk)

)
+

t∑
k=1

ηk
(
φ(wk)− φ(w∗1)

)
+
φ(w∗1)

2C4C5

t∑
k=1

η2
k‖wk −w∗1‖22 +

C6 log(2/δ)

ρ
.

This together with (5.18) shows the following inequality with probability 1− δ

‖wt+1 −w∗1‖22 ≤ ‖w∗1‖22 +
t∑

k=1

2Ck,δηk(‖wk −w∗1‖22 + 1)√
k

+
φ(w∗1)

C4C5

t∑
k=1

η2
k‖wk −w∗1‖22

+
2C6 log(2/δ)

ρ
+ 2(C1C4 +A2)

t∑
k=1

η2
k.

Note (5.20) holds simultaneously for all k = 1, . . . ,∞. To derive the stated inequality for
all t = 1, . . . , T , one needs to derive (5.27) simultaneously for all k = 1, . . . , T . This can be
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done by replacing log(2/δ) in (5.27) with log(2T/δ). The proof is complete.

According to the assumption
∑∞

k=1 η
2
k < ∞ and

∑∞
k=1 ηk

√
log k/

√
k < ∞, Proposition

16 essentially implies that

max
1≤k≤t

‖wk −w∗1‖22 ≤
1

2
max

1≤k≤t
‖wk −w∗1‖22 + C̃ log

1

δ

for a C̃ > 0, from which we can derive an almost boundedness of {wt}t. We will rigorously
show this in the following proof.
Proof of Theorem 3 Introduce the set

ΩT =

{
(z1, . . . , zT ) : ‖wt+1 −w∗1‖22 ≤ ‖w∗1‖22 +

t∑
k=1

2Ck,δηk(‖wk −w∗1‖22 + 1)√
k

+

φ(w∗1)

C4C5

t∑
k=1

η2
k‖wk −w∗1‖22 +

2C6 log(2T/δ)

ρ
+ 2(C1C4 +A2)

t∑
k=1

η2
k for all t = 1, . . . , T

}
,

where ρ is defined in Proposition 16. Proposition 16 shows that Pr(ΩT ) ≥ 1 − δ. Since∑∞
t=1 ηt

√
log t/

√
t <∞ and

∑∞
t=1 η

2
t <∞, we can find a t2 ∈ N such that

∞∑
k=t2+1

2Ck,δηk√
k

< 1/4 and

∞∑
k=t2+1

η2
k <

C4C5

4φ(w∗1)
. (5.28)

Conditioned on the event ΩT , we derive the following inequality for all t = 1, . . . , T

‖wt+1 −w∗1‖22 − ‖w∗1‖22

≤
t2∑
k=1

2Ck,δηk‖wk −w∗1‖22√
k

+ max
1≤t̃≤T

‖wt̃ −w∗1‖22
T∑

k=t2+1

2Ck,δηk√
k

+
φ(w∗1)

C4C5

t2∑
k=1

η2
k‖wk −w∗1‖22

+
φ(w∗1) max1≤t̃≤T ‖wt̃ −w∗1‖22

C4C5

T∑
k=t2+1

η2
k +

t∑
k=1

2Ck,δηk√
k

+
2C6 log(2T/δ)

ρ
+ 2(C1C4 +A2)

t∑
k=1

η2
k

≤
t2∑
k=1

2Ck,δηk‖wk −w∗1‖22√
k

+
1

4
max

1≤t̃≤T
‖wt̃ −w∗1‖22 +

φ(w∗1)

C4C5

t2∑
k=1

η2
k‖wk −w∗1‖22

+
1

4
max

1≤t̃≤T
‖wt̃ −w∗1‖22 +

t∑
k=1

2Ck,δηk√
k

+
2C6 log(2T/δ)

ρ
+ 2(C1C4 +A2)

t∑
k=1

η2
k.

It then follows the following inequality under the event ΩT

max
1≤t̃≤T

‖wt̃ −w∗1‖22 ≤ ‖w∗1‖22 +

t2∑
k=1

2Ck,δηk‖wk −w∗1‖22√
k

+
1

2
max

1≤t̃≤T
‖wt̃ −w∗1‖22

+
φ(w∗1)

C4C5

t2∑
k=1

η2
k‖wk −w∗1‖22 +

T∑
k=1

2Ck,δηk√
k

+
2C6 log(2T/δ)

ρ
+ 2(C1C4 +A2)

T∑
k=1

η2
k,
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from which we derive the stated inequality with probability 1 − δ (notice ‖wk − w∗1‖22 ≤
2(‖w∗1‖22 + C4

∑k−1
j=1 ηj))

C2 = 2‖w∗1‖22 +

t2∑
k=1

8C7ηk
(
‖w∗1‖22 + C4

∑k−1
j=1 ηj

)
√
k

+

4φ(w∗1)

C4C5

t2∑
k=1

η2
k

(
‖w∗1‖22 + C4

k−1∑
j=1

ηj
)

+

∞∑
k=1

4C7ηk√
k

+
4C6

ρ
+ 4(C1C4 +A2)

∞∑
k=1

η2
k,

where we introduce (notice Ck,δ ≤ C7

√
log(T/δ))

C7 = 2κ2
(
2 +

√
2 log 12 + 4

)
max

{
Cp + 1, 4−1(CP ‖w∗1‖2 + 3)2

}
.

The proof is complete.

5.4 Proofs for General Convergence Rates

In this subsection, we prove Theorem 4 on the probabilistic convergence rates by taking
a deduction analogous to the proof of Proposition 16. The difference is to apply Part (a) of
Lemma 19 together with the bound of ‖wt‖2 established in Theorem 3 to control

∑t
k=1 ξk

in (5.23).
Proof of Theorem 4 According to Lemma 14 followed with union bounds, we know

the existence of Ω
(1)
T with Pr(Ω

(1)
T ) ≥ 1− δ/3 such that the following inequality holds with

probability 1− δ/3 simultaneously for all t = 1, . . . , T conditioned on Ω
(1)
T

∥∥F̃ ′(wt; zt)− F̂ ′t(wt; zt)
∥∥

2
≤

2κ2
(
2 +

√
2 log(9T/δ)

)
√
t

(
Cp‖wt −w∗1‖2 + 3 + Cp‖w∗1‖2

)
.

It then follows the following inequality conditioned on Ω
(1)
T

T∑
t=1

ηt
〈
w∗1 −wt, F̂

′
t(wt; zt)− F̃ ′(wt; zt)

〉
I[‖wt−w∗1‖22≤C2 log(6T/δ)]

≤
T∑
t=1

ηt‖w∗1 −wt‖2
∥∥∥F̂ ′t(wt; zt)− F̃ ′(wt; zt)

∥∥∥
2
I[‖wt−w∗1‖22≤C2 log(6T/δ)] ≤ C̃T,δ

T∑
t=1

ηt√
t
,

(5.29)

where we introduce

C̃T,δ = 2κ2
√
C2

(
2 +

√
2 log(9T/δ)

)(
Cp
√
C2 + 3 + Cp‖w∗1‖2

)
log(6T/δ).

Introduce a sequence of random variables

ξ′t = ηt
〈
w∗1 −wt, F̃

′(wt; zt)−∇f(wt)
〉
I[‖wt−w∗1‖22≤C2 log(6T/δ)], t = 1, . . . , T.
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According to Schwartz’s inequality, we derive

|ξ′t| ≤ ηt
[
‖w∗1 −wt‖22 + 4−1‖F̃ ′(wt; zt)−∇f(wt)‖22

]
I[‖wt−w∗1‖22≤C2 log 6T

δ
]

≤ ηt
[
‖wt −w∗1‖22 + 2−1‖F̃ ′(wt; zt)‖22 + 2−1‖∇f(wt)‖22

]
I[‖wt−w∗1‖22≤C2 log 6T

δ
].

According to (5.16) and (5.26), it is clear that

max
{
‖∇f(w)‖2, ‖F̃ ′(w; z)‖2

}
≤ 8κ2‖w‖2 + κ (5.30)

≤ 8κ2‖w −w∗1‖2 + 8κ2‖w∗1‖2 + κ.

Therefore, there holds

|ξ′t| ≤ C8ηt log(6T/δ), where C8 = C2 + 2(8κ2‖w∗1‖2 + κ)2 + 128κ4C2.

It is clear that {ξ′t} is a martingale difference sequence and therefore we can apply Part (a)

of Lemma 19 in the Appendix A to show the existence of Ω
(2)
T with Pr(Ω

(2)
T ) ≥ 1− δ/3 such

that the following inequality holds conditioned on Ω
(2)
T

T∑
t=1

ξ′t ≤ C8

√√√√2
T∑
t=1

η2
t log

3

δ
log

6T

δ
. (5.31)

Theorem 3 implies the existence of Ω
(3)
T with Pr(Ω

(3)
T ) ≥ 1− δ/3 such that max1≤t̃≤T ‖wt̃−

w∗1‖22 ≤ C2 log(6T/δ). According to (5.19), (5.22), (5.29) and (5.31), it is clear that the

following inequality holds under the event Ω
(1)
T ∩Ω

(2)
T ∩Ω

(3)
T (note ξ′t = ηt

〈
w∗1−wt, F̃

′(wt; zt)−
∇f(wt)

〉
in this case)

T∑
t=1

ηt〈w∗1−wt, F̂
′
t(wt; zt)〉 ≤ C̃T,δ

T∑
t=1

ηt√
t
+C8 log

6T

δ

√√√√2
T∑
t=1

η2
t log

3

δ
+

T∑
t=1

ηt
[
f(w∗1)−f(wt)

]
.

Plugging the above inequality back into (5.18) and noting Pr
(
Ω

(1)
T ∩ Ω

(2)
T ∩ Ω

(3)
T

)
≥ 1 − δ,

we derive the following inequality with probability at least 1− δ

‖wT+1 −w∗1‖22 − ‖w∗1‖22 ≤ 2
T∑
t=1

ηt
(
φ(w∗1)− φ(wt)

)
+ 2(C1C4 +A2)

T∑
t=1

η2
t

+ 2C̃T,δ

T∑
t=1

ηt√
t

+ 2C8 log
6T

δ

√√√√2
T∑
t=1

η2
t log

3

δ
.

This combined with the convexity of φ establishes the stated inequality with probability
1− δ. The proof is complete.

Proof of Corollary 5 We first prove Part (a). It is clear that the step sizes satisfy
(3.2) and therefore Theorem 4 holds. Part (a) then follows from the standard inequality
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∑T
t=1 t

−θ ≥ (1 − θ)−1(T 1−θ − 1), θ ∈ (0, 1). We now turn to Part (b). It is clear that∑∞
t=1 ηt log

1
2 t/
√
t ≤ η1

∑∞
t=1 log

1−β
2 (et)/t < ∞ and

∑∞
t=1 η

2
t < ∞. Part (b) then follows

from the inequality
∑T

t=1

(
t logβ(et)

)− 1
2 ≥ 2(

√
T − 1) log−

β
2 (eT ). The proof is complete.

5.5 Discussion of the Proof

We follow the arguments in Lei and Tang (2018) in our proofs. In this subsection, we
give details on the similarity and difference between our proofs and those in Lei and Tang
(2018). Both arguments first build a crude estimate ‖wt‖22 = O

(∑t
k=1 ηk

)
and then refine it

to an almost boundedness of iterates with high probability by martingale analysis. As in Lei
and Tang (2018), we use the self-bounding property of loss functions to control a weighted
summation of loss functions (5.4), which removes bounded gradient assumptions imposed
in the literature. As in Lei and Tang (2018), we use the Bernstein inequality to control
the martingale difference sequence {ξk} defined in (5.23), and show that the conditional
variance of this martingale can be offset by some negative terms in the one-step progress
inequality.

A key difference is that we use approximately biased stochastic gradients in our algo-
rithm, while the discussions (Lei and Tang, 2018) consider stochastic optimization with
unbiased gradient estimates. Specifically, the approximate unbiased stochastic gradient is
caused by replacing p = P (y = 1),E[x|y = 1] and E[x|y = −1] by its empirical coun-
terparts at the present time t. To overcome this hindrance, we build high-probability
bounds on

∥∥F̃ ′(wt; zt)− F̂ ′t(wt; zt)
∥∥

2
(Lemma 14) by developing concentration inequalities

for approximating conditional expectations and variances by their empirical counterparts
(Lemma 15). We show that this approximate unbias does not affect the almost bound-
edness of iterates provided that the step size sequence satisfies an additional assumption∑∞

t=1 ηt
√

log t/t <∞. Another notable difference is that we show that the fast convergence
rates can be derived for objective functions satisfying the quadratic functional growth, while
the discussions in Lei and Tang (2018) require a stronger assumption on the strong convexity
of objective functions.

As compared to the technical analysis, our main novelty is the development of a new
stochastic optimization algorithm for AUC maximization. Previous reformulation of AUC
maximization as a pointwise problem either introduces additional dual variables (Ying et al.,
2016; Liu et al., 2018) or uses a non-convex estimator of stochastic gradients (Natole et al.,
2018). The former formulation requires to introduce an explicit boundedness constraint
on w (Ying et al., 2016; Liu et al., 2018), while the latter one requires the information of
p, conditional expectation and is only guaranteed convergence rates in expectation (Natole
et al., 2018). We develop a novel reformulation of AUC maximization as a pointwise problem
which leads to a convex estimator of stochastic gradient. This key convexity is critical to
handle the case when w ∈ Rd, as well as in both the algorithm design and the high-
probability theoretical analysis.
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6. Conclusion

In this paper, we presented a new stochastic gradient descent method for AUC max-
imization which can accommodate general penalty terms. Our algorithm can update the
model parameter upon receiving individual data with favorable O(d) space and per-iteration
time complexity, making it amenable for streaming data analysis. We established a high-
probability convergence rate Õ(1/

√
T ) for the general convex setting, and a fast convergence

Õ(1/T ) for the cases of strongly convex regularizers and no regularization term (without
strong convexity).

There are several directions for future work. Firstly, we focused on the square loss
and it remains unclear to us on how to develop similar algorithms for general loss functions.
Secondly, it would be very interesting to develop stochastic optimization algorithms for AUC
maximization under nonlinear models. There are two possible approaches for developing
nonlinear models for AUC maximization including the kernel trick and and deep neural
networks. For the approach using the kernel trick, one could use the techniques of random
feature (Rahimi and Recht, 2008) for RBF kernels and then apply the linear model in this
paper. One can easily prove a similar saddle point formulation even for non-convex deep
neural network, and develop stochastic primal-dual stochastic gradient decent algorithms
(Nemirovski et al., 2009) for deep AUC maximization models. However, it is not clear
on how to establish theoretical guarantees for the convergence of such algorithms as the
objective function is generally non-convex.
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Appendix A. Lemmas

In this section we provide some useful lemmas. Lemma 17 shows a self-bounding prop-
erty for smooth and non-negative functions (Nesterov, 2013).

Lemma 17 If h : Rd → R is non-negative and β-smooth, i.e., ‖∇h(w) − ∇h(w̃)‖2 ≤
β‖w − w̃‖2, then ‖∇h(w)‖22 ≤ 2βh(w) for all w ∈ Rd.

Our discussion is also based on some concentration inequalities. Lemma 18 is the Ho-
effding’s inequality for vector-valued random variables (Boucheron et al., 2013).

Lemma 18 (Hoeffding’s inequality) Let Z1, . . . , Zn be a sequence of i.i.d. random vari-
ables taking values in Rd with ‖Zi‖2 ≤ B for every i. Then, for any 0 < δ < 1, with
probability 1− δ we have

∥∥∥ 1

n

n∑
i=1

[
Zi − E[Zi]

]∥∥∥
2
≤ B√

n

[
2 +

√
2 log 1/δ

]
.
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Part (a) of Lemma 19 is the Azuma-Hoeffding inequality for martingales with bounded
increments (Hoeffding, 1963), and part (b) is a conditional Bernstein inequality using the
conditional variance to quantify better the concentration behavior of martingales (Zhang,
2005).

Lemma 19 Let z1, . . . , zn be a sequence of random variables such that zk may depend on
the previous random variables z1, . . . , zk−1 for all k = 1, . . . , n. Consider a sequence of func-

tionals ξk(z1, . . . , zk), k = 1, . . . , n. Let σ2
n =

∑n
k=1 Ezk

[(
ξk − Ezk [ξk]

)2]
be the conditional

variance and δ ∈ (0, 1).

(a) Assume that |ξk − Ezk [ξk]| ≤ bk for each k. With probability at least 1− δ we have

n∑
k=1

ξk −
n∑
k=1

Ezk [ξk] ≤
(

2

n∑
k=1

b2k log
1

δ

) 1
2
. (A.1)

(b) Assume that ξk − Ezk [ξk] ≤ b for each k and ρ ∈ (0, 1]. With probability at least 1 − δ
we have

n∑
k=1

ξk −
n∑
k=1

Ezk [ξk] ≤
ρσ2

n

b
+
b log 1

δ

ρ
. (A.2)

Appendix B. Proof of Results in Section 5.1

Proof of Lemma 12 According to the first-order optimality condition in (2.11), we get

ηtF̂
′
t(wt; zt) + ηtΩ

′(wt+1) + wt+1 −wt = 0, (B.1)

from which we derive

‖wt+1 −w‖22 = 〈wt+1 −w,wt+1 −wt + wt −w〉
= −ηt

〈
wt+1 −w, F̂ ′t(wt; zt)〉+ ηt〈w −wt+1,Ω

′(wt+1)〉+ 〈wt+1 −w,wt −w〉.
(B.2)

It follows from the definition of σΩ that

〈w −wt+1,Ω
′(wt+1)〉 ≤ Ω(w)− Ω(wt+1)− 2−1σΩ‖w −wt+1‖22

= Ω(w)− Ω(wt) + Ω(wt)− Ω(wt+1)− 2−1σΩ‖w −wt+1‖22
≤ Ω(w)− Ω(wt) + 〈wt −wt+1,Ω

′(wt)〉 − 2−1σΩ

(
‖w −wt+1‖22 + ‖wt −wt+1‖22

)
. (B.3)

It can be directly checked that

〈wt+1 −w,wt −w〉 =
1

2

(
‖w −wt‖22 + ‖w −wt+1‖22 − ‖wt −wt+1‖2

)
.

Plugging the above identity and (B.3) back into (B.2), we derive

‖wt+1−w‖22 ≤ ηt
〈
w−wt+wt−wt+1, F̂

′
t(wt; zt)〉+ηtΩ(w)−ηtΩ(wt)+ηt〈wt−wt+1,Ω

′(wt)〉

− 2−1ηtσΩ‖w −wt+1‖22 +
1

2

(
‖w −wt‖22 + ‖w −wt+1‖22 − ‖wt −wt+1‖2

)
. (B.4)
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According to the Schwartz’s inequality, we know

ηt
〈
wt−wt+1, F̂

′
t(wt; zt)〉+ηt〈wt−wt+1,Ω

′(wt)〉 ≤
1

2
‖wt−wt+1‖22+η2

t ‖F̂ ′t(wt; zt)‖22+η2
t ‖Ω′(wt)‖22.

Plugging the above inequality back into (B.4) gives

‖wt+1 −w‖22 − ‖w −wt‖22 ≤ 2ηt
〈
w −wt, F̂

′
t(wt; zt)〉+ 2ηt

(
Ω(w)− Ω(wt)

)
− ηtσΩ‖w −wt+1‖22 + 2η2

t ‖F̂ ′t(wt; zt)‖22 + 2η2
t ‖Ω′(wt)‖22. (B.5)

The stated bound then follows from Lemma 11, Assumption 1 and the definition of C1.
The proof is complete.

Proof of Corollary 13 Eq. (5.2) together with the convexity of F̂t established in Lemma
11 implies

‖wt+1 −w‖22 − ‖wt −w‖22 ≤ 2ηt
(
F̂t(w; zt)− F̂t(wt; zt)

)
+ 2ηt

(
Ω(w)− Ω(wt)

)
− ηtσΩ‖w −wt+1‖22 + 2η2

t

(
C1F̂t(wt; zt) + C1Ω(wt) +A2

)
. (B.6)

Taking w = 0 in (B.6) and using F̂t(0; zt) = pt(1− pt),Ω(0) = 0, we get

‖wt+1‖22 − ‖wt‖22
≤ 2ηt

(
F̂t(0; zt)− F̂t(wt; zt)

)
+ 2ηt

(
Ω(0)− Ω(wt)

)
+ 2η2

t

(
C1F̂t(wt; zt) + C1Ω(wt) +A2

)
≤ 2ηt(C1ηt − 1)

(
F̂t(wt; zt) + Ω(wt)

)
+ ηt/2 + 2η2

tA2 (B.7)

≤ ηt/2 + C−1
1 A2ηt,

where the last inequality follows from F̂t(wt; zt) + Ω(wt) ≥ 0 due to Lemma 11 and the
assumption 0 ≤ ηt ≤ (2C1)−1. Taking a summation of the above inequality then shows

‖wt+1‖22 ≤
(
C−1

1 A2 + 2−1
) t∑
k=1

ηk.

This establishes (5.3). Plugging the assumption ηt ≤ (2C1)−1 into (B.7) gives

ηt
(
F̂t(wt; zt) + Ω(wt)

)
≤ ‖wt‖22 − ‖wt+1‖22 + ηt/2 + C−1

1 A2ηt.

Multiplying both sides by ηt, we derive

η2
t

(
F̂t(wt; zt) + Ω(wt)

)
≤ ηt‖wt‖22 − ηt‖wt+1‖22 + η2

t /2 + η2
tC
−1
1 A2

≤ ηt‖wt‖22 − ηt+1‖wt+1‖22 + η2
t /2 + η2

tC
−1
1 A2,

where we have used the assumption ηt+1 ≤ ηt. Taking a summation of the above inequality
further yields

t∑
k=1

η2
k

(
F̂k(wk; zk) + Ω(wk)

)
≤
(
C−1

1 A2 + 2−1
) t∑
k=1

η2
k
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We now turn to (5.5). Plugging the assumption ηt ≤ (2C1)−1 into (B.7) and multiplying
both sides by η−1

t , we derive

F̂ ′(wt; zt) + Ω(wt) ≤ η−1
t

(
‖wt‖22 − ‖wt+1‖22

)
+ 2−1 + C−1

1 A2.

Taking a summation of the above inequality implies

t∑
k=1

(
F̂k(wk; zk) + Ω(wk)

)
≤ tC4 +

t∑
k=1

η−1
k

(
‖wk‖22 − ‖wk+1‖22

)
≤ tC4 +

t∑
k=2

‖wk‖22(η−1
k − η

−1
k−1) + η−1

1 ‖w1‖22

≤ tC4 + max
1≤k̃≤t

‖wk̃‖
2
2

t∑
k=2

(η−1
k − η

−1
k−1)

≤ tC4 + C4η
−1
t

t∑
k=1

ηk,

where the last inequality is due to (5.3). The proof is complete.

Appendix C. Proofs for Fast Convergence Rates

In this subsection, we prove Theorem 7 on convergence rates for φ with a quadratic
functional growth. To this aim, we need to introduce some lemmas. The following lemma
provides probabilistic bounds for approximating F̃ ′(wk; zk) with F̂ ′k(wk; zk) for {wk} pro-
duced by (2.11) with specific step sizes.

Lemma 20 Suppose Assumption 1 holds. Let {wt}t be the sequence produced by (2.11)
with ηt = 2

σφt+2σf+σφt1
, where t1 ≥ 4C1σ

−1
φ . Then, for any k ≤ T the following inequality

holds with probability 1− δ∥∥F̃ ′(wk; zk)− F̂ ′k(wk; zk)
∥∥

2
≤ Cδ

√
log(eT )/

√
k, (C.1)

where Cδ := 2κ2
(
2 +

√
2 log(3/δ)

)(
32
√

2C4σ
−1
φ + 3

)
.

Proof Since t1 ≥ 4C1σ
−1
φ we know ηt ≤ (2C1)−1 and therefore Corollary 13 holds. It

follows from the definition of ηt that

t∑
k=1

ηk ≤ 2σ−1
φ

t∑
k=1

(k + t1)−1 ≤ 2σ−1
φ log(et). (C.2)

This together with (5.3) shows

‖wt‖22 ≤ 2C4σ
−1
φ log(et). (C.3)
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For all k = 1, . . . , T , we can then apply Lemma 14 to derive the following inequality with
probability 1− δ∥∥F̃ ′(wk; zk)− F̂ ′k(wk; zk)

∥∥
2
≤ 2κ2

(
2 +

√
2 log(3/δ)

)(
32
√

2C4σ
−1
φ + 3

)√
log(eT )/

√
k.

The proof is complete with the introduction of Cδ.

The following lemma plays a fundamental role in our analysis. It shows that both
‖wt−w∗t ‖22 and a weighted summation of φ(wk)−φ(w∗k) can be controlled by a summation
of martingale difference sequences. It is established by taking a weighted summation of the
one-step progress inequality (5.2).

Lemma 21 Suppose Assumption 1 and Assumption 2 hold. Let {wt}t be the sequence
produced by (2.11) with ηt = 2

σφt+2σf+σφt1
with t1 ≥ 4C1σ

−1
φ . Let δ ∈ (0, 1) and C9 =

16(C1C4+A2). Then the following inequality holds with probability 1−δ for all t = 1, 2, . . . , T∑t
k=1(k + t1 + 1)(φ(wk)− φ(w∗k))

(t+ t1 + 1)(t+ t1 + 2)σφ
+ ‖wt+1 −w∗t+1‖22 ≤

(t1 + 1)(t1 + 2)‖w1 −w∗1‖22
(t+ t1 + 1)(t+ t1 + 2)

+
4
∑t

k=1(k + t1 + 1)ξk
(t+ t1 + 1)(t+ t1 + 2)σφ

+
2 log2(eT )(2C2

δ/T + C9)

(t+ t1 + 2)σ2
φ

. (C.4)

Proof It follows from (5.2) that

‖wk+1 −w‖22 − ‖w −wk‖22 ≤ 2ηk
〈
w −wk, F̂

′
k(wk; zk)− F̃ ′(wk; zk)〉+

+ 2ηk〈w −wk, F̃
′(wk; zk)−∇f(wk)〉+ 2ηk〈w −wk,∇f(wk)〉+ 2ηk

(
Ω(w)− Ω(wk)

)
− ηkσΩ‖w −wk+1‖22 + 2η2

k

(
C1F̂k(wk; zk) + C1Ω(wk) +A2

)
.

Taking w = w∗k in the above inequality and introducing the sequence of random variables
{ξk}k as

ξk = 〈w∗k −wk, F̃
′(wk; zk)−∇f(wk)〉, k = 1, 2, . . . , (C.5)

we derive

(1+ηkσΩ)‖wk+1−w∗k‖22 ≤ ‖wk−w∗k‖22+2−1ηkσφ‖w∗k−wk‖22+2ηkσ
−1
φ

∥∥F̂ ′k(wk, zk)−F̃ ′(wk; zk)
∥∥2

2

+2ηkξk+2−1ηk[φ(w∗k)−φ(wk)]−3ηkσφ‖wk−w∗k‖22/2+2η2
k

(
C1F̂k(wk; zk)+C1Ω(wk)+A2

)
,

where we have used Schwartz’s inequality

2
〈
w∗k −wk, F̂

′
k(wk; zk)− F̃ ′(wk; zk)〉 ≤

σφ
2
‖w∗k −wk‖22 +

2

σφ

∥∥F̂ ′k(wk; zk)− F̃ ′(wk; zk)
∥∥2

2

and the following inequality due to Assumption 2

2〈w∗k −wk,∇f(wk)〉+ 2
(
Ω(w∗k)− Ω(wk)

)
≤
(1

2
+

3

2

)(
φ(w∗k)− φ(wk)

)
≤ 1

2

(
φ(w∗k)− φ(wk)

)
− 3

2
σφ‖w∗k −wk‖22.
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It then follows from ‖wk+1 −w∗k+1‖2 ≤ ‖wk+1 −w∗k‖2 that

ηk(φ(wk)− φ(w∗k))

2(1 + ηkσΩ)
+ ‖wk+1 −w∗k+1‖2 ≤

1− ηkσφ
1 + ηkσΩ

‖wk −w∗k‖22+

2ηk‖F̂ ′k(wk; zk)− F̃ ′(wk; zk)‖22
(1 + ηkσΩ)σφ

+
2ηkξk

1 + ηkσΩ
+

2η2
k

(
C1F̂k(wk; zk) + C1Ω(wk) +A2

)
1 + ηkσΩ

. (C.6)

According to the step size choice ηk = 2
σφk+2σf+σφt1

and σφ = σf + σΩ we know

1− σφηk
1 + σΩηk

≤
1− σfηk
1 + σΩηk

=
k + t1

k + t1 + 2
and

ηk
1 + σΩηk

=
2

σφ(k + t1 + 2)
.

According to Lemma 20, we derive the following inequality with probability at least 1 − δ
simultaneously for all k = 1, . . . , T∥∥F̃ ′(wk; zk)− F̂ ′k(wk; zk)

∥∥
2
≤ Cδ/T

√
log(eT )/

√
k.

Plugging the above two inequalities back into (C.6), we get the following inequality with
probability 1− δ for all k = 1, . . . , T

φ(wk)− φ(w∗k)

σφ(k + t1 + 2)
+ ‖wk+1 −w∗k+1‖22 ≤

(k + t1)‖wk −w∗k‖22
k + t1 + 2

+

4C2
δ/T log(eT )

σ2
φk(k + t1 + 2)

+
4ξk

σφ(k + t1 + 2)
+

4ηk
(
C1F̂k(wk; zk) + C1Ω(wk) +A2

)
σφ(k + t1 + 2)

.

Multiplying both sides with (k + t1 + 2)(k + t1 + 1) implies the following inequality with
probability 1− δ for all k = 1, . . . , T

(k + t1 + 1)(φ(wk)− φ(w∗k))

σφ
+ (k + t1 + 1)(k + t1 + 2)‖wk+1 −w∗k+1‖22

≤ (k + t1)(k + t1 + 1)‖wk −w∗k‖22 +
4C2

δ/T log(eT )(k + t1 + 1)

σ2
φk

+
4(k + t1 + 1)ξk

σφ

+
4ηk(k + t1 + 1)

(
C1F̂k(wk; zk) + C1Ω(wk) +A2

)
σφ

.

Taking a summation of the above inequality from k = 1 to t shows the following inequality
with probability 1− δ for all t = 1, . . . , T

σ−1
φ

t∑
k=1

(k + t1 + 1)(φ(wk)− φ(w∗k)) + (t+ t1 + 1)(t+ t1 + 2)‖wt+1 −w∗t+1‖22

≤ (t1 + 1)(t1 + 2)‖w1 −w∗1‖22 +
4C2

δ/T log(eT )

σ2
φ

t∑
k=1

k + t1 + 1

k

+ 4σ−1
φ

t∑
k=1

(k + t1 + 1)ξk + 16σ−2
φ

t∑
k=1

(
C1F̂k(wk; zk) + C1Ω(wk) +A2

)
, (C.7)
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where we have used ηk ≤ 4/((k+ t1 + 1)σφ). Since t1 ≥ 4C1σ
−1
φ we know ηt ≤ (2C1)−1 and

therefore Corollary 13 holds. According to (C.2) and η−1
t ≤ 2−1σφ(t+ t1 + 2), we know

( t∑
k=1

ηk
)
η−1
t ≤

(
2σ−1

φ log(et)
)(

2−1σφ(t+ t1 + 2)
)

= (t+ t1 + 2) log(et).

This together with (5.5) implies that

t∑
k=1

(
C1F̂k(wk; zk) + C1Ω(wk) +A2

)
≤ (C1C4 +A2)t+ C1C4

( t∑
k=1

ηk
)
η−1
t ≤ (C1C4 +A2) log(eT )(2t+ t1 + 2).

Plugging the above inequality into (C.7) and using
∑t

k=1 k
−1 ≤ log(eT ) give the following

inequality with probability 1− δ

σ−1
φ

t∑
k=1

(k + t1 + 1)(φ(wk)− φ(w∗k)) + (t+ t1 + 1)(t+ t1 + 2)‖wt+1 −w∗t+1‖22

≤ (t1 + 1)(t1 + 2)‖w1 −w∗1‖22 +
4C2

δ/T log(eT )

σ2
φ

(
t+ (t1 + 1) log(eT )

)
+ 4σ−1

φ

t∑
k=1

(k + t1 + 1)ξk + C9σ
−2
φ log(eT )(2t+ t1 + 2).

We can get the stated bound by dividing both sides by (t + t1 + 1)(t + t1 + 2) and noting
that

4C2
δ/T log(eT )

(
t+(t1+1) log(eT )

)
+C9 log(eT )(2t+t1+2) ≤ 2(t+t1+1) log2(eT )

(
2C2

δ/T+C9

)
.

The proof is complete.

To tackle the martingale difference sequence {ξk}k in (C.4), we need to control the
magnitudes and variances which are established in the following lemma.

Lemma 22 Let Assumption 1 and Assumption 2 hold. Let {wt}t be the sequence produced
by (2.11) with ηt = 2

σφt+2σf+σφt1
, where t1 ≥ 4C1σ

−1
φ . Let {ξk}tk=1 be defined by (C.5).

Then for all k ≤ T we have

|ξk| ≤ C10 log(eT ) and Ezk
[(
ξk − Ezk [ξk]

)2] ≤ C1φ(wk)‖w∗k −wk‖22,

where C10 = 34κ2C4σ
−1
φ + 2κ‖w∗1‖2 + (8κ‖w∗1‖2 + 1)2.
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Proof It follows from the inequality ‖wk −w∗k‖2 ≤ ‖wk −w∗1‖2 and (5.30) that

〈w∗k −wk, F̃
′(wk; zk)−∇f(wk)〉 ≤ ‖w∗1 −wk‖2

(
‖F̃ ′(wk; zk)‖2 + ‖∇f(wk)‖2

)
≤ 2
(
‖w∗1‖2 + ‖wk‖2

)(
8κ2‖wk‖2 + κ

)
= 16κ2‖wk‖22 + 2κ‖w∗1‖2 + 2‖wk‖2(8κ2‖w∗1‖2 + κ)

≤ 17κ2‖wk‖22 + 2κ‖w∗1‖2 + (8κ‖w∗1‖2 + 1)2

≤ 34κ2C4σ
−1
φ log(ek) + 2κ‖w∗1‖2 + (8κ‖w∗1‖2 + 1)2 ≤ C10 log(eT ),

where we have used (C.3).
It is clear from Proposition 1 that Ezk [ξk] = 0 and therefore it follows from E[(ξ −

E[ξ])2] ≤ E[ξ2] for any real-valued random variables ξ that

Ezk
[(
ξk − Ezk [ξk]

)2]
= Ezk [ξ2

k] ≤ Ezk
[
〈w∗k −wk, F̃

′(wk; zk)〉2
]

≤ ‖w∗k −wk‖22Ezk [‖F̃ ′(wk; zk)‖22] ≤ ‖w∗k −wk‖22C1f(wk)

≤ C1φ(wk)‖wk −w∗k‖22.

where we have used Ezk [‖F̃ ′(wk; zk)‖22] ≤ C1Ezk [F̃ (wk; zk)] = C1f(wk) which can be shown
analogously to the proof of Lemma 11. The proof is complete.

We are now ready to prove Theorem 7. Our key idea is to apply Part (b) of Lemma
19 in the Appendix to show that

∑t
k=1(k + t1 + 1)ξk can be controlled by

∑t
k=1

(
φ(wk)−

φ(w∗k)
)
(k + t1 + 1), which can be offset by the first term of (C.4). Then we can apply the

induction strategy to derive the stated bound.
Proof of Theorem 7 Since t1 ≥ 32C1σ

−1
φ log 2T

δ and T ≥ 2, we know t1 ≥ 4C1σ
−1
φ

and therefore Lemmas 20, 21, 22 hold. According to Lemma 21, there exists a set Ω
(1)
T =

{(z1, . . . , zT )} with Pr(Ω
(1)
T ) ≥ 1− δ/2 such that for all (z1, . . . , zT ) ∈ Ω

(1)
T we have∑t

k=1(k + t1 + 1)(φ(wk)− φ(w∗k))

(t+ t1 + 1)(t+ t1 + 2)σφ
+ ‖wt+1 −w∗t+1‖22 ≤

(t1 + 1)(t1 + 2)‖w∗1‖22
(t+ t1 + 1)(t+ t1 + 2)

+

+
4
∑t

k=1(k + t1 + 1)ξk
(t+ t1 + 1)(t+ t1 + 2)σφ

+
2 log2(eT )(2C2

δ/(2T ) + C9)

(t+ t1 + 2)σ2
φ

. (C.8)

According to Lemma 22, we know the following inequalities for k = 1, . . . , t

|(k + t1 + 1)ξk| ≤ C10(t+ t1 + 1) log(eT )

Ezk
[(

(k + t1 + 1)ξk − Ezk [(k + t1 + 1)ξk]
)2] ≤ (k + t1 + 1)2C1φ(wk)‖w∗k −wk‖22.

Let ρ ∈ (0, 1] to be fixed later. It then follows from Part (b) of Lemma 19 the following
inequality with probability 1− δ/(2T )

t∑
k=1

(k+t1+1)ξk ≤
C1ρ

∑t
k=1 φ(wk)(k + t1 + 1)2‖w∗k −wk‖22
C10(t+ t1 + 1) log(eT )

+
C10(t+ t1 + 1) log(eT ) log 2T

δ

ρ
.

(C.9)
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By the union bounds of probability, we know the existence of Ω
(2)
T = {(z1, . . . , zT )} with

probability Pr(Ω
(2)
T ) ≥ 1 − δ/2 such that (C.9) holds under the event Ω

(2)
T simultaneously

for all t = 1, . . . , T . In the remainder of the proof, we always assume that Ω
(1)
T ∩Ω

(2)
T holds

(with probability 1 − δ), and show by induction that ‖wt̃+1 −w∗
t̃+1
‖22 ≤ CT,δ/(t̃ + t1 + 2)

for all t̃ = 0, 1, . . . , T − 1 conditioned on Ω
(1)
T ∩ Ω

(2)
T , where we introduce

CT,δ = max
{

2(t1 + 1)‖w∗1‖22 +
3t1φ(w∗)

2σφ
+

4 log2(eT )(2C2
δ/(2T ) + C9)

σ2
φ

,
C10t1 log(eT )

4C1

}

and ρ = C10t1 log(eT )
4C1CT,δ

. It is clear that ρ ≤ 1. The case with t̃ = 0 is clear from the definition

of CT,δ. We now show ‖wt+1−w∗t+1‖22 ≤ CT,δ/(t+ t1 + 2) under the induction assumption

‖wt̃+1 −w∗
t̃+1
‖22 ≤ CT,δ/(t̃+ t1 + 2) (C.10)

for t̃ = 0, 1, . . . , t− 1.

Plugging the induction assumption (C.10) into (C.9) gives (φ(w∗k) is the same for all k)

t∑
k=1

(k + t1 + 1)ξk ≤
C1ρCT,δ

∑t
k=1 φ(wk)(k + t1 + 1)

C10(t+ t1 + 1) log(eT )
+
C10(t+ t1 + 1) log(eT ) log 2T

δ

ρ

≤
t1
∑t

k=1

(
φ(wk)− φ(w∗k)

)
(k+t1+1)

4(t+t1+1)
+
t1φ(w∗k)

∑t
k=1(k+t1+1)

4(t+t1+1)
+

4C1(t+t1+1)CT,δ log 2T
δ

t1

≤
t1
∑t

k=1

(
φ(wk)− φ(w∗k)

)
(k + t1 + 1)

4(t+ t1 + 1)
+

3t1φ(w∗k)(t+ t1 + 1)

16
+

4C1(t+ t1 + 1)CT,δ log 2T
δ

t1
,

where the second inequality is due to the definition of ρ and the last inequality is due to∑t
k=1(k + t1 + 1) ≤ 3(t+t1+1)2

4 .

Plugging the above inequality back into (C.8) yields the following inequality

(
1− t1

t+ t1 + 1

)∑t
k=1(k + t1 + 1)(φ(wk)− φ(w∗k))

(t+ t1 + 1)(t+ t1 + 2)σφ
+ ‖wt+1 −w∗t+1‖22

≤ (t1 + 1)‖w∗1‖22
t+ t1 + 2

+
3t1φ(w∗)

4σφ(t+ t1 + 2)
+

16C1CT,δ log 2T
δ

t1(t+ t1 + 2)σφ
+

2 log2(eT )(2C2
δ/2T + C9)

(t+ t1 + 2)σ2
φ

≤ (t1 + 1)‖w∗1‖22
t+ t1 + 2

+
3t1φ(w∗)

4σφ(t+ t1 + 2)
+

CT,δ
2(t+ t1 + 2)

+
2 log2(eT )(2C2

δ/2T + C9)

(t+ t1 + 2)σ2
φ

, (C.11)

where the last inequality is due to t1 ≥ 32C1σ
−1
φ log 2T

δ . By the definition of CT,δ, it is clear

that the right-hand side of (C.11) is less than or equal to
CT,δ
t+t1+2 . Therefore, we finish the

induction process and show (C.10) for t̃ = t.
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We now prove the second inequality of (3.5). It follows from the convexity of φ and
(C.11) that

φ(w̄
(2)
t )− φ(w∗1) ≤

( t∑
k=1

(k + t1 + 1)
)−1( t∑

k=1

(k + t1 + 1)
(
φ(wk)− φ(w∗)

))
≤

2σφ(t+ t1 + 1)2

t(t+ 1)(t+ 2t1 + 3)

(
(t1 + 1)‖w∗1‖22 +

3t1φ(w∗)

4σφ
+
CT,δ

2
+

2 log2(eT )(2C2
δ/2T + C9)

σ2
φ

)
.

The second inequality of (3.5) then follows. The proof is complete.
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