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Abstract
Let p be a prime. In this paper we investigate finite K{2,p}-groups G which have a subgroup

H ≤ G such that K ≤ H = NG(K) ≤ Aut(K) for K a simple group of Lie type in characteristic

p, and |G : H| is coprime to p. If G is of local characteristic p, then G is called almost of Lie

type in characteristic p. Here G is of local characteristic p means that p divides |G| and for all
non-trivial p-subgroups P of G, and Q the largest normal p-subgroup in NG(P ) we have the

containment CG(Q) ≤ Q. We determine details of the structure of groups which are almost of
Lie type in characteristic p. In particular, in the case that the rank of K is at least 3 we prove

that G = H. If H has rank 2 and K is not PSL3(p) we determine all the examples where G 6= H.

We further investigate the situation above in which G is of parabolic characteristic p. This is a
weaker assumption than local characteristic p. In this case, especially when p ∈ {2, 3}, many more

examples appear.

In the appendices we compile a catalogue of results about the simple groups with proofs. These
result may be of independent interest.

1. Introduction

The classification theorem of the finite simple groups asserts that a
non-abelian finite simple group is one of an alternating group, a group
of Lie type defined over a finite field of characteristic p or one of the
26 sporadic simple groups. A description and many properties of these
simple groups and, in particular, a definition of groups of Lie type is
provided in the appendices. The statement suggests that a “generic”
finite simple group is a group of Lie type defined over a finite field of
characteristic p where p is a prime. It is therefore useful and interesting
to prove theorems which characterize just these groups. This is an
objective of this memoir.

A property of a finite simple group that suggests G could be a group
of Lie type in characteristic p, originates from a signature property of
such groups: if X is a group of Lie type in characteristic p, then, for
any non-trivial p-subgroup P of X,

CX(Op(NX(P ))) ≤ Op(NX(P ))

where, for a group L, Op(L) denotes the maximal normal p-subgroup of
L. This follows from the Borel–Tits Theorem [27, Theorem 3.1.3] and
is the property that we shall impose on an arbitrary group G. Thus we
say that G has local characteristic p provided p divides |G| and for all
non-trivial p-subgroups P of G,

CG(Op(NG(P ))) ≤ Op(NG(P )).

Definition. A finite group G is almost a group of Lie type in char-
acteristic p if and only if G is of local characteristic p, G has a subgroup
H containing a Sylow p-subgroup of G such that H = NG(F ∗(H)) and
F ∗(H) is a simple group of Lie type in characteristic p and of rank at
least two.
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Recall that for a group L, F ∗(L) is the generalized Fitting subgroup
of L and K = F ∗(L), is a non-abelian simple group if and only if
K ≤ L ≤ Aut(K) (see [2, Chapter 11]).

Thus an almost group of Lie type G in characteristic p shares one
of the significant properties of groups of Lie type and approximates a
group of Lie type as it contains a group of Lie type defined in character-
istic p which is close to being G in that it contains a Sylow p-subgroup
of G. Main Theorem 2 determines all groups that are almost groups of
Lie type under an additional assumption. It is remarkable that most
groups that are almost of Lie type are indeed groups of Lie type. In fact
if F ∗(H) 6∼= PSL3(p) and p > 5, then every group which is almost of
Lie type is a group of Lie type defined in characteristic p. Furthermore,
if G is almost a group of Lie type which is not a group of Lie type,
then H turns out to be a maximal subgroup of G a fact which is not
assumed in the definition.

In research that aims to identify the groups of Lie type, at a certain
stage a subgroup which is a group of Lie type will be constructed.
The aim is then to show that the subgroup is the whole group. This
is precisely the point at which our theorems should be applied. The
potential for our theorems to be applied to problems which aim to
classify simple groups is the reason why we prove our theorems in
an environment where they can be applied to a group which is not a
a known simple group. This means that our theorems are applicable
to all the programmes which aim to improve the classification of the
finite simple groups. One such project [47] aims to understand the
groups of local characteristic p via “unipotent” methods and our work is
directly applicable in this case. For more on this see [47, Introduction].
In addition, especially, when p = 2 our theorems have the potential
for application in the on-going programme of Gorenstein, Lyons and
Solomon volumes to reclassify the simple groups [25]. With an eye
to future developments and perhaps applications in instances where a
large part of the classification has been proved by invoking an approach
that comes from fusion systems [4], we are also interested in a less
restrictive property requires that this containment holds for all non-
trivial p-subgroups normal in some Sylow p-subgroup of G and in this
case we say that G has parabolic characteristic p. For this we prove our
Main Theorem 1 which just assumes G has parabolic characteristic p.
There are many more groups in this case.

To state our main theorems we need further notation. A p-local
subgroup of X, is by definition NX(P ) for some non-trivial p-subgroup
P of X. The proof of the classification of simple groups assumes induc-
tively that G is a simple group of minimal order subject to not being
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included in the list of known finite simple groups as listed above. This
means that if K is a proper subgroup of G, then all its composition
factors are known simple groups. The subgroup K is called a K-group
and G is called K-proper. For a set of prime numbers π, we say that
G is a Kπ-group if for all r ∈ π, all subgroups of G which normalize
a non-trivial r-subgroup are K-groups. Note that our notion of a Kp-
group is stronger than that in [47] where only p-local subgroups are
assumed to be K-groups.

Main Theorem 1. Suppose that p is a prime, G is a finite K{2,p}-
group of parabolic characteristic p, and H is a subgroup of G of index
coprime to p. Assume that H = NG(F ∗(H)) and F ∗(H) is a simple
group of Lie type in characteristic p and of rank at least two.

If there exists a p-local subgroup of G which contains a Sylow p-
subgroup of H and is not contained in H, then either

(i) p = 2 and (F ∗(G), F ∗(H)) = (Mat(11), Sp4(2)′),
(PSL4(3), SU4(2)), (G2(3),G2(2)′), (Mat(23),PSL3(4)),
(Alt(10), SL4(2)) or (PΩ+

8 (3),Ω+
8 (2));

(ii) p = 3 and (F ∗(G), F ∗(H)) = (F4(2),PSL4(3)),
(PSU6(2),PSU4(3)), (McL,PSU4(3)), (Co2,PSU4(3)),
(2E6(2),PΩ7(3)), (M(22),PΩ7(3)), (M(23),PΩ+

8 (3)) or
(F2,PΩ+

8 (3));
(iii) p = 5 and (G,F ∗(H)) = (LyS,G2(5)); or
(iv) p ∈ {3, 5, 7, 13} and F ∗(H) ∼= PSL3(p).

If we impose the stronger restriction that G has local characteristic
p, then we obtain the following almost complete description of the
groups which are almost groups of Lie type.

Main Theorem 2. Suppose that p is a prime, G is a finite K{2,p}-
group which is almost a group of Lie type in characteristic p.

If G 6= H, then one of the following holds:

(i) p = 2 and (G,F ∗(H)) = (Mat(11), Sp4(2)′),
(Mat(23),PSL3(4)), (G2(3),G2(2)′);

(ii) p = 3 and F ∗(H) = PSU4(3) and G = McL or Aut(McL);
(iii) p = 5 and F ∗(H) = G2(5) and G = LyS; or
(iv) p is odd and F ∗(H) ∼= PSL3(p).

We draw the following immediate corollary to Main Theorem 2.

Corollary. Suppose that p is a prime, G is a finite K{2,p}-group
which is almost a group of Lie type in characteristic p and that F ∗(H)
has rank at least 3. Then G = H.
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The proof of Main Theorem 2 relies on the following theorem which
also requires that G has local characteristic p.

Theorem 1. Suppose that p is a prime, G is a finite group which is
almost a group of Lie type. If all p-local subgroups of G which contain
a Sylow p-subgroup of H are contained in H, then

(i) either G = H or one of the following holds:
(ia) H is strongly p-embedded in G;
(ib) p = 5, F ∗(H) ∼= PSp4(5);
(ic) p = 7, F ∗(H) ∼= G2(7); or
(id) p = 3 and F ∗(H) ∼= PSL3(3) or p = 7 and F ∗(H) ∼=

PSL3(7).
(ii) If G is a K2-group, then either (ia) or (id) holds.

(iii) If G is a K{2,p}-group, then G = H or p is odd and F ∗(H) ∼=
PSL3(p).

Recall that for a prime r, a subgroup Y of a group X is strongly r-
embedded in X if and only if Y has order divisible by r and Y ∩Y x has
order coprime to r for all x ∈ X \ Y . Strongly 2-embedded subgroups
are often referred to a strongly embedded subgroups.

The statement of Theorem 1 reveals our strategy for its proof and
is formulated to show exactly which type of K-group hypothesis is re-
quired at each step. Assuming that G 6= H, the main theorem from
[66] can be applied so long as H has rank at least 3 or p = 2. Their
theorem, which relies on the work of Bundy, Hebbinghaus and Stell-
macher [15], does not require any K-group assumption. Our proof of
Theorem 2 extends the work of [66] to the case when the Lie rank is 2
and p is odd and is inspired by the work in the aforementioned paper.
The anomalies listed as (ib) and (ic) are caused by the existence of cer-
tain exotic fusion systems [62]. This means that these cases cannot be
eliminated using p-local methods alone. Thus we consider centralizers
of involutions in these cases, and so we require a K2-group assumption
to recognize composition facts in the centralizers of involutions. This
leads to the elimination of (ib) and (ic) and thus proves (ii). Finally
(iii) is obtained as an application of [9] and [56, 57]. The configuration
when F ∗(H) ∼= PSL3(p) and H is strongly p-embedded in G in Theo-
rem 1 cannot be handled as we have no proof that this group cannot
be strongly p-embedded. New ideas are needed to make progress with
this problem.

In Main Theorem 1 (iv) where we have p ∈ {3, 5, 7, 13} and F ∗(H) ∼=
PSL3(p), the embedding of PSL3(3) into 2F4(2)′ and PSL3(7) into O’N
shows that the latter two groups are almost groups of Lie type. The
configurations with p = 5 and 13 appear not to exist, however, in F3
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and F1 there are fusion systems which carry all the p-local structure we
can glean from H, but there is no subgroup PSL3(5) in F3 or PSL3(13)
in F1. Using the classification theorem, we know there are no groups
which are almost groups of Lie type with these latter structures. We
also remark that the exceptions in Main Theorem 1 (iv) also appear in
[53] and in the work on fusion systems by Ruiz and Viruel [65].

We would ideally like to weaken the requirement that G has local
characteristic p to G has parabolic characteristic p in the definition
of a group which is almost a group of Lie type however, in this case,
to achieve a classification we would need a variant of Theorem 1 for
groups of parabolic characteristic p. At the moment we do not see how
to do this and so this is an open avenue for future research.

To discuss our approach to the proof of Main Theorem 1 we intro-
duce our main hypothesis.

Main Hypothesis 1. We have p is a prime, G is a finite group,
S0 ∈ Sylp(G), H ≥ S0 is a subgroup of G such that F ∗(H) is a simple
group of Lie type in characteristic p and of rank at least two and H =
NG(F ∗(H)). We set S = S0 ∩ F ∗(H).

To prove Main Theorem 1 we may assume that some p-local sub-
group which contains S is not contained in H. We recall that a non-
trivial element of a groupX is p-central inX if and only if its centralizer
in X contains a Sylow p-subgroup of X. We first consider the possibil-
ity that the p-local subgroup NG(Op(CH(t))) is not contained in H for
some p-central element t of order p in H. We divide this case into two
different projects. We consider first the case when CH(z) is not soluble
for all non-trivial z ∈ Z(S0) as this is the situation we are most likely
to encounter. We prove

Theorem 2. Suppose that Main Hypothesis 1 holds with G a Kp-
group of parabolic characteristic p. Assume NG(Op(CG(z))) 6≤ H for
some non-trivial z ∈ Z(S0) and that all p-central elements of H have
non-soluble centralizers in H. Then p = 5 and H ∼= G2(5). Moreover,
if G is a K{2,p}-group, then G ∼= LyS.

When p = 2 and CH(z) is soluble for some non-trivial element z in
Z(S0), then |S0| is rather small. Since |S0| is small, so are the 2-local
subgroups of G and so these can be analysed without the help of a
K2-hypothesis and as usual these small cases spawn a shoal of exotic
examples.

Theorem 3. Suppose that Main Hypothesis 1 holds with G a group
of parabolic characteristic p. Assume NG(Op(CG(z))) 6≤ H for some
non-trivial z ∈ Z(S0) and that some p-central element of H has soluble
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centralizer in H. Moreover, if p is odd, assume that G is a Kp-group.
Then one of the following holds:

(i) p = 2 and (F ∗(G), F ∗(H)) = (Mat(11), Sp4(2)′),
(Mat(23),PSL3(4)), (G2(3),G2(2)′) or (PΩ+

8 (3),Ω+
8 (2));

(ii) p = 3 and (F ∗(G), F ∗(H)) = (F4(2),PSL4(3)),
(PSU6(2),PSU4(3)), (McL,PSU4(3)), (Co2,PSU4(3)),
(2E6(2),PΩ7(3)), (M(22),PΩ7(3)), (M(23),PΩ+

8 (3)) or
(F2,PΩ+

8 (3)); or
(iii) p ∈ {3, 5, 7, 13} and F ∗(H) ∼= PSL3(p).

Having proved Theorem 2 and 3 we consider the possibility that
some other p-local subgroup of G containing S0 is not contained in H.

Theorem 4. Suppose that Main Hypothesis 1 holds with G a Kp-
group and that for all p-central elements z in H,

CG(z) ≤ NG(Op(CF ∗(H)(z))) ≤ H.

If there exists a p-local of G containing S0 and not contained in H,
then either

(i) p = 2 and (F ∗(G), F ∗(H)) = (PSL4(3), SU4(2)) or
(Alt(10), SL4(2)); or

(ii) p = 3 and F ∗(H) ∼= PSL3(3) or p = 7 and F ∗(H) ∼= PSL3(7).

We note that the condition CG(z) ≤ H for all z ∈ Z(S0)# implies
that G is of parabolic characteristic p (see Lemma 2.1 (iii)). Combining
Theorems 2, 3 and 4 yields Main Theorem 1.

We now discuss the proofs of Theorems 2, 3 and 4 in some detail.
For the convenience of the reader, the recognition results required to
identify the groups appearing in these theorems are collected together
in Section 3 and results about strongly p-embedded subgroups are col-
lated in Section 4. The real proof commences in Section 5

Suppose thatG has parabolic characteristic p andNG(Op(CG(z))) 6≤
H. A common feature of the groups of Lie type X other than Sp2n(2e),
F4(2e) and G2(3e) is that for T ∈ Sylp(X) the subgroup embedding of
Q = Op(NX(Z(T ))) into X satisfies

(L1) Q = Op(NX(Q)) ≥ CX(Q); and
(L2) NX(U) ≤ NX(Q) for all 1 6= U ≤ CX(Q).

In [47] groups which fulfill this property are called large in X. Fur-
thermore, when X 6∼= 2F4(22e+1), Q is a special group and has some
additional nice properties (see Lemma D.16). We prove the main the-
orems for the case when F ∗(H) is one of PSL3(pe), PSp2n(2e)′, F4(2e),
2F4(22e+1)′ and G2(3e) using various different arguments depending
upon the group encountered. In Sections 10, 11, 12, and 13 we consider
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the candidates PSL3(2e), PSp2n(2e)′, F4(2e), 2F4(22e+1)′ for F ∗(H). In
particular in Proposition 13.8 we prove:

Let G be a K2-group of parabolic characteristic 2. If H ≤ G, F ∗(H) ∼=
2F4(22e+1)′, F4(2e), Sp2n(2e), n ≥ 3, Sp4(2e), e > 1 or PSL3(2e), e 6= 2,
H = NG(F ∗(H)), |G : H| odd, then G = H.

The groups Mat(11) and Mat(23) are almost groups of Lie type with
F ∗(H) ∼= Sp4(2)′ and PSL3(4) respectively. The first one is identified
using Lemma 3.11. To identify Mat(23) we provide rank 3 amalgam
characterisations first of Mat(22) in Lemma 3.1 and then of Mat(23)
in Lemma 3.2. The identification of G with H in Proposition 13.8 is
achieved by employing a result due to D. Holt, Lemma 4.4.

In Section 9, very detailed calculations for F ∗(H) ∼= PSL3(pe), p
odd, yield the exceptional fusion systems mentioned earlier and other-
wise show that H is strongly p-embedded in G. Section 15 considers the
cases with F ∗(H) ∼= G2(3e) and shows that H is strongly 3-embedded
in G. This then leads to a contradiction via Proposition 4.6.

Once the above candidates for F ∗(H) are handled, we may assume
that Op(CH(z)) is large in H. In Section 7 and specifically in Lemma
7.2 we demonstrate that Q = Op(CH(z)) is large in G. We then prove
Theorem 2 and Theorem 3 separately.

Suppose first that NG(Q) is not soluble. This case has been investi-
gated by A. Seidel [67] when p is odd and by G. Pientka [64] when p = 2
in their Ph.D. theses under the assumption that the Lie rank of H is
at least 3. We first intend to determine the structure of NG(Q)/Q. The
main tool for this is provided in Section 5 which might be of interest
for other avenues of research.

In Section 5, we consider a vector space V over GF(p) and sub-
groups L ≤ M ≤ GL(V ) with the property that CM(L) is a p′-group
and Sylp(L) ⊆ Sylp(M). We say that L is Sylow embedded in M , see
Definition 5.1. Our objective is to find all the cases where L is not
normal in M . We call L Sylow maximal in GL(V ) if L is normal in ev-
ery candidate for M . In Section 5 we consider Sylow embeddings with
V = Q/Z(Q) and L = Op′(NH(Q)/Q). The structure of Op′(NH(Q)/Q)
and V is described in Lemma D.1. In this section we assume that all
groups are K-groups and this is one of the reasons why in our theo-
rems we need the stronger version of the Kp-property as the results in
Section 5 sometimes require results about possible over-groups of L in
GL(V ) and this often needs the classification of all maximal subgroups
of GL(V ) (see for example [14, 37], which require the classification of
the finite simple groups). The work in this section also needs almost
all the results about representations that we provided in Appendix C.
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The motivation for this Section 5 comes from the hypothesis in Theo-
rem 2 that NG(Q) > NH(Q) ≥ S0. This means L = Op′(NH(Q)/Q) is
Sylow embedded in NG(Q)/Q acting on Q/Z(Q) and we would like to
show that L is Sylow maximal for then NG(Q) can usually be shown
to normalize F ∗(H) and this yields the contradiction NG(Q) ≤ H.

In Section 8 we apply the Proposition 5.3, Lemmas 5.12, 5.14 and
Proposition 5.15 from Section 5 to find that the hypothesis NG(Q) >
NH(Q) is fulfilled only when F ∗(H) ∼= G2(5). The final identification
of G with LyS can only be made with an additional K2-hypothesis.
With this, we consider the subgroup G0 = 〈NG(Q), H〉 and Lemma
3.10 implies that G0

∼= LyS. After this a short argument shows that
either G = G0 or G0 is strongly 5-embedded in G and [56] provides
the result.

When CH(z) is soluble, it turns out that F ∗(H) is defined over
GF(2) or GF(3) and Q is extraspecial of order at most 39 see Lemma
D.15. The proof of the Theorem 3 starts in Section 14, where we treat
p = 2, while Section 16 and Section 17 handle the case p = 3, here
PΩ+

8 (3) ∼= F ∗(H) needs special treatment. When p = 2 as the outer
automorphism group of Q is an orthogonal group of the appropriate
type and, when p is odd, as Q has exponent p, then it is a general
symplectic group [79, Theorem 1]. The fact that Q has small order
means that when p = 2 we can complete calculations without knowing
the possibilities simple sections. Hence in this case we do not impose a
K2 hypothesis. When p = 3, it is useful to use the maximal subgroups
of Sp6(3) and Sp8(3) and so we have a K3 assumption exactly as in
Section 5.

Once NG(Q) is determined we use characterization theorems to
identify the groups from either 2-local or 3-local information. We have
included the theorems in Section 3. As an illustrative example, consider
the possibility that H ∼= PSL4(3) or PSU4(3). In this case we show that
Q is an extraspecial group of order 35 and then, using the subgroup
structure of Out(Q) ∼= GSp4(3), we show that NG(Q)/Q has restricted
structure. We then further investigate the 3-local structure of G until
we have sufficient information to apply the appropriate recognition
results Lemmas 3.5 and 3.4, 3.3. This completes our discussion of the
proofs of Theorem 2 and Theorem 3.

We now discuss the proof of Theorem 4. If p = 2 and NH(Q) is
soluble, then in Section 14 we show that F ∗(G) is either PSL4(3) or
Alt(10) with F ∗(H) either PSU4(2) or SL4(2) respectively. The identi-
fication of G uses Lemmas 3.13 and 3.14 which recognizes G from its
Sylow 2-subgroup. After this, our aim is to show that the hypothesis
in Theorem 4 leads to a contradiction. In Section 19, we let M be a
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p-local subgroup of G containing S0 with M 6≤ H. We still have that
Q = Op(CG(z)) is large in G and we assume that NG(Q) ≤ H. Our
plan is to select a subgroup P of M containing S such that

- Op(P ) 6= 1;
- H ∩ P contains a Sylow p-subgroup S of F ∗(H) with Q ≤ S;
- P 6≤ H;
- P is minimal with respect to the first three conditions.

Using the action of P on a subgroup Y of Ω1(Z(Op(P ))), we show
that Y is a dual F -module or a dual 2F -module (see Definition C.18)
with offender Q/CQ(Y ). Applying results from Appendix C restricts
the structure of P/Op(P ) and also of Y . Here again, because P need
not to be a p-local subgroup of G, we have to use the stronger Kp-
group assumption. A detailed analysis of the pair (P, Y ) eventually
shows that P/Op(P ) and Y can be identified with the same factors
of a minimal parabolic subgroup of H and then using the fact that
CG(z) ≤ NG(Q) ≤ H, for z a p-central element in H, we obtain P ≤ H
which is a contradiction.

Naturally, the proof of our theorems need explicit details about the
finite simple groups that we come across. We have collected these re-
sults in a series of appendices. Some of these results are well-known
and are included for the convenience of the readers and others, though
possibly familiar, are presented with proofs as we could find no refer-
ence.

In Appendix A we present some properties of groups of Lie type
and establish our main notation for these groups. In particular, root
subgroups are introduced and the automorphism groups of groups of
Lie type are presented.

In Appendix B we establish various facts about alternating groups
that we require. For example, we determine which alternating groups
have the Sylow 2- or 3-subgroup contained in a unique maximal sub-
group.

In Appendix C we focus on small GF(p)-representations of simple
groups. For example, theorems about quadratic modules, F -modules
and 2F -modules are presented. This appendix also contains cross char-
acteristic information such as the Landazuri–Seitz–Zalesskii Theorem
giving lower bounds for the dimensions of cross characteristic projec-
tive representations of groups of Lie type. These results are applied
throughout the proof of our main theorems and are particularly heav-
ily used in Section 5.
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In Appendix D we study the parabolic subgroups of the groups
of Lie type giving explicit descriptions of the normalizers of root sub-
groups. In Lemmas D.22 and D.23 we investigate a minimal parabolic
subgroup which does not normalize a root group. This is the parabolic
subgroup that we mentioned above which resembles the subgroup P
constructed in Section 19.

Appendix E contains an assortment of different results which do
not have a natural home anywhere else in the paper.

We almost always reference [27] for our facts about simple groups.
We typically use classical notation for the groups of Lie type which have
an alternative classical name. The dihedral group of order n is denoted
by Dih(n). We denote the Mathieu groups of degree m by Mat(m),
and the alternating and symmetric groups of degree n are written as
Alt(n) and Sym(n) respectively. The remainder of our notation for the
sporadic simple groups is compatible with [27, Table 5.3].

If X is a classical group, then we will call the associated module
when considered as a module over the prime field, a natural module for
X. We also extend this terminology to the 6-dimensional module for
G2(2e) and the 7-dimensional module for G2(pe) when p is odd. The
natural modules for the symmetric and alternating groups, Sym(n) and
Alt(n), are defined to be the non-trivial section of the standard permu-
tation module of dimension n defined over GF(p). More information
about naming modules can be found in [47, Appendix A2].

For an odd prime p and natural number n, the extraspecial group
of exponent p and order p2n+1 is denoted by p1+2n

+ . The extraspecial
2-groups of order 22n+1 are denoted by 21+2n

+ if the maximal elementary
abelian subgroups have order 21+n and otherwise we write 21+2n

− . If X
and Y are groups then X:Y denotes the split extension of X by Y with
normal subgroup X and unspecified non-trivial action of Y on X. If
Z is a group with normal subgroup X and Z/X ∼= Y , then we write
Z ∼ X.Y , in the cases where this extension is known not to split we
write Z ∼ X.Y . This notation allows us to give suggestive descriptions
of groups which indicate the isomorphism type of certain composition
factors. We refer to such descriptions as the shape of a group.

Our group theoretic notation is mostly standard and follows that
in [2] or [22] for example. We assume the reader is familiar with group
actions, including coprime action, the Fitting group, components and
the generalized Fitting subgroup as far as can be found in the texts just
mentioned. However, we list some regularly used terms and notation
which may be less widely used. Suppose that X is a finite group and p
is a prime. The set of non-identity elements of X is designated by X#.
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For a subset Y of X, Y X denotes that set of X-conjugates of Y . One
element sets are often denoted by elements. Thus x often denotes {x}
and so, for example, K{p}-groups are Kp-groups. The subgroup O(X)
is the largest normal subgroup of X of odd order. The number mp(X)
is the maximal k such that X has an elementary abelian subgroup of
order pk. We call mp(X) the p-rank of X. On the other hand, for a
natural number n, np denotes the p-part of n, so for example 453 = 9.
If Y ≤ X and Z ⊆ Y . Then Y controls X-fusion of Z in Y if and only
if whenever Zx ⊆ Y for some x ∈ X, there exists y ∈ Y such that
Zy = Zx. If X and Y are groups and W is a subgroup of Z(X × Y )
which is not contained in either direct factor, then X ◦Y = (X×Y )/W
is a central product of X and Y .

Acknowledgement: We would like to thank Bernd Stellmacher and
the anonymous referee for their comments which have added to the
clarity of some of the arguments and also improved the exposition.

2. Preliminary group theoretical results

Suppose that p is a prime and G is a finite group of order divisible by
p. If Y ≤ G and F ∗(Y ) = Op(Y ), then we say that Y has characteristic
p.

The group G is of local characteristic p if and only if NG(X) has
characteristic p for all non-trivial p-subgroups X of G. Further, G has
parabolic characteristic p if and only if, for all non-trivial p-subgroups
X which are normal in some Sylow p-subgroup of G, NG(X) has char-
acteristic p. For non-trivial p-subgroups X, we often use the equiv-
alence F ∗(NG(X)) = Op(NG(X)) if and only if CG(Op(NG(X))) ≤
Op(NG(X)).

We start this section with some results about groups of local and
parabolic characteristic p.

Lemma 2.1. Let G be a group, S a Sylow p-subgroup of G and
X ≤ S.

(i) Suppose that Y is a normal subgroup of X. If F ∗(NG(Y )) =
Op(NG(Y )), then F ∗(NG(X)) = Op(NG(X)).

(ii) If there is some z ∈ Z(X)# with F ∗(CG(z)) = Op(CG(z)),
then also F ∗(NG(X)) = Op(NG(X)).

(iii) G is of parabolic characteristic if and only if for all 1 6= z ∈
Ω1(Z(S)) we have that F ∗(CG(z)) = Op(CG(z)).

(iv) If F ∗(CG(z)) = Op(CG(z)) for all elements z of order p in S,
then G is of local characteristic p.

11



Proof. (i) Define E = E(NG(X))Op′(NG(X)). Then, as Y ≤ X ≤
Op(NG(X)), [E,X] = 1, EX normalizes Y and so EX acts on R =
Op(NG(Y )). We have CR(X) normalizes and is normalized by E. Hence
[CR(X), E] = [CR(X), E, E] = 1 as R is a p-group. But then E ≤
CG(R) by the A×B-Lemma [2, 24.2]. By assumption we have CG(R) ≤
R. It follows that E = 1 and so F ∗(NG(X)) = Op(NG(X)).

(ii) follows from (i) by setting Y = 〈z〉 and noting that F ∗(NG(X)) =
Op(NG(X)) if and only if F ∗(CG(X)) = Op(CG(X)).

(iii) It is obvious that if G has parabolic characteristic p, then
CG(Op(CG(z))) ≤ Op(CG(z)) for all z ∈ Ω1(Z(S))#. For the converse
direction, we remark that if X is normal in S, then Z(X) ∩ Z(S) 6= 1
and so the assertion comes from (ii).

(iv) follows directly from (ii). �

We present the notion of a large subgroup from the introduction.

Definition 2.2. Suppose that Q is a p-subgroup of G. Then Q is
a large p-subgroup of G if and only if

(L1) F ∗(NG(Q)) = Q; and
(L2) if 1 6= U ≤ G and [U,Q] = 1, then NG(U) ≤ NG(Q).

The basic lemma about large subgroups that we shall use (mostly
without further specific reference) is just below. The statements are
also included in [47, Lemmas 1.52 and 1.55]. Recall that for a group
X and subgroups Z ≤ Y ≤ X, Z is weakly closed in Y with respect to
X if and only if Z is the only X-conjugate of Z contained in Y .

Lemma 2.3. Suppose that Q is a large p-subgroup of G and T is a
non-trivial p-subgroup of G such that NG(T ) ≥ Q.

(i) If Q ≤ T , then NG(T ) ≤ NG(Q).
(ii) NG(Q) contains the normalizer of every Sylow p-subgroup of

G which contains Q.
(iii) Assume that Q ≤ S ∈ Sylp(G). Then Q is weakly closed in S

with respect to G.
(iv) F ∗(NG(T )) = Op(NG(T )).
(v) G has parabolic characteristic p.

Proof. Let S ∈ Sylp(G) with Q ≤ S.
To see (i), we observe that 1 6= Z(T ) and [Z(T ), Q] = 1. Therefore,

property (L2) yields NG(T ) ≤ NG(Z(T )) ≤ NG(Q).
Taking S = T , (ii) follows from (i).
For (iii) suppose that x ∈ G and Qx ≤ S. Then, by (ii), NG(S) ≤

NG(Q) ∩ NG(Qx). Thus Qx is normal in S and Sx, so there exists
y ∈ NG(Qx) with Sxy = S. Now by (i) Q = Qxy = Qx and (iii) holds.
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(iv) We have Q ≤ NG(T ) and so 1 6= CZ(T )(Q) ≤ Z(Q) by (L1).
Let z ∈ CZ(T )(Q)#. Then, by (L2), Q ≤ CNG(T )(z) ≤ NNG(T )(Q) and
therefore

F ∗(CNG(T )(z)) = Op(CNG(T )(z)).

Hence Lemma 2.1 (ii) applies to yield (iv).
Assume that NG(T ) ≥ S. Then certainly NG(T ) ≥ Q and so, by

part (iv), F ∗(NG(T )) = Op(NG(T )). Hence G has parabolic character-
istic p and (v) holds. �

Lemma 2.4. Suppose that G has parabolic characteristic p and S ∈
Sylp(G). If G1 is a normal subgroup of G and 1 6= Ω1(Z(S ∩ G1)) ≤
Ω1(Z(S)), then G1 has parabolic characteristic p.

Proof. Let S1 = S ∩G1 and let z ∈ Ω1(Z(S1))#. Then z ∈ Z(S)
and so CG(z) has characteristic p. By [46, Lemma 1.2(a)] CG1(z) has
characteristic p and thus G1 has parabolic characteristic p by Lemma
2.1(iii). �

Lemma 2.5. If G has parabolic characteristic 2 and Z(G/O(G)) =
1, then O(G) = 1. In particular, if O2(G/O(G)) = 1, then O(G) = 1.

Proof. Assume O(G) 6= 1. Choose 1 6= z ∈ Z(S), S a Sylow
2-subgroup of G. Then F ∗(CG(z)) = O2(CG(z)) as G has parabolic
characteristic 2. In particular, CG(O(G)) has odd order and z inverts
O(G). Hence O(G) = CG(O(G)) and z ∈ Z(G/O(G)) = 1, a contra-
diction. �

The so-called p-minimal groups play an important role in this paper.

Definition 2.6. A group H is p-minimal, if for some Sylow p-
subgroup S of H we have H = 〈SH〉 and S is contained in a unique
maximal subgroup of H.

An easy application of the Frattini Argument shows that H is p-
minimal if and only if S not normal in H and S is contained in a unique
maximal subgroup of H.

For a group X, Φp(X) is the full preimage of Φ(X/Op(X)). The
structure of p-minimal groups is described in the next lemma.

Lemma 2.7. Suppose that P is p-minimal and S ∈ Sylp(P ). Let
M be the unique maximal subgroup of P containing S and set F =⋂
g∈P M

g. Then the following hold.

(i) Op(P ) ∈ Sylp(F ).
(ii) F = Φp(P ) and, in particular, if Op(O

p(P )) = 1, then F is
nilpotent.
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(iii) If N is a subnormal subgroup of P contained in M , then N ∩
S ≤ Op(P ).

(iv) If Op(P ) is p-closed, then P is a {t, p}-group for some prime
t 6= p.

(v) For N E P , either Op(P ) ≤ N or N ≤ F .
(vi) Op(P )/(F ∩Op(P )) is a minimal normal subgroup of P/(F ∩

Op(P )).
(vii) If P is soluble, then Op(P ) is p-closed and P is a {t, p}-group

for some prime t 6= p.
(viii) Op(P ) = [Op(P ), P ].

Proof. See [44, Lemma 3.2]. �

Lemma 2.8. Suppose that P is p-minimal, Op(P ) = 1 and K is a
component of P . Let S ∈ Sylp(P ). Then Op(P ) = F ∗(P ) = E(P ) =

〈KS〉 and KNS(K) is p-minimal.

Proof. Set E = Op(P ) and let M be the unique maximal sub-
group of P containing S. Then, by Lemma 2.7 (vi), E/(E ∩ F ) is a
minimal normal subgroup of P/F . We also have K ≤ E and P = ES.
Furthermore K 6≤M . It follows that E = 〈KS〉. In particular,

E = 〈KS〉 = E(P ) = F ∗(P ).

Now set S0 = NS(K) and suppose that K1 and K2 are subgroups of
K such that K1S0 and K2S0 are maximal subgroups of KS0. Then, for
i = 1, 2, the distinct elements of KS

i pairwise commute and so 〈KS
i 〉S

is a proper subgroup of P containing S. Thus K = 〈K1, K2〉 ≤M but
then P = ES = 〈KS〉S ≤ M < P , which is absurd. Hence KS0 is
p-minimal. �

One of the major parts of this paper requires that we study rep-
resentations of certain simple groups on p-groups which have a rather
restricted structure. For this we now define semi-extraspecial groups,
which are generalizations of extraspecial groups.

Definition 2.9. Suppose that p is a prime and X is a p-group.
Then

(i) X is special if X ′ = Φ(X) = Z(X);
(ii) X is extraspecial if X is special and |Z(X)| = p; and

(iii) X semi-extraspecial if X is special and, for all maximal sub-
group Y of Z(X), X/Y is extraspecial.

Lemma 2.10. Suppose that X is a semi-extraspecial p-group and
x ∈ X \ Z(X). Then |X : CX(x)| = |Z(X)| and [x,X] = Z(X).
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Proof. Set W = 〈x, Z(X)〉. Then W is abelian. If [W,X] < Z(X),
then there exists a maximal subgroup Y of Z(X), such that

Z(X)/Y < W/Y ≤ Z(X/Y ),

which is a contradiction to X being semi-extraspecial. Hence [W,X] =
Z(X). Define φ : X → Z(X) by y 7→ [x, y]. Then, as X has class two, φ
is a homomorphism and, as Z(X) = [W,X], φ is surjective. Therefore
X/ kerφ ∼= Z(X). Since kerφ = CG(x), this proves the result. �

Definition 2.11. Suppose that p and r are primes with p 6= r.
Then l(p, r) is the minimal dimension of a faithful action of a group of
order p on an elementary abelian r-group.

Lemma 2.12. Suppose that p and r are primes with p 6= r. Assume
that E is an extraspecial group of order p2w+1 which acts faithfully on
an elementary abelian r-group A. Then |A| ≥ rl(p,r)p

w
.

Proof. See [22, Chap. 5, Theorem 5.5]. �

The next lemma is just the Thompson A × B Lemma applied to
the dual of the module P/Φ(P ).

Lemma 2.13. Suppose that P is a p-group and A×B acts on P with
A a p-group and B a p′-group. If [P,B] ≤ [P,A], then B centralizes P .

Proof. Suppose that [P,B] ≤ [P,A]. It suffices to prove that B
centralizes P = P/Φ(P ) by Burnside’s Lemma [22, Chap. 5, Theorem
1.4]. Since B is a p′-group we have P = [P ,B]× CP (B) and this is an

A-invariant decomposition. Therefore [P ,B] ≤ [P ,A] = [[P,B], A] ×
[CP (B), A]]. Since [P,B]A is nilpotent, [[P ,B], A] < [P ,B] and so we
have a contradiction. �

Lemma 2.14. Suppose that p is a prime, G is a group and E is
a normal p-subgroup of G. Assume that U is a non-cyclic elementary
abelian p-subgroup of G and that either

(a) CE(U) = CE(u) for all u ∈ U#; or
(b) [E,U ] = [E, u] for all u ∈ U#.

If R is a p′-subgroup of G which is normalized by U , then [R,U ] cen-
tralizes E.

Proof. Let R be an p′-subgroup of G which is normalized by U .
Assume that U does not centralize R. Since U is not cyclic, [26, Lemma
11.25] yields

[R,U ] = 〈[CR(W ), U ] | |U : W | = p〉.
15



Let W be a maximal subgroup of U and set R0 = [CR(W ), U ]. If
option (a) holds, then R0U acts on CE(W ) = CE(U). The Three Sub-
group Lemma implies that R0 centralizes CE(W ). Hence the Thomp-
son A × B-Lemma ([2, 24.2]) applied to the action of WR0 on E
implies [E,R0] = 1. On the other hand, if option (b) holds, then
CR(W )U normalizes [E,W ] = [E,U ] and so [E,U,CR(W )] ≤ [E,U ],
[E,CR(W ), U ] ≤ [E,U ] and so the Three Subgroups Lemma implies
that [E,R0] ≤ [E,U ] = [E,W ]. Now Lemma 2.13 applied to R0W im-
plies [E,R0] = 1. Hence in both cases, [E,R0] = 1. Since this is true
for every maximal subgroup of U , it follows that [R,U ] centralizes E,
as claimed. �

Lemma 2.15. Suppose that G is a finite group, p is an odd prime
which divides |G| and P ∈ Sylp(G). If Ω1(P ) ≤ Z(G), then G has a
normal p-complement. In particular, if G is quasisimple, then Ω1(P ) 6≤
Z(G).

Proof. Suppose that 1 6= T ≤ P . If x ∈ NG(T ) has order coprime
to p, then x centralizes Ω1(T ) ≤ Ω1(P ) ≤ Z(G). Therefore, as p is odd,
x ∈ CG(T ) by [2, 24.8] and so NG(T )/CG(T ) is a p-group. Now the
Frobenius Normal p-Complement Theorem [2, 39.4] yields that G has
a normal p-complement.

If G is quasisimple, it does not have a normal p-complement and so
Ω1(P ) 6≤ Z(G). �

We mention in passing that in the case p = 2, the statement in
Lemma 2.15 does not hold as can bee seen in SL2(q) when q is odd.

Lemma 2.16. Suppose that G is a finite group and S ∈ Syl2(G). If
S ∼= Z2 ×Dih(8), then G has a subgroup of index two.

Proof. Suppose that O2(G) = G is perfect. Write S = 〈z〉 × S0

where S0
∼= Dih(8). As G = O2(G), the Thompson Transfer Lemma

[26, Lemma 15.16] implies that z is conjugate to an element y of S0

with CS(y) ∈ Syl2(CG(y)). Since z is 2-central, we have y ∈ Z(S) ∩ S0

and y is a square while z is not, a contradiction. �

The following definition is repeated in Appendix C.

Definition 2.17. Suppose that p is a prime, A is a group and V
is a non-trivial GF(p)A-module. Then

(i) A acts quadratically on V provided [V,A,A] = 0; and
(ii) A acts cubically on V provided [V,A,A,A] = 0.

If A acts cubically on V but not quadratically on V , then we say that
A acts strictly cubically on V .
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Suppose that T is a p-group. Then

J(T ) = 〈A | A ≤ T,Φ(A) = 1 and mp(A) = mp(T )〉
is the Thompson subgroup of T and the Baumann subgroup of G is
defined to be

B(T ) = CT (Ω1(Z(J(T )))).

Definition 2.18. Let p be an odd prime, T ∈ Sylp(G) and assume
X ≤ G. Set Q = Op(X) and W = Ω1(Z(Q)). Then X is a B(T )-block
of G if

(i) X = Op(X) = [X,B(T )], [Op(X), X] = Op(X), and
[X,Ω1(Z(T ))] 6= 1.

(ii) X/Op(X) ∼= SL2(pd)′, and W/CW (X) is a natural SL2(pd)-
module for X/Q.

(iii) If Q 6= W , then
(a) p = 3, and Q/W is a natural SL2(3n)-module for X/Q,
(b) Q′ = Φ(Q) = Z(X) = CW (X) and |Z(X)| = 3b, and
(c) no element of B(T ) \ CB(T )(W ) acts quadratically on

Q/Z(X).

Moreover, if (iii) holds, then X is called an exceptional block.

We close this preliminary section with some results about modules.
Suppose that k is a field and V is a finite dimensional kG-module.

Then the dual of V is
V ∗ = Hom(V, k)

the set of k-linear transformations from V to k. For φ ∈ V ∗ and g ∈ G,
the map

φg : V → k

is defined by
vφg = (vg−1)φ

for all v ∈ V and this makes V ∗ into a kG-module. Note that V ∗∗ ∼= V
as kG-modules. We say that V is self-dual as a kG-module if V ∼= V ∗

as kG-modules.
For a subspace U of V , we define

U † = {φ ∈ V ∗ | U ≤ kerφ} ≤ V ∗

and similarly, for W ≤ V ∗, set

W † =
⋂
φ∈W

kerφ ≤ V.

Notice that applying † twice returns the original subspace. We have
the following well known-result
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Lemma 2.19. If U ≤ V is a kG-submodule, then V ∗/U † ∼= U∗

as kG-modules. Furthermore, [V ∗, G]† = CV (G), CV (G)† = [V ∗, G],
[V,G]† = CV ∗(G) and CV ∗(G)† = [V,G].

Proof. For φ ∈ V ∗. let φU denote the restriction of φ to U . Then
φU ∈ U∗ and the map φ 7→ φU is a kG-epimorphism with kernel U †.
This proves V ∗/U † ∼= U∗ as kG-modules.

We calculate

[V ∗, G]† =
⋂

θ∈[V ∗,G]

ker θ =
⋂

φ∈V ∗,g∈G

ker(φg − φ)

=
⋂

φ∈V ∗,g∈G

{w ∈ V | wφg = wφ}

=
⋂

φ∈V ∗,g∈G

{w ∈ V | wg−1φ = wφ}

=
⋂
g∈G

{w ∈ V | wg−1 = w} = CV (G).

The remaining claims follow similarly. �

Lemma 2.20. Suppose that V is a vector space defined over a field
k and f is a non-degenerate sesquilinear form on V . If G is a subgroup
of GL(V ) which preserves f , then [V,G]⊥ = CV (G). In particular,
if CV (G) ≤ [V,G], then CV (G) is totally isotropic. Furthermore, if
G is a finite group of order coprime to the characteristic of k, then
V = [V,G] ⊥ CV (G).

Proof. For the first part see [51, Lemma 2.5.3]. The rest is easy
to prove. �

Lemma 2.21. Suppose that V is a 2n-dimensional orthogonal GF(p)-
vector space and U an n-dimensional isotropic subspace. Let w ∈ O(V )
be a p-element with [w,U ] = 0. Then [w, V ] ≤ U .

Proof. As U is isotropic we have U ≤ U⊥. Now the dimension
of U yields U = U⊥. Let 0 6= v ∈ U . Then [w, v] = 0 and so also
[V/v⊥, w] = 0. This shows [V,w] ≤

⋂
0 6=v∈U v

⊥ = U⊥ = U . �

Lemma 2.22. Suppose that p and r are primes with p 6= r, V is a
finite dimensional vector space over a field of characteristic r and E
is a finite elementary abelian p-subgroup of GL(V ). Assume that E is
not cyclic and let Γ denote the set of all maximal subgroups of E. If
V = [V,E], then

V =
⊕
F∈Γ

CV (F ).
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Furthermore, if V supports an E-invariant non-degenerate bilinear form,
then the direct sum above is an orthogonal sum.

Proof. For the main statement, see [2, page 50]. The second state-
ment follows from Lemma 2.20. �

Lemma 2.23. Suppose that p and r are primes with p 6= r, V is
a GF(r)X-module and E is a non-trivial elementary abelian normal
p-subgroup of X. Assume that m is the length of a minimal orbit of X
on the maximal subgroups of E. Then dimV ≥ ml(p, r).

Proof. This comes from Lemma 2.22 as, for F a maximal sub-
group of E with CV (F ) 6= 0, E/F is cyclic and acts faithfully on when
CV (F ). �

Lemma 2.24. Let X be a group, which acts faithfully and irreducibly
on a vector space V over GF(p). Let U be a group of order r coprime
to p which also acts on V but centralizes X. Then U is cyclic and, if n
is the order of p modulo r, then V can be considered as an GF(pn)X-
module and U induces field multiplication.

Proof. By assumption we have that U ⊆ EndX(V ). By Schur’s
Lemma [2, 12.4] we have that EndX(V ) is a division ring and so, as
|EndX(V )| is finite, EndX(V ) is a field by Wedderburn’s little theorem.
In particular, U is contained in the subfield F which is generated by U
over the prime field GF(p) and U is cyclic. We have that F ∼= GF(pn).
Thus V is an FX-module. �

For the next lemma we recall that Γn(q) represents the group of
all semilinear transformations of an n-dimensional vector space over
GF(q).

Lemma 2.25. Let V be a finite dimensional, faithful GF(p)G-module.
Assume that there is an abelian normal subgroup A in G, such that A
acts irreducibly on V . If |V | = q, then G is isomorphic to a subgroup
of Γ1(q).

Proof. See [33, Satz II 3.11]. �

Lemma 2.26. Suppose that p is an odd prime and V , V1 are p-
groups of equal order on which some group G acts irreducibly. Suppose
that Z(G) contains some cyclic group Z such that for all z ∈ Z#,
CV (z) = 0 = CV1(z). Let n be the order of p modulo |Z|. Then as
Z-modules V and V1 are equivalent if and only if they are conjugate
under a Galois automorphism of GF(pn).
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Proof. By Lemma 2.24 V and V1 may be considered as vector
spaces over GF(pn). Furthermore Z acts as field multiplication. Hence
V and V1 are equivalent if and only if the corresponding 1-spaces are
equivalent. In particular we may assume that V , V1 are 1-spaces and
so Z acts irreducibly on both of them. Then the assertion follows with
Lemma 2.25. �

Lemma 2.27. Suppose that p is a prime, G is a group, L ≤ G
and V is a faithful GF(p)G-module. Assume that L ∼= SL2(pe) and V
restricted to L is a natural GF(pe)L-module. If Sylp(NG(L)) ⊆ Sylp(G),
then either

(i) L is normal in G; or
(ii) pe = 4, L ∼= SL2(4) and G ∼= Alt(7).

Proof. Suppose that L is not normal in G. If e = 1, then G ≤
Aut(V ) ∼= GL2(p) and L is normal in G, a contradiction. So suppose
that e > 1. Let S ∈ Sylp(L) and S0 ∈ Sylp(NG(L)) with S0 ≥ S.
Since L acts irreducibly on V , |CG(L)| is coprime to p by Lemma 2.24
and so S0/S embeds into Out(L). Theorem A.11 implies that S0/S
is cyclic and that the non-trivial elements of S0/S are images of field
automorphisms of L. As L is not normal in G, SG 6= Sylp(L) and

so |SG| > 1 + pe. Let P,Q ∈ SG with P 6= Q. If CV (P ) = CV (Q),
then CV (P ) = CV (Q) = [V,Q] = [V, P ] and 〈P,Q〉 centralizes the
series, V > CV (P ) > 0 which means that 〈P,Q〉 is a p-group as V is
faithful. We may therefore assume that 〈P,Q〉 ≤ S0. Since P 6= Q, and
〈P,Q〉 is generated by elements of order p, we have pe+1 ≤ |〈P,Q〉| =
|Ω1(S0)| = pe+1. Hence, as e > 1, P ∩ S > 1 < Q ∩ S. Without
loss of generality we may assume that P 6= S. Let x ∈ P ∩ S, then
CV (S) = CV (x) = CV (P ). Let y ∈ P \S. Then y centralizes CV (S), but
this means that y centralizes NL(S)/S which acts faithfully on CV (S)
and this is a contradiction. Hence, if CV (P ) = CV (Q), then P = Q. As
an immediate consequence we have, for such P,Q, if x ∈ (P ∩Q)#, then
CV (P ) = CV (x) = CV (Q), which is impossible. Hence, for P,Q ∈ SG
with P 6= Q, we have

P ∩Q = 1.

In particular, as e > 1, S is the unique conjugate of S contained in S0.
Let T ∈ SG\{S} and suppose that S0∩T > 1. If p is odd, then as no

field automorphism of L acts quadratically on V and the elements of T
do act quadratically on S, we have T ∩S0 ≤ S, which is a contradiction.
Thus p = 2. Furthermore, as S0/S is cyclic, we have T ∩ S0 has order
2. In particular, we have |T : NG(S)| = pe if p is odd otherwise |T :
NG(S)| ≥ 2e−1 and furthermore e is even. Suppose that |T : NG(S)| =
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2e−1 and pick t ∈ (T ∩S0)#. Then t acts on CV (S) and dim[CV (S), t] =
e/2. Now we see that dimCV (S)∩CV (t) = dimCV (S)∩CV (T ) = e/2.
Hence we have

(2.27.1) If T 6= S is a conjugate of S, then either

(i) |T : NG(S)| = pe; or
(ii) p = 2, |T : NG(S)| = 2e−1, e is even, and dimCV (S) ∩

CV (T ) = e/2.

From the members of SG \ {S}, select T so that the dimCV (S) ∩
CV (T ) is maximal. Set H = 〈S, T 〉, U = CV (S) ∩ CV (T ) and W =
CV (S) + CV (T ). Then W/U 6= 0 and, as CV (S) = [V, S] and CV (T ) =
[V, T ], U and W are H-invariant and H acts non-trivially on W/U as
H is not a 2-group. Also dimW/U = 2b for some 0 < b < e. For
P,Q ∈ SH with P 6= Q, the subspaces CV (P )/U and CV (Q)/U each
have dimension b and, by the maximal choice of dimU , intersect in
zero. By (2.27.1) we have

|SH | ≥

{
pe + 1 T ∩NG(S) = 1

2e−1 + 1 p = 2 and T ∩NG(S) 6= 1
.

Hence W/U has at least (pe + 1)(pb − 1) non-trivial vectors if T ∩
NG(S) = 1. Thus

p2b − 1 ≥ (pe + 1)(pb − 1)

from which we conclude that e = b, a contradiction. Therefore p = 2,
T ∩NG(S) 6= 1 and

22b − 1 ≥ (2e−1 + 1)(2b − 1)

which yields b = e − 1 and dimCV (P ) ∩ CV (Q) ≤ 1 for every pair
P,Q ∈ SG with P 6= Q. On the other hand, as T ∩ NG(S) 6= 1, we
know by (2.27.1) that dimCV (S) ∩ CV (T ) = e/2 and consequently
e = 2. Now we have dimV = 4 and Aut(V ) ∼= SL4(2). Furthermore,
we see that NG(L)/CG(L) ∼= SL2(4):2 ∼= Sym(5) and CG(L) has order
dividing 3. Using the fact that G has Sylow 2-subgroups which are
dihedral of order 8, the list of maximal subgroups of SL4(2) yields that
G ∼= Alt(7). This is (ii). �

Later in Section 5, we shall introduce the notion of Sylow embedded
subgroups and in Proposition 5.3 prove a significant generalization of
Lemma 2.27 the proof of which requires that G is a K-group.

Theorem 2.28. For any natural numbers a > 1 and n > 1 there is
a prime number that divides an − 1 and does not divide ak − 1 for any
natural number k < n, with the following exceptions:
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(i) a = 2 and n = 6; and
(ii) a+ 1 is a power of two, and n = 2.

Proof. This it the famous theorem Bang–Zsigmondy [7, 82]. �

If r is a prime number that divides an−1 and does not divide ak−1
for any natural number k < n, then we call r a primitive prime divisor
of an − 1.

3. Identification theorems of some almost simple groups

In this section we provide various identification theorems which are
required to prove the main theorems. We begin with amalgam type
recognitions of Mat(22) and Mat(23).

Lemma 3.1. Suppose that X is a group and P , B and W are sub-
groups of X such that P ∼= PSL3(4), P ∩B ∩W is a Borel subgroup of
P and P ∩B and P ∩W are point and line stabilisers in P respectively.
Assume that B ∼ 24:Alt(6), W ∼ 24:Sym(5) and |W :W ∩B| = 5. Then
〈P,B,W 〉 ∼= Mat(22).

Proof. We may as well suppose that X = 〈P,B,W 〉. We consider
the graph Γ which has vertex set P ∪ B where

P = {Pg | g ∈ X} and B = {Bg | g ∈ X}
and edge set consisting of the pairs

{Pg,Bh} such that Pg ∩Bh 6= ∅.
Plainly Γ is a bipartite graph and X acts on Γ by right multiplication.
For α ∈ Γ, Γ(α) denotes the set of neighbours of α in Γ. The pointwise
stabiliser in X of a subset Θ of Γ is written as XΘ. Note that if α = P ,
then Xα = P and, if β = B, then Xβ = B and the other vertex
stabilisers are conjugates of these groups.

The kernel of the action of X on Γ is a normal subgroup of XP = P
and is contained in P ∩ B < P . Since P is a simple group, this means
that X acts faithfully on Γ. As W = (P ∩W )(W ∩ B), we have X =
〈P,B〉 and so the stabiliser of the connected component containing P
and B is X. This means that Γ is connected. If W normalizes P , then,
as B = 〈B ∩ P,B ∩W 〉, we have that B also normalizes P . However
B ∩ P is not normal in B and so this is impossible. Furthermore, as P
acts on P and the minimal non-trivial permutation representation of
P has degree 21, we have that

|P| ≥ 22.

Our next observation is elementary. Let α = P and β = B. Then
Xα acts on Γ(α) as it acts on the points of the projective plane of
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order 4 and Xβ acts as Alt(6) on Γ(β). In particular, both actions are
2-transitive, |Γ(α)| = |P :P ∩B| = 21 and |Γ(β)| = |B:P ∩B| = 6.

Since Xαβ = P ∩B ∼ 24:Alt(5), Xαβ acts transitively on Γ(β)\{α}
and Xαβγ ∼ 24:Alt(4) for any γ ∈ Γ(β) \ {α}. In particular, Xα acts
transitively on the vertices of distance 2 from α.

Let x ∈ (W ∩ B) \ P and set γ = Px. Then Px ∩ B = Px ∩ Bx =
(P ∩ B)x is non-empty. Thus γ ∈ Γ(β). Furthermore, as P ∩ W is
normal in W and P is not normalized by W ,

Xαγ = P ∩ P x = P ∩W.

Now Xαγ acts on Γ(γ) preserving the sets Γ(α)∩Γ(γ) and Γ(γ)\(Γ(α)∩
Γ(γ)). Because P ∩W is a line stabiliser in Xγ = P x, it has orbits of
lengths 5 and 16 on Γ(γ). Since |Xαγ:Xαβγ| = |P ∩W :P ∩W ∩B| = 5,
we deduce that Γ(α) ∩ Γ(γ) has order 5 or 21. If the size is 21, then
we have accounted for all the cosets of B in X and so |B| = 21 and
|X| = 27 · 33 · 5 · 7 and this means 22 ≤ |P| = 6, which is absurd. Thus

|Γ(α) ∩ Γ(γ)| = 5 and |Γ(γ) \ Γ(α)| = 16.

Let θ ∈ Γ(γ) have distance 3 from α. Then θXαγ = Γ(γ) \ Γ(α), and
Xαγθ

∼= Alt(5) complements O2(Xαγ). Consequently Xαγθ acts on Γ(θ)
fixing γ and with an orbit of length 5. In particular we have that Xα

acts transitively on the set of vertices at distance 3 from α.
Now consider the path (β, α, τ) where τ ∈ Γ(α)\{β}. Then Xβατ is

the intersection of two point stabilisers in P . As P acts 2-transitively
on the points of the projective plane, we see that Xβατ has index 20
in Xβα and so has shape 24 : 3. Further Xβ acts transitively on such
paths. As O2(Xβατ ) has to act trivially on the projective line through
β and τ , we see that

O2(Xβατ ) 6= O2(Xβ).

We now make such a path (β, α,Bx) where x ∈ (P ∩W ) \B and note
that the stabiliser of α and Bx contains (B ∩W ) ∩ (B ∩W )x ∼ 24 :
Sym(3). It follows that Γ(β)∩Γ(Bx) contains at least 2 vertices and so
also |Γ(β) ∩ Γ(θ)| ≥ 2. Since Xαγθ acts on Γ(θ) with an orbit of length
1 and an orbit of length 5, we see that Γ(θ)∩Γ(β) contains an element
from the orbit of length 5 and so we deduce that every neighbour of
θ is incident to some vertex at distance 2 from α. Thus there are no
vertices at distance 4 from α, and, in particular, we have that |P| ≤ 22.
Since |P| ≥ 22, we have equality. Now |X| = 22|P | = 27 · 32 · 5 · 7 · 11,
which implies

|P| = 22 and |B| = 77.
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The fact that P acts 2-transitively on the 21 points of the projective
plane of order 4 yields that X acts 3-transitively on P . In particular,
given any three members of P we may map them to three neighbours of
the coset B. We now identify the members of B with their neighbours
in P . Thus B becomes a set of six element subsets of P which we call
blocks. Since X acts 3-transitively on P we get that any three points
are contained in a block. Suppose that β1 and β2 are blocks sharing
a common point. Then, as we saw earlier, |Γ(β1) ∩ Γ(β2)| = 2 which
means that every subset of P of size 3 is contained in exactly one block.
Thus (P ,B) is a Steiner triple system with parameters (3, 6, 22). Such
systems are uniquely determined by [81] and therefore X is isomorphic
to a subgroup of Aut((P ,B)) ∼= Aut(Mat(22)). As X = 〈P,B〉, we
see X = X ′. So X ∼= Mat(22) and this completes the proof of the
lemma. �

Now we come to the identification of Mat(23). The proof of the next
lemma is very similar to the previous one and so the proof is somewhat
abbreviated.

Lemma 3.2. Suppose that X is a group and P , B and W are sub-
groups of X such that P ∼= Mat(22), B ∼ 24:Alt(7), W ∼ 24:(3 ×
Alt(5)).2, B ∩ P ∼ 24:Alt(6), W ∩ P ∼ 24:Sym(5), W ∩ B ∼ 24:(3 ×
Alt(4)).2 and P ∩B ∩W ∼ 24:Sym(4). Then 〈P,B,W 〉 ∼= Mat(23).

Proof. We again suppose that X = 〈P,B,W 〉 and, letting P =
{Pg | g ∈ X} and B = {Bg | g ∈ X}, we consider the graph Γ which
has vertex set P ∪ B made into a graph as in Lemma 3.1. Again we
have W = (P ∩ W )(W ∩ B) and that W does not normalize P . In
particular, we have Γ is connected and X acts faithfully on Γ. We also
have that

|P| ≥ 23.

For α ∈ P and β ∈ B we know |Γ(α)| = 77 and |Γ(β)| = 7.
Suppose that α = P and β = B. Then Xαβ = P∩B and so Xαβ acts

transitively on Γ(β)\{α}. In particular, Xα acts transitively on vertices
at distance 2 from α. Let γ ∈ Γ(β) \ {α}. Then Xαβγ ∼ 24 : Alt(5).
Now we let x ∈ (B ∩ W ) \ P and note that γ = Px ∈ Γ(β) and
that Xα ∩ Xγ = P ∩ P x ≥ (W ∩ P )′ ∼= 24 : Alt(5). Furthermore we
have Xαβγ ∩ (W ∩ P )′ ∼ 24 : Alt(4), as (W ∩ P )′ has orbits of length
1, 1, 5 on Γ(β). So Xαβγ ∩ (W ∩ P )′ has index 2 in P ∩ B ∩ W . We
see that 〈Xαβγ, (W ∩ P )′〉 ∼= PSL3(4) and thus Xαγ

∼= PSL3(4) and, in
particular, we have |Γ(α) ∩ Γ(γ)| = 21. Let θ ∈ Γ(γ) have distance 3
from α in Γ. Then as in Mat(22) the stabiliser of a point p has an orbit
of length 21 on the blocks containing p and an orbit of length 56 on the
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blocks not containing p, we see |θXαγ | = 56 and then Xαγθ
∼= Alt(6).

Hence Xαγθ has orbits of length 1 and 6 on Γ(θ). In particular Xα acts
transitively on the set of vertices of distance 3 from α.

Now consider the path (β, α, τ) where τ ∈ Γ(α)\{β}. Then Xβατ is
the intersection of two point stabilisers in P . We have that B ∩ P has
orbits of length 16 and 60 on Γ(α) \ {β}. We will choose τ in an orbit
of length 60, then Xβατ has shape 24 : Sym(3) and Xβ acts transitively
on such paths. We claim that we can make such a path with τ = Bx
for some x ∈ (P ∩W ) \ B. In fact if we choose such an element x, we
see that Bx is centralized by O2(W ). But the other orbit in Γ(α) \ {β}
has length 16 and is centralized by Alt(6), which does not contain a
subgroup of order 16. Now we can proceed as in the previous lemma.
We have that (B ∩ W ) ∩ (B ∩ W )x contains 24 : (Z3 × Sym(3)). It
follows that |Γ(β) ∩ Γ(Bx)| ≥ 3. In particular |Γ(θ) ∩ Γ(β)| ≥ 3. Thus
as in Lemma 3.1 we get

|P| = 23 and |B| = 253.

As P acts 3-transitively on the 22 points of the (3, 6, 22) Steiner system
this yields that X acts 4-transitively on P . In particular, given any four
members of P we may map them to four neighbours of the coset B.

We now again identify the members of B with their neighbours in
P . Thus B becomes a set of seven element subsets of P which we call
blocks. Since X acts 4-transitively on P we get that any four points
are contained in a block. As in Lemma 3.1 we see that any four points
are contained in exactly one block. Thus (P ,B) is a Steiner system
with parameters (4, 7, 23). Application of [81] shows that this system
is uniquely determined and so X ∼= Mat(23). �

The remainder of this section is a compendium of statements of
identification theorems that are required for the proofs of our main
theorems. We start with 3-local characterisations.

Lemma 3.3. Suppose that G is a finite group, S ∈ Syl3(G), Z ≤ S
has order 3 and set M = CG(Z). Assume that the following conditions
hold.

(a) Q = F ∗(M) is extraspecial of order 31+4;
(b) M/Q contains a normal subgroup isomorphic to Q8×Q8; and
(c) Z is not weakly closed in S with respect to G.

Then either F ∗(G) ∼= F4(2) or F ∗(G) ∼= PSU6(2).

Proof. This is [60, Theorem 1.3]. �
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Lemma 3.4. Suppose that G is a finite group, S ∈ Syl3(G), Z ≤ S
has order 3 and set M = CG(Z). Assume that the following conditions
hold.

(a) Q = F ∗(M) is extraspecial of order 31+4;
(b) F ∗(M/Q) = O2(M/Q) is extraspecial of order 21+4;
(c) M/O3,2(M) ∼= Alt(5); and
(d) Z is not weakly closed in S with respect to G.

Then G ∼= Co2.

Proof. This is taken from [54]. �

Lemma 3.5. Suppose that G is a finite group, Z ≤ G has order 3
and set M = CG(Z). Let S is a Sylow 3-subgroup of M and J is an
elementary abelian subgroup of S of order 34. Assume that the following
conditions hold.

(a) Q = F ∗(M) is extraspecial of type 31+4
+ ;

(b) F ∗(M/Q) ∼= 2.Alt(5); and
(c) J = F ∗(NG(J)) and O3′(NG(J)/J) ∼= Alt(6).

Then F ∗(G) ∼= McL.

Proof. This is taken from [61]. �

Lemma 3.6. Suppose that G is a finite group, S ∈ Syl3(G), Z ≤ S
has order 3 and set M = CG(Z). Assume that the following conditions
hold.

(a) Q = F ∗(M) is extraspecial of order 31+6;
(b) O2(M/Q) ∼= Q8 ×Q8 ×Q8; and
(c) Z is not weakly closed in S with respect to G.

Then F ∗(G) ∼= 2E6(2).

Proof. See [55, Theorem 1.3]. �

Lemma 3.7. Suppose that G is a finite group, S ∈ Syl3(G), Z ≤ S
has order 3 and set M = CG(Z). Assume that the following conditions
hold.

(a) Q = F ∗(M) is extraspecial of order 31+6;
(b) O2(M/Q) acts on Q/Z as a subgroup of order 27 of Q8×Q8×

Q8, which contains Z(Q8 ×Q8 ×Q8); and
(c) Z is not weakly closed in S with respect to G.

Then F ∗(G) ∼= M(22).

Proof. See [55, Theorem 1.4]. �
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Lemma 3.8. Suppose that G is a finite group, S ∈ Syl3(G), Z ≤ S
has order 3 and set M = CG(Z). Assume that the following conditions
hold.

(a) Q = F ∗(M) is extraspecial of type 31+8
+ ;

(b) F ∗(M/Q) = O2(M/Q) is extraspecial of type 21+6
− ;

(c) M/O3,2(M) is isomorphic to the centralizer of a 3-central el-
ement in PSp4(3) ∼= Ω−6 (2); and

(d) Z is not weakly closed in S with respect to G.

Then G is isomorphic to M(23).

Proof. See [59, Theorem 1.3]. �

Lemma 3.9. Suppose that G is a finite group, S ∈ Syl3(G), Z ≤ S
has order 3 and set M = CG(Z). Assume that the following conditions
hold.

(a) Q = F ∗(M) is extraspecial of type 31+8
+ ;

(b) F ∗(M/Q) = O2(M/Q) is extraspecial of type 21+6
− ;

(c) M/O3,2(M) ∼= Ω−6 (2); and
(d) Z is not weakly closed in S with respect to G.

Then G ∼= F2.

Proof. This is [59, Theorem 1.4]. �

We also call on the following 5-local identification of the sporadic
simple groups discovered by Richard Lyons.

Lemma 3.10. Suppose that G is a finite K2-group of local char-
acteristic 5 which is generated by subgroups Gα and Gβ with Gα ∼
52+1+2.2.Alt(5), Gβ ∼ 51+4

+ .2.Alt(6), Gα ∩Gβ ∈ Syl5(Gα)∩Syl5(Gβ) ⊆
Syl5(G) and no non-trivial subgroup of Gα ∩ Gβ is normalized by G.
Then G is isomorphic to the Lyons sporadic simple group.

Proof. This is one way to phrase the main theorem of [52]. �

We now move on to more familiar 2-local identifications.

Lemma 3.11. Let G be a finite group with G = O2(G). Assume that
t is an involution in G and CG(t) ∼= GL2(3). Then G ∼= PSL3(3) or
Mat(11).

Proof. This is taken from [12, Theorem 1A]. �

Lemma 3.12. Let G be a finite group with subgroups H and M such
that

(a) H has normal subgroups H1 and H2 such that H1
∼= H2

∼=
SL2(3), |H : H1H2| = 2, H1 ∩ H2 = Z(H1) = Z(H2) and
H = CG(H1 ∩H2); and
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(b) M/O2(M) ∼= SL3(2) and O2(M) is elementary abelian of or-
der 8 with O2(M) ≥ Z(H1).

Then G ∼= G2(3).

Proof. See [3]. �

Lemma 3.13. Suppose that G is a finite group, G = O2(G) and
O2(G) = O(G) = 1. Let S ∈ Syl2(G). Assume that S is isomorphic
to a Sylow 2-subgroup of Alt(8) and that the centralizer of a central
involution of S is soluble. Then G ∼= Alt(8), Alt(9) or PSp4(3).

Proof. This is [23, Corollary A∗]. �

Lemma 3.14. Suppose that G is a finite group and T ∈ Syl2(G).
Assume that G = O2(G) and that T ∼= Dih(8) o 2. Then G/O(G) ∼=
Alt(10), Alt(11), PSL4(q), q ≡ 3 (mod 4) or PSU4(q), q ≡ 1 (mod 4).

Proof. See [43, Theorem 3.15]. �

Lemma 3.15. Suppose that G is a group of parabolic characteristic
2 and H a subgroup of G of odd index. If F ∗(H) ∼= PΩ+

8 (2) and H =
NG(F ∗(H)), then F ∗(G) ∼= Ω+

8 (2) or PΩ+
8 (3).

Proof. This is [63]. �

Lemma 3.16. Suppose that G is a finite group, F ∗(G) is simple and
G has abelian Sylow 2-subgroups of order at least 4. Then G/F ∗(G) has
odd order and F ∗(G) is isomorphic to one of SL2(2e), e ≥ 2, 2G2(32e+1),
e ≥ 1, J1 or PSL2(rb) where r is a prime with rb ≡ 3, 5 (mod 8).
Furthermore, if G is simple and S ∈ Syl2(G) has order 2a, then NG(S)
contains a cyclic subgroup of order 2a − 1.

Proof. Let S ∈ Syl2(G). For |S| > 8, this is proved by Walter [77,
Theorem 1]. For |S| = 8, a combination of at least [35, Theorem], [36,
Theorem A], [78, Theorem] and [11, Corollary] is needed. �

4. Strongly p-embedded subgroups

Recall that for a prime p, a proper subgroup Y of a group X is
strongly p-embedded in X if and only if Y has order divisible by p and
Y ∩ Y x has order coprime to p for all x ∈ X \ Y . Strongly 2-embedded
subgroups are often referred to a strongly embedded subgroups.

We shall frequently call upon the following lemma which gives an
easily checked criteria for a subgroup to be strongly p-embedded.

Lemma 4.1. Suppose that p is a prime and H is a proper subgroup
of G. Let S ∈ Sylp(H). Then H is strongly p-embedded in G if and
only if CG(x) ≤ H for all x ∈ S of order p and NG(S) ≤ H.
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Proof. See [26, Proposition 17.11]. �

The next lemma presents an even more simple check in the case
that G has local characteristic p.

Lemma 4.2. Suppose that p is a prime, G is a group and H is
a proper subgroup of G. Assume that there exists a p-central element
x ∈ H such that CG(x) ≤ H and xG ∩H = xH . If E is a non-trivial p-
subgroup of H with CG(Op(NG(E))) ≤ Op(NG(E)), then NG(E) ≤ H.
If in particular G is of local characteristic p, then H is strongly p-
embedded in G.

Proof. Let S ∈ Sylp(H) and x ∈ Z(S)# be such that CG(x) ≤ H

and xG ∩H = xH . Assume that x ∈ T ≤ H. Then, for y ∈ NG(T ), we
have xy ∈ T and so xy ∈ xG∩H = xH . Hence xyh = x for some h ∈ H.
Thus yh ∈ CG(x) and y ∈ CG(x)H ≤ H by hypothesis. Thus

NG(T ) ≤ H, for T ≤ H with T ∩ xG 6= ∅.

For 1 6= E ≤ S we have x ∈ NS(E). By the remark before and
by conjugation in H we may assume NS(E) ∈ Sylp(NG(E)). Hence
Op(NG(E)) ≤ S and, if CG(Op(NG(E))) ≤ Op(NG(E)) we get x ∈
CG(Op(NG(E))) ≤ Op(NG(E)). But then NG(E) ≤ NG(Op(NG(E))) ≤
H, the assertion. If in addition G is of local characteristic p, then
NG(E) ≤ H for all 1 6= E ≤ S and so H is strongly p-embedded
in G by Lemma 4.1. �

When p = 2, we have a stronger result due to Holt [32] which does
not require the group to have local characteristic 2.

Theorem 4.3 (Holt). Suppose that K is a simple group, P is a
proper subgroup of K and r is a 2-central element of K. If rK ∩P = rP

and CK(r) ≤ P , then K ∼= PSL2(2a) (a ≥ 2), PSU3(2a) (a ≥ 2),
2B2(2a) (a ≥ 3 and odd) or Alt(n) (n ≥ 5) where in the first three
cases P is a Borel subgroup of K and in the last case P ∼= Alt(n− 1).

Proof. This formulation of Holt’s Theorem can be found as stated
here in [60]. �

We mostly apply Holt’s Theorem in the following way.

Lemma 4.4. Suppose that L is a group, P is a subgroup of L and
r is a 2-central element of P with r ∈ F ∗(P ). Assume that CG(r) ≤ P
and rL ∩ P = rF

∗(P ). If O(L) = 1 and F ∗(P ) is a non-abelian simple
group which is not an alternating group, then F ∗(G) = F ∗(P ).
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Proof. Since O2(P ) = 1, O2(L) = 1 and, as O(L) = 1, we have
F ∗(L) = E(L). Since 1 6= E(L) is non-abelian 1 6= CE(L)(r) ≤ CL(r) ≤
P , hence E(L) ∩ P is a non-trivial normal subgroup of P . Therefore
F ∗(P ) ≤ E(L) as F ∗(P ) is simple. Now r normalizes every component
of E(L) and so F ∗(P ) is contained in every component of E(L). Hence
E(L) is simple. Now rE(L) ∩ P ⊂ rL ∩ P = rF

∗(H) and so rE(L) ∩ P =
rF
∗(P ). Since CE(L)(r) ≤ E(L) ∩ P , if F ∗(P ) 6= F ∗(L), then P ∩ E(L)

is a proper subgroup of E(L) and we may apply Holt’s Theorem 4.3 to
get F ∗(P ) is an alternating group, a contradiction. �

The next two propositions of this section show in almost all cases
we cannot have a strongly p-embedded subgroup H such that F ∗(H) is
a simple groups of Lie type in characteristic p. Notice that Proposition
4.5 follows immediately from Theorem 4.3; however, in the proof of
Theorem 4.3 the results from [9] are deployed.

Proposition 4.5. Let G be a group with a strongly 2-embedded
subgroup H. Then H is soluble.

Proof. This is a consequence of Bender’s famous theorem [9]. �

Proposition 4.6. Suppose that p is an odd prime, G is a finite
K2-group and H is a strongly p-embedded subgroup of a group G. Then
F ∗(H) is not a simple group of Lie type defined in characteristic p and
of Lie rank at least 2, unless perhaps F ∗(H) ∼= PSL3(p).

Proof. This is a combination of [56, Corollary 1.4] and [57, The-
orem 1.1]. �

Theorem 4.7. Suppose that p is a prime, G is a group of local
characteristic p and H is a subgroup of G such that F ∗(H) is a simple
group of Lie type defined in characteristic p. Assume that when p is
odd F ∗(H) has Lie rank at least 3 and when p = 2 that F ∗(H) has Lie
rank at least 2. If NG(X) ≤ H for all non-trivial subgroups X which
are normal in a Sylow p-subgroup of H, then either G = H or H is
strongly p-embedded in G. Furthermore, if G is a K{2,p}-group when p
is odd, then we have G = H.

Proof. This is [66, Theorem 1, Theorem 2]. �

5. Sylow embedded subgroups of linear groups

Throughout this section we assume that all groups are K-groups.
Since the application of these results will always be made in the nor-
malizers of p-groups, this is compatible with the Kp hypothesis in our
main theorems.
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Definition 5.1. Let p be a prime, V be a vector space over GF(p)
and L and M be subgroups of GL(V ). Then L is Sylow embedded in
M if

(i) L ≤M ;
(ii) CM(L) is a p′-group; and

(iii) NM(L) contains a Sylow p-subgroup of M .

Furthermore, a subgroup L of GL(V ) is a Sylow maximal subgroup of
GL(V ) if whenever L is Sylow embedded in a subgroup M of GL(V ),
then L is a normal subgroup of M .

As motivation for addressing this type of question, consider the
following scenario. Suppose that G is a finite group, S ∈ Sylp(G),

r ∈ Z(S)# and H is a subgroup of G containing S. Assume that H is a
group of Lie type defined in characteristic p and set Q = Op(CF ∗(H)(r)).
Then, on the road to proving our Theorems 2 and 3, we would like to
determine the structure of NG(Q) if NG(Q) 6≤ H. Let L0 = NH(Q)/Q
and L = Op′(L0). Then, taking V = Q/Φ(Q), we typically have that L
acts irreducibly on V . Hence for M = NG(Q)/Q we have that CM(L)
is a p′-group and so L is Sylow embedded in M . In this section we show
that, in this kind of situation, L is typically Sylow maximal in GL(V ).
Thus one of the purposes of this section is to determine the exceptions
to this statement. Tools for doing this are provided in Appendix C.

We start with the case where L is quasisimple. In the primary hy-
pothesis of this section, we consider certain cases related to the pos-
sibility in which H is an exceptional group. So assume that H is one
of the groups F4(q) with q odd, E6(q), 2E6(q), E7(q) or E8(q), let R be
a long root subgroup of H, put P = NG(R) and let L = Op′(L0) for
L0 as above. Then V = Op(P )/R is a GF(p)L-module. We use Lemma
D.1 to extract the following data and at the same time we establish
some specific notation.

- If H ∼= F4(q) with q odd, then V is denoted by V14, |V | = q14

and L ∼= Sp6(q);
- if H ∼= E6(q) or 2E6(q), then V is denoted by V20, |V | = q20

and L/Z(L) ∼= PSL6(q) or PSU6(q) respectively;
- if H ∼= E7(q), then V is denoted by V32, |V | = q32 and
L/Z(L) ∼= PΩ+

12(q); and,
- if H ∼= E8(q), then V is denoted by V56, |V | = q56 and
L/Z(L) ∼= E7(q).

Recall that the notation V14, V20, V32 and V56 was fixed in Lemma
D.1 and in particular these are modules obtained from certain parabolic
subgroups in groups of Lie type.
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If L is Sylow embedded in M then we will denote by S a Sylow
p-subgroup of L and by S0 a Sylow p-subgroup of NM(L) containing S.

Our primary hypothesis specifies modules V and groups L which
are assumed to be Sylow embedded.

Hypothesis 5.2. Let p be a prime, q = pe and L be quasisimple
such that one of the following holds

(a) L is one of SLn(q) with n ≥ 2, SUn(q) with n ≥ 3, Sp2n(q)′

with n ≥ 2, Ω±n (q) with n ≥ 5 and V is the corresponding
natural GF(q)L-module.

(b) L ∼= SLn(q), n ≥ 2 and V is a direct sum of the natural
GF(q)L-modules W and W ∗.

(c) L ∼= SL2(q) and V is an irreducible 8-dimensional GF(q1/3)L-
module.

(d) L ∼= SL2(q) and V is an irreducible 4-dimensional GF(q1/2)L-
module.

(e) L ∼= PSL2(q), q odd, and V is an irreducible 3-dimensional
GF(q)L-module.

(f) L ∼= SL2(q), p > 3, and V is an irreducible 4-dimensional
GF(q)L-module which is absolutely irreducible.

(g) L ∼= SL2(4) and V has GF(2)-dimension 8 and V has two
L-composition factors of GF(2)-dimension 4.

(h) L ∼= Sp6(q), q odd, and V = V14 is the 14-dimensional GF(q)L-
module.

(i) L/Z(L) ∼= PSL6(q) or PSU6(q) and V = V20 is the 20-
dimensional GF(q)L-module.

(j) L/Z(L) ∼= PΩ+
12(q) and V = V32 is the 32-dimensional irre-

ducible GF(q)L-module.
(k) L/Z(L) ∼= E7(q) and V = V56 is the 56-dimensional GF(q)L-

module.

In all cases, regard V as a GF(p)L-module and L as a subgroup of
GL(V ) ∼= GLm(p) where m = dimGF(p)(V ).

Our first objective in this section is to prove the following proposi-
tion.

Proposition 5.3. Assume that Hypothesis 5.2 holds and that L is
not Sylow maximal in GL(V ). If L is Sylow embedded in M ≤ GL(V )
and L not normal in M , then one of the following holds:

(i) L ∼= SL2(4), E(M) ∼= Alt(7) and V is either a natural GF(4)L-
module or a direct sum of two natural GF(4)L-modules.

(ii) L ∼= SL2(5), E(M) ∼= SL2(9) and V is an irreducible 4-
dimensional GF(5)L-module.
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(iii) L ∼= SL2(7), E(M) ∼= 2.Alt(7) and V is an irreducible 4-
dimensional GF(7)L-module.

(iv) L ∼= PSL2(9), E(M) ∼= 2.PSL3(4) and V is a 3-dimensional
GF(9)L-module.

(v) L ∼= PSp4(2)′, E(M) ∼= Alt(7) and V is a natural GF(2)L-
module.

(vi) L ∼= SL2(5), F (M) ∼= 21+4
− or 4 ◦ 21+4

− and either
(a) LF (M) is normal in M and M/F (M) ∼= Alt(5) or

Sym(5); or
(b) F (M) = 4 ◦ 21+4

− and M/F (M) ∼= Alt(6) or Sym(6).
Furthermore, V is a 4-dimensional irreducible GF(5)L-module.

Furthermore, if E(M) 6= 1, then L ≤ E(M).

Remark 5.4. It is worth noting that in Proposition 5.3 (iv) for
example, we have M ≤ GL6(3) and so M does not support the GF(9)
vector space structure.

For the proof of Proposition 5.3 the following little lemma will be
of great importance as it reduces the possibilities for L substantially.

Lemma 5.5. Assume Hypothesis 5.2 with p = 2 and q > 2. Then
there is an elementary abelian subgroup A of order 4 in L such that
CV (a) = CV (A) for all a ∈ A#.

Proof. If we have one of the classical groups, then a root group
of order q acts in this way on the natural module. In the exceptional
cases the same result is provided by Lemma D.17(i). �

Throughout the proof of Proposition 5.3 we consider subgroups
M of GL(V ) with L Sylow embedded in M . We begin with the cases
where M is quasisimple. Our proof of Proposition 5.3 proceeds through
a series of lemmas. Our first one deals with the possibility that M is a
group of Lie type defined in characteristic p.

Lemma 5.6. Suppose that Hypothesis 5.2 holds, M ≤ GL(V ) is
quasisimple and M/Z(M) is a simple group of Lie type in characteristic
p. If L is Sylow embedded in M , then M = L.

Proof. Since L is Sylow embedded in M , NM(L) contains a Sylow
p-subgroup of M . Therefore Lemma A.17 implies that NM(L)/Z(M) =
M/Z(M) and then as M is quasisimple, M = L as claimed. �

Lemma 5.7. Suppose that Hypothesis 5.2 holds with L/Z(L) ∼=
PSL2(q). Assume that M ≤ GL(V ), M is quasisimple and L is Sy-
low embedded in M . Then either M = L or one of the following holds:
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(i) L ∼= SL2(4), M ∼= Alt(7) and V is either a natural GF(4)L-
module or a direct sum of two natural GF(4)L-modules.

(ii) L ∼= SL2(5), M ∼= SL2(9) ∼= 2.Alt(6) and V is an irreducible
4-dimensional GF(5)L-module.

(iii) L ∼= SL2(7), M ∼= 2.Alt(7) and V is an irreducible 4-dimen-
sional GF(7)L-module.

(iv) L ∼= PSL2(9), M ∼= 2.PSL3(4) and V is a 3-dimensional
GF(9)L-module.

Proof. We consider the possibilities for the simple groupM/Z(M)
in turn. By Lemma 5.6 we know that M/Z(M) is not a simple group
of Lie type in characteristic p.

Fix S ∈ Sylp(L). In the configurations described by Hypothesis
5.2 (a) or (b), S acts quadratically on V by Lemma C.14. Hence, in
these cases, if p is odd, then Lemma C.12 yields q = p = 3 and this is
impossible as SL2(3) is not perfect. Therefore, if Hypothesis 5.2 (a) or
(b) holds, then we additionally have p = 2.

(5.7.1) If M/Z(M) ∼= Alt(m) with m ≥ 7 and m 6= 8, then (i) or (iii)
holds.

Assume that M/Z(M) ∼= Alt(m) with m ≥ 7, m 6= 8. Suppose first
that M/Z(M) ∼= Alt(7). Then we can only have

L/Z(L) ∼= PSL2(4), PSL2(5), PSL2(9) or PSL2(7).

If q = p, then we require that M/Z(M) is a subgroup of PSL4(p).
Thus q 6= 5, as 7 does not divide |PSL4(5)|. If p = 7, then, as 5 does
not divide the order of PSL3(7), we have that V is a 4-dimensional
GF(7)L-module and L ∼= SL2(7). This yields M ∼= 2.Alt(7) or 6.Alt(7).
As 3 does not divide |Z(SL4(7))|, we get M ∼= 2.Alt(7). Assume that
Hypothesis 5.2 (b) holds. Then V is a direct sum of two 2-dimensional
L-modules and so a 7-element in M acts quadratically on V , which
contradicts Lemma C.12. Hence Hypothesis 5.2 (b) does not hold and
so we have the configuration listed in (iii). Thus we may assume that
q ∈ {4, 9}. Assume L ∼= SL2(4). Then the GF(2)-dimension of V is
either 4 or 8 and all the composition factors for L have dimension 4. As
again 3 does not divide |Z(SL4(4))| and Alt(7) possesses no irreducible
8-dimensional module over GF(2) (see [10]), we may suppose that M
leaves a 4-dimensional GF(2) subspace V0 of V invariant. In particular,
we have that V0 is either the natural GF(4)L-module or the second
irreducible 4-dimensional GF(2)L-module. Furthermore, as L is Sylow
embedded in M , |M : NM(L)| is odd, so we have NM(L) ∼= Sym(5)
and so by Lemma E.8 we see that V0 is a natural GF(4)L-module. This
is listed in part (i).
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Suppose that M/Z(M) ∼= Alt(m) with m ≥ 9. By Galois [33, Satz
II.8.28], the minimal permutation degree of L/Z(L) ∼= PSL2(q) is at
least q unless q = 9 in which case it is 6. Suppose that q = 9. Then
p = 3 and plainly NM(L) does not contain some Sylow 3-subgroup of
M . Therefore we have q 6= 9 and

pe = q ≤ m.

By combining Lemma C.4 with Hypothesis 5.2, we obtain

pp
e−2 ≤ pm−2 ≤ |V | ≤ p4e.

Since pe − 2 ≤ 4e and m ≥ 9, we have e ≥ 2 and so q ∈ {22, 23, 24} as
q 6= 9. Because the Sylow 2-subgroups of Alt(9) have order 26 and L
is Sylow embedded in M , we obtain q = 24 and m ∈ {9, 10}. But then
q > m ≥ q which is absurd. This completes the consideration of the
alternating groups when m 6= 8. �

We next consider the sporadic simple groups.

(5.7.2) We have M/Z(M) is not a sporadic simple group.
Suppose that M/Z(M) is a sporadic simple group and let S0 ∈

Sylp(NM(L)) with S0 ∩ L = S. Then, as L ∼= SL2(q), S is elementary
abelian and, as CM(L) is a p′-group by Definition 5.1 (ii), S0L/L is
isomorphic to a subgroup of Out(L). Therefore, from [27, Theorem
2.5.12] we obtain S0/S is cyclic of order dividing ep, the p-part of e.

Suppose that p = 2. Then we have |S0| ≤ 2ee2. So as e ≤ m2(S),
we see that

|S0| ≤ 2m2(S0)m2(S0).

Manipulating the data from [27, Table 5.3 and 5.6.1] yields M ∼= J1

and so S0 is elementary abelian of order 8. In particular, L ∼= PSL2(8)
and so L has cyclic subgroups of order 9 whereas |J1|3 = 3. Hence
p 6= 2.

Suppose that p is odd. If e ≤ 2, then ep = 1 and so S0 = S is
elementary abelian. Moreover, Hypothesis 5.2 yields |V | ≤ p4e which
means that Rp(M) ≤ 4e ≤ 8. Application of Lemma C.2 shows that
M/Z(M) ∼= Mat(11), Mat(12), Mat(22), J1 or J2 and Rp(M) ≥ 5. In
particular, e = 2 and this fact then shows M/Z(M) 6∼= Mat(12) or J1

just by considering |M |. If M ∼= J2, then the only possibility is that
p = 5 and, as 13 divides |SL2(25)| but not |J2|, we have a contradiction.
Thus M/Z(M) ∼= Mat(11) or Mat(22) and we have p = 3.

By Lemma C.12, S does not act quadratically on V and so, as |V | ≥
35, we see that Hypothesis 5.2 (e) holds. Thus V is a 3-dimensional
GF(9)L-module of order 36. By Lemma C.3 we have M/Z(M) 6∼=
Mat(11) or Mat(22).
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Hence e ≥ 3. Suppose that S0 is non-abelian. Then pe = |S| <
|S0| ≤ peep and mp(S0) ≥ p. Applying [27, Table 5.6.1] yields p = 3.
Thus e3 6= 1 and

|S0| ≤ 3ee3 ≤ 3m3(S0)m3(S0)

with m3(S0) ≥ 3. Now using [27, Table 5.3 and Table 5.6.1] again,
we have m3(S) = 3 and obtain a contradiction to |S|. Therefore, S0 is
abelian. We again consult [27, Tables 5.3 and 5.6.1] to obtain p = 3 and
M ∼= O’N with e = 4. But PSL2(81) has order divisible by 41 whereas
O’N does not. We have demonstrated that M is not a sporadic group.�

(5.7.3) If M/Z(M) is a group of Lie type defined in characteristic r
with r 6= p, then parts (ii) and (iv) hold.

We start by using Lemma C.7 to obtain

e = mp(L) ≤ mp(M/Z(M)) ≤ Rr(M/Z(M)).

On the other hand, by Hypothesis 5.2, Rr′(M/Z(M)) ≤ 4e and there-
fore

Rr′(M/Z(M)) ≤ 4Rr(M/Z(M)).

Now application of Lemma C.6 gives a list of candidates for M/Z(M):

- PSL2(rf ), rf ≤ 17 with r odd, PSL2(4), PSL2(8), PSL3(2),
PSL3(4), PSL3(3), PSL4(2).

- PSU3(3), PSU3(4), PSU4(2), PSU4(3), PSU5(2), PSU6(2).
- PSp4(2)′, PSp4(3), PSp4(5), PSp6(2), PSp6(3), PΩ7(3),

PΩ+
8 (2), PΩ−8 (2).

- F4(2), G2(2)′, G2(3), G2(4), 3D4(2), 2F4(2)′, 2B2(8), 2G2(3)′.

Since by Lemma E.4 PSL2(4), PSL2(8), PSL3(2), PSL3(3), 2G2(3)′

and 2B2(8) are minimal simple groups, we have L = M in this case and
so these groups are eliminated from our further considerations.

Suppose that p = 2. Then r is odd and the Sylow 2-subgroups of M
must be extensions of an elementary abelian group of rank e by a cyclic
group of order dividing e2. By applying this remark to the candidates
for M/Z(M) above and using [27, Theorem 4.10.2], we only retain
M/Z(M) ∼= PSL2(rf ) with rf ≤ 17. But then m2(S) = m2(S0) = e = 2
and so L ∼= SL2(4) ∼= Alt(5) with |V | ≤ 28 and |S| ≤ 8. Thus, we
further see that, we can only have M/Z(M) ∼= PSL2(11) as SL2(4) is
not Sylow maximal in PSL2(9). Since 11 does not divide |GL8(2)|, this
is impossible. Hence

p is odd.

If e = 1, then L/Z(L) ∼= PSL2(p) with p > 3 and M has Sylow p-
subgroups of order p. Furthermore, M is a subgroup of SL4(p). As p is
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odd, we know Hypothesis 5.2 (a) and (b) do not hold and so, as q = p,
we deduce that Hypothesis 5.2 (e) or (f) holds. Application of column
two from Lemma C.5 shows that M/Z(M) ∼= PSL2(rf ) with rf ≤ 9,
PSp4(3) or PSL3(4). In particular p = 5 or 7.

Suppose that L/Z(L) ∼= PSL2(5). If M/Z(M) ∼= PSL2(9), then
|V | = 54 and this is possibility (ii) of the lemma. As GL4(5) does not
contain elementary abelian subgroups of order 27 and PSp4(3) does, we
have that M/Z(M) 6∼= PSp4(3). Similarly, 7 does not divide |GL4(5)|
but does divide |PSL3(4)| and so M/Z(M) ∼= PSL3(4) is impossible.

Suppose that L/Z(L) ∼= PSL2(7). Then M/Z(M) ∼= PSL3(4) and
we have |V | = 74 by Lemma C.5. Since the group of scalars in SL4(7)
has order 2, we see that M ∼= PSL3(4) or 2.PSL3(4) both of these
groups have 2-rank at least 4 and this is greater than the 2-rank of
SL4(7) (which is 3) and so this case cannot occur. Therefore,

p is odd, e ≥ 2 and pe ≥ 9.

Assume that p is odd, e ≥ 2 and pe ≥ 25. We turn our consider-
ations round and regard the embedding of L into M as a projec-
tive representation of L. Applying Lemma C.5 delivers Rr(L) ≥ 12.
Hence Lemma C.5 again yields either M/Z(M) ∼= F4(2) or 2F4(2)′ and
Rr(M) ≥ 26 (recall r = 2). Note that by [27, 4.10.3] and [24, Table
10.1 and 10.2] m3(F4(2)) = 4 and m3(2F4(2)′) = 2. We deduce that
L/Z(L) ∼= PSL2(25), PSL2(33) or PSL2(34). If p = 5, then f = 2 and
we require M/Z(M) to embed into PSL8(5). Lemma C.5 shows that
this is impossible for the candidate groups. Hence p = 3 and we have
M/Z(M) ∼= F4(2). Since M has Sylow 3-subgroups of order 36 and
|Aut(L)|3 ≤ 34, we have a contradiction. Hence, for p odd and e > 1,
we have pe = 9. Now

L/Z(L) ∼= PSL2(9), |S0| = 9 and M ≤ SL8(3).

From the displayed list of candidates for M/Z(M), we now only have
to consider M/Z(M) ∼= PSL3(4), PSL4(2), PSp4(5). As M ≤ SL8(3),
we see that M/Z(M) 6∼= PSp4(5) as the Sylow 5-subgroup is too big.
If M/Z(M) ∼= PSL4(2), then there exists Y ≤ M with L Sylow em-
bedded in Y and Y/Z(Y ) ∼= Alt(7). We have already shown that this
cannot occur in (5.7.1). Thus M/Z(M) ∼= PSL3(4). Since S has order
9, Lemma C.12 implies that Hypothesis 5.2 (d) or (e) holds. In the
former case, M embeds into SL4(3) which is impossible as 7 does not
divide the order of the latter group. Thus Hypothesis 5.2 (e) holds and
this is listed as case (iv). �
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Finally, we note that Alt(5) ∼= SL2(4), Alt(6) ∼= PSp4(2)′, Alt(8) ∼=
PSL4(2) and so Lemma 5.6 implies that p 6= 2. Thus these groups fit
in (5.7.3). Therefore combining (5.7.1), (5.7.2) and (5.7.3) we have
the claimed result.

�

Lemma 5.8. Assume Hypothesis 5.2 holds with p odd and L/Z(L) 6∼=
PSL2(q). If M ≤ GL(V ), M is quasisimple and L is Sylow embedded
in M , then M = L.

Proof. Assume that M > L and let S0 ∈ Sylp(NM(L)) ⊆ Sylp(M)
which contains a Sylow p-subgroup S of L. By Lemma 5.6, M is not a
group of Lie type in characteristic p.

Suppose first that Hypothesis 5.2 (a) holds. Then L/Z(L) is a clas-
sical group and V is a natural module. In particular, L contains a
non-trivial quadratic subgroup T which we select to have maximal pos-
sible order. By Lemma C.12, |T | = 3. Employing Lemma C.14 yields
L ∼= SU3(3), Ω5(3) or Ω−6 (3) with V the corresponding natural module

For the remaining cases of Hypothesis 5.2, we may identify V with
Q/R in Lemma D.17. In each case Lemma D.17 provides a non-trivial
quadratically acting group. Lemma C.12 (i) shows that this group has
order 3. Application of Lemma D.17 (ii) then yields (L/Z(L), V ) =
(PSU6(3), V20), (PSp6(3), V14) or (E7(3), V56). Thus we have six cases
to consider more deeply and in all cases we have dimV ≤ 56 and
S0 = S.

Since V admits a quadratic subgroup of order 3 in L, the possibil-
ities for M/Z(M) are enumerated in Lemma C.12. Thus M/Z(M) ∼=
PSUn(2) with n ≥ 5, Alt(n) with n ≥ 5, PΩ+

8 (2), G2(4), PSp6(2), Co1,
Suz or J2.

By Lemma B.2 applied to L, we see that M/Z(M) 6∼= Alt(n) with
n ≥ 5.

If M/Z(M) ∼= PSUn(2) with n ≥ 5, then Lemma C.5 implies that
n ≤ 7. Hence |S| ∈ {35, 36, 38}. Hence L/Z(L) ∼= Ω−6 (3), M ∼= PSU6(2)
and |V | = 36. But |PSU(6, 2)| does not divide |PSL6(3)| and so we have
a contradiction.

Suppose that M is one of the cases from Lemma C.12(iii). Then
|S| ≤ 39. So L/Z(L) 6∼= PSU6(3), or E7(3). If L ∼= PSU3(3), then
|S| = 27. Hence M/Z(M) ∼= J2 or G2(4) and |V | = 36. But 52 does
not divide |GL6(3)| and divides |J2| and |G2(4)|. If L ∼= Ω5(3), then
|S| = 34. So we have M ∼= PSp6(2) and M is isomorphic to a subgroup
of GL5(3) which is also impossible as 7 does not divide |GL5(3)|. If
L ∼= Ω−6 (3), then |S| = 36 and there are no candidates for M/Z(M).
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Finally, if L/Z(L) ∼= PSp6(3), then M/Z(M) ∼= Co1 and |V | = 314.
Since |Co1| does not divide |PSL14(3)|, we have a contradiction.

Having considered all the possibilities, we have proved the lemma.
�

Lemma 5.9. Assume Hypothesis 5.2 holds with p = 2 and L/Z(L) 6∼=
PSL2(q). If M ≤ GL(V ), M quasisimple and L ≤ M is Sylow embed-
ded in M , then either M = L or L ∼= Sp4(2)′, M ∼= Alt(7) and V is
the natural GF(2)L-module.

Proof. Assume L 6= M . Again we consider the possibilities for
M/Z(M). Let S0 ∈ Syl2(NM(L)). By Lemma 5.6 we have that M is
not a group of Lie type in characteristic 2.

As L/Z(L) 6= PSL2(q), cases (c)-(g) of Hypothesis 5.2 do not hold.
If L satisfies Hypothesis 5.2 (a) or (b), then Lemmas C.14 and C.16
show that L has a quadratic fours group whereas, if one of Hypothesis
5.2(h), (i), (j) or (k) holds, then Lemma D.17 (ii) provides the same
result. Hence in each case L has a quadratic 4-subgroup, so Lemma
C.13 provides the candidates for M/Z(M).

SupposeM/Z(M) ∼= Alt(n). Then Lemma B.1 to LS0 yields L/Z(L) ∼=
Alt(m) where m = n, n− 1, n− 2 or n− 3, or n = 7. Assume first that
n = 7. Then M ∼= Alt(7) or 3.Alt(7) and

L ∼= PSL3(2) or Sp4(2)′. Furthermore, 24 ≤ |V | ≤ 26.

If L ∼= SL3(2), then V is a direct sum of two irreducible modules. But
letting 〈x, f〉 be a Frobenius subgroup of order 20 with f of order 4,
[22, Chap. 11, Theorem 1.1] shows that [V, f, f, f ] 6= 0 whereas the
action of L shows that [V, f, f, f ] = 0. This contradiction shows that
L 6∼= SL3(2).

If L ∼= Sp4(2)′ ∼= Alt(6), we get M ∼= Alt(7) acting in its 4-
dimensional representation as described in the statement of the lemma.

Assume that n ≥ 8. Then as the only isomorphisms between L and
Alt(n) are Alt(8) ∼= SL4(2) ∼= Ω+

6 (2), |V | ≤ 28 and n ∈ {9, 10, 11}.
Since 11 does not divide |GL8(2)|, we have 9 ≤ n ≤ 10. AsR2(Alt(10)) ≥
R2(Alt(9)) ≥ 7 by Lemma C.4, we have |V | = 28 and V is a direct sum
of two natural SL4(2)-modules. In particular, the elements correspond-
ing to 3-cycles of Alt(8) act fixed-point-freely on V and the involutions
of cycle type 24 centralize a 6-dimensional subspace (as such corre-
spond to transvections in SL4(2)). But in Alt(9) these involutions in-
vert a 3-cycle and so on the 8-dimensional module for Alt(9) they have
centralizer of order 24, a contradiction. Therefore

M/Z(M) is not an alternating group of degree n ≥ 8.
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If M is a group of Lie type in odd characteristic, then M/Z(M) ∼=
PSU4(3), |Z(M)| divides 9 and V has GF(2) dimension a multiple of
12. Furthermore, |S0| = 27. Thus L ∼= SL3(4), or SU3(4) and |V | = 212.
Lemma C.5 shows that PSU3(4) has no projective representation of
dimension 4 over fields of characteristic 3. Therefore L ∼= SL3(4) and
V is a direct sum of two natural L-modules. Since |S| = 26, we require
|NM(L) : LZ(M)| = 2. But we see that PSU4(3) does not contain
PSL3(4).2 as by [14, Table 8.11] PSL3(4) is a maximal subgroup in
PSU4(3). Thus we have a contradiction. Therefore

M is not a group of Lie type defined in odd characteristic.

Suppose now thatM/Z(M) is a sporadic simple group. Then by Lemma
C.13 we have M/Z(M) ∼= Mat(12), Mat(22), Mat(24), J2, Co1, Co2 or
Suz. In particular, 25 ≤ |S| ≤ 221 and the maximal order of a quadrati-
cally acting group is either 4 or M/Z(M) ∼= Mat(22) and the maximal
order is 16. In Lemma C.13 we also find the dimensions for the ir-
reducible modules for M and, in particular, we see that there is no
20-dimensional irreducible representation. It follows that Hypothesis
5.2 (i), (j) and (k) cannot hold. Thus Hypothesis 5.2 (a) or (b) holds
and so either L is a classical group acting naturally on V or V is a
direct sum of two natural modules for L ∼= SLn(q).

Suppose that L ∼= SLn(q). Then, as n ≥ 3 and |S| ≥ 25, we have L ∼=
SL3(4) or SL4(2) by Lemma C.14. Since Lemma C.13 gives |V | ≥ 210,
we conclude that L ∼= SL3(4), |V | = 46 = 212 and M/Z(M) ∼= Mat(22).
Since NM(L) contains a Sylow 2-subgroup of M and M has no faithful
permutation representation of degree |M |/|Z(M)LS0| = 11, we have a
contradiction.

Now we assume that Hypothesis 5.2 (a) holds and that L 6∼= SLn(q).
Then, as the maximal order of a quadratic subgroup in M is 16, Lemma
C.14 yields L is isomorphic to one of Sp4(2)′, Sp6(2), Ω+

6 (2), Ω−6 (2),
Ω−8 (2), SU4(2), SU5(2) or SU3(q) with 4 ≤ q ≤ 16. Since |V | ≥ 210

by Lemma C.13, we have L ∼= SU5(2) or SU3(q) with q ∈ {4, 8, 16}.
In the first case |V | = 210 and so we have M ∼= Mat(12) or Mat(22)
both of which have order smaller than the order of L. So L ∼= SU3(q)
with 4 ≤ q ≤ 16. This gives |V | = 46 = 212, 86 = 218 or 166 = 224

and L contains a quadratically acting group of order q. If q ≥ 8, then
M/Z(M) ∼= Mat(22) and, if q = 4, then |V | = 212 and Lemma C.13
implies that F ∗(M) ∼= 3.Mat(22) or J2. But then in both cases |L| does
not divide |M |, and we have a contradiction. This completes the proof
of the lemma. �
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Lemma 5.10. Assume that Hypothesis 5.2 holds with L/Z(L) ∼=
PSL2(q). If r is a prime with r 6= p and E is an r-subgroup of GL(V )
which is normalized by L, then either L centralizes E or L ∼= SL2(5),
|V | = 54 and E ∼= 21+4

− or 4 ◦ 21+4
− and L acts irreducibly on V .

Proof. Assume that L acts non-trivially on E. If V is a direct
sum of at most two natural SL2(q)-modules, then Lemma C.11 yields
p = 2 as S operates quadratically on V and |S| 6= 3. Hence q = 2f .
Furthermore, CV (s) = [V, S] for all s ∈ S# and |S| ≥ 22 and so [E,L] =
1 by Lemma 2.14. Thus Hypothesis 5.2 (a) and (b) cannot hold.

If L does not act irreducibly on V , then Hypothesis 5.2 (g) holds.
So in this case L ∼= SL2(4) and |V | = 28. As EL is contained in GL8(2)
and since |GL8(2)| = 228 · 35 · 52 · 72 · 17 · 31 · 127 and 3 divides |L|,
we deduce that E is elementary abelian of order 34. But the minimal
degree of a non-trivial permutation representation of SL2(4) is 5 by
Galois [33, Satz II.8.28] and l(r, 2) = 2, and therefore Lemma 2.23
delivers |V | ≥ 210, which is a contradiction. Thus

L acts irreducibly on V

and by Lemma 2.24

CE(L) is cyclic.

Assume that E is elementary abelian and suppose first that q 6= 9.
Then by [33, Satz II.8.28] the minimum permutation degree of L is
at least q, and so Lemma 2.23 implies that V has GF(p)-dimension at
least ql(p, r). We consider the various possibilities for V .

If Hypothesis 5.2 (c) holds, then |V | = q8/3. Thus pq = pp
e ≤ p8e/3,

which means that 3pe ≤ 8e. As 3 divides e, the only solution to this
equation is p = 2 and e = 3. So L ∼= SL2(8) and |V | = 28. But in this
case we should have dimV ≥ 8l(r, 2) ≥ 16, a contradiction.

Thus one of Hypothesis 5.2 (d), (e) or (f) holds and so |V | ≤ p4e.
Assume that p is odd. Then pq ≤ p4e so that pe ≤ 4e. Since q 6= 9,
this is impossible. If p = 2, then l(r, 2) ≥ 2 and so we require 2q ≤ 4e.
This shows that e = 2, |V | = 28 and L ∼= SL2(4) contrary to L acting
irreducibly on V .

Suppose now that q = 9 and L/Z(L) ∼= PSL2(9) ∼= Alt(6). In this case,
|V | ≤ 93 = 36 and so, as the minimal non-trivial permutation repre-
sentation of L has degree 6 by [33, Satz II.8.28], we obtain |V | = 36

and l(r, 3) = 2 from Lemma 2.23. Therefore E is elementary abelian
of order at least 24 as 5 divides |L|. Furthermore, Lemma 2.23 shows
that L acts by transitively permuting the 6 maximal subgroups of E

41



which have non-trivial fixed vectors on V . Thus V is naturally the 6-
dimensional GF(3)-permutation module for L whereas we know V an
irreducible GF(3)L-module. This shows that no examples arise with E
abelian. Moreover, we may deduce that

L centralizes any abelian subgroup which it normalizes

and so such subgroups are cyclic.

Now assume that E is non-abelian. As every characteristic abelian sub-
group of E is cyclic, E is of symplectic type. Hence [2, 23.9] implies
that E contains an extraspecial normal subgroup E0 of order r1+2w.
Furthermore, setting R = CE(E0), we have E = RE0 and R is either
cyclic or r = 2 and R is dihedral, semidihedral or quaternion of order
at least 16.

If R is cyclic, then R = Z(E) and L acts on E/Z(E) of order
r2w. On the other hand, if R is dihedral, semidihedral, or quaternion,
then Z(E) = Z(E0) and Z(E/Z(E)) = E0/Z(E)Z(R/Z(E)) which has
order 21+2w. Since Z(R/Z(E)) = E ′/Z(E)∩Z(E/Z(E)), we obtain that
Z(R/Z(E)) is characteristic in E. Thus, whatever the structure of R,
L operates faithfully on an elementary abelian r-group of order r2w.
Therefore, by Lemma C.5, we have that

w ≥

{
(pe − 1)/4 if p is odd

2e−1 if p = 2

where the bound when p = 2 follows from the fact that w is an integer
greater than (2e − 1)/2. In addition, applying Lemma 2.12 we obtain
|V | ≥ pl(p,r)r

w
.

We consider the various possibilities for |V | given in 5.2.

Suppose first that Hypothesis 5.2 (c) holds. Then |V | = p8e/3. But
then 8e ≥ 3l(p, r)r(pe−1)/4, which has no solution as e is a multiple of
3 (we found the inequality, which holds for integers a ≥ 2 and b ≥ 3,
ab ≥ 2(1 + b(a− 1)) useful to bound e). Hence Hypothesis 5.2 (d), (e)
or (f) holds and we have |V | ≤ p4e. Thus

4e ≥ l(p, r)rw ≥ l(p, r)r(pe−1)/4

if p is odd and otherwise we obtain

4e ≥ l(2, r)r2e−1

.

The first equation is only satisfied when p = 3, e = 2, r = 2 and w = 2,
or p = 5, 7, e = 1, r = 2 and w = 2 whereas for the second equation
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we have no solutions.

So we have that M/Z(M) is one of PSL2(9), PSL2(5), PSL2(7) and
in all cases w = 2 and r = 2. Since PSL2(7) is not a subgroup of
Sp4(2), this case is impossible and so one of the first two cases occur.
We recall that E = E0R where E0 is extraspecial of order 21+2w = 25.
If M/Z(M) ∼= PSL2(9), then, as M/Z(M) is not isomorphic to a sub-
group of Ω±4 (2), we have |R| > 2. If R is not cyclic, then E contains
an extraspecial subgroup of order 27 and so, as Hypothesis 5.2 (d), (e)

or (f) holds, we obtain 36 ≥ |V | ≥ 323 from Lemma 2.12, which is
ridiculous. Hence R is cyclic of order at least 4, but then E requires
a representation of dimension 4 over a field of order at least 9 which
is impossible as in this case we obtain 36 ≥ |V | ≥ 94. Hence p = 5,
M/Z(M) ∼= PSL2(5) and furthermore |V | = 54. Hence either E ∼= 21+4

−
or E ∼= 4 ◦ 21+4

− and these are the claimed exception to the statement
that E and L commute. �

Lemma 5.11. Assume that Hypothesis 5.2 holds, L/Z(L) 6∼= PSL2(q)
and r is a prime with r 6= p. Then L centralizes every r-subgroup of
GL(V ) which it normalizes.

Proof. Assume that E ≤ GL(V ) is an r-group which is normalized
but not centralized by L. Assume first that p is odd. By Lemmas C.14
and D.17, L contains a subgroup A which acts quadratically on V . As
L does not centralize E, Lemma C.11 applies to the group 〈AEL〉. This
yields p = 3, |A| = 3 and that r = 2. Furthermore, either L/Z(L)
must be an alternating group of degree 2n + 1 or 2n + 2 or a simple
group of Lie type which is naturally defined in both characteristics 2
and 3. Thus, as L 6∼= PSL2(9) ∼= Alt(6), L/Z(L) ∼= Ω5(3) ∼= PSp4(3) ∼=
Ω−6 (2) ∼= PSU4(2) with V one of the corresponding GF(3)L-natural
modules. Moreover, E contains a subgroup isomorphic to 21+8

+ or 21+6
−

in the respective cases. Since |V | ≤ 35, this contradicts Lemma 2.12.
Therefore

p = 2.

If q = 2e > 2, then, by Lemma 5.5 L has an elementary abelian sub-
group A of order 4 such that CV (a) = CV (A) for all a ∈ A#. But then
Lemma 2.14 shows that L centralizes E. Therefore

q = 2.

It is now obvious that L 6= GL(V ), as then there is no candidate for E.

Assume that E is elementary abelian of order rt. We first consider
the special cases given in Hypothesis 5.2 (i), (j) and (k). Thus we have
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one of the following situations L ∼= SL6(2) or SU6(2) with |V | = 220,
L ∼= Ω+

12(2) with |V | = 232 or L ∼= E7(2) with |V | = 256. Then, as
l(2, r) ≥ 2, we have t ≤ 10 in the first two cases, t ≤ 16 in the third
and t ≤ 28 in the last. But Lemma C.5 shows that in each case L/Z(L)
has no projective representation in odd characteristic of dimension at
most t and therefore L cannot act on E.

So we may assume that Hypothesis 5.2 (a) or (b) holds. Thus L ∼=
SLm(2), Sp2m(2)′, SUm(2) or Ω±2m(2) and |V | = 22m. As l(2, r) ≥ 2,
|E| ≤ rm by Lemma 2.22. Since m ≤ R2(L), application of Lemma
C.6 yields that L/Z(L) ∼= SL3(2), Sp4(2)′ or SU4(2). In particular, L
is contained in GL8(2) and so r ≤ 4. Thus L 6∼= Sp4(2)′. If L ∼= SL3(2),
then |E| ≤ 33 which is impossible as 7 does not divide |GL3(3)|. As
|GL8(2)|3 = 35, we see that SU4(2) cannot normalize a group of order
34 in GL8(2).

Hence L centralizes every elementary abelian subgroup of GL(V ), which
it normalizes and consequently the same is true for any abelian group
which L normalizes.

If L does not act irreducibly on V , we have L ∼= SLm(2) and the
centralizer in GL(V ) of L is either trivial or is isomorphic to SL2(2).
Hence any abelian subgroup of GL(V ) which is centralized by L is triv-
ial if L ∼= Sp2n(2), Ω±2m(2) or has order 3. As Z(E) 6= 1, we have |Z(E)|
is cyclic of order 3 and L ∼= SLm(2) or SUm(2). Furthermore, any char-
acteristic subgroup of E is cyclic, and so E is of symplectic type and
Z(E) has order 3. Thus E is extraspecial. By Lemma 2.12, |V | ≥ 43w

which gives 3w ≤ m. In particular Rp′(L) ≤ m and Lemma C.6 yields
L ∼= SL3(2) or SU4(2). But then we have w = 1, a contradiction as
neither of these groups can act non-trivially on an extraspecial group
of order 27. �

We can now gather the previous lemmas of this section together
and present a proof of Proposition 5.3.

Proof of Proposition 5.3. Suppose that Hypothesis 5.2 holds
and that L is not Sylow maximal in GL(V ). Then there exists M ≤
GL(V ) such that L is Sylow embedded in M and L is not normal in
M . Recall that in this situation S ∈ Sylp(L) and S0 ≥ S is such that
S0 ∈ Sylp(NM(L)) ⊆ Sylp(M).

Suppose that F (M) is not centralized by L. Then by Lemmas 5.10
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and 5.11, L ∼= SL2(5) and [F (M), L] is a 2-group with L acting irre-
ducibly on V . Thus CM(L) is cyclic of order at most 4 and F (M) ∼=
21+4
− or 4 ◦ 21+4

− . Moreover, F (M) acts irreducibly on V . Therefore,
Lemma 2.24 implies that CM(F (M)) is cyclic and E(M) = 1. Hence
M/Z(F (M)) ≤ Aut(F (M)). If F (M) ∼= 21+4

− , we obtain F (M)L is
normal in M . In the second case we have Out(F (M)) ∼= Sp4(2), and
these two cases together give part (vi) of the proposition. Therefore,
we may assume that

L centralizes F (M).

Since [F (M), L] = 1, we have E(M) 6= 1. Suppose that E(M) is a
p′-group. Then p is odd and Lemma C.10 implies that L contains
no non-trivial elements which operate quadratically on V . Therefore
L/Z(L) ∼= PSL2(q) by Lemma D.17 and Hypothesis 5.2. Furthermore,
as L centralizes F (M), CL(E(M)) ≤ Z(L).

If L normalizes all the components of E(M), then L induces by conju-
gation automorphisms of each component. Since L has order divisible
by p and E(M) does not, we deduce that L operates as a group of
outer automorphisms and this contradicts the Schreier property [27,
Theorem 7.1.1 (a)]. Hence

L permutes the components of E(M) non-trivially.

Let K be a component which is not normalized by L. Then, by Ga-
lois [33, Satz II.8.28], either KL contains at least q components or
L/Z(L) ∼= PSL2(9) and KL has at least 6 components. By Lemma
2.15, there exists x ∈ K \ Z(K) of odd prime order r 6= p. Suppose
that L 6∼= PSL2(9). Then 〈xL〉 contains an elementary abelian group of
order rq. Now we have |V | ≤ p4e from Hypothesis 5.2 and |V | ≥ l(p, r)q
by Lemma 2.22 and so

pe ≤ l(p, r)pe ≤ 4e.

Because p is odd, this yields e = 1 and p = 3 which is impossible as L is
perfect. If L/Z(L) ∼= PSL2(9), |V | = 34 or 36. Hence E(M)L ≤ GL6(3).
However, r is odd and so l(3, r) > 2, and we have 6 ≥ 6l(3, r), a
contradiction. Therefore p divides |E(M)|.

Now we have S0 ∩ E(M) ∈ Sylp(E(M)) and 1 6= [S0 ∩ E(M), L] ≤
L ∩ E(M) which is normal in L. This means that L ≤ E(M). Hence
there is a component K1 in E(M), whose order is divisible by p. Since
K1 is normalized by L and S0∩K1 ∈ Sylp(K1), we get L ≤ K1 as CM(L)
is a p′-group. As CM(L) is a p′-group, so is CM(K1) and so we see that
K1 is the unique component of M of order divisible by p. In particular,
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K1 is normal in M . Now we note that S0 ∩K1 normalizes L and so L
is Sylow embedded in K1. Therefore L < K1 as L is not normal in M .
If K1 = E(M) then Lemmas 5.7, 5.8 and 5.9 imply Proposition 5.3.
Thus it remains to show that K1 = E(M). Suppose that K1 6= E(M).
Then, as CM(K1) is a p′-group, p is odd and by Lemma 2.24 V is not
an irreducible K1-module. This contradicts Lemmas 5.7, 5.8 and 5.9
and so K1 = E(M). This completes the proof of the proposition. �

We now move on to study situations where the acting group is not
quasisimple. These sort of configurations tie in closely with the Levi
complements of the normalizer of a root subgroup in orthogonal groups.
We start with the small rank cases.

Lemma 5.12. Let V be a vector space over GF(p) and L ≤ GL(V ).
Assume that one of the following holds.

(a) L ∼= SL2(q) ◦ SL2(q) ◦ SL2(q), q = pe ≥ 4 and V is the tensor
product of three natural SL2(q)-modules.

(b) L ∼= SL2(q) ◦ SL2(q), q = pe ≥ 4 and V is the tensor product
module of two natural SL2(q)-modules.

(c) L ∼= SL2(q) ◦SL2(q2), q = pe and V is the tensor product of a
natural SL2(q)-module and the 4-dimensional Ω−4 (q)-module.

(d) L ∼= SL2(q) × PSL2(q), q = pe > 3, p odd, and V is the
tensor product module of the natural SL2(q)-module and the
3-dimensional Ω3(q)-module.

Then L is not Sylow embedded in a quasisimple subgroup of M ≤
GL(V ), M 6= L.

Proof. Suppose the statement is false. Then L < M and NM(L)
contains a Sylow p-subgroup S0 of M . Furthermore, by Lemma A.17,
M is not a group of Lie type in characteristic p.

In all cases under consideration, define L1 to be the first factor
in the description of L. Then VL1 is a direct sum of natural SL2(q)-
modules. Hence S1 = S0 ∩ L1 acts quadratically on V .

Suppose first that p is odd. Then, by Lemma C.12, we have |S1| = 3. It
follows that (c) holds. Therefore L ∼= SL2(3)×SL2(9), |V | = 38 and M
has elementary abelian Sylow 3-subgroups of order 27. Furthermore,
Lemma C.12 also yields M/Z(M) ∼= PSUn(2), n ≥ 5, Alt(n), n ≥ 5 or
a collection of exceptional examples Ω+

8 (2), G2(4), PSp6(2), Co1, Suz
or J2. By considering the orders of the Sylow 3-subgroups of the can-
didates for M , we obtain that M/Z(M) ∼= G2(4) or J2. However, by
[27, Table 5.3g] J2 contains PSU3(3) and the same applies for G2(4)
as PSU3(3) ∼= G2(2)′ ≤ G2(4) by [1], and so we see that these groups
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have extraspecial Sylow 3-subgroups. We conclude that there are no
candidates for M . Hence

p = 2.

Assume that q = 2e ≥ 4. Then |S1| = q ≥ 4 and so M contains a
quadratic fours group. As L and so also M has to contain an elementary
abelian r-group of order at least r2 for some prime r > 3, using Lemma
C.13 and considering the orders of M yields

M/Z(M) ∼= Alt(m) for some m ≥ 10

or q = 4 and M/Z(M) ∼= J2,Co1,Co2 or Suz.

Suppose that M/Z(M) is a sporadic simple group. Then q = 4 and
|V | = 48 = 216 or 44 = 28 by assumptions (a), (b) and (c). Since M has
no trivial composition factors on V , this contradicts the data provided
in Lemma C.13 (i).

So we have that M/Z(M) ∼= Alt(m) with m ≥ 10. Since S0 normal-
izes L, we see that S ′0 normalizes each component of L and S ′′0 ≤ L.
Therefore S ′′0 is abelian. As Alt(18) contains Sym(16) which has Sylow
2-subgroups Dih(8) oDih(8), we see that the second commutator group
of a Sylow 2-subgroup of Alt(18) is non-abelian. Hence 10 ≤ m ≤ 17.
In particular a Sylow 2-subgroup of M does not contain elementary
abelian subgroups of order 29. Thus, if q ≥ 8, then (b) holds with
q = 8 or 16. If q = 16, then 172 divides |M |, a contradiction. Suppose
that q = 8. Then L ∼= SL2(8)×SL2(8), 14 ≤ m ≤ 17 and L1 centralizes
an element σ of order 7. Since m ≤ 17, it follows that σ is a 7-cycle
and that L1 embeds into Sym(m−7). Using [33, Satz II.8.28], we have
m − 7 ≥ 8 + 1 = 9. Thus m ∈ {16, 17}. Now Lemma C.4 implies
212 = |V | ≥ 214, a contradiction. Hence

q = 4.

Suppose that (a) holds. Then L ∼= SL2(4) × SL2(4) × SL2(4) and so
M contains an elementary abelian subgroup of order 53. Let τ ∈ L1

have order 3. Then as VL1 is a direct sum of natural L1-modules, we
have CV (τ) = 0. Now τ commutes with a subgroup of L isomorphic to
Alt(5)×Alt(5) and so we deduce that τ is conjugate to either (1, 2, 3)
or (1, 2, 3)(4, 5, 6). Neither of these elements act fixed-point-freely on
the natural Alt(m)-module. Hence V must be the spin module for M

by Lemma C.13. We therefore have 16 = dimV ≥ 1
2
2b

m−1
2
c, which is a

contradiction as m ≥ 15.

Suppose that (b) holds. Then L ∼= SL2(4) × SL2(4) and |V | = 28.
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Thus m ≤ 11, and, as 52 divides |M |, we get that m = 10 or 11.
Lemma C.4 then gives m = 10. Since |NM(L)|2 = |M |2, we deduce
that NM(L) ∼= Sym(5) o 2, but Alt(10) does not contain such a sub-
group. Hence (b) does not hold.

Finally suppose that (c) holds. Then L ∼= SL2(4) × SL2(16) and so
as 17 divides |L| we get m = 17. Since L1 commutes with an element
of order 17, we have a contradiction. This contradiction shows that

q 6= 4.

Since q = 2, only case (c) is possible. So L ∼= Sym(3) × Alt(5) and
|V | = 28. Furthermore, |M |2 ≤ 16 and M contains an elementary
abelian subgroup of order 8. By Lemma 2.16, 2×Dih(8) cannot be the
Sylow 2-subgroup of a simple group, and so M has elementary abelian
Sylow 2-subgroups of order 8. Thus M ∼= J1 or 2G2(3a) by Lemma
3.16. However 11 divides |J1|, and not |GL8(2)| and 2G2(3a) has order
coprime to 5 and so q 6= 2. This proves the lemma. �

Lemma 5.13. Suppose that p is a prime, G is a finite group with
G = E(G), Op(G) = 1 and S ∈ Sylp(G). Assume that K ≤ G, K1 is a

component of K and K = 〈KS
1 〉. Then either K centralizes S or K is

contained in a component of G.

Proof. Suppose that S does not centralize K. Let J1, . . . , Jm be
the components of G and set Si = S ∩ Ji. As G = E(G), Ji E G.
Since S = S1 · · ·Sm, and K is not centralized by S, we may choose
S1 such that [S1, K] 6= 1. Therefore 1 6= [S1, K] ≤ J1 ∩ K. Since
[S1, K] is normalized by K = E(K), we have that [S1, K] contains
a component of K or [S1, K] ≤ Z(K). In the latter case, we know
1 = [S1, K,K] = [S1, K] 6= 1, a contradiction. Thus J1 contains a
component of K and, as S normalizes J1 and permutes the components
of K transitively by conjugation, we have K ≤ J1 as claimed. �

In the next lemma we complete the investigation of groups satisfying
the hypothesis of Lemma 5.12.

Lemma 5.14. Let V be a vector space over GF(p) and L ≤ GL(V ).
Assume that one of the following holds.

(a) L ∼= SL2(q) ◦ SL2(q) ◦ SL2(q), q = pe ≥ 4 and V is the tensor
product of three natural SL2(q)-modules.

(b) L ∼= SL2(q) ◦ SL2(q), q = pe ≥ 4 and V is the tensor product
module of two natural SL2(q)-modules.

(c) L ∼= SL2(q) ◦SL2(q2), q = pe and V is the tensor product of a
natural SL2(q)-module and the 4-dimensional Ω−4 (q)-module.
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(d) L ∼= SL2(q) × PSL2(q), q = pe > 3, p odd, and V is the
tensor product module of the natural SL2(q)-module and the
3-dimensional Ω3(q)-module.

Then L is Sylow maximal in GL(V ).

Proof. Suppose that L is Sylow embedded in M ≤ GL(V ), L not
normal in M , and let S0 ∈ Sylp(NM(L)) ⊆ Sylp(M). Furthermore, as-
sume that M is chosen of minimal order with the above properties.
When studying case (a), we shall assume that the proposition has al-
ready been proved for case (b).

Note that |V | ≤ q8 and so, writing q = pe, we have |V | ≤ p8e. If pos-
sibility (a) holds, then we write L = L1L2L3 with Li ∼= SL2(q) normal
in L and in the other cases we write L = L1L2 and we always assume
that L1

∼= SL2(q). Let Si = S0 ∩ Li ∈ Sylp(Li). Then, in particular, S1

acts quadratically on V . As a consequence of the structure of L and its
action on V , we obtain the following statement.

(5.14.1)

(i) In case (a), for {i, j, k} = {1, 2, 3}, CV (Si) is the tensor prod-
uct of two natural SL2(q)-modules for LjLk and CV (SiSj) is
a natural SL2(q)-module for Lk.

(ii) In case (b), for {i, j} = {1, 2}, CV (Si) is a natural SL2(q)-
module for Lj;

(iii) In case (c), CV (S1) is a 4-dimensional orthogonal SL2(q2)-
module for L2 and CV (S2) is a natural SL2(q)-module for L1;
and

(iv) In case (d), CV (S1) is a 3-dimensional orthogonal PSL2(q)-
module for L2 and CV (S2) is a natural SL2(q)-module for
L1. �

(5.14.2) Assume r is a prime with r 6= p and that E ≤ GL(V ) is an r-
group which is normalized by L. Then L is normal in EL. In particular,
if q > 3, then E is centralized by L.

Suppose that L acts non-trivially on E and that L is not normal in
EL. Choose E with |E| be maximal. From the at most three choices,
if possible, select L1 so that it operates non-trivially on E.

Suppose that p is odd. Suppose that L1 does not centralize E. As S1 acts
quadratically Lemma C.11 yields q = |S1| = 3 and r = 2. The only pos-
sibility is that (c) holds. So L = L1◦L2

∼= SL2(3)◦SL2(9) and |V | = 38.
Note that |GL8(3)|2 = 219 and |GL8(3)|s ≤ s2 for s > 3 a prime. If L2

centralizes E, then EL1 ≤ CGL(V )(L2) ∼= GL2(3), E = O2(L1) ≤ L and
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so EL = L, a contradiction. So L1 ◦ L2 acts on E with L2 operating
non-trivially. It follows that E is a 2-group and L/O2(L) ∼= 3×PSL2(9)
operates faithfully on E/Φ(E). Let E0 be a critical subgroup of E. Then
E0 admits S1L2

∼= 3 × PSL2(9) faithfully. Since S1 acts quadratically
on V , E1 is not elementary abelian and Z(E1) commutes with S1L2.
Therefore V = CV (Z(E1))⊕ [V, Z(E1)] is a S1L2 invariant decomposi-
tion. Since L2 has just two composition factors on V , V = [V, Z(E1)]
and Z(E1) acts as scalar matrices. Thus Z(E1) = Z(L2). Thus E1 is
extraspecial. Since |V | = 38, we have |E1| ≤ 27. Now Ω+

6 (2) ∼= Alt(8)
has no subgroup of order 27 and Ω−6 (2) ∼= PSp4(3) has no non-soluble
3-local subgroup. Hence this case cannot occur. This argument shows
that L1 centralizes E. In particular, we have proved that, if p is odd,
then (c) or (d) holds as otherwise we may change the choice of L1.

So suppose that (c) and (d) with [E,L1] = 1. Then EL2 centralizes
L1. We have that EL2 acts faithfully on V/CV (S1) ∼= [V, S1] which is
either a 3- or 4-dimensional module over GF(q). But then Lemma 5.10
yields L2

∼= SL2(5) a contradiction as L2
∼= SL2(q2) or PSL2(q) in this

case. This proves (5.14.2) for p odd.

Suppose that p = 2. We only need to consider cases (a), (b) and (c).

We have CV (s) = CV (S1) for all s ∈ S#
1 . If q > 2, then by Lemma

2.14 we get that [E, S1] = 1 and so [E,L1] = 1. Again, by changing
the choice of L1, we have a contradiction unless (c) holds. Hence E is
centralized by L1 and L2

∼= SL2(q2) ∼= Ω−4 (q) acts faithfully on E. Fur-
thermore, EL2 acts faithfully on [V, S1] of order q4. Again Lemma 5.10
provides a contradiction. So q = 2, and again (c) holds this time with
L2
∼= SL2(4) ∼= Ω−4 (2) and |V | = 28. If L2 centralizes E, then EL1 em-

beds in GL2(2) and so E ≤ L1 and L = EL, a contradiction. So suppose
that [E,L2] 6= 1. Since L2 is not isomorphic to a subgroup of GL2(5)
or GL2(7), by considering |GL8(3)| we have that r = 3. Then |E| ≥ 34

as 5 does not divide |GL3(3)|. It follows that EO3(L1)L2 has Sylow 3-
subgroups of order at least 36, a contradiction as |GL8(2)|3 = 35. This
completes the proof of (5.14.2).

(5.14.3) q ∈ {2, 3}.

Assume that q > 3. Then L is a product of components of LS0 By
(5.14.2), L ≤ CM(F (M)) and so E(M) 6= 1 and [E(M), Li] 6= 1 for
each Li. Suppose that L is normal in M1 = E(M)L. Then each Li is a
component of M1 and so Li ≤ E(M) and is a component of M . Hence
L is a product of components of M and as CM(L) is coprime to p, we
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have L is normal in M , another contradiction. Hence by the minimality
of M , M = E(M)L.

Let E1 be the product of all the components of M which are not
divisible by p and assume that E1 6= 1. Then L certainly does not cen-
tralize E1. Furthermore, L is Sylow embedded in E1L. Since S1 acts
quadratically on V , Lemma C.10 implies that L1 centralizes E1. It fol-
lows that L2E1 or, if (i) holds, L2L3E1 acts on CV (S1). By Thompson’s
A × B-Lemma, this action is faithful and so we may apply (5.14.1)
with Proposition 5.3 (or case (b) of this lemma assuming that it has
already been proven) to obtain a contradiction. Thus every component
of M has order divisible by p.

Let SE = S∩E(M). Then [SE, L] ≤ L∩E(M). If L∩E(M) ≤ Z(L),
then we have [SE, L, L] = [SE, L] = 1 and we deduce that SE = 1 and
CM(L) has order coprime to p. Hence L ∩ E(M) contains at least
one component Li of L. Now 〈LSEi 〉 ≤ J1, a component of E(M), by
Lemma 5.13. Notice that for j 6= i, [Si, Lj] = 1, Lj normalizes J1.
In particular, L normalizes J1 and so also CE(M)(J1). Suppose that
L 6≤ E(M). Choose k as small as possible so that L∩E(M) ≤ J1 · · · , Jm
with J1, . . . , Jm components of M . Then, by Lemma 5.13, m = 1, 2 as
L 6≤ E(M). Suppose that E(M) 6= J1Jm. Then [CE(M)(J1Jm)∩SE, L] ≤
L∩CE(M)(J1Jm) ≤ Z(L) and so is CE(M)(J1Jm)∩ SE is centralized by
L, a contradiction as every component of M has order divisible by p
and CM(L) is a p′-group. Hence E(M) = J1Jm and as L must act
faithfully on E(M), we have E(M)L = E(M), a contradiction as we
have assumed L 6≤ E(M). Therefore L ≤ E(M) and so

M = E(M).

By Lemma 5.12, L 6≤ J1. Now assume that J1, . . . , Jm, where 2 ≤ m ≤
3, are the components of M . Let k ≤ m, CM(Jk) contains CL(L ∩ Jk)
and acts upon CV (S∩L∩Jk). This action is faithful by the Thompson
A × B-Lemma. Thus CL(L ∩ Jk) is Sylow embedded in CM(Jk) (with
respect to GL(CV (S ∩ L ∩ Jk))). If CL(L ∩ Jk) has two components,
then (5.14.1)(i) shows that the case (b) of this lemma holds. Since
we are assuming that this is true when case (a) is considered, we have
CL(L ∩ Jk) is Sylow maximal in CM(Jk). Thus CL(L ∩ Jk) = CM(Jk)
in this case. In particular, if m = 3, then we have a contradiction as in
this case E(M) = L. Hence

m = 2.

Assume that (a) holds. Then we may as well also assume that L2L3 ≤
J2. The above paragraph, then shows that J2 = L2L3, a contradiction.
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Thus
(a) does not hold.

We now choose notation so that L1 ≤ J1 and L2 ≤ J2. Furthermore,
we have L1 is Sylow embedded in J1 (with respect to GL(CV (S2))) and
L2 is Sylow embedded in J2 (with respect to GL(CV (S1))). (5.14.1)
provides the hypothesis of Lemma 5.7.

Since GF(q) is a splitting field for the action of L2 on V , we have
CM(J2) supports a GF(q) structure on CV (S2). It follows that J1 = L1.
Similarly J2 supports a GF(q) structure on CV (S1). Thus if (b) holds,
we also have J2 = L2 and we have a contradiction. In cases (c) and (d),
we deploy Lemma 5.7 to see that (c) holds with J2

∼= 2.PSL3(4). Since
this group is not contained in PSL3(9), we have a contradiction.

This proves the claim. �

By hypothesis and the last claim we have (c) holds and |V | = p8

with p = 2 or 3 and L2
∼= Ω−4 (2) ∼= PSL2(4) or L2

∼= Ω−4 (3) ∼= PSL2(9)
respectively. Furthermore, S0∩L is elementary abelian of order p3 and
either S0 = S0 ∩ L or S0

∼= 2 × Dih(8). From (5.14.2), L2 centralizes
F (M) and so E(M) 6= 1 and as M ≤ GL8(p), L2 normalizes every
component of M . Hence L2 ≤ E(M). By Lemma 5.13, L2 ≤ K where
K is a component of M . Suppose that L2 = K. Then L1 centralizes K
and CM(K) embeds into GL2(p). But then L is normal in M and we
have a contradiction.

If K does not act irreducibly on V , then K embeds into GL4(p) and
L2 is Sylow embedded in K. Furthermore, L2 acts on the submodule
as Ω−4 (p). Application of Lemma 5.7 provides a contradiction. Hence
we have that K acts irreducibly on V and, in particular [K,L1] 6= 1.
So either L1 ≤ K or at least the element of order p in L1 induces outer
automorphism on K.

We now consider the possibilities for K. By Lemma A.17 we see
that K is not of Lie type defined in characteristic p. Assume that K is
a sporadic simple group. Then Lemma C.2 shows that

K/Z(K) ∼= Mat(11),Mat(12),Mat(22), J1, J2.

We have that |Mat(11)|3 = 32, |Mat(12)|3 = 33, |Mat(22)|3 = 32,
|J1|3 = 3 and |J2|3 = 33. Assume p = 3. As no sporadic group has an
outer automorphism of order 3 (see [27, Table 5.3]), we have L1 ≤ K
and so K has elementary abelian Sylow 3-subgroups of order 27. By
[27, Table 5.6.1] this is not true for any of these groups. So we have
p = 2. As 11 does not divide |GL8(2)| we have K ∼= J1 or J2. Since
|J2|2 = 27 and |S| ≤ 24, we have K ∼= J1 and L ≤ J1. As |J1|3 = 3, we
have a contradiction. So K is not a sporadic simple group.
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Suppose that K is of Lie type defined in characteristic r, r 6= p. Then
Rp′(K) ≤ 8. Now Lemma C.6 shows that K/Z(K) is on the following
list

- PSL2(r), r ≤ 17 with r odd, PSL2(4), PSL2(8), PSL3(2),
PSL3(4), PSL4(2).

- PSU3(3), PSU4(2), PSU4(3).
- PSp4(2)′, PSp4(3), PSp6(2), PΩ+

8 (2).
- G2(2)′, 2B2(8), 2G2(3)′.

When p = 2, we additionally know that |S| ≤ 16 and 15 divides
|L2| and so also |K|. Just PSL2(r) with r odd remains. Since addi-
tionally 15 divides |K|, we have r ≤ 9. Since L2 ≤ K, we get r = 9.
We treat this case below as an alternating group. So p = 3. Again we
treat Alt(6) ∼= PSp4(2)′ later. Since S is elementary abelian of order
9 or 27, and as SL3(4) has non-abelian Sylow 3-subgroups, from the
candidates above we only need to consider K ∼= PSL3(4) or SL4(2)
with |S0 ∩ K| = 9. Hence S0 must induce an outer automorphism on
K and therefore K ∼= PSL3(4). Since PGL3(4) ≥ PGU3(2) which has
non-abelian Sylow 3-subgroups, we have a contradiction.

Finally consider K/Z(K) ∼= Alt(m) for some m ≥ 5. If p = 3, S0 ≤ K
and |S0| = 27, a contradiction. So p = 2 and as |S0| ≤ 16, n = 6, 7.
Since L2

∼= Alt(5) and L′1 has order 3, we see that L′1 is not contained
in K and so we conclude that L′1 centralizes K and L1 induces an
outer automorphism of K centralizing L2. It follows that K ∼= Alt(7)
and M = (3×Alt(7)):2. In particular in K we have Sym(5) containing
L2, but then by Lemma E.8 L2 is not the orthogonal group. This final
contradiction proves the lemma. �

Proposition 5.15. Let p be a prime, V be a vector space over
GF(p) and L ≤ GL(V ) with L ∼= SL2(q) ◦ Ωε

t(q), t ≥ 5, q = pe and
ε = ± if t is even and otherwise ε = 0, and q is odd. Suppose that,
as a GF(q)L-module, V is the tensor product of the natural orthogonal
module of dimension t for Ωε

t(q) with the natural 2-dimensional module
for SL2(q). Then L is Sylow maximal in GL(V ).

Proof. Assume that the claim is false. Thus there exists M ≤
GL(V ) such that L is Sylow embedded in M and L is not normal
in M . In particular, we have Sylp(NM(L)) ⊆ Sylp(M). We choose M
of minimal order with this property and let S0 ∈ Sylp(NM(L)) and
S = S0 ∩ L.
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Decompose L as L = L1L2, with L1
∼= SL2(q) and L2

∼= Ωt(q).
Notice that, as a GF(q)L1-module, V is a direct sum of natural SL2(q)-
modules and so S1 = S ∩ L1 acts quadratically on V and CV (s) =

CV (S1) for all s ∈ S#
1 . From the point of view of L2, we have VL2 is

a direct sum of two natural modules. Since the splitting field of these
representations is GF(q), we have CGL(V )(L2) ∼= GL2(q) and, in partic-

ular, we observe that L1 = Op′(CGL(V )(L2)) is normal in CGL(V )(L2).

Suppose that L2 does not centralize F (M). As L2 is quasisimple, this
is the case if E(M) = 1. Choose r such that L2 does not centralize
R = Or(M) and recall that r 6= p as L acts irreducibly on V . Then
M = RL by the minimal choice of M . By Lemma C.14, L2 contains
elements which act quadratically on V and so [R,L2]L2 is the normal
closure of such elements. If p is odd, Lemma C.11 applies to show that
L2/Z(L2) ∼= Ω5(3) ∼= PSU4(2) and [R,L2] contains an extraspecial
subgroup of order 21+8. Lemma 2.12 implies that

q2t = 310 = |V | ≥ 324 ,

which is a contradiction. Hence

p = 2.

Assume that q ≥ 4. Then, as CV (S1) = CV (s) for all s ∈ S#
1 , Lemma

2.14 shows that S1 centralizes R. Hence RL2 embeds into GL(CV (S1))
by the Thompson A×B-Lemma. Since L2 is Sylow embedded in RL2

and CV (S1) is the orthogonal GF(q)L2-module, Lemma 5.11 applies to
yield a contradiction. Therefore

q = p = 2, |V | = 22t, t = 2m is even and ε = ±.
Suppose that E ≤ R is elementary abelian and normalized by L2.
Assume further that L2 acts faithfully on E. Then, as p = 2, l(r, 2) ≥ 2
and so |E| ≤ rt by Lemma 2.23. Furthermore, we may assume CV (E) =
1 and so V is a direct sum of centralizers of hyperplanes. This now shows
that there are at most t of them. If L2 fixes all these hyperplanes F ,
then as L2 is simple it centralises E/F for all hyperplanes and then E,
a contradiction. Hence L2 acts faithfully on theses hyperplanes and so
L2 must embed into Sym(t). Since the 2-rank of Sym(t) is m and the
2-rank of Ω±t (2) is at least (m − 1)(m − 2)/2 (see Lemma C.14), we
have t = 2m ≤ 8. Since Ω±6 (2) is not a subgroup of Sym(6) and Ω±8 (2)
is not contained in Sym(8), we have a contradiction. We conclude that
L2 centralizes every characteristic elementary abelian subgroup of R.
Since CGL(V )(L2) = L1, we must have r = 3. Now suppose that E
be a critical subgroup of R. Then E is special and Z(E) has order 3.
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Thus E is extraspecial of order 31+2w. Now Lemma 2.12 yields that
22t = |V | ≥ 43w which gives

t ≥ 3w.

If w = 1, then Aut(E) is soluble and we have a contradiction. Similarly,
if w = 2, then L2 embeds into GL2(9) which it does not. Therefore
t ≥ 33 = 27 > 8. Now L2 contains a subgroup isomorphic to Alt(t− 1)
and so Lemma C.4 implies that 2w ≥ t−3 which means that 2w ≥ t−2
as t is even. However this gives

t ≥ 3w ≥ 3(t−2)/2

so that, by the binomial theorem,

t2 ≥ 3t−2 ≥ 1 + 2(t− 2) + 2(t− 2)(t− 3)

which yields the contradiction 27 ≤ t ≤ 6. We have proven that

(5.15.1) F (M) is centralized by L2. In particular, F (M) 6= F ∗(M).

Suppose that E(M) has order coprime to p. Then p is odd. Since
L2 contains an element x which acts quadratically on V , Lemma C.10
implies that x centralizes E(M) and so x centralizes F ∗(M) by (5.15.1),
a contradiction as x ∈ L2 \ Z(L2). Hence p divides |E(M)|. Let SE =
S0 ∩ E(M) ∈ Sylp(E(M)). Then, as E(M) is normalized by L and

CS(L) = 1, we have [SE, L] 6= 1 and so 〈SLE〉 = L1, L2 or L.
Suppose that L2 6≤ E(M). Then L1 = 〈SLE〉 ≤ E(M). Further-

more, if K is a component of M and p divides |K|, we have that
〈(SE ∩ K)L〉 = L1 and so now we have L1 ≤ K and K is the unique
component of M which has order divisible by p. Moreover, L2 normal-
izes K. If L2 centralizes K, then K = L1

∼= SL2(q) and q ≥ 4. Further-
more, as L2 centralizes F (M) and L2 6≤ E(M), we have E(M) > K.
Let K1 = CE(M)(K). Then p does not divide |K1| and L2K1 acts faith-
fully on CV (S1) by the A×B-Lemma. Since L2 is Sylow embedded in
K1L2 with respect to GL(CV (S1)), we may apply Proposition 5.3 to see
that [L2, K1] = 1, but then L2 centralizes E(M) and we have a contra-
diction. Hence L2 does not centralize K. But now L2 ≤ KCM(K) by
the Schreier property [27, Theorem 7.1.1 (a)]. By minimality we may
assume that M = KL2. But then we get that E(M) = KL2 and so
L2 ≤ E(M), we have a contradiction. Therefore

L2 ≤ E(M).

Let X be a component of M which does not commute with L2. Then as
S does not contain a subgroup isomorphic to S2×S2, we have L2 ≤ X
and X is normalized by L1. Suppose that L2 = X. Then L2 is normal in
M and so is CM(L2) and thus L1 = Op′(CM(L2)) is normalized by M .
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But then L is normal in M , a contradiction. Hence L2 6= X. Since X is
normal in M , if CS1(X) 6= 1, then L1 centralizes X. Thus, in this case,
X embeds into GL(CV (S1)) and, as SE normalizes L2, L2 is Sylow em-
bedded in X with CV (S1) the natural L2-module. Now Proposition 5.3
provides a contradiction to L2 6= X. Hence CS1(X) = 1. Suppose that
CS(X) 6= 1. Then as L2 ≤ X, CS(X) ≤ S∩Op′(CM(L2)) = S∩L1 = S1.
Since no element of S1 centralizes X, we conclude that CM(X) is a p′-
group. Now we see that if q > 3, then L ≤ K and otherwise either
L′1 ≤ K or L′ ≤ K.

We now consider the possibilities for the quasisimple group X. As
usual, since (S ∩ X)L2 contains a Sylow p-subgroup of X, we have
X is not a group of Lie type in characteristic p by Lemma A.17.

Assume that p is odd. Then Lemma C.12 applied to XS1 shows that
q = 3 = p and there is no quadratic group of order 9 on V . Since the re-
striction VL2 is a direct sum of two natural modules GF(q)L2-modules,
Lemma C.14 implies that

L2
∼= Ω5(3) or Ω−6 (3).

Suppose that L2
∼= Ω5(3). Then 34 ≤ |X|3 = 35. Applying Lemma

C.12 yields X/Z(X) ∼= PSU5(2), or Alt(n), n ≤ 14, Ω+
8 (2) or PSp6(2).

As L2 has no permutation representation of degree less than 27 by
[20, Theorem 71], X/Z(X) 6∼= Alt(n) with n ≤ 14. Suppose that
X/Z(X) ∼= PSU5(2) or Ω+

8 (2). Then L1
∼= SL2(3) and L1 ≤ X. Now L2

is contained in a parabolic subgroup of X which is impossible. Finally,
if X/Z(X) ∼= Sp6(2), then S1 induces outer automorphisms on X and
this is impossible. Thus L2 6∼= Ω5(3).

Suppose that L2/Z(L2) ∼= PΩ−6 (3) ∼= PSU4(3). Then 36 ≤ |X|3 ≤ 37

and, as Z(L1) acts as scalars on V , we have that Z(L1) ≤ Z(X). It fol-
lows from Lemma C.12 that the candidates for X/Z(X) are PSU6(2),
Alt(n), 15 ≤ n ≤ 17, or Suz. If X/Z(X) is an alternating group, then
|S ∩X| = 36 and so S1 6≤ X. Since CM(X) is a 3′-group, we infer that
X has an outer automorphism of order 3, a contradiction. Suppose that
X/Z(X) ∼= PSU6(2). Then R3(X) ≤ 12, and this contradicts Lemma
C.5. Finally suppose that X/Z(X) ∼= Suz. Then L1 ≤ X, X ∼= 2.Suz
and taking x ∈ O2(L1) \ Z(L1), we see that CX(x) involves Ω−6 (3) and
this contradicts the data provided in [27, Table 5.3]. We have shown
that

p = 2.
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So we now consider q = 2e. By Lemma C.14 and C.16 L contains
a quadratic fours group A on V . If X/Z(X) is a group of Lie type
in odd characteristic, then Lemma C.13 implies X ∼= 3.PSU4(3). In
particular |S2| ≤ 27 and this shows that L2

∼= Ω±6 (2) and L′1 = Z(X).
In particular, |V | = 212 and, as S inverts L′1, VX is a GF(4)X-module.
HenceXS1 is a subgroup of ΓL6(4) and S1 induces a field automorphism
which centralizes Ω−6 (2) in X. We have Ω−6 (2) ∼= PSp4(3) and so S1

induces the field automorphism on X/Z(X), centralizing PSp4(3). But
then by [14, Table 8.10] we have that L is a maximal subgroup of XS1,
which does not contain a Sylow 2-subgroup of XS1 and so we have a
contradiction.

So assume now that X/Z(X) ∼= Alt(m). We apply Lemma C.4
which shows that 2te ≥ m−2. Thus the 2-rank of X is at most 2se+ 1
where t = 2s. On the other hand, the 2-rank of L2 is at least e(s −
1)(s− 2)/2 by Lemma C.14. Thus t ≤ 14 and e = 1. By comparing the
orders of Alt(2t+ 2) and Ω±t (2), yields 2t = 6 and X = L2

∼= Ω+
6 (2), a

contradiction as X > L2.
Next consider the case when X/Z(X) is a sporadic simple group,

again withA operating quadratically. Suppose thatX/Z(X) 6∼= Mat(22).
Then |A| ≤ 4 by Lemma C.13. Hence L2

∼= Ω−6 (2) or Ω−8 (2) by Lemma
C.14. Thus |V | = 212 or 216. It follows from Lemma C.13 that X ∼= J2

and L2
∼= Ω−6 (2), which is impossible as |J2| is not divisible by 34. Hence

X/Z(X) ∼= Mat(22) and |S2| ≤ 27. Since 34 does not divide |X/Z(X)|,
we have L2

∼= Ω+
6 (2) and |V | = 212. Since the centralizer of a 3 element

in L2 is non-soluble, we have a contradiction to the data presented in
[27, Table 5.3c].

This final contradiction shows that it is impossible for L2 < X and
so we have completed the proof of the lemma. �

6. Main hypothesis and notation for the proof of the main
theorems

In this brief section we establish the notation and hypotheses that
will hold sway for the remainder of this work.

Hypothesis 6.1. We have p is a prime, G is a finite group, and H
is a subgroup of G which contains a Sylow p-subgroup of G. Further-
more,

(i) G is of parabolic characteristic p;
(ii) F ∗(H) is a simple group of Lie type of rank at least 2 defined

over a field of order pe;
(iii) H = NG(F ∗(H)); and
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(iv) G is a Kp-group or p = 2 and CH(z) is soluble for some non-
trivial 2-central element of H.

Take
S0 ∈ Sylp(H) ⊆ Sylp(G)

and set
S = S0 ∩ F ∗(H).

In the case F ∗(H) 6∼= Sp4(2)′, F ∗(H) contains a long root subgroup
and we define

R to be a long root subgroup contained in Z(S)
and put

Q = Op(CF ∗(H)(R)), C = CG(R)

and
L = Op′(NF ∗(H)(Q)) = Op′(C ∩ F ∗(H)).

We emphasise that Hypothesis 6.1 (iv) means that if p = 2 and
CH(z) is soluble for some z ∈ Z(S0)#, then G is not assumed to be a
K2-group.

Define P (S, L) to be the parabolic subgroup of F ∗(H) containing
S of maximal order such that

P (S, L) ∩NF ∗(H)(R) = NF ∗(H)(S).

We also define

V (Q,S) = Z(CS(CQ(Z2(S)))).

This notation will be fixed for the remainder of this work.
The generic case occurs when F ∗(H) is a genuine group of Lie type,

Z(S) = R is a long root subgroup of F ∗(H) and F ∗(H) 6∼= PSL3(pa) or
SL4(2). Thus by Lemma A.3 the generic case is as described below.

Hypothesis 6.2. Hypothesis 6.1 holds with F ∗(H) isomorphic to
one of

- PSLn(pe), n ≥ 4, but not SL4(2);
- PSUn(pe), n ≥ 4;
- PSp2n(pe), n ≥ 2, p odd;
- PΩ±2n(pe), n ≥ 4;
- PΩ2n+1(pe), n ≥ 3, p odd;
- F4(pe), p odd;
- G2(pe), p 6= 3 and pe 6= 2;
- En(pe), n = 6, 7, 8;
- 3D4(pe); or
- 2E6(pe).

We use the next two lemmas frequently and without quotation.
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Lemma 6.3. Assume Hypothesis 6.1 holds. Then either Z(S0) ≤
Z(S) or F ∗(H) ∼= Sp4(2)′.

Proof. Set X = F ∗(H). If X is a genuine group of Lie type this
comes from Lemma D.25. If X ∼= 2F4(2)′, then Aut(X) ∼= 2F4(2)
by Lemma A.13. Noting that X ∼= G2(2)′ ∼= PSU3(3) by [1] and
2G2(3)′ ∼= PSL2(8) by [37, Proposition 2.9.1]). We can use Theorem
A.11 to see that Aut(X) ∼= G2(2) or 2G2(3) respectively in these cases.
Now application of Lemma A.3 yields |Z(S0)| = p. �

Lemma 6.4. When Hypothesis 6.2 holds, Q is semi-extraspecial and
Z(S) = Z(Q) = R.

Proof. This comes from Lemma D.16. �

7. The embedding of Q in G under Hypothesis 6.2

In this section we assume that Hypothesis 6.2 holds and in ad-
dition include F ∗(H) ∼= PSL3(pe) when p is odd. In the case when
F ∗(H) ∼= PSL3(pe), we do not assume Hypothesis 6.1(iv), that is we do
not assume that G is a Kp-group. This will become important in the
application in Section 9. Thus Q = Op(CF ∗(H)(R)) is semi-extraspecial
and, if F ∗(H) ∼= PSL3(pe), then Q = S.

Proposition 7.1. We have that Op(CG(r)) = Q for all r ∈ R#.

Proof. As in Lemma D.1 we set

L̃ = Op′(NF ∗(H)(R)/Q).

Then L ≥ Q is the preimage of L̃ and centralizes R. Select r ∈ (R ∩
Z(S0))#. If Op(CG(r)) = Q for all such r, then, as by Lemma A.4 any
element in R is conjugate into Z(S0) under F ∗(H), the proposition will
be proved.

We know that L normalizes Op(CG(r)) ∩CF ∗(H)(r). Since Op(L) =
Q, we have Op(CG(r))∩CF ∗(H)(r) ≤ Q. In particular, [L,Op(CG(r))] ≤
Q and so Op(CG(r)) centralizes L/Q and consequently the elements of
Op(CG(r)) induce trivial automorphisms on L/Q.

Assume that α ∈ Op(CG(r)) \ S is such that αp acts as an inner
automorphism of F ∗(H). Then, by Theorem A.11 (ii), α acts as either
a graph, graph-field or a field automorphism of F ∗(H).

If α operates as a graph-field automorphism, then F ∗(H) is not a
twisted group by Theorem A.11 (iv). Also, in this case, F ∗(H) 6∼=
PSL3(pa) with p odd and so L/Q is non-trivial. Now α normalizes

L and L̃ is also not a twisted group. If L̃/Z(L̃) 6∼= PSL2(pe), α acts as a
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graph-field automorphism on L̃, a contradiction. If L̃/Z(L̃) ∼= PSL2(pe),

then α induces a field automorphism of L̃, which is also impossible.

If α is a field automorphism, then if F ∗(H) is an untwisted group

it acts as the same type of automorphism on L̃ which is impossi-

ble as α centralizes L̃ (here note that if F ∗(H) ∼= PSL3(pa), then
α acts non-trivially on CF ∗(H)(R)/S which is a cyclic group of order
(pe − 1)/ gcd(3, pe − 1)). Hence F ∗(H) is a twisted group and we ar-

gue that L̃ is defined over GF(pe/p). But, using Lemma D.1, in case

of F ∗(H) ∼= 2E6(pe) we have L̃/Z(L̃) ∼= PSU6(pe), in case of F ∗(H) ∼=
3D4(3) we have L̃/Z(L̃) ∼= PSL2(p3e) and in case of F ∗(H) ∼= PSUn(pe),

n ≥ 5, we have L̃/Z(L̃) ∼= PSUn−2(pe). Hence in any case α acts

non-trivially on L̃, a contradiction. If F ∗(H) ∼= PSU4(pe), then if p
is odd, we get a contradiction again. If p = 2, then α is trivially

on L/Z(L̃) ∼= L2(pe). Hence α is not a field automorphism, besides
F ∗(H) ∼= PSU4(2e). This case we will handle later.

So α is a graph automorphism and, moreover, p = 2 or 3. Suppose that

p = 3. Then F ∗(H) ∼= PΩ+
8 (3e) and L̃ ∼= SL2(3e) ◦ SL2(3e) ◦ SL2(3e).

Now α permutes the three SL2(3e)-subgroups of L̃, which is impossible
as α acts trivially.

Hence p = 2. Since L/Q is centralized by α, we deduce that the
action of α on the subgraph of the Dynkin diagram for F ∗(H) which
corresponds to L is trivial. Then, using Lemma D.1 we see L has to
be SL2(2e) (recall F ∗(H) 6∼= PSL3(2e) or PSp4(2e)) and so F ∗(H) ∼=
PSL4(2e). By Hypothesis 6.2 we have e ≥ 2.

Now we deal with F ∗(H) ∼= PSL4(2e) or PSU4(2e). Let T be a com-
plement to S in NF ∗(H)(S). Then by [27, Theorem 1.12.1 e,f], [27,
Theorem 2.4.7] and [27, Table 2.4], T ∼= (2e − 1)3 in the first case and
T ∼= (22e − 1)(2e − 1) in the second case and α acts on TS/S. If α
induces the graph automorphism on F ∗(H), we get that [TS, α]S/S
has order 2e − 1 by Definition A.9 (iii). If α induces a field automor-
phism on F ∗(H), we get that [TS, α]S/S has order 2e+1 by Definition
A.9(ii). Since α centralizes R, [TS, α]S centralizes R. But then [TS, α]
normalizes O2(CG(r)) and this is a contradiction as the former group
is not a 2-group. This proves

Op(CG(r)) ≤ Q.
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As CG(r) has characteristic p, Op(CG(r)) is not centralized by Op′(L).
Therefore Op(CG(r)) 6≤ R and, because Op(CG(r)) ≤ Q, we have
[Op(CG(r)), Q] = R by Lemma D.16. Hence

Q > Op(CG(r)) > R.

Now Lemmas D.1 and D.10 (v) show that F ∗(H) ∼= PSLn(q), n ≥ 3,
PSU4(3) or G2(4).

We consider them in reverse order. Suppose that F ∗(H) ∼= G2(4).
Because R ≤ O2(CG(r)), we get |O2(CG(r))| = 26 and O2(CG(r)) is
non-abelian by Lemma D.10 (v). Since Q/R is a direct sum of Alt(5)-
permutation modules for L, we have that O2(CG(r))/R is an irreducible
L-module. It follows that Z(O2(CG(r))) = R and then, as Q centralizes
O2(CG(r))/R, that by [22, Chap. 5, Theorem 3.2] Q ≤ O2(CG(r))
which is absurd.

Suppose that F ∗(H) ∼= PSU4(3). Then R = 〈r〉 and so Q centralizes
O3(CG(r))/R. This means that Q ≤ O3(CG(r)), a contradiction.

So we come to the main business F ∗(H) ∼= PSLn(q), q = pe. We have
n ≥ 3. Let P1 and P2 be the maximal subgroups of F ∗(H) contain-
ing CF ∗(H)(r) and set Ei = Op(Pi). We have |E1| = |E2| = qn−1.
Define Mi = NG(Ei). Assume Op(CG(r)) = E1. Then CG(r) ≤ M1.
Since P1 acts transitively on the elements of E1, we conclude that
Op′(P1)CG(r) = M1. If e = 1, then P1/O3(P1) ∼= GLn−1(p) and so
CG(r) ≤ P1. If n = 3 and e > 1, we apply Lemma 2.27 to obtain
COp′ (P1)(r) is normal in CG(r) while, if n > 3, G is a Kp-group by
assumption and we may apply Proposition 5.3 obtain the same state-
ment. Since Op(COp′ (P1)(r)) = Q, [22, Chap 5, Theorem 3.2] implies

that Q is normal in CG(r), which is a contradiction. Hence

Op(CG(r)) is not equal to either E1 or E2.

Assume first n ≥ 5. Then we have that L̃ ∼= SLn−2(pe) and, by Lemma

D.1 Q/R is a direct sum of a natural L̃-module and its dual. For n ≥ 3,
these modules are not isomorphic and so Op(CG(r)) ∈ {E1, E2}, a
contradiction. We get that

n ≤ 4.

Suppose first that e = 1. Then R = 〈r〉 and so [Q,Op(CG(r))] ≤
R, which using [22, Chap. 5, Theorem 3.2] gives Q = Op(CG(r)), a
contradiction. So we may assume that e ≥ 2. If n = 4, then we consider
a basis {v1, v2, v3, v4} of the 4-dimensional vector space V over GF(pe).
We choose notation such that r centralizes 〈v1, v2, v3〉 and r(v4) = v1 +
v4. Then with the notation from above we have that E1 corresponds
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to the transvections to 〈v1〉 and E2 corresponds to the transvections to
〈v1, v2, v3〉. In particular Z2(S) ∩ E1 is the centralizer in E1 of 〈v1, v2〉
and Z2 ∩ E2 are the transvections to 〈v1, v2〉. We consider the element
δ = diag(α, α−3, α, α) ∈ SL4(pe) where α ∈ GF(pe) has order pe − 1.
Then δ 6∈ Z(SL4(pe)) as pe 6∈ {3, 5}. Now we calculate directly that
E1 ∩ Z2(S) is centralized by δ and E2 ∩ Z2(S) is not. It follows that
Z2(S)/Z(S) has exactly two NCH(R)(S)-invariant subgroups. Thus as
Z2(S)/R ∩ Op(CG(r))/R 6= 1, we deduce that Op(CG(r)) ∩ E1 6≤ R
or Op(CG(r)) ∩ E2 6≤ R, and this is a contradiction. Thus F ∗(H) ∼=
PSL3(pe) with p odd.

Let now {v1, v2, v3} be a basis of the 3-dimensional vector space over
GF(pe). Then as above r is the transvection r(v3) = v1 + v3 and E1 is
the group of transvection to 〈v1〉 and E2 the group of transvections to
〈v1, v2〉. Let ω ∈ CF ∗(H)(R) be the image of diag(α, α−2, α) ∈ SL3(pe)
where α has order pa− 1. Then ω has order (pe− 1)/ gcd(pe− 1, 3). In
fact CH(r) = S〈ω〉.

We have that ω acts on E1/R as multiplication by α3 and on E2/R
as α−3. As by assumption O2(CG(r)) is neither E1 nor E2 both modules
have to be equivalent. If pe − 1 is not divisible by 3, then α3 has order
pe − 1 and so p has order e modulo pe − 1, whereas, if 3 divides pe −
1, then α3 has order (pe − 1)/3 and we calculate that p has order e
modulo (pe − 1)/3 (for if it is less than e, then p = 2 and e = 2).
Now application of Lemma 2.26 shows that α3 is conjugate to α−3 by
a Galois automorphism of GF(pe). Hence we have that

α3pa+3 = 1 for some 0 < a ≤ e.

As α has order pe − 1, pe − 1 divides 3pa + 3. If a = e, then α6 = 1,
which means that GF(pe) = GF(7), a contradiction as e > 1. Hence
3pa + 3 = k(pe − 1), 0 < a < e and k is a natural number. As p ≥ 3,
we have

k + 3 = kpe − 3pa = pa(kpe−a − 3) ≥ 3(3k − 3) = 9(k − 1)

and so k = 1. But then 4 is divisible by p, a contradiction. This shows
that Op(CG(r)) = Q and concludes the proof of the proposition. �

Lemma 7.2. We have

(L1) F ∗(NG(Q)) = Q; and
(L2) if 1 6= U ≤ G and [U,Q] = 1, then NG(U) ≤ NG(Q).

In particular, Q is large and Q is weakly closed in S0 with respect to
G.

Proof. Let r ∈ Ω1(Z(S0))#. By Lemma 6.3 and Lemma 6.4, r ∈
R. By Proposition 7.1, Op(CG(r)) = Q. Hence CG(r) ≤ NG(Q). Next
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Op(NG(Q)) ≤ S0, so Op(NG(Q)) ≤ CG(r). We have Q = Op(NG(Q)).
As Q is normal in S0, (L1) comes from Hypothesis 6.1(i).

Suppose that 1 6= U ≤ CG(Q). Then U ≤ R by Lemma 6.4 and
(L1). Let x ∈ NG(U) and u ∈ U#. Then ux ∈ U# and so Proposition
7.1 implies

Qx = Op(CG(u))x = Op(CG(ux)) = Q.

Hence NG(U) ≤ NG(Q) as claimed in (L2).
That Q is large now follows from Definition 2.2 and Lemma 2.3 (iii)

implies that Q is weakly closed in S0 with respect to G. �

Lemma 7.3. For all g ∈ G \NG(Q), we have R ∩Rg = 1.

Proof. As NG(Q) ≤ NG(R), (L2) implies that NG(R) = NG(Q).
Suppose that g ∈ G \NG(R) and assume that x ∈ R ∩Rg. Then there
exists y ∈ R such that x = yg and by Proposition 7.1 we have

Q = Op(CG(x)) = Op(CG(yg)) = Op(CG(y))g = Qg,

which is a contradiction. �

Recall the definition of P (S, L) and V (Q,S) as given in Section 6.

Lemma 7.4. We have V (Q,S) = Z(CS(CQ(Z2(S)))) is normalized
by NG(S).

Proof. By Lemma 7.2, we have Q is weakly closed in S with re-
spect to G. In particular, this means that NG(S) ≤ NG(Q). Hence
all the operations in the construction of V (Q,S) are invariant under
NG(S) and hence NG(S) normalizes V (Q,S). �

Lemma 7.5. Assume that F ∗(H) 6∼= PSL3(pe) and that p is odd.
Set P = P (S, L) and V = Ω1(Z(Op(P ))). Then RNG(V ) = RP . In
particular, 〈QP 〉 is normalized by NG(V ) and NG(V ) = PNNG(V )(Q).

Proof. Set P̃ = Op′(P/Op(P )). Suppose first that V = Z2(S).

Then Lemma D.22(i) shows that V is a natural Op′(P̃ )-module. In
particular, V # =

⋃
x∈P R

x. Suppose that g ∈ NG(V ). Then Rg ⊂ V #

and so Rx ∩ Rg 6= 1 for some x ∈ P . Since Rx ∩ Rg 6= 1, Lemma
7.3 implies that Rg = Rx and thus RNG(V ) = RNH(V ) in this case.
Therefore, we must assume that V 6= Z2(S). In this case Lemma D.22
(ii) applies to yield

P̃ ∼=

{
Ω±4 (pe) and V is the natural orthogonal module of order p4e,

Ω3(q) and V is the natural orthogonal module of order p3e.

63



Assume that g ∈ NG(V ) is such that t = rg and t is not conjugate
to R in P . Then t is NG(V )-conjugate to r but not NH(V )-conjugate
to r. Then t corresponds to a non-singular vector in V . Therefore

Op′(CP̃ (t)) ∼= Ω3(pe) ∼= SL2(pe).

Assume first that |V | = p4e. In particular, |S : CS(t)| = pe. Set

Qt = Op(CG(t)) = Qg.

Then, as g ∈ NG(V ) and Q ≤ NG(V ), we see that Qt ≤ NG(V ).
Furthermore, CNH(V )(t) ≤ NG(Qt). Suppose thatQt∩S0 6= Qt∩S. Then

there is some element s ∈ CS0(t) \F ∗(H) such that [Op′(CP̃ (t)), s] = 1.
Application of Theorem A.11 and Lemma A.15 shows that s cannot
induce a field automorphism on P̃ . This implies p = 2. Furthermore we
have that s induces a GF(2e)-transvection on V . But Q ≤ P and so
no element of Q induces a GF(2e)-transvection on V , a contradiction.
This shows

Qt ∩NH(V ) = Qt ∩ S.
As Qt∩NH(V ) is normal in CNH(V )(t), we conclude from the struc-

ture of P̃ that

Qt ∩ CS(t) = Qt ∩NH(V ) ≤ Op(NG(V )) ≤ CH(V ).

But QtCS(t) is a p-group in CG(t) and so |Qt : Qt ∩ CS(t)| ≤ pe. Now
V 6≤ Q and so V = V g 6≤ Qg = Qt, and V centralizes a subgroup
of index at most pe in Qt whereas in V it centralizes a subgroup of
index p2e. Thus we have a contradiction. Hence rNG(V ) = rP and so by
Lemma 7.3 we have RNG(V ) = RP .

Assume next that |V | = p3e. Then NNH(V )(〈t〉) preserves the de-
composition

V = V1 × V2

where V1 has order pe and corresponds to the non-singular 1-space
containing t and V2 has order p2e and is the non-degenerate space per-
pendicular to V1. Furthermore, unless NNH(V )(〈t〉) acts as a subgroup of
O±2 (3) or O−2 (5) on V2, V2 is an irreducible GF(p)NNH(V )(〈t〉)-module.
Now

|V ∩Q| = p2e

and furthermore |V ∩Qt| = |(V ∩Q)g|. In particular, as |V : V2| = pe,
we must have V2 ∩Qt 6= 1. But NNH(V )(〈t〉) normalizes both Qt and V
and so as it acts irreducibly on V2, we have V2 ≤ Qt. Hence V2 = Qt∩V ;
however, t ∈ Qt and t 6∈ V2. Hence we are left with the two exceptional
cases when

pe = 5 or pe = 3.
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Assume first pe = 5. Then NH(V ) has orbits of length 6, 10 and 15 on
the subgroups of V of order 5. As R is not conjugate to the element,
which is normalized by a dihedral group of order 6, we see that R must
have 21 conjugates under NG(V ). Since 7 does not divide |GL3(5)|,
we have a contradiction. Hence pe = 3. Thus NH(V ) has orbits of
length 3, 4 and 6 on subgroup of order 3 in V . Since neither 5 nor 7
divides |GL3(3)|, this time we see that |RNG(V )| = 13. In particular,
13 divides |NG(V )/CG(V )| and NH(V )/CH(V ) contains Sym(4). As
|NG(V )/CG(V )| is not divisible by 9, the order of GL3(3) implies that
|NG(V )/CG(V )| = 2x · 3 · 13, x ≤ 5. Application of Sylow’s theorem to
the prime 13, shows that we have a normal Sylow 13-subgroup. Then
the existence of Sym(4), shows that an element of order 13 normalizes
S and so centralizes R, which contradicts the assumption that R has
13 conjugates. This contradiction proves the main clause of the lemma.
Since Q = Op(NG(R)), we also obtain QP = QNG(V ) and this yields
〈QP 〉 is normalized by NG(V ). �

Proposition 7.6. Assume that F ∗(H) 6∼= PSL3(pe) with p odd. If
L is normal in NG(Q), then NG(Q) ≤ H.

Proof. Set M = NG(Q) and suppose that L is normal in M . Then,
as S ∈ Sylp(L), the Frattini Argument shows that M = LNM(S).
Combining Lemmas 7.4, D.22 and D.23 shows that

NM(S) ≤ NM(V ).

Therefore

M = LNM(V ).

Now, by Lemma 7.5, NM(V ) normalizes 〈QP 〉. Hence M normalizes
〈L,QP 〉 = F ∗(H). But then M ≤ H and we are done. �

Proposition 7.7. Assume that F ∗(H) 6∼= PSL3(pe) and that p is
odd. If NG(Q) ≤ H, then NG(V (Q,S)) ≤ H.

Proof. Set P = P (S, L). By Lemma D.23 V = Ω1(Z(Op(P ))) =
V (Q,S). By Lemma 7.5 NG(V ) = PNNG(V )(Q). By assumption we
know NG(Q) ≤ H, hence NG(V ) ≤ H. �

8. The groups which satisfy Hypothesis 6.2 with NF∗(H)(Q)
not soluble and NG(Q) 6≤ H

In this section we assume

Hypothesis 8.1. Hypothesis 6.2 holds. In addition we assume that

NF ∗(H)(Q) is not soluble.
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Define
M = NG(Q),

and recall from Hypothesis 6.1 that

L = Op′(NF ∗(H)(Q)) = Op′(M ∩ F ∗(H))

and set M̃ = M/Q.
We emphasise that Hypothesis 8.1 means in particular that Z(S) =

R and F ∗(H) is not isomorphic to one of the groups PSU4(2), PSU5(2),
PΩ+

8 (2), PSp4(3), PSL4(3), PSU4(3), PΩ7(3) or PΩ+
8 (3) these being

the groups which satisfy Hypothesis 6.2 but have NF ∗(H)(Q) soluble by
Lemma D.15.

We also recall that, by Proposition 7.1, we have that

Q = Op(CG(r)) = Op(CF ∗(H)(r))

for all r ∈ R#. We will prove the following two propositions.

Proposition 8.2. Suppose that Hypothesis 8.1 holds. If NG(Q) 6≤
H, then H = F ∗(H) ∼= G2(5) and E(NG(Q)/Q) ∼= SL2(9).

Proposition 8.3. Suppose Hypothesis 6.1 holds with p = 5 and
F ∗(H) ∼= G2(5). Assume that G has local characteristic 5 and is a
K2-group. If NG(Q) 6≤ H, then G ∼= LyS.

Lemma 8.4. Suppose that F ∗(H) 6∼= G2(pe). If L is not soluble, then
L is normal in NG(Q).

Proof. As G has parabolic charactersitic p we have that M̃ acts
faithfully on Q/R. As NH(L) ≥ S0 ∈ Sylp(G), when we consider NG(Q)

acting on Q/R, we have that L̃ is Sylow embedded in M̃ .
Suppose that F ∗(H) ∼= PΩε

n(pe), n ≥ 7. Then using Lemma D.1 we

see that L̃ satisfies the hypothesis of Lemma 5.14 or of Proposition 5.15.

These results assert that L̃ is Sylow maximal in M̃ and so L is normal
in M . The remaining cases are F ∗(H) ∼= PSLn(pe), n ≥ 4, PSUn(pe),
n ≥ 4, PSp2n(pe), n ≥ 2, pe odd, En(pe), F4(pe), pe odd, 3D4(pe), or
2E6(pe). Recall that PSL4(pe) ∼= PΩ+

6 (pe) and PSU4(pe) ∼= PΩ−6 (pe).
By Lemma D.1 we have that Hypothesis 5.2 is satisfied. Application
of Proposition 5.3 shows that either L is normal in M or one of the
following holds:

(i) L̃ ∼= SL2(4), E(M̃) ∼= Alt(7) and Q/R is either a natu-

ral GF(4)L̃-module or a direct sum of two natural GF(4)L̃-
modules.

(ii) L̃ ∼= SL2(5), E(M̃) ∼= SL2(9) and Q/R is an irreducible 4-

dimensional GF(5)L̃-module.
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(iii) L̃ ∼= SL2(7), E(M̃) ∼= 2.Alt(7) and Q/R is an irreducible

4-dimensional GF(7)L̃-module.

(iv) L̃ ∼= PSL2(9), E(M̃) ∼= 2.PSL3(4) and Q/R is a 3-dimensional

GF(9)L̃-module.

(v) L̃ ∼= PSp4(2)′, E(M̃) ∼= Alt(7) and Q/R is a natural GF(2)L̃-
module.

(vi) L̃ ∼= SL2(5), F (M̃) ∼= 21+4
− or 4 ◦ 21+4

− and either

(a) L̃F (M̃) is normal in M̃ and M̃/F (M̃) ∼= Alt(5) or
Sym(5); or

(b) F (M̃) = 4 ◦ 21+4
− and M̃/F (M̃) ∼= Alt(6) or Sym(6).

Furthermore, Q/R is a 4-dimensional irreducible GF(5)L̃-
module.

As F ∗(H) 6∼= G2(pe), we see from Lemma D.1 that L̃ 6∼= SL2(pe)

with L̃ acting irreducibly on Q/R. Hence (ii), (iii) and (vi) do not arise
in this case. Furthermore, we do not have |Q/Z(Q)| = p3e, so (iv) does
not show up either. Since Sp4(2)′ does not act on an extraspecial group
of order 32, we also do not have case (v). This leaves (i). Hence we have

pe = 4, L̃ ∼= SL2(4) and E(M̃) ∼= Alt(7).

In addition, Q/R is either the natural SL2(4)-module or a direct sum
of two natural modules. As Alt(7) is not isomorphic to a subgroup of
Ω±4 (2), the latter option is what occurs. Hence |Q/Z(Q)| = 28. In partic-
ular, using Lemma D.1, we obtain F ∗(H) ∼= PSL4(4) or PSU4(4). How-
ever SL2(4):2 ∼= Sym(5) is a subgroup of Alt(7), as a Sylow 2-subgroup

of E(M̃) ∼= Alt(7) is contained in ÑH(Q). This shows that some ele-

ment α in the preimage of E(M̃) induces an outer automorphism on

F ∗(H) and has L̃〈α̃〉 ∼= Sym(5). Since E(M̃) is perfect, its preimage
centralizes R. Thus α centralizes R. Suppose that F ∗(H) ∼= PSL4(4).
Then α must act as a graph automorphism on F ∗(H). This means that

α induces an inner automorphism on L̃ contrary to L̃〈α̃〉 ∼= Sym(5).
Similarly, if F ∗(H) ∼= PSU4(4) then α induces a field automorphism

and so again it induces an inner automorphism on L̃. This proves the
lemma. �

Lemma 8.5. Suppose that F ∗(H) ∼= G2(pe), p 6= 3, pe ≥ 4. Then

either L is normal in NG(Q) or F ∗(H) ∼= G2(5) and E(M̃) ∼= SL2(9).

Proof. We first consider the special case when pe = 4. Then
F ∗(H) ∼= G2(4) and, by Theorem A.11, H ∼= G2(4) or Aut(G2(4)) ∼
G2(4):2. Further L̃ ∼= SL2(4) and, by Lemma D.10, Q/R is a direct
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sum of two permutation modules for L̃ ∼= Alt(5). In particular we are
in the situation of Hypothesis 5.2(g). Application of Proposition 5.3

shows that L̃ is normal in M̃ in this case. So pe 6= 4.
As pe 6= 4, Lemma D.10 implies that Q/R is an irreducible SL2(pe)-

module. Now we have Hypothesis 5.2(d). Again L̃ is Sylow embedded

in M̃ and so by Proposition 5.3 we get that either L̃ is normal in M̃ or
one of the following holds:

(i) L̃ ∼= SL2(5), E(M̃) ∼= SL2(9) and Q/R is an irreducible 4-

dimensional GF(5)L̃-module.

(ii) L̃ ∼= SL2(7), E(M̃) ∼= 2.Alt(7) and Q/R is an irreducible

4-dimensional GF(7)L̃-module.

(iii) L̃ ∼= SL2(5), F (M̃) ∼= 21+4
− or 4 ◦ 21+4

− and either

(a) L̃F (M̃) is normal in M̃ and M̃/F (M̃) ∼= Alt(5) or Sym(5);
or

(b) F (M̃) = 4 ◦ 21+4
− and M̃/F (M̃) ∼= Alt(6) or Sym(6).

Furthermore, Q/R is a 4-dimensional irreducible GF(5)L̃-
module.

If (ii) holds, then E(M̃) ∼= 2.Alt(7). We calculate |G2(7)| = 28 · 33 ·
76 · 19 · 43. Hence by Sylow’s Theorem we get that a Sylow 7-subgroup
is normalized by a group of order 36 and so in M ∩ H we have that
PGL2(7) is involved. But no automorphism group of Alt(7) involves
PGL2(7).

So we are left with pe = 5. That is F ∗(H) = H ∼= G2(5) by Theorem

A.11. Now M̃ embeds into Out(Q) ∼= GSp4(5) and L̃ ≤ M̃ ′ embeds into
Sp4(5). But in this case we may apply [53, Lemma 4.19] to obtain that

any proper over-group of L̃ ∼= SL2(5), has a normal subgroup SL2(9).
Hence (iii) does not occur and we are left with

pe = 5, L̃ ∼= SL2(5) and E(M̃) ∼= SL2(9).

This proves the lemma. �

Proof of Proposition 8.2. This is a combination of Proposi-
tion 7.6 and Lemmas 8.4 and 8.5. �

Proof of Proposition 8.3. Since F ∗(H) has no non-trivial outer
automorphisms by Theorem A.11, we have F ∗(H) = H and so S ∈
Syl5(G). By Proposition 8.2, we have E(M̃) ∼= SL2(9). Let M1 be the

preimage of E(M̃). Set

G0 = 〈M1, O
5′(NH(Z2(S)))〉.
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As O5′(NH(Z2(S))) is contained in a parabolic subgroup of G2(5) it has
structure 52+1+2.SL2(5), and so we see that G0 satisfies the hypothesis
of Lemma 3.10. Thus G0

∼= LyS.
Suppose that G 6= G0 and set M0 = M ∩ G0. We intend to show

that G0 is strongly 5-embedded in G. For this it suffices by Lemma 4.1
to show that NG(S) ≤ G0 and CG(x) ≤ G0 for all elements of elements
of order 5 in G0. By [27, Table 5.3 q], G0 has exactly two conjugacy
classes of elements of order 5. We let r, s ∈ S be representatives of these
classes chosen so that r ∈ R# is 5-central and CS(r) ∈ Syl5(CM0(r)).
From [27, Table 5.3 q] and using the fact that there is just one 5-central
class, we have

M0 ∼ 51+4
+ .(4 ◦ SL2(9)).2 ∼ 51+4

+ .SL2(9).4

Now, as M̃1 acts irreducibly on Q/R, we have CM̃(M̃1) is cyclic of

order at most 4 and so it has order 4 and is central in M̃ . It follows
that M̃/CM̃(M̃1) is isomorphic to a subgroup of Aut(PSL2(9)). This
shows that |M : M0| ≤ 2. If M > M0, then all the elements of order 3
in M are conjugate as they are in Aut(PSL2(9)). However, this cannot
be the cases as a group of order 9 acting on a vector space of dimension
4 over GF(5) cannot have all its elements conjugate by Lemma 2.23.
Hence M = M0 ≤ G0. Now, as Q is weakly closed in G by Proposition
7.1, we also have NG(S) ≤M ≤M0.

We now consider CG(s). By [27, Table 5.3 1], we have

W = O5(NG0(〈s〉)) ∼= 5× 51+2
+

and W ∈ Syl5(NG0(〈s〉). Since CS(x) has order at most 53 for x ∈ S\Q,
we see that s ∈ Q and so W ≤ Q and W ′ = R. Let S∗ be a 5-
group in NG(〈s〉)∩NG(W ). Then S∗ normalizes R and hence Q. Thus
S∗ ≤ NG(Q) ≤ G0 and so S∗ ≤ W . In particular W ∈ Syl5(NG(〈s〉)).
Now O5(NG(〈s〉)) ≤ W . Consider the case that O5(NG(〈s〉)) is abelian.
Since NG(W ) acts irreducibly on W/Z(W ) by [41, Proposition 2,6], we
must have O5(NG(〈s〉)) ≤ Z(W ), but this contradicts G of local charac-
teristic 5. Hence O5(NG(〈s〉)) is non-abelian. But then O5(NG(〈s〉))′ ≤
W ′ = R and NG(〈s〉) ≤ M = M0 ≤ G0. We have shown that G0 is
strongly 5-embedded in G. Now application of [56, Theorem 1.2] yields
a contradiction to G > G0. Thus G = G0

∼= LyS. �

9. The groups with F∗(H) ∼= PSL3(pe), p odd

In this section we continue with the proof of Main Theorem 1. We
have already seen in Section 7 that PSL3(pe), p odd, plays an unusual
role. This is also reflected in the statements of both main theorems. For
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this section, we assume Hypothesis 6.1(i) - (iii) together with F ∗(H) ∼=
PSL3(pe) with p odd. We also continue with the notation introduced
in Section 6.

From the structure of F ∗(H) we have S = Q is a Sylow p-subgroup
of F ∗(H),

NF ∗(H)(Q) = NF ∗(H)(S) = QT,

where

T ∼= (pe − 1)× (pe − 1)/ gcd(pe − 1, 3).

So, if NG(Q) ≤ H, then NG(Q) = NG(QT ).
Furthermore, by Theorem A.11, we have S0/Q is cyclic and the non-

trivial elements of S0 \Q, if there are any, are in the cosets represented
by a field automorphism of F ∗(H). Let E1 ≤ Q correspond to the
transvection group to a point and E2 ≤ Q to the transvection group to
a hyperplane in the natural representation of SL3(pe). Then NF ∗(H)(E1)
and NF ∗(H)(E2) are the maximal parabolic subgroups of F ∗(H) which
contain Q. For i = 1, 2, set

Hi = Op′(NF ∗(H)(Ei)).

By Proposition 7.1 we have that Q = Op(CG(r)) for all r ∈ R# and,
by Lemma 7.2, NG(R) = NG(Q) and Q is large.

Our main result is

Proposition 9.1. Suppose that Hypothesis 6.1(i), (ii) and (iii)
hold with F ∗(H) ∼= PSL3(pe). Suppose that NG(Q) ≤ H < G and
pe 6∈ {3, 7}. Then NG(E) ≤ H for all E normal in S0. Furthermore, if
G has local characteristic p, then H is strongly p-embedded in G.

As we mentioned in the introduction the groups 2F4(2)′ with p = 3
and O’N with p = 7 satisfy the assumptions of the theorem but do not
have a strongly p-embedded subgroup.

Lemma 9.2. For i = 1, 2, we have Hi = 〈Qg | g ∈ NG(Ei)〉 is
normal in NG(Ei). In particular NG(Ei) = NNG(Ei)(Q)Hi.

Proof. Recall that for i = 1, 2, Hi/Ei ∼= SL2(pe) and Hi acts tran-

sitively on E#
i . Therefore, as Q = Op(CG(r)) for r ∈ R# by Proposition

7.1, for i = 1, 2, we get that

Hi = 〈Op(CG(x)) | 1 6= x ∈ Ei〉.
Since NG(Ei) normalizes Ei, we see that Hi is normal in NG(Ei).
The Frattini Argument and Lemma 7.2 now show that NG(Ei) =
NNG(Ei)(Q)Hi. �
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Lemma 9.3. Suppose that NG(Q) ≤ H. Then NG(Ei) = NH(Ei),
i = 1, 2.

Proof. By Lemma 9.2 we have NG(Ei) = HiNG(Q) ≤ H. �

Lemma 9.4. Suppose that NG(Q) ≤ H and pe 6∈ {3, 7}. Then, for
i = 1, 2 we have |NH(Q) : NNH(Q)(Ei)| ≤ 2, i = 1, 2.

Proof. Since T normalizes both E1 and E2 but no other subgroups
of order p2e and NG(Q) = NH(TQ), we have NG(Q) permutes the set
{E1, E2}. This provides the result. �

Lemma 9.5. Suppose that NG(Q) ≤ H. If U ≤ Q and |U | = p2e,
then either NG(U) = NH(U) or pe ∈ {3, 7}.

Proof. By Lemma 7.2 we have Q is large. Suppose that pe 6∈
{3, 7}. If U is not elementary abelian, then 1 6= Φ(U) ≤ R. Thus as Q
is large gives

NG(U) ≤ NG(Φ(U)) ≤ NG(Q) ≤ H,

we are done.
So we may assume that U is elementary abelian. As Q is semi-

extraspecial, maximal elementary abelian subgroups of Q have order
p2e. Therefore R ≤ U and so Q ≤ NG(U) and

CG(U) = U.

Suppose NG(U) 6≤ H. Choose K ≤ NG(U) with Q ≤ K and K minimal
with respect to K 6≤ H. Let Q ≤ S1 ∈ Sylp(K). Then, as Q is large
NG(S1) ≤ NG(Q) by Lemma 2.3(i) and NG(Q) ≤ H by assumption,
the minimal choice of K yields K = 〈SK1 〉 and K ∩ H is the unique
maximal subgroup of K which contains S1. Thus

K is a p-minimal group.

Note that Op(K) ≤ S1 ≤ H. We have Z(Op(K)) centralizes U ≥ R and
so, as S1/Q induces only field automorphisms on Q, Z(Op(K)) ≤ Q.
If Z(Op(K)) ≤ R, then K ≤ NG(Q) ≤ H as Q is large, a contra-
diction. Thus Z(Op(K)) 6≤ R, then [Z(Op(K)), Q] = R as Q is semi-
extraspecial. Thus Op(K) ≤ Q and Φ(Op(K)) = 1 as otherwise K ≤ H.
As U EK it follows that Op(K) ≤ CG(U) = U . Thus

Op(K) = U.

We are going to apply Lemma C.20 to K = K/U . The group A
there then will be Q, which is of order pe.

Suppose that x ∈ K \ H. If 〈Q,Qx〉 < K, then by the choice of
K we have 〈Q,Qx〉 ≤ H and so Qxh = Q for some h ∈ H. But then
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xh ∈ H and this means x ∈ H, a contradiction. Hence K = 〈Q,Qx〉
for all x ∈ K \ H, which is C.20(iii). Now suppose that y ∈ Q \ U .
Then, as Q is semi-extraspecial, U = CQ(u) for all u ∈ U \ R. Then
CU(Q) = CU(y) for all y ∈ Q with y 6= 1 in particular Lemma C.20(i)
holds. Furthermore, CU(K) ≤ CU(Q) = R and so CU(K) = 1 as
otherwise K ≤ NG(Q), which is Lemma C.20(ii). Now Lemma C.20
implies that K ∼= SL2(pe) and U is its natural module.

Now NK(Q) contains a cyclic group C of order pe − 1, which is
therefore contained in H. By Lemma 9.4 there is a subgroup W in C
of index at most two, which normalizes both E1 and E2. Then we have
that W normalizes E1, E2 and U . By Lemma 9.3 all three groups are
pairwise different. In K we calculate that a generator w of W acts on R
as multiplication with a o(w)-th root of unity λ, on U/R as λ−1 and on
Q/U as λ2. Hence these two last representations must be equivalent. By
Lemma 2.26 we get that λ−1 and λ2 must be conjugate under the Galois
group of GF(pe) (recall that we have e = n in the Lemma 2.26). This
means that there is some a such that (λ−1)p

a
= λ2, which implies that

o(λ) divides pa + 2. On the other hand we have that o(λ) = (pe − 1)/2
or pe − 1. Hence in both cases

pe − 1 divides 2pa + 4.

Recall that a ≤ e. If e = a, then pe− 1 divides 2pe + 4− 2(pe− 1) = 6,
which is impossible as pe 6∈ {3, 7}. So a ≤ e − 1 and then pe − 1 ≤
2pe−1 +4 and so pe−1(p−2) ≤ 5, which implies that pe = 9. But plainly
pe − 1 = 8 does not divide 2p + 4 = 10. This contradiction proves the
lemma. �

Our next objective is to show that, if G is of local characteristic p
and G 6= H, then H is strongly p-embedded in G. However, we note
that the next lemma does not require the hypothesis that G is of local
characteristic p.

Lemma 9.6. Suppose that NG(Q) ≤ H and pe 6∈ {3, 7}. If r ∈ R#,
then rG ∩H = rH .

Proof. Recall that by Proposition 7.1 we have that rG ∩ R =
rH ∩ R and H is transitive on R#. First we show that rG ∩ F ∗(H) =
rH . For this we may assume that rg ∈ Q \ R, for some g ∈ G \ H.
In particular |CQ(rg)| = q2. By [53, Proposition 5.3] we have that
Aut(Q/Z(Q)) involves GL2(q). Therefore all elements in Q \ R are
conjugate in Aut(Q). As there is an elementary abelian group of order
q2 (E1 for example) in Q, we have that U = CQ(rg) is elementary
abelian and contains R. As every elementary abelian subgroup of order
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p2e in S0 is contained in Q and U normalizes Qg ≤ Op(CG(rg)), we
have that U ≤ Qg. Therefore Qg ≤ NG(U) ≤ H by Lemma 9.5. But
then Qgh = Q for some h ∈ H and this means that gh ∈ NG(Q) ≤ H.
Hence g ∈ H, a contradiction. This shows

rG ∩ F ∗(H) = rH .

Suppose that rg ∈ H \F ∗(H) for some g ∈ G. By Theorem A.10 we
have that rg induces a field automorphism on F ∗(H) and by Lemma
A.15 all elements of order p in the coset F ∗(H)rg are conjugate under
the inner and diagonal automorphisms of F ∗(H). So rg centralizes some
subgroup X of F ∗(H), X ∼= PSL3(pe). However, CG(r) ≤ NG(Q) ≤ H
and this group is soluble, a contradiction. This proves the lemma. �

Proof of Proposition 9.1. This follows from Lemma 9.6 and
Lemma 4.2. �

We next determine under which circumstances the assumption of
Proposition 9.1 that NG(Q) = NH(Q) holds.

Proposition 9.7. One of the following holds

(i) NG(Q) = NH(Q) = NH(TQ);
(ii) p = 3 and NG(Q)/Q ∼ 2.Dih(8);

(iii) p = 5 and NG(Q)/Q ∼ 4.Sym(4);
(iv) p = 7 and NG(Q)/Q ∼ 6.Dih(8), 6.Dih(16), 6.Sym(3) or

6.Dih(12);
(v) p = 13 and NG(Q)/Q ∼ 12.Sym(4).

In particular, in case (i) we have CG(r) ≤ H for all r ∈ R#.

Proof. We aim for a contradiction and so assume that NG(Q) >
NH(Q). By [53, Proposition 5.3], we have that Aut(Q) is an extension
of a p-group by ΓL2(pe). Hence NG(Q)/Q is isomorphic to a subgroup
of ΓL2(pe), which contains T ∼= (pe−1)×(pe−1)/ gcd(pe−1, 3) properly.
Set w = (pe − 1)/ gcd(pe − 1, 3).

We consider F ∗(H) as the image of SL3(pe) and in doing this iden-
tify Q with the lower unitriangular matrices and T with the image of
the diagonal subgroup. Then the image D of 〈δ〉, δ = diag(λ, 1, λ−1)
in T acts as field multiplication on Q/R. In particular, DQ is normal-
ized by NG(Q). So we have to search for a subgroup X of PΓL2(pe),
whose order is not divisible by p and which contains a cyclic group
U = TQ/DQ of order w properly as these are precisely the candidates
for NG(Q)/DQ.

Since T is not cyclic and D acts as scalars on Q/R, we see that
the only T -invariant subgroups of Q properly containing R are E1 and
E2. Hence NNG(Q)(T ) permutes {E1, E2} and so normalizes 〈H1, H2〉 =
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F ∗(H). Hence we may additionally assume that U is not normal in X.
Since U commutes with D, we have that U ≤ PGL2(pe)EPΓL2(pe). We
first consider X0 the normal subgroup of X which acts as a subgroup
of PGL2(pe) and contains U .

We remark that PGL2(pe) is a subgroup of PSL2(p2e) according to
[33, Satz 8.27]. Hence the Dickson’s list of subgroup of two dimensional
linear groups given in [33, Satz 8.27] provides all the candidates for X0.
Assume that w > 4. Then we see that X0 is not isomorphic to Alt(5)
and also not a subgroup of Sym(4). So we have that X0 is contained
in a dihedral group. But then U is contained in the cyclic normal sub-
group of X0 and so U is characteristic in X0 and so normal in X, a
contradiction. So we have shown that in any case NG(Q) = NH(Q).
In addition, we have shown that U is normal in NG(Q)/DQ and so,
as TQ/DQ = U , NG(Q) normalizes TQ. Now suppose that w = 4. In
this case pe ∈ {5, 13}. In PGL2(5) or PGL2(13), the over-groups of a
cyclic group of order 4 which do not have order divisible by 5 or 13
respectively, are isomorphic to Dih(8) or Sym(4). Both are uniquely
determined. Since U is normal in Dih(8), we have (iii) and (vi). The
last remaining cases is that w = 2 and pe ∈ {3, 7}. If pe = 3, then
PGL2(3) ∼= Sym(4) and U is normal unless G ∼= Dih(8). This gives (ii).
So suppose that pe = 7. Notice that an element projecting to a gener-
ator of U can be chosen to centralize Q/E1 and invert E1/Z(Q). Thus
U acts as an element of PGL2(7) not contained in PSL2(7). It follows
that the candidates for X are subgroups of Dih(12) and Dih(16) of
order greater than 4 and not contained in PSL2(7). This gives Dih(8),
Dih(16), Dih(12) and Sym(3). This gives part (v).

Now we conclude that whenever pe 6∈ {3, 5, 7, 13}, then, as Q is a
large subgroup of G by Lemma 7.2, we also have CG(r) ≤ NG(Q) ≤ H
for all r ∈ R#. �

10. The groups with F∗(H) ∼= PSL3(2e) or Sp4(2e)′

In this section, we treat two further exceptional configurations which
our generic arguments do not handle, as the 2-local structure is very
restricted. These are the cases with F ∗(H) ∼= PSL3(2e) or Sp4(2e)′. We
are going to prove:

Proposition 10.1. Suppose Hypothesis 6.1 holds with F ∗(H) ∼=
PSL3(2e) or Sp4(2e)′ for some e ≥ 1. Then one of the following holds:

(i) G = H;
(ii) F ∗(H) ∼= Sp4(2)′ and G ∼= Mat(11); or

(iii) F ∗(H) ∼= PSL3(4) and G ∼= Mat(23).
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Throughout this section we assume the notation as described in
Section 6 with F ∗(H) ∼= PSL3(2e) or Sp2n(2e).

We first examine the cases which arise when e = 1.

Lemma 10.2. If F ∗(H) ∼= PSL3(2), then G = H.

Proof. Since F ∗(H) ∼= PSL3(2), H ∼= PSL3(2) or PGL3(2). Then
S0
∼= Dih(8) or Dih(16). Hence, if z is an involution in Z(S0), then, as

G has parabolic characteristic 2, O2(CG(z)) is either a dihedral group
of order at most 16 or a cyclic group. As the automorphism group
of a cyclic group and of a dihedral group of order at least 8 is a 2-
group, we infer that NG(O2(CG(z))) is a 2-group. Therefore CG(z) =
S0 ≤ H. Suppose that zG ∩ H 6= zH . Then, as F ∗(H) ∼= PSL3(2) has
just one conjugacy class of involutions, we have F ∗(H) < H and z
is conjugate to an involution y ∈ S0 \ F ∗(H). As S0

∼= Dih(16) all
involutions in S0 \ F ∗(H) are conjugate. By the Frattini Argument we
see that CF ∗(H)(y) has order divisible by 3, contrary to CG(z) = S0.

Thus zG ∩H = zH = zF
∗(H). By the Thompson Transfer Lemma [26,

Lemma 15.16] we see O2(G) ∩H = F ∗(H). Now F ∗(H) is strongly 2-
embedded in O2(G) and by Proposition 4.5, if H < G, H is soluble.
We conclude that G = H as claimed. �

Lemma 10.3. If F ∗(H) ∼= Sp4(2)′, then G = H or G ∼= Mat(11)
and H ∼= Mat(10).

Proof. Let z be an involution in Z(S). By Lemma 2.4 we may
assume inductively that G has no subgroup of index two. As Sym(6)
has a Sylow 2-subgroup isomorphic to 2×Dih(8), we get H 6∼= Sym(6)
by Lemma 2.16.

Suppose H ∼= Aut(Alt(6)) and let H1 be a normal subgroup of H
such H1

∼= Mat(10). As all involutions in Mat(10) are in Alt(6) all the
involutions in H1 are conjugate to z. Let t correspond to a transposition
in the subgroup of H isomorphic to Sym(6). Then CS0(t) = 〈t〉 × D,
D ∼= Dih(8), with z ∈ Z(D). Assume t is G-conjugate to z in G. Let
T ≤ CG(t) with |T : CS0(t)| = 2. Then T is a Sylow 2-subgroup of G.
Since 〈z〉 = CS0(t)

′ is normal in T , we have z ∈ Z(T ). As |Z(T )| =
|Z(S)| = 2, we see that t 6∈ Z(T ), a contradiction. Hence t is not G-
conjugate to z and the Thompson Transfer Lemma [26, Lemma 15.16]
implies that G has a normal subgroup G1 of index two, a contradiction.
Therefore, we may assume that

H = F ∗(H) or H ∼= PGL2(9) or Mat(10).

Suppose CG(z) ≤ H. Then CG(z) is a 2-group. If t ∈ S0 \ F ∗(H) is
an involution, then S0

∼= Dih(16) and H ∼= PGL2(9). Thus |CH(t)|
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is divisible by 5. In particular zG = zH = zF
∗(H). By the Thompson

Transfer Lemma again we see that O2(G)∩H = F ∗(H) and so F ∗(H) is
strongly 2-embedded in O2(G), which by Proposition 4.5 shows G = H.

We will now assume CG(z) 6≤ H. In particular, as S0 is either di-
hedral of order 8 or 16 or semidihedral of order 16, the only normal
subgroups of S0 are elementary abelian of order at most 4, cyclic, di-
hedral, quaternion or semidihedral. As O2(CG(z)) must admit a non-
trivial automorphism of odd order centralizing z, we deduce O2(CG(z))
is a quaternion group of order 8 and therefore

H ∼= Mat(10).

This means CG(z) ∼= GL2(3) and consequentlyG ∼= Mat(11) or PSL3(3)
by Lemma 3.11. Since 5 divides the order of H but not the order of
PSL3(3), we conclude that G ∼= Mat(11). As Aut(Mat(11)) = Mat(11)
by [27, Table 5.3a], we now get G ∼= Mat(11) and the lemma holds. �

Because of Lemmas 10.2 and 10.3 from now on we assume that
e ≥ 2. We fix notation as in Lemmas D.2 and D.3 for certain subgroups
of F ∗(H). Thus we have elementary abelian subgroups E1, E2 of S with
S = E1E2 and E1 ∩ E2 = Z(S). We have that

|E1| = |E2| =

{
22e if F ∗(H) ∼= PSL3(2e)

23e if F ∗(H) ∼= PSp4(2e).

Also, for i = 1, 2, set

L1 = O2′(NF ∗(H)(Ei))

and

Li = Li/Ei.

We also recall

Lemma 10.4. (i) E1∪E2 contains all of the involutions of S;
and

(ii) for i = 1, 2, Li ∼= SL2(2e) and Ei/CEi(Li) is a natural Li-
module.

(iii) |H : NH(Ei)|2 ≤ 2 and H contains a Sylow 2-subgroup of
NG(Ei), i = 1, 2.

Lemma 10.5. One of the following holds:

(i) NG(Ei) = NH(Ei) for i = 1, 2; or
(ii) F ∗(H) ∼= PSL3(4) and, up to notation, NG(E1)/E1

∼= Alt(7)
and NG(E2)/E2

∼= (Alt(5)× 3):2.
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Proof. As Ei contains 2-central involutions, Lemma 2.1 yields
NG(Ei) is of characteristic 2. For the remainder of the proof we fix
i = 1 and focus on showing that NG(E1) ≤ H unless we have the
configuration in (ii). Set M = NG(E1) and M = M/E1. We intend to
prove that L1 is normal in M or 2e = 4 and E(M) ∼= Alt(7).

Since NM(L1) contains a Sylow 2-subgroup of M and CG(E1) = E1,
we have that L1 is Sylow 2-embedded in M . If CE1(L1) is normal in M ,
then we can apply Proposition 5.3 with V = E1/CE1(L1) to see that
either L1 is normal in M or pe = 4 and E(M) ∼= Alt(7).

Suppose that F ∗(H) ∼= PSp4(2e) and CE1(L1) is not normal in M .
Since E1 and E2 are normal subgroups of S, E2 acts quadratically

on E1 and, as E1/CE1(L1) is a natural L1-module, we also have

CE1(e) = CE1(E2) = E1 ∩ E2 = Z(S)

for all e ∈ E2 \ E1. Since |E2E1/E1| = 2e = |E1/CE1(E2)| we have
that E1 is an F -module for E(L1)S0. Furthermore, as 2e > 2, Lemma
2.14 shows that E2 centralizes every odd order subgroup of M which
is normalized by E2.

Set K = E(M) and assume that L1 6= K. Then we have that
[K,F (M)] = 1. As NH(E1) contains a Sylow 2-subgroup of M , we see
that L1 ≤ E(M), and, in particular, is contained in some component X
ofM . Since E1/CE1(X) is an F -module forX, Lemma C.21 implies that
either X is a group of Lie type in characteristic 2, an alternating group
or 3.Alt(6). If X is a group of Lie type in characteristic 2, Lemma A.17
implies L1 = X, a contradiction. So X/Z(X) is an alternating group.
As a Sylow 2-subgroup of X is an extension of an elementary abelian
group by a cyclic group, we obtain X/Z(X) ∼= Alt(7) or Alt(6). Hence
L1
∼= SL2(4) and S0

∼= Dih(8). Since Alt(6) does not contain Sym(5) ∼=
S0L1, we must have X ∼= Alt(7). Now referring again to Lemma C.21
and using the fact that CE1(L1) is not normalized by NG(E1) yields
that E1 is the permutation module for X. Let v ∈ CE1(L1S0)#. Then
|vX | = 1, 7 or 21. But L1 has three orbits of length 1 and four of length
15 on E1. Therefore CE1(X) 6= 1, a contradiction. Thus in this case
X = L1 and it follows that L1 is normal in NG(E1).

We have shown that one of the following holds:

- L1 is normal in M ;or
- F ∗(H) ∼= PSL3(4) or PSp4(4), CE1(L1) is normalized by M ,
L1 ≤ X, X ∼= Alt(7), X normal in M

Assume first that we are in the second case.
Suppose that F ∗(H) ∼= Sp4(4). Then NF ∗(H)(E1)/E1

∼= SL2(4) × 3
and NH(S) normalizes E1. Let J ∈ Syl3(NH(E1)). Then J induces
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automorphisms on X and some non-trivial element of j ∈ J centralizes
L1. Therefore

X〈j〉 ∼= 3× Alt(7).

However this group has to act on E1/CE1(L1) which has order 24. Since
PSL4(2) has Sylow 3-subgroups of order 9, we conclude that some el-
ement τ of order 3 centralizes E1/CE1(L1) and so acts faithfully on
CE1(L1). But then E1 = [E1, τ ] × CE1(τ) and, by Lemma D.3, we ob-
tain

16 = |S ′| = |[E1, E2]| = |[E1, τ, E2]||[CE1(τ), E2]| ≤ 23,

which is impossible. Therefore if F ∗(H) ∼= PSp4(4), we have L1 is
normal in M .

We now make more precise the configuration of normalizers in the
exceptional case as detailed in (ii). Suppose that F ∗(H) ∼= PSL3(4).
Then M is isomorphic to a subgroup of SL4(2), which shows

M ∼= Alt(7).

Assume now

NG(E1)/E1
∼= Alt(7) ∼= NG(E2)/E2.

Then, for non-trivial z ∈ Z(S), CNG(Ei)(z)/Ei ∼= SL3(2) and so E1 =
O2(CNG(E1)(z)) and E2 = O2(CNG(E2)(z)), which implies O2(CG(z)) ≤
E1 ∩ E2, which contradicts CG(O2(CG(z))) ≤ O2(CG(z)). So we have
that L2/E2 is normal in NG(E2)/E2. As E2 acts quadratically on E1 we
obtain from Lemma C.13 that E2 corresponds to 〈(12)(34), (13)(24)〉
in Alt(7). This shows that

NM(E2) ∼ 32:2

with the element of order 2 inverting the normal subgroup of order 9.
As we have that L2/E2 is normal in NG(E2)/E2, we now see that

NG(E2)/E2 ∼ (Alt(5)× 3):2

and this is the configuration described in (ii).
Assume now that Li is normal in NG(Ei) for i = 1, 2. We have, by

Lemma 10.4, that

O2(NG(E1E2)) ≤ NG(E1) ∩NG(E2)

normalizes 〈L1, L2〉. As 〈L1, L2〉 = F ∗(H), we get NG(E1E2) ≤ H. By
the Frattini Argument we have that

NG(Ei) = NH(Ei)NG(E1E2) ≤ H,

for both i = 1, 2, which is (i). �
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Lemma 10.6. Suppose that NG(E1) 6≤ H or NG(E2) 6≤ H. Then
F ∗(H) ∼= PSL3(4) and G ∼= Mat(23).

Proof. Suppose NG(E1) 6≤ H. Then Lemma 10.5 yields F ∗(H) ∼=
PSL3(4) and

NG(E1)/E1
∼= Alt(7) and NG(E2)/E2

∼= (Alt(5)× 3):2.

Let B ≤ NG(E1) be such that B/E1
∼= Alt(6) and B∩F ∗(H) = L1.

Set
W = NB(E2)L2 ≤ NG(E2)

Then W/E2
∼= Sym(5). We now have B∩F ∗(H) = L1, W∩F ∗(H) = L2

and |W : W ∩ B| = 5. Let P = 〈F ∗(H), B,W 〉. Applying Lemma 3.1
yields

P ∼= Mat(22).

Now we consider the triangle of groups consisting of P , NG(E1) and
NG(E2). We have NG(E1) ∼ 24:Alt(7), NG(E2) ∼ 24:((Alt(5) × 3):2)
and P ∼= Mat(22). Furthermore,

NG(E1) ∩ P ∼ 24 : Alt(6),

NG(E2) ∩ P ∼ 24:Sym(5)

and NG(E1) ∩NG(E2) = NG(E1E2) with

NG(E1E2)/E1
∼= (3× Alt(4)):2.

Now application of Lemma 3.2 with B = NG(E1), W = NG(E2) and P
yields

M = 〈P,NG(E1), NG(E2)〉 ∼= Mat(23).

In particular, using [27, Table 5.3 d] we now know that P and hence

G has exactly one conjugacy class of involutions. Thus, if r ∈ E#
1 ,

rG ∩M = rM . In NG(E1), we have CNG(E1)(z)/E1
∼= PSL3(2). Hence

O2(CG(r)) = E1 and so CG(r) ≤ NG(E1) = B ≤ M . So CG(x) ≤ M
for all involutions x in M . Thus, if M < G, then M is strongly 2-
embedded in G ([26, Proposition 17.11]). Since, by [9], G does not
have a strongly 2-embedded subgroup we infer that G = M and this
completes the proof of the lemma. �

Lemma 10.7. Assume that NG(Ei) = NH(Ei), i = 1, 2. Then

NG(Z(S)) ≤ H.

Proof. Set M = NG(Z(S)) and U = O2(M). Since M ≥ S0, M is
of characteristic 2. Assume that M 6≤ H. Then U 6= E1, E2. Let C be
a complement to S in NG(S). Then

|C| = (2e − 1)× (2e − 1)/u,
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where u = 1 unless F ∗(H) ∼= PSL3(2e) with e even in which cases u = 3.
Thus, if F ∗(H) 6∼= PSL3(4), (2e − 1)/u 6= 1 and there is a subgroup D
of C of order (2e − 1)/u, which acts non-trivially on E1/Z(S) and
centralizes E2/Z(S). Hence E1 and E2 are the only proper subgroups
of S containing Z(S), which are invariant under C.

Assume D 6= 1. Then CS/S admits S0/S faithfully. Since C ≤ M ,
C normalizes U . Since S0/S acts faithfully on C and [U,C] ≤ U , we
have Z(S) < U ≤ S. Since C normalizes U , we now have U = S. As,
by Lemma 10.4, E1 and E2 are the only elementary abelian subgroups
of maximal order in S, any element of odd order in NG(S) has to
normalize both E1 and E2 and so by assumption is in H. Hence we
have O2(M) ≤ H and so therefore is M ≤ H in this case.

So it remains to consider the case when D = 1. So we have

F ∗(H) ∼= PSL3(4).

Furthermore, if S ≤ U , then J(U) = J(S) by Lemma D.4(ii). Now
we may argue as before that every odd order element in M normalizes
E1 and E2 and obtain M ≤ H. If [U, S] ≤ Z(S), then [22, Chap.
5, Theorem 3.2] implies that S ≤ U , a contradiction. In particular,
|U/Z(S)| > 2 and U 6≤ S.

Since C acts transitively on Z(S)#, we have U ≤ CG(Z(S)). Hence
|US/S| ≤ 2. Because C acts fixed-point-freely on S, we now have
|S ∩ U | = 24 and U/Z(S) has order 8. Now SC must induce Alt(4)
on U/Z(S). The subgroup structure of SL3(2) ∼= PSL2(7) can be read
from [33, Satz 8.27]. Thus we see that M/U ∼= Alt(4), Sym(4) or
SL3(2). Hence, either M ≤ H or M/U ∼= SL3(2). But in the latter
case, Z(S) ≤ Z(M), a contradiction as this is not true in F ∗(H), since
C ≤M . Hence we have the assertion M ≤ H. �

Lemma 10.8. Assume NG(Ei) = NH(Ei) for i = 1, 2. If r ∈
Z(S0)#, then CG(r) ≤ H.

Proof. Assume that CG(r) 6≤ H and set U = O2(CG(r)). If
F ∗(H) ∼= PSp4(2e) and r in CEi(Li) for some i ∈ {1, 2}, then U ≤
O2(CH(r)) = Ei and we conclude that U = Ei. But then

CG(r) ≤ NG(Ei) ≤ H,

which is a contradiction. Hence, if F ∗(H) ∼= PSp4(2e), then

r ∈ Z(S) \ (CE1(L1) ∪ CE2(L2)).

Furthermore, we note that NF ∗(H)(S) permutes the members of Z(S)\
(CE1(L1) ∪ CE2(L1)) transitively.

In particular, if F ∗(H) ∼= PSL3(2e) or PSp4(2e), then the H-conj-
ugates of r in Z(S) generate Z(S).
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We first show

Z(S) ≤ U.

This is of course true if U ≤ S, as G is of parabolic characteristic 2. So
assume that U 6≤ S. Choose t ∈ U \ S. The either Et

1 = E2 or [Ei, t] 6≤
Z(S) for both i. So we have that [S, t] contains some u ∈ S \ (E1∪E2).
Further u ∈ U .

If F ∗(H) ∼= PSL3(2e), then |[Ei, u]| = 2e and is contained in Z(S),
so it is equal to Z(S), in particular Z(S) ≤ U .

So assume that F ∗(H) ∼= PSp4(2e). By Lemma A.12, Out(Sp4(2e))
is cyclic and so |Ω1(U)S/S| ≤ 2. In particular, [Z(S),Ω1(U),Ω1(U)] =
1 and so

[Ω1(U), Z(S)] ≤ Ω1(Z(Ω1(U))).

Since Ω1(Z(Ω1(U))) is an elementary abelian normal subgroup of S0

Lemma D.4, implies that Ω1(Z(Ω1(U))) ≤ S. Hence

[Ω1(Z(Ω1(U))), Z(S)] = 1.

As [U,Z(S)] ≤ Ω1(U), we now see that Z(S) stabilizes the chain

U ≥ Ω1(U) ≥ Ω1(Z(Ω1(U))) ≥ 1.

Application of [22, Chap. 5, Theorem 3.2] shows Z(S) ≤ U .
Let x ∈ CG(r) \ H. Then Lemma 10.7 implies Z(Sx) = Z(S)x 6=

Z(S) and, of course, Z(S)x ≤ U . Assume that Z(S)x ≤ S. Then
Z(S)Z(S)x is elementary abelian and so we may assume Z(S)Z(S)x ≤
E1. Then

E1 ≤ CG(Z(S)x) ≤ Hx

by Lemma 10.7. Now E1 ≤ Sx by Lemma D.4. Hence E1 is normal
in Sx. But then Sx ≤ NG(E1) ≤ H, and this means that Sxh = S
for some h ∈ H. Since NG(S) ≤ NG(Z(S)) ≤ H, we have x ∈ H, a
contradiction. Hence Z(S)x 6≤ S. Since the G-conjugates of r in Z(S)x

generates Z(S)x, there exists rg ∈ U such that rg induces an outer
automorphism of F ∗(H). Now [S, rg] ≤ U so, as rg either swaps E1

and E2 or induces a field automorphism on Ei/Z(S) for i = 1, 2, we
have

|U ∩ S| ≥ |[S, rg]Z(S)| ≥

{
22e F ∗(H) ∼= PSL3(2e)

23e F ∗(H) ∼= PSp4(2e).

In addition, as Z(S)x 6≤ S, |U | ≥ 2|U ∩ S|. Assume that |S0/S| = t.
Then we have demonstrated that

|S0/U | ≤ 2e−1t.

81



Now using Lemma A.16 and the Frattini Argument we get

CF ∗(H)S0(r
g) involves


SL2(2e).t/2

SL3(2e/2).t/2

SU3(2e/2).t/2

if F ∗(H) ∼= PSL3(2e) and

CF ∗(H)S0(r
g) involves

{
Sp4(2e/2).t/2
2B2(2e).t/2

when F ∗(H) ∼= Sp4(2e). Since one of these groups has to be involved
in CG(rg)/U and |S0/U | ≤ 2e−1t, we conclude by comparing the size of
the Sylow 2-subgroups that only F ∗(H) ∼= PSL3(2e), CH(rg) involves
SL2(2e).t/2 and rg induces a graph automorphism of F ∗(H) remains.
Furthermore, |U | = 22e+1. Since rg induces the graph automorphism
of F ∗(H), we see that [Z(S), rg] = 1 and so [Z(S), Z(Sg)] = 1. Set
W = 〈Z(S)CG(r)〉. Then W is elementary abelian. Since SL2(2e) acts
on W we have that W admits an element of order 2e + 1 faithfully,
we have |W | ≥ 22e. Hence W is a maximal order elementary abelian
subgroup of H and so Z(S)x ≤ W ≤ S by Lemma D.4, but we have
already seen that this is impossible. This concludes the proof. �

Proof of Proposition 10.1. Suppose that G 6= H. Then Lem-
mas 10.3 and 10.2 show that if e = 1, then (ii) holds. Similarly, Lemma
10.6 shows that if NG(E1) or NG(E2) 6≤ H, then (iii) holds.

Thus we may suppose that NG(Ei) = NH(Ei) for i = 1, 2. Then
Lemma 10.8 implies that the centralizer of any 2-central involution r
of H is contained in H. We may choose r such that CH(r) is soluble. Let
r be conjugate to some involution u ∈ H \ F ∗(H). Then CH(u) must
be soluble. By Lemma A.16 u induces a field, graph or graph-field
automorphisms on F ∗(H). The only possibility for a soluble centralizer
occurs with F ∗(H) ∼= PSL3(4) and u a graph-field automorphism. But
then u centralizes a group of order 9, while r does not. So we have that
rG ∩ H = rH and then H controls fusion of r. Recall that in case of
PSL3(2e) we just have one conjugacy class of involutions in F ∗(H), in
case of Sp4(2e) we have three F ∗(H)-classes and only one has a solvable
centralizer. Hence in both cases rG∩H = rF

∗(H). Together with Lemma
2.5 application of Lemma 4.4 gives a contradiction. Hence H = G. �

11. The groups with F∗(H) ∼= Sp2n(2e), n ≥ 3

In this section we will treat those cases with F ∗(H) ∼= Sp2n(2e) with
n ≥ 3. Our aim is to prove the following statement.
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Proposition 11.1. Suppose Hypothesis 6.1 holds with F ∗(H) ∼=
Sp2n(2e), n ≥ 3. Then G = H.

Assume that
F ∗(H) ∼= Sp2n(2e).

Then S0/S is cyclic and is generated by field automorphisms of F ∗(H).
Taking V to be the natural symplectic space for F ∗(H), we focus our
attention on the parabolic subgroups K and M of F ∗(H) which contain
S and leave an isotropic one space and a maximal totally isotropic
subspace of V invariant respectively. As usual let R be a long root
subgroup contained in Z(S).

Lemma 11.2. The following hold:

(i) O2′(K/O2(K)) ∼= Sp2n−2(2e), O2(K) is elementary abelian

with |O2(K)| = 2e(2n−1) and O2(K)/R is a natural module for
O2′(K/O2(K));

(ii) O2′(M/O2(M)) ∼= SLn(2e) and O2(M) = J(S) is elementary
abelian of order 2en(n+1)/2; and

(iii) every involution of F ∗(H) is conjugate to an element of J(S).

Proof. Part (i) is Lemma D.5 (ii)(a) and part (ii) comes from
Lemma D.6.

To prove part (iii), we note that [V, t] ≤ CV (t) = [V, t]⊥ for all invo-
lutions t in F ∗(H). In particular, if U is a maximal isotropic subspace
of V containing [V, t], then U ≤ [V, t]⊥ = CV (t) and so [U, t] = 0. Since
the centralizer in F ∗(H) of U is conjugate to O2(M), we conclude that
t is contained in a conjugate of O2(M) as claimed. �

Our plan is to apply Holt’s result Lemma 4.4 to deduce that H = G
and so we intend to show that rG ∩ H = rF

∗(H) and CG(r) ≤ H for
r ∈ R#. Recall that by Lemma A.4 all involutions in R# are conjugate
in F ∗(H).

Lemma 11.3. If F ∗(H) ∼= Sp6(2), then G = H.

Proof. By Hypothesis 6.1, G is of parabolic characteristic 2 and S
is a Sylow subgroup of G. Hence as O2(K) is abelian, we have O2(K) =
O2(CG(r)). Now O2(K)/〈r〉 has order 16. As Sym(6) is maximal in
Alt(8) ∼= GL4(2) and |Sym(6)|2 < |Alt(8)|2, we see CG(r) = K ≤ H.

Let r1 be the root element in Z(S) \ {r}. Then |CH(r1)| = 29 · 32.
If rg1 = r for some g ∈ G, then K has a subgroup CH(r1)g of index
5, a contradiction as K/O2(K) ∼= Sym(6). Thus r and r1 are not G-
conjugate and therefore NG(S) ≤ H as S ∈ Syl2(G) and NG(S) is not
transitive on Z(S)]. Thus G has three conjugacy classes of 2-central
involutions.
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Let J = J(S). As H has four conjugacy classes of involutions, so M
has four orbits on J# with representatives r, r1, rr1, j and orbit lengths
7, 7, 21 and 28. We claim that rH = rG∩H. If not, j ∈ rG and NG(J) is
transitive on rG ∩J of length 35, so |NG(J) : M | = 5. As NG(J)/J has
dihedral Sylow 2-subgroups S/J we conclude NG(J)/J = M/J × U/J
with |U/J | = 5. But then U ≤ NG(S) ≤ H, a contradiction that
establishes the claim. Now Theorem 4.3 implies that G = H. �

From now on we may assume that G is a K2-group and that e > 1.

Lemma 11.4. Suppose that r ∈ (R∩Z(S0))#. Then O2′(K) is nor-
mal in CG(r) and O2′(M) is normal in NG(J(S)).

Proof. Since r ∈ Z(S0) and G is of parabolic characteristic 2,
we have CG(r) has characteristic 2. Furthermore, O2′(K) ≤ CG(r)
and consequently O2(CG(r)) ≤ O2(CH(r)) = O2(K). Since O2(K) is
abelian by Lemma 11.2 (i) and CG(r) has characteristic 2, we obtain
O2(CG(r)) = O2(K). Because J(S) is normal in S0, NG(J(S)) also is
of characteristic 2 and, as J(S) = O2(M) is abelian by Lemma 11.2
(ii), we have O2(M) = O2(NG(J(S))).

We make the following observation O2(K ∩ M) = O2(K)O2(M),
|O2(K) ∩O2(M)| = 2en,

|O2(K) : O2(K) ∩O2(M)| = 2e(n−1)

and
|O2(M) : O2(M) ∩O2(K)| = 2en(n−1)/2.

Set X = CG(r). If e = 1, then K/O2(K) ∼= Sp2n(2), O2(K)/〈r〉
is the natural K/O2(K)-module and O2′(K) is Sylow embedded in
X/O2(K). FurthermoreK/O2(K) satisfies Hypothesis 5.2 (a) when act-
ing on O2(K)/〈r〉. Hence Proposition 5.3 implies that O2′(K)′ is normal
in M . This proves the result for e = 1 and so e > 1. Let R∗ be a root
subgroup contained in J(S) with R∗∩O2(K) = 1. Then by Lemma A.8
CF ∗(H)(x) = CF ∗(H)(R∗) for all non-trivial x ∈ R∗. Thus Lemma 2.14
implies that R∗ centralizes O(X/O2(K)) and therefore O(X/O2(K))
is centralized by O2′(K/O2(K)). Therefore E(X/O2(K)) 6= 1 and it
follows that

O2′(K/O2(K)) ≤ E(X/O2(K)).

Furthermore, E(X/O2(K)) is quasisimple. Since

2en(n−1)/2 = |O2(M)O2(K)/O2(K)| ≥ |O2(K)/CO2(K)(O2(M))| = 2e(n−1),

O2(K)/〈r〉 is an F -module for E(X)/O2(K). Thus Lemma C.21 ap-
plies. If E(X/O2(K)) is a group of Lie type in characteristic 2, then
Lemma A.17 implies that E(X/O2(K)) = O2′(K/O2(K)) and we are
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done. Hence E(X/O2(K)) modulo its centre is an alternating group.
Applying Lemma B.1 shows that F ∗(K/O2(K)) is an alternating group.
Hence [37, Proposition 2.9.1] yields that O2′(K/O2(K)) ∼= Sp4(2), con-
trary to e > 1. We conclude that O2′(K) is normal in X as required.

Set X = NG(J(S)). We have O2(X) = O2(M) is elementary abelian
of order 2en(n+1)/2 by Lemma 11.2 (ii). Set X = X/O2(X),

M
∗

= O2′(M) ∼= SLn(2e)

and W0 = O(X). Suppose that M
∗

does not centralize W0. Choose a
root subgroup R∗ in O2(K) such that R∗∩O2(M) = 1. Then by Lemma
A.8, for all x ∈ R#

∗ , CO2(M)(x) = CO2(M)(R∗) and so, if e > 1, Lemma

2.14 shows that R∗ and hence also M
∗

centralizes W0, a contradiction.
Therefore e = 1 and, in particular, Z(M) = 1, M = M

∗
operates

faithfully on W0 and also in F (W0). By the Critical Subgroup Theorem
[27, Proposition 11.11], there exists an odd prime ` and an `-group
W ∗ ≤ F (W0) such that M acts faithfully on W ∗/Φ(W ∗). Furthermore,
W ∗ has exponent ` and is nilpotent of class at most 2. From among all
M -invariant subgroups of W ∗ we choose W of smallest order such that
W not centralized by M . Let U be a proper M -invariant subgroup of
W . Then [U,M ] = 1 by the definition of W . Hence [U,M,W ] = 1, and
as [U,W ] < W , [[U,W ],M ] = 1. Hence the Three Subgroup Lemma
implies that [U, [W,M ]] = 1. As W = [W,M ], we have U ≤ Z(W ). In
particular, if W is non-abelian, then Z(W ) is the unique maximal M -
invariant proper subgroup of W . Since M acts faithfully on W/Φ(W )
and, as (2n− 1)/(2− 1)−n ≥ 2n−1 for n ≥ 3, Lemma C.5 implies that

|W/Φ(W )| ≥ `2n−1−1

using PSL3(2) is not a subgroup of SL2(`a) for all a ≥ 1. We claim that
some subgroup of O2(M) admits a faithful action of an elementary
abelian `-subgroup of rank 2n−2 + 1. If Φ(W ) = 1, then we have noth-
ing further to do. Suppose that Φ(W ) 6= 1. Set Y = [O2(M), Z(W )].
Then there is a hyperplane W1 of Z(W ) such that CY (W1) 6= 1. Hence
WM/W1 acts faithfully on CY (W1). If Φ(W ) ≤ W1, then W/W1 is
elementary abelian and we are done again. If Φ(W ) 6≤ W1, then W/W1

is extraspecial. In particular, Y admits W/W1 faithfully. Since W has
exponent ` and W/W1 is even dimensional as a GF(`)-space, W/W1

has an elementary abelian `-subgroup of order 2n−2 + 1 and this proves
our claim.

Now the `-rank of GLn(n+1)/2(2) is bounded above by n(n + 1)/4
(this is attained by an elementary abelian 3-group). Thus we have

n(n+ 1)/4 ≥ 2n−2 + 1
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and this yields n = 4 using Lemma 11.3. Then |O2(M)| = 210 and M ∼=
SL4(2) with |W/Φ(W )| ≥ `7. Thus the fact that |W | does not divide
|GL10(2)| provides a contradiction. This proves that M centralizes W0

as desired.
Since M centralizes O(X), we have E(X) 6= 1. Then M

∗
is qua-

sisimple so, as p = 2, M
∗

is contained in a component X
∗

of X.
We intend to show that X

∗
= M

∗
. Notice first that O2(K) acts

quadratically on O2(M). If X∗ is a group of Lie type in characteristic
2 then Lemma A.17 implies that X∗ and M∗ are equal. Thus suppose
that X∗ is not such a group. We exploit the quadratic action of O2(K)
on O2(M).

By Lemma 11.3, |O2(M)O2(K) : O2(M)| ≥ 8. Suppose that M
∗ 6=

X
∗
. We have that O2(K)O2(M)/O2(M) and acts quadratically on

O2(M). Therefore Lemma C.13 shows that X
∗ ∼= 3.Mat(22), 3.PSU4(3)

or Alt(m) for some m ≥ 8. In the first two cases, |X∗|2 = 27. Since

X
∗ ≥ M

∗ ∼= SLn(2e), the only possibility is that M
∗ ∼= SL3(4). But

then we may cite [14, Table 8.11] to see that SL3(4).2 is not a subgroup
of 3.PSU4(3) and [27, Table 5.3c] to see the same is true for 3.Mat(22).
So we have that

X
∗ ∼= Alt(m)

for some m ≥ 8. Since MS0∩X
∗

contains a Sylow 2-subgroup of X
∗

we
must have M

∗ ∼= Alt(t) for some t ∈ {m−3,m−2,m−1,m} by Lemma
B.1. Using [37, Proposition 2.9.1] gives n = 4, e = 1, m > 2n = 8,

M
∗ ∼= SL4(2) and |O2(M)| = 210. Furthermore, O2(K)O2(M)/O2(M)

is a quadratic subgroup of order 8. It follows from Lemma C.13 that
X
∗

has one non-central chief factor U in O2(M) and either U is the
natural permutation module or m = 9 and U is the spin module. If U is
the permutation module, then M

∗
centralizes a non-trivial subspace of

U and hence M∗ centralizes a 2-central involution in O2(M). Therefore
on the natural 8-dimensional module V for H, M∗ fixes a 1-space or a
2-space and this is impossible. Hence U is the spin module and X

∗ ∼=
Alt(9). Since |O2(M)| = 210, Lemma C.30 shows that CO2(M)(X

∗) 6= 1.
But then again M∗ centralizes a 2-central involution, a contradiction.

�

Lemma 11.5. Suppose that r ∈ (R ∩ Z(S0))#. Then CG(r) ≤ H
and NG(J(S)) ≤ H.

Proof. Let X = CG(r) or NG(J(S)). Then, by Lemma 11.4, we
have that X = O2′(X ∩ H)NX(S). Thus, to prove the lemma all we
have to do is show that NX(S) ≤ H.
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We have that NX(S) ≤ NG(J(S)). If X = CG(r), then by Lemma
11.4 we have that NX(S) normalizes

〈O2′(CF ∗(H)(r)), O
2′(NF ∗(H)(J(S)))〉 = F ∗(H).

As H = NG(F ∗(H)), NX(S) ≤ H and we have

CG(r) = CH(r).

Assume X = NG(J(S)). Then NX(S) normalizes Z(S) and, since
CG(Z(S)) ≤ CG(r) = CH(r), we have CG(Z(S)) = CH(Z(S)). Thus
NX(S) normalizes

〈CF ∗(H)(Z(S)), O2′(NF ∗(H)(J(S)))〉 = F ∗(H).

This shows NX(S) ≤ H and so NG(J(S)) ≤ H. �

Lemma 11.6. Suppose that r ∈ (R∩Z(S0))#. Then rG∩H = rF
∗(H).

Proof. By Lemma 11.5, if rG∩H ⊂ F ∗(H), then the result is valid
by Lemma 11.2 as every involution of H is conjugate to an element
of J(S) and NG(J(S)) ≤ H controls fusion in J(S). Thus we may
assume that x = rg ∈ H \ F ∗(H). Then by Theorem A.10 x acts as a
field automorphism on F ∗(H). Therefore by Lemma A.16 CF ∗(H)(x) ∼=
Sp2n(2e/2). As CG(r) ≤ H, we have E(CG(r)/O2(CG(r))) ∼= Sp2n−2(2e)′

and therefore, by Lemma C.5, CG(r) has no subgroup isomorphic to
CF ∗(H)(x), and this proves our claim. �

Proof of Proposition 11.1. The result holds when H ∼= Sp6(2)
by Lemma 11.3. Lemmas 11.5, 11.6 and 2.5 provide the hypothesis of
Holt’s Lemma 4.4. As F ∗(H) is not an alternating group we obtain
G = H. �

12. The groups with F∗(H) ∼= 2F4(22e+1)′

This section is devoted to possible configurations which satisfy Hy-
pothesis 6.1 with F ∗(H) ∼= 2F4(22e+1)′. We note, however, that we do
not require the K2-hypothesis. In this section we will prove the follow-
ing proposition.

Proposition 12.1. Suppose Hypothesis 6.1 holds with F ∗(H) ∼=
2F4(22e+1)′. Then G = H.

We continue with our standard notation. So

S0 ∈ Syl2(H) ⊆ Syl2(G),

R ≤ Z(S) is a long root subgroup and Q = O2(CF ∗(H)(R)). Set

Q0 = O2(CH(R)).
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The structure of NF ∗(H)(R) is described in Lemma D.13.
By Lemma A.13, for 22e+1 > 2, Out(F ∗(H)) has odd order, so we

have S = S0 if 22e+1 > 2. In particular, we note that Q = Q0 unless
H ∼= 2F4(2) in which case |Q0/Q| = |S0/S| = 2.

Lemma 12.2. Q0 = O2(CH(r)) = O2(CG(r)) for all r ∈ R#.

Proof. Set U = O2(CG(r)). Since U ≤ S0, U is normal in CH(r)
and, as R = Z(S0) and G is of parabolic characteristic 2, we have
R ≤ U and U > R. This implies that

U ∩ Z2(S0) > R.

As CH(r) acts irreducibly on Z2(Q0)/R by Lemma D.13 (ii) and (v),
we obtain

Z2(Q0) ≤ U.

Assume that either 22e+1 > 2 or U 6≤ F ∗(H). Suppose U ≤ CS(Z2(Q0)).
Then, by Lemma D.13 (iii), Z2(Q0) = Ω1(U). Hence also Z2(Q0) is
normal in NG(U). In particular [CS(Z2(Q0)), U ] ≤ Z2(Q0) and so
CS(Z2(Q0)) centralizes a series, which is normalized by NG(U) and
so by [22, Chap. 5, Theorem 3.2] U = CS(Z2(Q0)). Now by Lemma
D.13(iii) Φ(U) = R. Hence R is normal in NG(U). In particular as

[Q0, R] = 1
[Q0, Z2(Q0)/R] = 1
[Q0, U/Z2(Q0)] = 1,

we see that Q0 centralizes a chain of subgroups in U which is normalized
by NG(U). Again, by [22, Chap. 5, Theorem 3.2], we have

Q0 ≤ O2(NG(U)) = U = Z2(Q0),

a contradiction. This now shows that

U 6≤ CS(Z2(Q0)).

Now UZ2(Q0)/Z2(Q0) is normalized by CH(r) and so, as U 6≤
CS(Z2(Q0)), and U 6≤ F ∗(H) when 22e+1 = 2, we have U = Q0 by
Lemma D.13 (iv) and (v).

Assume now that the remaining case holds. Thus 22e+1 = 2 and
U ≤ F ∗(H). If U = CS(Z2(Q)) = Z2(Q), we have [Q,U ] = 〈r〉 and as
before Q ≤ U , a contradiction. As CH(r) acts irreducibly on Q/Z2(Q0)
we then get Q = U . So we may assume that S0 > S and so that
H > F ∗(H). Then Q0 centralizes the Frattini factor group of U = Q,
a contradiction to the fact that U = O2(CG(r)).

Hence in any case we proved U = Q0. �

Lemma 12.3. If F ∗(H) ∼= 2F4(2)′, then CG(r) ≤ H, for r ∈ Z(S0).
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Proof. By Lemma 12.2 we have

Q0 = O2(CG(r)).

In particular, by Lemma D.13 (i),NH(Q0)/Q0, and hence alsoNG(Q0)/Q0

has cyclic Sylow 2-subgroups of order 4 and consequently NG(Q0)/Q0

has a normal 2-complement. Assume CG(r) 6≤ H. Then NG(Q0) 6≤ H.
Since Z(Q0) = R = 〈r〉 and Z2(Q0) is elementary abelian of order 25,
the quotient NG(Q0)/CG(Z2(Q0)) embeds into the parabolic subgroup
of SL5(2) stabilising R of shape 24:SL4(2). As Q0/CQ0(Z2(Q0)) is ele-
mentary abelian of order 24, we now have NG(Q)/Q is isomorphic to a
subgroup X of SL4(2) ∼= Alt(8).

We have that 5 divides |X|. Assume 5 does not divide |F (X)|, then
F (X) has order dividing 32 · 7 and hence no automorphism of order
5. So F (G) has order divisible by 5. In particular O5(X) 6= 1. As the
centralizer of an element of order 5 in Alt(8) has order 15, we now get
that O2(NG(Q0)/Q0) must be a cyclic group of order 15, as otherwise
NG(Q) = NH(Q). Hence

NG(Q)/Q ∼ (3× 5) : 4,

is the normalizer in SL4(2) of the cyclic group of order 15. It follows that
NG(Q) acts transitively on Q/Z2(Q0) = [Q0, NH(Q0)]. Now Q/R has
centre Z2(Q)/R and Q/R \ Z2(Q/R) contains involutions by Lemma
D.14 (iii). Since NG(Q) acts transitively on Q/Z2(Q0), we conclude
that Q/R has exponent 2. Therefore R = Φ(Q) and Q = Z2(Q) < Q,
a contradiction. Hence NG(Q) ≤ H. �

Lemma 12.4. Suppose that F ∗(H) ∼= 2F4(22e+1) with 22e+1 > 2.
Then CG(r) = CH(r) for all r ∈ R#.

Proof. By Lemma 12.2 we have that Q = Q0 = O2(CH(r)) =
O2(CG(r)). Set M = CG(r) and M = M/Q. Then, by Lemma D.13 (i),

CF ∗(H)(r) ∼= 2B2(22e+1).

In addition, we recall that CF ∗(H)(r) contains a Sylow 2-subgroup S of

G. In particular Ω1(S) is a strongly closed elementary abelian subgroup
in S. Hence application of [21] yields

O2′(M/O(M)) ∼= 2B2(22e+1).

We first show that CF ∗(H)(r) centralizes O(M). Otherwise there is an

odd prime s and a non-trivial s-group P ≤ O(M) which is normalized

but not centralized by CF ∗(H)(r). As NCF∗(H)(r)
(S) acts transitively on

Ω1(S/Q) by Lemma A.19 (iii), we get by Lemma 2.22 that |P/Φ(P )| ≥
p22e+1−1. On the other hand, P acts faithfully on Q/CQ(Z2(Q)) which
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is of GF(2)-dimension 4(2e+ 1). Hence 2(2e+ 1) ≥ 22e+1 − 1, which is
impossible. Now we have that

CF ∗(H)(r) is normal in CG(r).

By the Frattini Argument we have that CG(r) = CF ∗(H)(r)NCG(r)(S).
Hence to complete the proof of the lemma we just have to prove that
NCG(r)(S) ≤ H.

We have that NG(S) acts on Z2(S). By Lemma D.13(vi), we have
that all elements in Z2(S)# are conjugate to r in H. Furthermore

U = 〈O2(CH(t)) | 1 6= t ∈ Z2(S)〉S

is a parabolic subgroup of F ∗(H) with 〈U,CF ∗(H)(r)〉 = F ∗(H). By
Lemma 12.2 we have that

U = 〈O2(CG(t)) | 1 6= t ∈ Z2(S)〉S

and so U is normalized by NG(S). Hence F ∗(H) is normalized by
NCG(r)(S). As H = NG(F ∗(H)), we get NCG(r)(S) ≤ H and then
CG(r) ≤ H. This completes the proof. �

Proof of Proposition 12.1. By Lemmas 12.3 and 12.4, we have
that CG(r) ≤ H for any 2-central involution r of H. By [69, Corollary
2] we know that H has exactly two classes of involutions which both
by Lemma A.13 are contained in F ∗(H). Lemma D.13(vi) yields an
involution t in Z3(S) such that |CF ∗(H)(t)| is divisible by 22e+1 + 1.
Suppose that t = rg for some g ∈ G. Then CF ∗(H)(t) ≤ Hg and

CF ∗(H)(t) ∩ F ∗(Hg) ≤ CF ∗(Hg)(t)

where the latter group has order coprime to 22e+1 + 1. As Out(F ∗(H))
has order dividing 2e, it follows that 22e+1 + 1 divides e which is non-
sense. Hence t and r are not G-conjugate. Hence rG ∩H = rH . As all
involutions are in F ∗(H) we even have rG ∩ H = rF

∗(H). In addition,
by Lemma 2.5 we have O(G) = 1. Therefore application of Lemma 4.4
yields G = H. �

13. The groups with F∗(H) ∼= F4(2e)

We continue the investigation of groups which satisfy Hypothesis 6.1
by studying the case in which F ∗(H) ∼= F4(2e). We shall prove the
following result.

Proposition 13.1. If Hypothesis 6.1 holds with F ∗(H) ∼= F4(2e),
then G = H.
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By Lemma A.3, Z(S) = R1R2 with R1 a long root subgroup and
R2 a short root subgroup of F ∗(H). Furthermore Lemma D.7 gives

CF ∗(H)(R1) ∼= CF ∗(H)(R2) ∼ 2e.26e.28e.Sp6(2e).

The fact that S0 may contain elements which conjugate R1 to R2

leads to the main complication of the section. That is that Z(S0) may
not contain a root element. Thus the hypothesis that G has parabolic
characteristic 2 does not necessarily lead to the statement that CG(R1)
or CG(R2) has characteristic 2. This forces us to consider elements in
Z(S0) which are not contained in either R1 or R2. Such elements are

products of elements from R1 and R2. For r1 ∈ R#
1 and r2 ∈ R#

2 with
r1r2 ∈ Z(S0) we use the abbreviation r12 = r1r2 and note that

CF ∗(H)(r12) = CF ∗(H)(R1) ∩ CF ∗(H)(R2)

by Lemma D.8. Furthermore, we know that in F ∗(H) all the elements

of R#
1 , R#

2 and the elements of Z(S) \ (R1 ∪ R2) are all conjugate by
elements of NF ∗(H)(S). Finally, for i = 1, 2, we set

Qi = O2(CF ∗(H)(Ri)) and Q12 = O2(CF ∗(H)(R1R2)).

We continue with this notation for the remainder of the section.

Lemma 13.2. The group F ∗(H) has exactly 4 conjugacy classes of

involutions, r
F ∗(H)
1 , r

F ∗(H)
2 , r

F ∗(H)
12 and jF

∗(H) where

CF ∗(H)(j)/O2(CF ∗(H)(j)) ∼= SL2(2e)× SL2(2e)

and |O2(CF ∗(H)(j))| = 218e. Furthermore, r1, r2 and r12 are 2-central
and j is not.

Proof. This follows from [69, Corollary 1] or [31, (5.1)]. �

Lemma 13.3. Suppose that ri ∈ R#
i ∩ Z(S0) for i ∈ {1, 2}. Then

CF ∗(H)(ri) is normal in CG(ri).

Proof. We prove the result for i = 1. We have that O2(CG(r1)) ≤
S0 normalizes CF ∗(H)(r1) and, as S0 normalizes R1, we know that S0/S
is cyclic and induces field automorphisms on F ∗(H) by Theorem A.11
(v). In particular, CS0/Q1(CF ∗(H)(r1)/Q1) = 1. Thus O2(CG(r1)) ≤ Q1

and, since CG(r1) is of characteristic 2, Z(Q1) < O2(CG(r1)). Hence,
as CF ∗(H)(r1) acts irreducibly on Q1/Z(Q1) by Lemma D.7, we have

Q1 = O2(CG(r1)).

Set
V = Z(Q1)/Q′1 = Z(Q1)/R1.

Then Q1 ∈ Syl2(CCG(r1)(V )) and so CCG(r1)(V )/Q1 has odd order.
Since Q1/R1 is an indecomposable module by Lemma D.7, we have
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CCG(r1)(V ) = Q1. Hence CF ∗(H)(r1)/Q1 is Sylow embedded in CG(r1)/Q1

when acting on V . As V is the natural CF ∗(H)(r1)/Q1-module Hypoth-
esis 5.2 (a) holds and Proposition 5.3 implies that CF ∗(H)(r1) is nor-
malized by CG(r1). This proves the result. �

Lemma 13.4. Suppose that Ri∩Z(S0) 6= 1 for i ∈ {1, 2}. Then, for

S ≤ T ≤ S0, NG(T ) ≤ H. In particular, CG(ri) = CH(ri) for ri ∈ R#
i .

Proof. We have that NG(T ) normalizes Z(T ) = CR1(T )CR2(T )
and hence normalizes CG(Z(T )) ≤ CG(r1) ∩ CG(r2). Now CG(r1) ∩
CG(r2) normalizes Q12 = Q1Q2 and O2(CF ∗(H)(R1R2)) = Q12. There-
fore

O2(CG(Z(T ))) = Q12

and this means that NG(T ) normalizes Q12. Since S0 normalizes Q1

and Q2 and S0 ∈ Syl2(NG(T )), Lemma D.8(vi) implies that Q1 and
Q2 and hence R1 and R2 are normalized by NG(T ). Since CF ∗(H)(ri) =
CF ∗(H)(Ri) is normalized by CG(Ri), we conclude that

F ∗(H) = 〈CF ∗(H)(R1), CF ∗(H)(R2)〉

is normalized by NG(T ). Hence NG(T ) ≤ NG(F ∗(H)) = H, as claimed.
Finally, for i = 1, 2, S ∈ Syl2(CF ∗(H)(ri)) and CG(ri) normalizes

CF ∗(H)(ri). Thus the Frattini Argument implies that CG(ri) ≤ H. �

Lemma 13.5. Either G = H or Ri ∩ Z(S0) = 1 for i ∈ {1, 2}.

Proof. Suppose that R1 ∩ Z(S0) 6= 1. Then, by Lemma 13.4

CG(r1) = CH(r1) for all r1 ∈ R#
1 and CG(r2) = CH(r2) for all r2 ∈ R#

2 .
By Lemma 13.4, NG(S0) ≤ H and NG(S0) = NH(S0) normalizes both
R1 and R2. Hence r1, r2 and r12 are in distinct NG(S0)-conjugacy
and therefore also in distinct G-conjugacy classes. By Lemma 13.2
F ∗(H) has one further conjugacy class of involutions with represen-
tative j. Since r1 and r2 are not G-conjugate, j cannot be G-conjugate
to both r1 and r2. Hence we may, without loss of generality, suppose

that rG1 ∩ F ∗(H) = rH1 = r
F ∗(H)
1 . If r1 is G-conjugate to some invo-

lution i ∈ H \ F ∗(H), then Lemmas A.12 and A.16 (i) and (ii)(c)
imply that O2′(CF ∗(H)(i)) is isomorphic to F4(2e/2). Since this group
is not isomorphic to subgroups of Sp6(2e), we have a contradiction.

Thus rG1 ∩H = r
F ∗(H)
1 and CG(r1) ≤ H. Application of Lemma 2.5 and

Lemma 4.4 now yields G = H as claimed. �

From now on we may assume that S0 contains an element which
conjugates R1 to R2. We fix an element r12 = r1r2 ∈ Z(S0)# where

ri ∈ R#
i for i = 1, 2.
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Lemma 13.6. If Ri ∩ Z(S0) = 1 for i ∈ {1, 2}, then CG(r12) ≤ H.
Furthermore r1 and r2 are not G-conjugate to r12.

Proof. Set I12 = O2′(CH(r12)) and L12 = I12/Q12. Then L12
∼=

Sp4(2e) by Lemma D.8 and, in addition, Lemma D.8 gives the following
L12-invariant series of normal subgroups of Q12:

1 < R1R2 < V12 < W12 < Q12,

where V12 = Q1 ∩ Q2, V12/R1R2 is a direct sum of two L12-modules
which are not isomorphic as GF(2)-modules and the same applies for
Q12/W12. The subgroup W12 is described in Lemma D.8 as

W12 = Z(Q1)Z(Q2),

and we have

W ′
12 = R1R2, or q = 2 and W ′

12 = 〈r12〉.
Furthermore, as R1 and R2 are conjugate in CH(r12), we see that
Q12/W12 and V12/R1R2 are irreducible I12S0/Q12-modules. We also
note that W12/V12 is centralized by L12 and has order 22e. Set J12 =
O2(CG(r12)). We intend to demonstrate that J12 = Q12. As J12 ≤ S0,
CF ∗(H)(r12) normalizes J12 and CS0/Q12(L12) = 1, we obtain

J12 ≤ Q12.

Therefore, as G is of parabolic characteristic 2, we have that CG(r12)
is of characteristic 2 and with the help of Lemma D.8 this implies

R1R2 = Z(Q12) ≤ Z(J12).

Assume that J12 ≤ W12. As V12 = Z(W12) by Lemma D.8 (iii),
we know that J12 > V12. Because Z(Q1)V12 ∩ Z(Q1)V12 = V12 and
Q1 and Q2 are conjugate in S0, we cannot have J12 ≤ Z(Qi)V12 for
i = 1, 2. Now we exploit that fact that, for i = 1, 2, Z(Qi)/Ri are
GF(2e)-modules to obtain Z(J12)∩Z(Qi) ≤ V12 and so Z(J12)/V12 has
order at most 2e. Suppose that x ∈ W12 then x = ab where a ∈ Z(Q1)
and b ∈ Z(Q2). If x has order 2, then, as Z(Q1) and Z(Q2) are abelian
x2 = abab = [a, b] = 1 and so x ∈ Z(Q1) or x ∈ Z(Q2) again as
Z(Qi)/Ri are GF(2e)-modules. It now follows that Ω1(Z(J12)) = V12. In
particular W12-centralizes the chain J12 > V12 > 1 of normal subgroup
of CG(r12) and so W12 ≤ J12 by [22, Chap. 5, Theorem 3.2]. Hence
J12 = W12. Now assume first W ′

12 = R1R2. This happens precisely
when e > 1. Then Q12 centralizes the normal series of subgroups J12 >
V12 > R1R2 and this means that J12 < Q12 ≤ J12 which is absurd.
Hence J12 6≤ W12. As Q12W12/W12 is an irreducible I12S0/Q12-module,
we have W12J12 = Q12. Using the fact that Q12/V12 is a direct sum
of indecomposable L12-modules by Lemma D.8 (v) this yields Q12 =
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J12V12 and, as V12 = Φ(Q12) by the construction of V12 in Lemma D.8,
we finally obtain

Q12 = J12,

as claimed.
Assume now e = 1 and so H ∼= Aut(F4(2)). Then W ′

12 = 〈r12〉. Fur-
thermore, for i ∈ {1, 2}, [Qi, V12] = Ri, which implies that [Q12, V12] =
R1R2. As CQ1Q2(V12/〈r12〉) = W12, we get that Q12/W12 is the full
group of transvections on V12/〈r12〉 to R1R2/〈r12〉. Now choose g ∈
CG(r12) and assume that Qg

12 6= Q12. Then first of all (R1R2)g 6=
R1R2 and Qg

12 induces the full transvection group to (R1R2)g/〈r12〉.
This implies Q12 ∩ Qg

12 = W12. Set X = 〈Q12, Q
g
12〉. Then X acts

on 〈r1, r
g
1, r12〉/〈r12〉 and induces SL2(2) on this group. Furthermore

[X, V12] ≤ 〈r1, r2, r12〉. This shows that CX(〈r1, r
g
1〉) stabilizes a chain

and so X/O2(X) ∼= SL2(2). As Q12 ∩ Qg
12 = W12, we now get that

|O2(X)| ≥ |(O2(X) ∩ Q12)(O2(X) ∩ Qg
12)| ≥ 27 · 27|W12| = 226, while

|S0| = 225. This contradiction shows Qg
12 = Q12 and so again

Q12 = J12.

Now CG(r12) normalizes Q12 and hence, using Lemma D.8 (v),
CG(r12) permutes {Q1, Q2}. Let K = NCG(r12)(Q1). Then K is a nor-
mal subgroup of index 2 in CG(r12) and acts on V = X1 × X2 where
Xi = QiW12/W12 preserving both summands. As before, using the in-
decomposable property of Q12/V12 we obtain CK(V ) = Q12.

Let K1 = CCG(r12)(X1), then I12/K1 is Sylow maximal in K/K1

acting on K1 and hence by Proposition 5.3 I12K1 is a normal sub-
group of CG(r12) or L′12

∼= Alt(6) and CG(r12)/K1
∼= Alt(7). Since

I12K1/K1
∼= Sp4(2), this latter possibility does not occur. Hence I12K1

is normal in CG(r12). By considering the action of K1I12 on X2 and
applying Proposition 5.3 again, we find that L12 is normal in I12K1/Q1

Hence L12 is normal in CG(r12)/Q1 and E(CG(r12)/Q12) = L′12. In par-
ticular, by the Frattini Argument

CG(r12) = I12NCG(r12)(S).

Since CF ∗(H)(r1)/Q1
∼= Sp6(2e) by Lemma D.7, and Sp6(2e) is not

isomorphic to a subgroup of Sp4(2e), we have r12 is not G-conjugate to
r1 (which is H-conjugate to r2).

Now we consider the normalizer of Z2(S). By Lemma D.9 we have
that |Z2(S)| = 24e and that

O2′(NF ∗(H)(Z2(S))/O2(NF ∗(H)(Z2(S))) ∼= SL2(2e)× SL2(2e),
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where Z2(S) = U1 ⊕ U2, with Ui = 〈RNF∗(H)(Z2(S))

i 〉 for i ∈ {1, 2}. As
r1 6∈ rG12, we get that

〈O2(CG(x)) | x ∈ rG12 ∩ Z2(S)〉 = 〈O2(CH(x)) | x ∈ rG12 ∩ Z2(S)〉
= O2′(NF ∗(H)(Z2(S))).

Using the fact that NCG(r12)(S) normalizes Z2(S) and I12, we get that
NCG(r12)(S) normalizes

〈O2′(I12), O2′(NF ∗(H)(Z2(S)))〉 = F ∗(H).

As H = NG(F ∗(H)), we have NCG(r12)(S) ≤ H and so finally we obtain
CG(r12) = I12NCG(r12)(S) ≤ H, the assertion. �

Lemma 13.7. If Ri ∩ Z(S0) = 1 for i = 1, 2, then (r12)G ∩ H =
(r12)F

∗(H).

Proof. By Lemma 13.2, F ∗(H) has three H-conjugacy classes of

involutions. They are rH1 , rH12 and jH . Furthermore rH12 = r
F ∗(H)
12 . Set

Y = CF ∗(H)(j), X = O2(Y ). Then Y/X ∼= SL2(2e) × SL2(2e) and as
j is not H-conjugate to r1, or r12 and Y has characteristic 2, we have
|Z(X)| ≥ 22e+1.

Suppose that r12 is G-conjugate to j ∈ H. Then jg = r12 and
Y g ≤ CG(r12) = CH(r12) by Lemma 13.6. As there is no non-trivial 2-
subgroup in Sp4(2e) which is normalized byO2(Y g/Xg) ∼= O2(SL2(2e)×
SL2(2e)) (see Lemma D.5 and [27, Theorem 2.6.7]), we get that Xg is
a subgroup of index 22e in Q12 and O2(Y gQ12/Q12) ∼= O2(SL2(e) ×
SL2(2e)) normalizes Xg. Notice that O2(Y gQ12/Q12) either acts irre-
ducibly on the natural Sp4(2e)-module or acts as a direct sum of two
2-dimensional submodules. In any case, it does not fix 1-dimensional
subspaces. Since O2(Y g) normalizes Q12, it also normalizes Q1 and Q2

by Lemma D.8 (vi). Now using the action of O2(Y g) and the fact that
Q12/Qi is an indecomposable 5-dimensional GF(2e)-module for Sp4(2e)
shows that XgQi has index at most 2e in Q12. Thus, for i ∈ {1, 2},

|Qi : Qi ∩Xg| ≤ 2e.

The CF ∗(H)(R1R2) chief-factors of Y g on Qi/Z(Qi) are both 4-dimen-
sional. Hence Qi = (Xg∩Qi)Z(Qi) for i ∈ {1, 2} and so Z(Xg) central-
izes Qi/Z(Qi) which means that Z(Xg) ≤ Z(Qi). Thus we have shown
that

Z(Xg) ≤ Z(Q1) ∩ Z(Q2) = R1R2.

Since |R1R2| = 22e and |Z(Xg)| ≥ 22e+1, we have a contradiction.
Hence

rG12 ∩ F ∗(H) = rH12 = r
F ∗(H)
12
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by Lemmas 13.2 and 13.6.
Assume now that r12 is G-conjugate to some involution i ∈ H \

F ∗(H). Then Lemmas A.12 and A.16 (i) and (ii)(c) implyO2′(CF ∗(H)(i))

is isomorphic to either F4(2e/2) or 2F4(2e) depending on whether or not
e is even. Since these groups are not isomorphic to subgroups of Sp4(2e),
we have a contradiction. This proves the lemma. �

Proof of Proposition 13.1. If Z(S0) ∩ Ri = 1 for i ∈ {1, 2},
then Lemmas 13.7, 13.6 and 2.5 provide the hypothesis of Holt’s Lemma
4.4 and this implies that G = H. Hence using Lemma 13.5, we have
G = H and this proves the proposition. �

We collect the results of Sections 10, 11, 12, and 13 in the following
proposition which was cited in the introduction.

Proposition 13.8. Let G be a K2-group of parabolic characteristic
2. If H ≤ G, F ∗(H) ∼= 2F4(22e+1)′, F4(2e), Sp2n(2e), n ≥ 3, Sp4(2e),
e > 1 or PSL3(2e), e 6= 2, H = NG(F ∗(H)), |G : H| odd, then G = H.

Proof. We have that Hypothesis 6.1 holds. Thus the statements
follow from Propositions 10.1, 11.1, 12.1 and 13.1. �

14. The case when p = 2 and centralizer of some 2-central
element of H is soluble

For this section we work under the following hypothesis:

Hypothesis 14.1. Hypothesis 6.1 holds with p = 2, F ∗(H) is a
group of Lie type in characteristic 2 and CH(z) is soluble for some
2-central involution z in H.

The main result of this section is

Proposition 14.2. Suppose that Hypothesis 14.1 holds. Then ei-
ther G = H or the pair (F ∗(G), F ∗(H)) is one of (Mat(11), Sp4(2)′),
(Mat(23),PSL3(4)), (Alt(9),PSL4(2)), (Alt(10),PSL4(2)),
(PSL4(3),PSU4(2)), (G2(3),G2(2)′) or (PΩ+

8 (3),Ω+
8 (2)).

Suppose that Hypothesis 14.1 holds. Then, by Lemma D.15 we have
that F ∗(H) ∼= PSL3(2e), Sp6(2), PSU4(2), PSU5(2), G2(2)′, 2F4(2)′,
PSL4(2), PΩ+

8 (2) or Sp4(2e)′. Because of Lemma 3.15 and Proposition
13.8, the cases that remain to be studied are those with

F ∗(H) ∼= PSL4(2),PSU4(2),G2(2)′ and PSU5(2).

This section investigates these cases.
Recall that by Lemma 2.5 we have

O(G) = 1
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in all cases.
We start with the cases F ∗(H) ∼= PSL4(2) and F ∗(H) ∼= PSU4(2)

and prove

Proposition 14.3. Suppose that F ∗(H) ∼= PSL4(2) or PSU4(2). If
G 6= H, then F ∗(G) ∼= Alt(9), Alt(10) or PSL4(3), where in the first
two cases F ∗(H) ∼= PSL4(2) and in the third case F ∗(H) ∼= PSU4(2). In
all these groups we have that CG(z) = CH(z) for z a 2-central involution
in S0.

Proof. By [37, Proposition 2.9.1], PSL4(2) ∼= Ω+
6 (2) ∼= Alt(8)

and PSU4(2) ∼= Ω−6 (2). Also by Lemma E.9 the Sylow 2-subgroups
of Aut(PSL4(2)) and Aut(PSU4(2)) are isomorphic as are those of
PSL4(2) and PSU4(2). In particular, Z(S) = Z(S0) = R has order
2. Let z ∈ Z(S)#.

If H = F ∗(H), then S is isomorphic to a Sylow 2-subgroup of
Alt(8). Furthermore, by Lemmas D.1 and D.16, O2(CH(z)) is extraspe-
cial of order 32 of +-type. Since G has parabolic characteristic 2, since
O2(CG(z)) ≤ O2(CH(z)), and since [O2(CG(z)), O2(CH(z))] ≤ 〈z〉, we
haveO2(CG(z)) = O2(CH(z)). In particular, the quotient CG(z)/O2(CG(z))
embeds into O+

4 (2) by [79, Theorem 1] and consequently CG(z) is sol-
uble. Using Lemma 3.13, we obtain G ∼= Alt(8), Alt(9) or PSU4(2).
Thus if G 6= H, then G ∼= Alt(9) and H ∼= Alt(8). Finally we note that
in this case CH(z) = CG(z).

Suppose that H 6= F ∗(H). Then S is isomorphic to a Sylow 2-subgroup
of Sym(8) and so is isomorphic to Dih(8) o 2. If G possesses a subgroup
G1 of index two, then by Lemma 2.4 G1 is of parabolic characteristic 2
and F ∗(H) < G1 with NG1(F

∗(H)) = F ∗(H). Hence G1 is recognized
by the previous case and we are done. So we may assume G is simple
and so by Lemma 3.14 we obtain G ∼= Alt(10), Alt(11) or PSL4(q) with
q ≡ 3 (mod 4) or PSU4(q) with q ≡ 1 (mod 4). We have G 6∼= Alt(11)
as in Alt(11) the centralizer of (12)(34)(56)(78) is not of characteristic
2. Similarly, in PSL4(q) and PSU4(q) the centralizer of z contains a nor-
mal subgroup isomorphic to SL2(q)◦SL2(q), and this is of characteristic
2 if and only if q = 3. Thus G ∼= PSL4(3) in this case. As the order of
PSL4(3) is not divisible by 7, we get F ∗(H) ∼= PSU4(2) ∼= PSp4(3) with
H ∼= Aut(PSU4(2)) in this case. Finally we observe that CH(z) = CG(z)
to conclude the proof. �

Next we consider F ∗(H) ∼= G2(2)′.

Proposition 14.4. If F ∗(H) ∼= G2(2)′, then either G = H or
G ∼= G2(3).
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Proof. Again let z ∈ Z(S)#. By Lemma D.12 (i) we have

O2(CF ∗(H)(z)) ∼= 4 ◦Q8.

Assume H = F ∗(H). Then, as CG(O2(CG(z))) ≤ O2(CG(z)) and
G has parabolic characteristic 2, we have O2(CH(z)) = O2(CG(z)). In
particular, CG(z) = CH(z). Since H has exactly one conjugacy class of
involutions, Lemma 4.4 yields H = G.

So we may assume that H ∼= G2(2). If G has a subgroup G1 of index
2, then, as Ω1(Z(S)) = Ω1(Z(S ∩G1)), G1 has parabolic characteristic
2 by Lemma 2.4 and we obtain G = H.

So we may assume that G has no subgroup of index 2. Recall
z ∈ Z(S#

0 ). By the Thompson Transfer Lemma [26, Lemma 15.16],
as F ∗(H) has exactly one conjugacy class of involutions, so does G.
Furthermore by Lemma D.12 (iv) we have that O2(CH(z)) is extraspe-
cial of order 32 and +-type. Choose t an involution in H \ F ∗(H). By
Lemma D.12 (iv) we have CH(t) ∼= 2×Sym(4). Because t and z are G-
conjugate, a Sylow 2-subgroup T of CH(t) is not a Sylow 2-subgroup of
CG(t). Let T1 ≤ CG(t) with |T1 : T | = 2. We may assume that 〈z〉 = T ′,
so T1 ≤ CG(z). In particular CCG(z)(t) > CH(t) and so CG(z) > CH(z).
Since O2(CG(t)) is extraspecial of +-type and CG(z) is of characteristic
2, this means that |CG(z) : CH(z)| = 3. Hence

(14.4.1) there is a subgroup X of index 2 in CG(z) such that X ∼=
SL2(3) ◦ SL2(3).

We now consider the parabolic subgroup P of H containing S with
P 6= CH(z). By Lemma D.12 (iii) we know that P has shape ((4× 4) :
2).Sym(3), where the homocyclic subgroup of shape 4×4 is inverted in
O2(P ). Let U = 〈zP 〉. Then as z ∈ Z(O2(P )), we have U = Z(O2(P ))
which is elementary abelian of order 4. Consequently [U,O2(CH(z))] ≤
〈z〉 and so obtain U ≤ O2(CH(z)). Let x ∈ P \CH(z) and consider the
subgroup E = O2(CH(z))∩O2(CH(z))x. We have Φ(E) ≤ 〈z〉∩〈zx〉 = 1
and so E is elementary abelian and contains U . Moreover, as

|O2(CG(z)) : O2(CG(z)) ∩O2(P )| = 2

and

|(O2(CG(z)) ∩O2(P ))O2(CG(z))x/O2(CG(z))x| ≤ 2,

we calculate that |E| has order 8. Using that P has two non-central
chief factors in O2(P ), yields

P/E ∼= Sym(4).

As G has just one conjugacy class of involutions, all the involutions
in E are G-conjugate. Let t ∈ E \ F ∗(H). Then tP has order 4 and
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CP (t)E/E ∼= Sym(3). Therefore E = 〈t〉[E,CP (t)] with [E,CP (t)] =
U . As t ∈ CG(t)′, it follows that E ≤ CG(t)′. Now UO2(CG(t)) is
normalized by CP (t) and so, as CG(t)/O2(CG(t)) has Sylow 2-subgroups
of order 2, we have E = 〈t〉U ≤ O2(CG(t)). Since Z(O2(CG(t))) =
〈t〉 6≤ U , we get that O2(CG(t)) 6≤ P . We also know that CG(E) =
CCG(z)(E) = E and so NG(E)/CG(E) is isomorphic to a subgroup of
SL3(2). Since P/E ∼= Sym(4) is a maximal subgroup of SL3(2) and
O2(CG(t)) 6≤ P , we now have

(14.4.2) NG(E)/E ∼= SL3(2).

Finally (14.4.1) and (14.4.2) provide the hypotheses of Lemma 3.12.
Thus G ∼= G2(3). �

We finally will consider F ∗(H) ∼= PSU5(2).

Lemma 14.5. If F ∗(H) ∼= PSU5(2) and z ∈ Z(S0)#, then CG(z) ≤
H.

Proof. We have that Q = O2(CF ∗(H)(z)) is extraspecial of order
27 with outer automorphism group O−6 (2) by [79, Theorem 1]. As-
sume NG(Q) 6= NH(Q). As, by Lemma E.5, NH(Q)/Q ∼= GU3(2) is a
maximal subgroup of PΩ−6 (2), we have NG(Q)/Q contains a subgroup
isomorphic to PΩ−6 (2).This is ridiculous as |S0 : Q| = |NH(Q)/Q|2 ≤ 24

and therefore

NG(Q) = NH(Q).

As NH(Q) acts irreducibly on Q/〈z〉, and G is of parabolic character-
istic 2, we have that Q = O2(CG(z))), which implies CG(z) = CH(z)
and the lemma is true. �

Proposition 14.6. Suppose that F ∗(H) ∼= PSU5(2). Then G = H.

Proof. Let z ∈ Z(S0). Then CG(z) = CH(z) by Lemma 14.5. We
will show that zG∩H = zH . By Lemma E.1 Aut(PSU5(2)) has exactly
three conjugacy classes of involutions. If i ∈ H \F ∗(H) is an involution
then again by Lemma E.1 we get that 5 divides |CH(i)| and as CG(i)
is a {2, 3}-group we conclude that i and z are not G-conjugate.

Assume now zG∩H 6= zH = zF
∗(H). Then we have that all the invo-

lutions in F ∗(H) are G-conjugate. If H 6= F ∗(H) then the Thompson
Transfer Lemma [26, Lemma 15.16] implies G has a normal subgroup
G1 of index 2 and Lemma 2.4 yields that G1 has characteristic 2. Hence
we may assume that F ∗(H) = H. Set Q = O2(CH(z)) and let t ∈ Q\〈z〉
be an involution. Let S1 be a Sylow 2-subgroup of CCH(z)(t) containing
CS(t). Then we have that Z(S1) = 〈z, t〉 as Z(CS(t)) ≤ CQ(t) = 〈z, t〉.
Now there is S2 ≤ CG(t) with |S2 : S1| = 2. This shows that 〈Q,S2〉
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induces Sym(3) on 〈z, t〉. In particular 〈z, t〉 ≤ Qg for g ∈ G. Hence
|Qg : CQg(z)| = 2. We consider QCQg(z). As t ∈ Q, we have that
QCQg(z)/Q is elementary abelian. As S/Q is quaternion of order 8, we
get |QCQg(z) : Q| ≤ 2 and so |Q ∩ Qg| ≥ 25. But then Q ∩ Qg is not
abelian and so, as Q′ = 〈z〉 6= 〈t〉 = (Qg)′, we have a contradiction.
This proves

zG ∩H = zH = zF
∗(H).

Now as CG(z) ≤ H and O(G) = 1, Lemma 4.4 implies that G = H. �

Proof of Proposition 14.2. The candidates for F ∗(H) are given
by Lemma D.15. With this information, the proposition follows by com-
bining the statements from Lemma 3.15, Propositions 12.1, 11.1 and
10.1 combined with Propositions 14.3, 14.4 and 14.6. �

15. The groups with F∗(H) ∼= G2(3e)

In this section we assume Hypothesis 6.1 (i), (ii), (iii) hold with
F ∗(H) ∼= G2(3e) and e ≥ 1. As usual, S0 ∈ Syl3(H) ⊆ Syl3(G) and S =
S0∩F ∗(H). We have Z(S) = R1R2 where R1 and R2 are root subgroups
of F ∗(H) which are not F ∗(H)-conjugate by Lemma A.3. The structure
of the parabolic subgroups of F ∗(H) is described in Lemma D.11. Thus
the maximal parabolic subgroups in F ∗(H) containing S are Hi =
NH(Ri), i = 1, 2. Set

Qi = O3(Hi)

and recall that

O3′(Hi/O3(Hi)) ∼= SL2(3e).

Our objective in this section is to prove:

Proposition 15.1. Suppose that Hypothesis 6.1 (i), (ii) and (iii)
hold with F ∗(H) ∼= G2(3e) and e ≥ 1. Then NG(E) ≤ H for any non-
trivial normal subgroup E of S0. If, furthermore, G is of local charac-
teristic 3, then G = H or H is strongly 3-embedded in G.

Our first result investigates the normalizer of S and the centralizers
of root elements.

Lemma 15.2. For i = 1, 2 the following hold:

(i) NG(Qi) = NH(Qi);
(ii) NG(S) = NH(S);

(iii) NG(Ri) = NH(Ri); and

(iv) for r ∈ R#
i , CG(r) = CH(r).
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Proof. By symmetry it is enough to prove the lemma for i = 1. Let
M = NG(Q1). Obviously, M/Q1 acts on Q1/Z(Q1) which is a natural
O3′(H1/Q1)-module by Lemma D.11. Suppose C = CM(Q1/Z(Q1)) 6=
Q1. Then C/Q1 has order coprime to 3 and is normalized by H1/Q1.
As G is of parabolic characteristic 3, C does not centralize Q1/R1.
Therefore, as Φ(Q1) = R1 by Lemma D.11(iii),

Q1/R1 = [Q1/R1, C]× CQ1/R1(C)

is a non-trivial decomposition of Q1/R1 which is H1 invariant. This
contradicts Lemma D.11 (v). Hence C = Q1 and M/Q1 acts faithfully
on Q1/Z(Q1). It follows from Lemma 2.27 that O3′(H1) is normal in
NG(Q1). In the same way we see that O3′(H2) is normal in NG(Q2).

We have NG(Q1) = O3′(H1)NNG(Q1)(S), and NNG(Q1)(S) permutes
the set {Q1, Q2} by Lemma D.11 (ix). Hence NNG(Q1)(S) normalizes

Q2 and therefore NNG(Q1)(S) normalizes 〈O3′(H1), O3′(H2)〉 = F ∗(H).
Since H = NG(F ∗(H)), we have

NG(Q1) = O3′(H1)NNG(Q1)(S) ≤ H.

This proves (i).
Since NG(S) permutes {Q1, Q2}, part (i) yields

〈NG(Q1), NG(Q2)〉 = 〈NH(Q1), NH(Q2)〉 ≤ H

is normalized by NG(S). Since F ∗(〈NH(Q1), NH(Q2)〉) = F ∗(H), we
now have NG(S) ≤ NG(F ∗(H)) ≤ H. Thus (ii) holds.

Now consider NG(Y ) for Y a non-trivial subgroup of R1. First of
all we have that O3(NG(Y )) ≤ Q1 as Y ≤ Z(NF ∗(H)(R1)). Since G is of
parabolic characteristic 3, we obtain Z(Q1) < O3(NG(Y )). Using the
fact that H1 acts irreducibly on Q1/Z(Q1) by Lemma D.11 (iv) and
(v), we conclude that O3(NG(Y )) = Q1. Now (iii) and (iv) follows from
(i). �

Lemma 15.3. For i = 1, 2 and ri ∈ R#
i , we have rGi ∩H ⊆ F ∗(H).

Proof. Suppose that rg1 ∈ H \F ∗(H) for some element g ∈ G and

r1 ∈ R#
1 . Then rg1 acts as a field automorphism on F ∗(H) by Theorem

A.11 and Lemmas A.12 and A.15 all elements of order three in the coset
F ∗(H)rg1 are F ∗(H)-conjugate. In particular CF ∗(H)(r

g
1) ∼= G2(3e/3). By

Lemma 15.2, CG(r1)/O2(CG(r1)) = CH(r1)/Q1 and O3′(CH(r1)/Q1) ∼=
SL2(3e) by Lemma D.11 (ii). But then CF ∗(H)(r

g
1) does not embed in

CG(r1) (by [33, Satz 8.27] for example). This proves the lemma. �

Lemma 15.4. We have NG(S0) ≤ NG(S) = NH(S).
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Proof. Since S is generated by root elements, for g ∈ NG(S0),
Sg ≤ F ∗(H) by Lemma 15.3. Hence g ∈ NG(S) and NG(S0) ≤ NG(S).

�

Lemma 15.5. For i = 1, 2 let ri ∈ R#
i . Then rGi ∩H = rHi .

Proof. By Lemma 15.4 we have that H controls fusion in Z(S0)#.
This means that rG1 ∩ Z(S0)H = rH1 for all r1 ∈ Z(S0) ∩R1.

By Lemma 15.3 we have rG1 ∩ H ⊂ F ∗(H), so suppose that rg1 ∈
S \ rH1 for some g ∈ G and r1 ∈ R#

1 . Then, by Lemma D.11 (vi), (viii)
and (ix), we may suppose that rg1 ∈ Q1 ∩Q2 and that

CS(rg1) = Q1 ∩Q2 ∈ Syl3(CF ∗(H)(r
g
1)).

We have Q1 ∩ Q2 ≤ CG(rg1) ≤ Hg by Lemma 15.2. Since Q1 ∩ Q2

is generated by root elements, Lemmas D.11(iv) and 15.3 imply that
Q1 ∩ Q2 ≤ F ∗(Hg). Let T ∈ Syl3(CF ∗(Hg)(r

g
1)) with Q1 ∩ Q2 ≤ T and

let Ta and Tb be the conjugates of Q1 and Q2 in T . By Lemma D.11 (ix)
we may suppose that Q1∩Q2 ≤ Ta. Since Q1∩Q2 is elementary abelian
of order 34e, Z(Ta) ≤ Q1 ∩ Q2. Now [Z(Q1), O3′(H1)] ≤ Q1 ∩ Q2 has
order 32e and Z(T ) has order 33e. Hence [Z(Q1), O3′(H1)]∩Z(Ta) 6= 1.
Let x ∈ ([Z(Q1), O3′(H1)] ∩ Z(Ta))

#. Then x is H-conjugate to an
element of R2 by Lemma D.11 (iv). Therefore Ta ≤ CG(x) ≤ H by
Lemma 15.2. Since Ta is generated by conjugates of R1 and R2, we
have Ta ≤ F ∗(H) by Lemma 15.3. Hence Ta is H-conjugate to Q1 or
Q2, and so rg ∈ Z(T ) ≤ Z(Ta) which is conjugate to either Z(Q1) or
Z(Q2). But then rg is H-conjugate to an element of Z(S) by Lemma
D.11(vi), a contradiction. �

Proof of Proposition 15.1. By Lemmas 15.2(iv) and 15.5 the
assumptions of Lemma 4.2 are satisfied. Application of Lemma 4.2 now
implies the statements of Proposition 15.1. �

16. The groups with F∗(H) ∼= PΩ+
8 (3) and NG(Q) 6≤ H

In this section we address a special case of Theorem 3. We will prove
the following proposition.

Proposition 16.1. Assume Hypothesis 6.1 holds with F ∗(H) ∼=
PΩ+

8 (3). If NG(Q) 6≤ H, then F ∗(G) ∼= F2 or M(23).

We fix the hypothesis of Proposition 16.1 throughout this section.
The proof of Proposition 16.1 is more intricate than that of the other
groups with CH(z) soluble for some z ∈ Z(S) because of the exceptional
structure of Out(F ∗(H)).
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We continue with the notation introduced in Section 7. In particu-
lar, this means that S0 ∈ Syl3(H), S = S0∩F ∗(H), R = Z(S0) = Z(S),
Q = O3(CF ∗(H)(R)) and L = O3′(NF ∗(H)(Q)). We have that R has or-
der 3 and

NF ∗(H)(R)/Q ∼ (SL2(3) ◦ SL2(3) ◦ SL2(3)) : 2 ∼ 21+6
− .33.2,

as can be seen from Lemma D.26. Furthermore Q is extraspecial of
order 39 and exponent 3. By [79, Theorem 1] NG(Q)/Q is isomor-
phic to a subgroup of GSp8(3). We also recall that by Lemma D.26
H/F ∗(H) embeds into Out(H) ∼= Sym(4). The action of NF ∗(H)(R)
on Q/R is as a tensor product of the natural SL2(3)-module with the
four-dimensional orthogonal module for Ω+

4 (3) (see Lemma D.1). In
particular, NF ∗(H)(R) acts irreducibly on Q/R which has order 38. Fur-
thermore by Proposition 7.1 we have Q = O3(NG(R)). In particular,
as R = Z(S), NG(S) ≤ NG(Q).

In [59, Section 3], we introduced a subgroup Y of GSp8(3), which
is isomorphic to

(GL2(3) ◦GL2(3) ◦GL2(3)).Sym(3).

There we described the action of Y on the natural GSp8(3)-module
and showed that any subgroup of GSp8(3) which is isomorphic Y is
conjugate to Y in GSp8(3). We may consider Y as a subgroup of
Out(Q) ∼= GSp8(3).

We summarize the above discussion in the following lemma.

Lemma 16.2. Suppose that F ∗(H) ∼= PΩ+
8 (3). Then

(i) Q = O3(NG(R)) is extraspecial of order 39 of exponent 3 and
NG(Q)/Q is isomorphic to a subgroup of GSp8(3).

(ii) S/Q is elementary abelian of order 33 and |S0/S| ≤ 3.
(iii) NF ∗(H)(S)/S is elementary abelian of order 4.
(iv) NH(Q)/Q is isomorphic to a subgroup of Y containing

CF ∗(H)(R)/Q ∼= SL2(3) ◦ SL2(3) ◦ SL2(3).

(v) Z(NG(Q)/Q) = Z(NH(Q)/Q) inverts Q/R.

We shall need the following specific fact about the normalizer of an
extraspecial 2-subgroup of Sp8(3).

Lemma 16.3. Suppose that K ∼= Sp8(3) and W is an extraspecial
subgroup of K of order 27. Then NK(W )/W ∼= Ω−6 (2) ∼= PSU4(2) and,
in particular, NK(W ) contains no elements which act as transvections
on W/Z(W ).

Proof. This follows from [37, Proposition 4.6.9]. �
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Let P1, P2, P3 and P4 be the minimal parabolic subgroups of F ∗(H)
containing NF ∗(H)(S) with P4 corresponding to the middle node.

1
◦ 4

◦2

◦
3
◦.

Note that NF ∗(H)(Q) = P1P2P3. For 1 ≤ i ≤ 3 set

Ki = 〈P4, Pj | j 6= i〉 and Ei = O3(Ki).

Then, for 1 ≤ i ≤ 3, O3′(Ki/Ei) ∼= Ω+
6 (3) with Ei elementary abelian

of order 36 (we may suppose that K1 normalizes a maximal singular
subspace of the natural module for F ∗(H). Then use that K1, K2 and
K3 are conjugate by a diagram automorphism). Notice also that Ei 6≤ Q
as Q is extraspecial of order 38 and so has 3-rank 5. Put

CG(R) = CG(R)/Q.

and set

X = O3,2(NH(Q)).

We have
X ∼= 21+6

− and CF ∗(H)(R) = XS.

Lemma 16.4. For 1 ≤ i ≤ 3,

(i) EiQ is normalized by Pj, 1 ≤ j ≤ 3, i 6= j;
(ii) |Ei| = 3;

(iii) S = E1E2E3Q; and
(iv) Ei = CQEi(Ei ∩Q).
(v) if τ ∈ S \Q is such that CQ(τ) is elementary abelian of order

35, then there exists 1 ≤ i ≤ 3 such that τ ∈ Ei.
(vi) NG(S) permutes {E1, E2, E3}.

Proof. As there is no edge in the diagram between i and j for
1 ≤ i, j ≤ 3, we have PiPj = 〈Pi, Pj〉. Recall Ki = NF ∗(H)(Ei) for i ≤ 3
is the ith parabolic and Ki = 〈Pj | j 6= i〉. In particular Ei E Pj for
j 6= i and (i) holds.

It suffices to consider i = 1 as a triality automorphism of F ∗(H) can
be chosen to H permute the set {E1, E2, E3}. As NF ∗(H)(EiQ) = PjPk
we have NF ∗(H)(E2E3Q) = P1 and E2Q 6= E3Q, so as |S : Q| = 33

we have |S/E2E3Q| = 3. In particular, |E2| = |E3| = 3 and so also
|E1| = 3. This proves (ii) and shows S = E1E2E3 , so that (iii) holds.

By (ii), |E1∩Q| = 35 and so E1∩Q is a maximal elementary abelian
subgroup of Q. Let C = CE1Q(E1 ∩Q). Then, as Q is extraspecial and
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by maximality of E∩Q, C∩Q = E1∩Q and, as E1 is abelian, E1 ≤ C.
Since E1Q/Q = CQ/Q, it follows that C = E1.

To see part (v) we note that S can be identified with the subgroup
D = 〈d1, d2, d3〉 described in [59, Section 3]. Having done this, we use
[59, Lemma 3.1] to see that Ei corresponds to d1 and from as there are
only 3 conjugates of 〈d1〉 in D, we obtain the result.

Finally, as NG(S) normalizes Q, NG(S) acts on the set

{τ ∈ S | CQ(τ) is elementary abelian of order 35}.
Therefore part (v) implies that NG(S) permutes {E1, E2, E3}.

�

Lemma 16.5. Suppose that i is a non-central involution in X. Then

〈iS〉 = CX(Ej) for some 1 ≤ j ≤ 3 and CCG(R)(〈i
S〉) is isomorphic to

a subgroup of GL2(3).

Proof. For 1 ≤ j ≤ 3, set Xj = [X,Ej]Q. By Lemma 16.4
P kP `

∼= SL2(3) ∗ SL2(3) centralizes Ej, so X = X1X2X3 and Xj
∼= Q8.

Furthermore, EjXj
∼= SL2(3). If i is a non-central involution in X,

then there is a 2-set {j, k} ⊆ {1, 2, 3} such that i ∈ XjXk and there

are elements a ∈ Xj and b ∈ Xk such that ab = i. Now we see that i

is centralized by X` where ` 6∈ {j, k} and i
S

has size 9 and generates
XjXk. This proves the first part of the claim. Next we note that (us-
ing Lemma 16.4(iv)) XjXk acts irreducibly on (E` ∩ Q)/R and so as
a XjXk-module Q/R is a direct sum of two isomorphic absolutely ir-
reducible modules of dimension 4. By [22, Chap. 3, Theorem 5.4 (iii)],
CGL8(3)(XjXk) ∼= GL2(3). Hence CCG(R)(XjXk) is isomorphic to a sub-

group of GL2(3). �

Lemma 16.6. Suppose that Q < T < S with |T | = 9 and Ei∩T = 1
for all 1 ≤ i ≤ 3. Then CCH(R)(T ) ≤ XS.

Proof. Suppose that CCH(R)(T ) 6≤ SX. Since either S0 = S or S0

is non-abelian with |Z(S0| = 3, there exists w ∈ CCH(R)(T ) such that

w 6∈ X and w2 ∈ X. Using Lemma 16.3 and setting X̃ = X/X ′, we

have that |X̃/CX̃(w)| = |[X̃, w]| = 4 and that T acts in exactly the

same way on X̃/CX̃(w) and [X̃, w]. Hence T1 = CT ([X̃, w]) has order

3 and so CX̃(T1) has order 16. But then T1 centralizes an involution in

X and so T1 = EiQ for some i by Lemma 16.5, a contradiction. �

Lemma 16.7. We have for 1 ≤ i ≤ 3 NF ∗(H)(Ei) = 〈QNG(Ei)〉 is
normal in NG(Ei) and NG(Ei) = NNG(Ei)(S)NF ∗(H)(Ei).
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Proof. As CS(Ei) = Ei, we have R ≤ Ei. As Ei = O3(NG(Ei)),
we get with Lemma 2.1 (ii) that CG(Ei) = Ei.

Let e ∈ Ei correspond to a non-singular point in Ei and assume
that e is conjugate to r ∈ R# in NG(Ei). Then CNF∗(H)(Ei)(e)/Ei has

a normal subgroup isomorphic to Ω5(3) ∼= PSp4(3). As |S0| ≤ 34,
we see that Ei ≤ O3(CG(e)). But Q does not contain an elementary
abelian group of order 36. So we have that NF ∗(H)(Ei) controls fu-
sion of the NG(Ei)-conjugates of r in Ei and this yields NF ∗(H)(Ei) =

〈QNG(Ei)〉. In particular NF ∗(H)(Ei) is normal in NG(Ei) and NG(Ei) =
NF ∗(H)(Ei)NNG(Ei)(S) as claimed. �

Lemma 16.8. Suppose that F ∗(H) ∼= PΩ+
8 (3). Then NG(S) = NH(S).

In particular, for 1 ≤ i ≤ 3, NG(Ei) ≤ H.

Proof. Since NG(S) normalizes Q and permutes {E1, E2, E3} by
Lemma 16.4 (vi), we have NG(S) normalizes

〈NF ∗(H)(Ei) | i = 1, 2, 3〉 = F ∗(H)

by Lemma 16.7. As H = NG(F ∗(H)) it follows that NG(S) ≤ H. Now,
for 1 ≤ i ≤ 3, NG(Ei) ≤ H by Lemma 16.7. �

Lemma 16.9. We have NG(Z2(S)) = P4NG(S) ≤ H.

Proof. From [59, Lemma 3.1 (v)] we have that Z2(S) has order
9. We consider P4. Since Z(O3(P4)) 6= R, Q 6≤ O3(P4). Let h ∈ P4 with
Qh 6= Q. Then 〈Q,Qh〉 covers O3′(P4/O3(P4)) ∼= SL2(3). As Q ∩Qh is
elementary abelian, we have that |Q∩Qh| ≤ 35. As |Q∩O3(P4)| = 38,
we now see that |(Q ∩ O3(P4))(Q ∩ O3(P4))h| ≥ 311. As |S| = 312 we
have that O3′(P4) = 〈Q,Qh〉. Furthermore Z(O3(P4)) ≤ Q∩Qh is equal
to RRh, which is Z2(S). Assume that g ∈ G and Rg ≤ Z2(S). Then
Rg = Rh for some h ∈ P4 and therefore

O3′(P4) = 〈Qg | g ∈ G,Rg ≤ Z2(S)〉

which means that O3′(P4) is normal in NG(Z2(S)). Hence NG(Z2(S)) =
P4NG(S). Finally Lemma 16.8 yields then NG(Z2(S)) ≤ H. �

Our objective over the next few lemmas is to show that NG(Q) =
NG(X).

Lemma 16.10. Either

(i) NCG(R)(X)/X ∼= PSU4(2) or 31+2
+ .SL2(3); or

(ii) NCG(R)(X) = CH(R).
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Proof. By Lemma 16.3, we have that NCG(R)(X)/X is isomorphic
to a subgroup of PSU4(2) which has order divisible by 33. IfNCG(R)X/X
normalizes SX/X, then

NCG(R)(X) ≤ NG(S)X ≤ H

by Lemma 16.9. This is (ii). Now Lemma E.5 delivers the assertion. �

Lemma 16.11. |CG(R) : CH(R)| ∈ {1, 4, 7, 10, 13, 16, 25, 28, 40}.

Proof. By Lemma 16.8 CH(R) ≥ NCG(R)(S) and so

a = |CG(R) : CH(R)| ≡ 1 (mod 3).

SinceNG(Z2(S)) = P4NH(S) by Lemma 16.9, we haveNCG(R)(Z2(S)) =
P4NH(S) ∩ CG(R) = NCH(R)(S). Since NX(S) = X ′ and NH(X) =
XNH(S), we have

|CH(R) : NCH(R)(Z2(S))| = 64.

Thus the number of CG(R)-conjugates of Z2(S) in Q is 64a. Since there
are exactly (38−1)/2 cyclic subgroups in Q/R we have 64a ≤ (38−1)/2.
Hence a ≤ 51. Using this, a ≡ 1 (mod 3) and a divides |Sp8(3)| yields
the result. �

Lemma 16.12. Suppose NCG(R)(X)/X ∼= PSU4(2). Then CG(R) =
NCG(R)(X).

Proof. From the structure of PSU4(2), we have |NCG(R)(X) :
CH(R)| = 40 and so the result follows from Lemma 16.11. �

Lemma 16.13. The subgroup X is weakly closed in NCG(R)(X).

Proof. Suppose that there exists g ∈ CG(R) withXg ≤ NCG(R)(X)
and Xg 6= X. Since CG(R) 6= NCG(R)(X), we have by Lemma 16.10 and
Lemma 16.12 that NCG(R)(X)/X ∼= 31+2

+ .SL2(3) or NCG(R)(X) ≤ H and

NCG(R)(X)/X is isomorphic to a subgroup of 33:Sym(4). As X
′

is nor-

mal in CG(R) we get XgX/X is elementary abelian. Now we either

have |XgX/X| = 2 or 4. Since X
g

centralizes X
g ∩X)/X

′
Lemma 16.3

implies that |XgX/X| = 4 and that every element x ∈ (XgX/X)#

satisfies CX/X′(x) = CX/X′(X
g
) = (X∩Xg

)/X
′
. But then Lemma 2.14

implies that XgX/X centralizes SX/X. This contradicts Lemma 16.6
and proves the lemma. �

Lemma 16.14. One of the following holds:

(i) NCG(R)(X) = CH(R) and |CG(R) : CH(R)| ∈ {1, 7, 13, 25};
or

(ii) NCG(R)(X)/X ∼= 31+2
+ .SL2(3) and |CG(R) : CH(R)| ∈ {4, 28}.
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Proof. By Lemma 16.13 X acts fixed-point-freely by conjugates
on XCG(R) \ {X}. Hence |CG(R) : NCG(R)(X)| is odd. Thus Lemma
16.11 immediately gives (i). In case (ii), we require |CG(R) : CH(R)| to
be divisible by |NCG(R)(X) : CH(R)| = 4 and this gives the result. �

Lemma 16.15. If NCG(R)(X)/X ∼= 31+2
+ .SL2(3), then CG(R) =

NCG(R)(X).

Proof. By Lemma 16.14 (ii), if the claim is false then |CG(R) :
NCG(R)(X)| = 7. Let N =

⋂
g∈CG(R) NCG(R)(X). Then CG(R)/N is iso-

morphic to a subgroup of Sym(7). AsX∩N is normalized byNCG(R)(X)
and NCG(R)(X) acts irreducibly on X/X ′, we see that XN/N either is
trivial or |XN/N | ≥ 26. Since CG(R)/N has Sylow 2-subgroups of or-
der at most 16, we have N ≤ X. Now using Lemma 16.13 and fact that
X is normal in N we have X is normal in CG(R), a contradiction. �

Lemma 16.16. We have NG(Q) = NG(X).

Proof. Suppose NG(Q) > NG(X). As NG(Q) = NG(S)CG(R),
CG(R) > NCG(R)(X). Combining Lemmas 16.10, 16.12 and 16.15 yields

NCG(R)(X) = CH(R)

and
|CG(R) : CH(R)| ∈ {7, 13, 25}

by Lemma 16.14. By considering the action of S on the set XCG(R),
we see that X is fixed and S has at least one orbit of length at most
3. Select g ∈ CG(R), Xg ∈ XCG(R) so that |(Xg)S| ≤ 3 and let T =
NS(Xg) with notation chosen so that T ≤ Sg. Suppose that T ≥ EiQ 6=
Q for some 1 ≤ i ≤ 3. Then EiQ and Q are normalized by Sg. Since
(Ei ∩ Q)/R = Z(QEi), S

g normalizes Ei ∩ Q and so Sg normalizes
CEiQ(Ei ∩ Q) = Ei. Using Lemma 16.8 we have the Sg ≤ H and so
Sgh = S for some h ∈ CH(R) as S0 contains a unique abelian subgroup
of order 33. But then gh ∈ CH(R) ≤ NH(X) by Lemma 16.8 and this
means that g ∈ NH(X) so that X = Xg, a contradiction. Hence, for
1 ≤ i ≤ 3, we have T ∩ EiQ = Q and |T | = 9.

Recall that CH(R)/X is isomorphic to a subgroup of 33 : Sym(4).
Consider now (Xg∩CH(R))X/X. This is a 2-group which is normalized
by TX/X. Since SX is normalized by CH(R)X/X,

[Xg ∩ CH(R), T ] ≤ Xg ∩ SX ≤ Xg ∩X
and so TX/X is centralized by (Xg ∩ CH(R))X/X. Therefore Xg ∩
CH(R) = Xg ∩X by Lemma 16.6. Hence using |XCG(R)| ∈ {7, 13, 25}
and X(XS)g = 3|Xg/(X ∩Xg)|, we see |Xg ∩X| ≥ 24 and |XCG(R)| ∈
{13, 25}. As |X ∩Xg| ≥ 24, there exists an involution i ∈ X ∩Xg with
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i 6∈ X ′. Thus, up to change of notation, Lemma 16.5 implies we may
assume that i is centralized by E1 and

Xg ∩X = 〈oT 〉 = 〈iE1T 〉

= 〈iS〉 = CX(E1) ∼= Q8 ◦Q8.

By Lemma 16.5 CCG(R)(X ∩Xg) is isomorphic to a subgroup of GL2(3).

But then XE1 has index at most 2 in CCG(R)(X ∩Xg) and therefore

X ∩ Xg has index at most 2 in Xg, a contradiction. Hence NG(Q) =
NG(X). �

The proof of Proposition 16.1. By Lemma 16.16, X is nor-
mal in NG(Q). As NG(Q) 6≤ H and NH(Q) contains an element which
inverts Z(Q), Lemma 16.10 indicates that NG(Q)/Q is an extension of
X by 31+2

+ .GL(3) or PSU4(2):2. Now an application of Lemma 3.8 and
Lemma 3.9 yield the assertion. �

17. The case when p = 3, the centralizer of some 3-central
element of H is soluble and NG(Q) 6≤ H

In this section we continue by investigating the groups which satisfy

Hypothesis 17.1. Hypothesis 6.1 holds with p = 3, F ∗(H) is a
group of Lie type in characteristic 3 and CH(z) is soluble for some
z ∈ Z(S0)#. In addition, assume that NG(O3(CG(t))) 6≤ H for some
t ∈ Z(S0)#.

The main result of this section is

Proposition 17.2. Suppose that Hypothesis 17.1 holds. Then one
of the following holds

(i) the pair (F ∗(G), F ∗(H)) is one of (F4(2),PSL4(3)),
(PSU6(2),PSU4(3)), (McL,PSU4(3)) (Co2,PSU4(3)),
(2E6(2),PΩ7(3)), (M(22),PΩ7(3)), (M(23),PΩ+

8 (3)),
(F2,PΩ+

8 (3)); or
(ii) F ∗(H) ∼= PSL3(3).

Assume that Hypothesis 17.1 holds and continue the notation of
Section 6. As for some z ∈ Z(S0)#, CH(z) is soluble, Lemma D.15
implies that F ∗(H) is one of the groups

PSL3(3e),G2(3e),PSp4(3),PSL4(3),PSU4(3),PΩ7(3), and PΩ+
8 (3)

Recall that, if F ∗(H) is PSL3(3e), then Proposition 9.7 implies that
(ii) holds. Proposition 15.1 contradicts Hypothesis 17.1 when F ∗(H) ∼=
G2(3e). Hence Hypothesis 6.2 holds, Q is extraspecial and R = Z(S) =
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Z(S0) = 〈z〉 has order 3. By Hypothesis 17.1, NG(O3(CG(z))) 6≤ H and
Proposition 7.1 gives Q = O3(CF ∗(H)(z)) = O3(CG(z)).

If F ∗(H) ∼= PΩ+
8 (3), then Proposition 16.1 shows that (i) holds.

Thus the work in this section focuses on the groups

PSp4(3),PSL4(3),PSU4(3), and PΩ7(3).

In all cases Q is extraspecial of exponent 3. Hence, by [79, Theorem
1], NG(Q)/Q is a subgroup of GSp(Q/R).

Lemma 17.3. We have F ∗(H) 6∼= PSp4(3).

Proof. We have that Q is extraspecial of order 27. Therefore
Out(Q) ∼= GL2(3) and so NH(R) has index at most 2 in NG(Q). In
particular, NH(Q) = NH(R) is normal in NG(Q). Thus

NG(Q) = NNG(Q)(S)NH(Q)

and we have that NNG(Q)(S) normalizes the unique abelian subgroup E
of S of order 33. From the structure of PSp4(3), we get NF ∗(H)(E)/E ∼=
Alt(4) and CG(E) = E as E is normal in S and G has parabolic
characteristic 3. Thus 〈NF ∗(H)(E), NNG(Q)(S)〉 embeds into GL3(3) and
has Sylow 3-subgroups of order 3 and non-trivial Sylow 2-subgroups.
Now Lemma E.3 shows thatNNG(Q)(S) normalizesNF ∗(H)(E). But then
NNG(Q)(S) normalizes

〈NF ∗(H)(E), NF ∗(H)(Z)〉 = F ∗(H).

Therefore NG(Q) ≤ H = NG(F ∗(H)), which is a contradiction to Hy-
pothesis 17.1. �

Proposition 17.4. Suppose F ∗(H) ∼= PSL4(3) or PSU4(3). Then
either F ∗(H) ∼= PSL4(3) and F ∗(G) ∼= F4(2) or F ∗(H) ∼= PSU4(3) and
F ∗(G) ∼= PSU6(2), McL or Co2.

Proof. By Theorem A.10, F ∗(H) = O2′(H) and so S = S0 and
O3(CH(R)) ∼= 31+4

+ . Using Lemma D.28 we have E = J(S) is elemen-
tary abelian of order 34 and

NF ∗(H)(E)/E ∼=

{
(SL2(3) ◦ SL2(3)):2 if F ∗(H) ∼= PSL4(3)

PSL2(9) ∼= Alt(6) if F ∗(H) ∼= PSU4(3)
.

In both cases an inspection of the maximal subgroups of GL4(3) [14,
Table 8.8 and Table 8.9] yields

(17.4.1) O3′(NH(E))ENG(E) and NG(E) = NG(S)O3′(NH(E)).

We have that NG(Q)/Q is isomorphic to a subgroup of GSp4(3),
which has a Sylow 3-subgroup of order 3. Furthermore, independently
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of the isomorphism type of H, we have CH(R)/Q ∼= SL2(3) and Q/R is
a direct sum of two natural SL2(3)-modules for CH(R) by Lemma D.1.
Employing [53, Lemma 4.21] we get that one of the following holds:

(1) NG(Q)/Q ∼= 21+4
− .Alt(5) or 21+4

− .Sym(5);
(2) E(NG(Q)/Q) ∼= SL2(5); or
(3) |NG(Q)/Q| = 2a · 3 for some a.

If case (1) occurs, then, as R is not weakly closed in S with respect to
G, Lemma 3.4 yields G ∼= Co2.

Suppose we have possibility (2). Assume further that F ∗(H) ∼=
PSL4(3). We will show NG(S) ≤ H.

We know that NG(S) normalizes E and by (17.4.1) also normalizes
O3′(NH(E)). Let E1 ≤ S be the group of transvections to a point
and E2 ≤ S the group of transvections to a hyperplane containing this
point. Then O3′NF ∗(H)(Ei)/Ei ∼= SL3(3). Furthermore, NF ∗(H)(Ei) acts
transitively on the subgroups of Ei of order 3. Thus, as Q = O3(CG(Z)),
for i = 1, 2, we have

Ui = 〈O3(CG(Rg)) | g ∈ G,Z(Q)g ≤ Ei〉
= 〈O3(CH(Rg)) | g ∈ G,Z(Q)g ≤ Ei〉 = O3′(NF ∗(H)(Ei)).

We also calculate that E1E/E and E2E/E are the two subgroups
of order three in S/E, which act quadratically on E. In particular
NG(S) permutes the set {E1E,E2E}. We have that O3′(NH(E)) con-
tains an involution x which inverts E and centralizes S/E. Let M =
NNG(S)(E1E). We factor M = CM(x)E. Then, for i = 1, 2, M normal-
izes Z(EiE) = Ei ∩ E which has order 32. Now Ei = CEiE(x)(Ei ∩ E)
is normalized by CM(x). Since E normalizes Ei, we infer that Ei is
normalized by M . Therefore NG(S) permutes {E1, E2} and normalizes
〈U1, U2〉 = F ∗(H). Hence by assumption we then have that NG(S) ≤
NG(F ∗(H)) = H.

Now generally if (2) holds, then we have that

NG(Q) = 〈NH(Q), NNG(Q)(S)〉,
as NH(Q)/Q ∩ E(NG(Q)/Q) ∼= SL2(3) and NE(NG(Q)/Q)(S/Q) ∼ 3 : 4
and together these groups generate E(NG(Q)/Q). Hence as NG(Q) 6≤
H and NG(S) ≤ H when H ∼= PSL4(3), we get that F ∗(H) ∼= PSU4(3)
and so E(NG(E)/E) ∼= Alt(6). Finally, using Lemma 3.5 this yields
F ∗(G) ∼= McL.

So we may assume that we have possibility (3). The Frattini Argu-
ment delivers

NG(O3′(NH(Q))) = NNG(O3′ (NH(Q)))(S)O3′(NH(Q)).
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By (17.4.1) we see that NNG(O3′ (NH(Q)))(S) normalizes O3′(NH(E)) and
then

〈O3′(NH(E)), O3′(NH(Q))〉 = F ∗(H).

Therefore the group NG(O3′(NH(Q))) normalizes F ∗(H) and so is con-
tained in H. Thus NNG(Q)(O

3′(NH(Q))) ≤ H. Using this information
with help from Lemma E.5 we obtain

O3′(NG(Q)/Q)NH(S) ≤ U ∼= (Q8 ×Q8).Sym(3).

Hence, as NG(Q) 6≤ H, we get that U is isomorphic to a subgroup of
NG(Q)/Q. In particular we have that NG(Q)/Q is a subgroup of the
subgroup of GSp4(3) which preserves a decomposition of the natural
4-dimensional symplectic space over GF(3) into a perpendicular sum of
two non-degenerate 2-spaces. We further see that O3′(NG(Q)/Q) is iso-
morphic to a subgroup of Sp2(3)×Sp2(3) and projects non-trivially on
to both symplectic groups. In particular it contains a normal subgroup
isomorphic to Q8 ×Q8.

In both cases F ∗(H) ∼= PSU4(3) and F ∗(H) ∼= PSL4(3) we have
that Z(Q) is not weakly closed in S. Hence the assertion follows from
Lemma 3.3. �

Proposition 17.5. Suppose that F ∗(H) ∼= PΩ7(3). Then F ∗(G) ∼=
2E6(2) or M(22).

Proof. Again S = S0 and R = Z(S) has order 3. By Lemma D.1

NF ∗(H)(R) ∼ 31+6
+ .(SL2(3)× Ω3(3)).2.

Furthermore, as a module for this group Q/R is the tensor product of
the natural SL2(3)-module with the 3-dimensional orthogonal Ω3(3)-
module and this is an irreducible action. By Proposition 7.1 we know
Q = O3(NF ∗(H)(R)) = O3(CG(R)). Application of Lemma E.6 shows
that NG(Q)/Q can be identified as a subgroup of

U = (Sp2(3) o Sym(3)) : 2

with O2(NF ∗(H)(Q)/Q) ≥ Ω1(O2(U)).
Let Q < T ≤ S be such that CO2(NF∗(H)(Q)/Q)(T ) ∼= Q8. Then T/Q

does not centralize Ω1(O2(U)) and so permutes the base group of U
transitively. It follows that either

- O2(NG(Q)/Q) ≥ O2(U);
- O2(NG(Q)/Q) ∩O2(U) has order 27; or
- O2(NG(Q)/Q) ∩O2(U) = O2(NF ∗(H)(Q)/Q).

Therefore either the assumptions of Lemmas 3.6 or 3.7 are satisfied or
|NG(Q) : NF ∗(H)(Q)| = 2. Since Lemmas 3.6 or 3.7 identify 2E6(2) or
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M(22) we have to consider the possibility that |NG(Q) : NF ∗(H)(Q)| =
2. In this case

NG(Q)/Q ∼= GL2(3)× Sym(4)

and

NG(Q) = NG(S)NF ∗(H)(Q) = NG(S)O3(NG(Q))

where O3(NG(Q)) = O3(NH(Q)). We have that NF ∗(H)(R) is the par-
abolic subgroup in F ∗(H), which corresponds to the two end nodes of
the Dynkin diagram

1
◦

2
◦

3
◦

Let P1 be the parabolic subgroup of F ∗(H) containing S, which corre-
sponds to the A2-subdiagram. Then by Lemma D.27 we have O3(P1)
is of order 36, P1/O3(P1) ∼= SL3(3) and E = Z(P1) = Φ(O3(P1)) is ele-
mentary abelian of order 33. Now we set P = NNG(Q)(QO3(P1)). Then
P/O3(P ) ∼= GL2(3)×2 and O3(P ) = QO3(P1) is normalized by NG(S).
Since |O3(P1)Q/Q| = 3, E = Φ(O3(P1)) ≤ Q and so

E/R ≤ CQ/R(O3(P1)Q).

As O3(P )/Q corresponds to the Sylow 3-subgroup of Ω3(3) ∼= Alt(4)
above, we see that |CQ/Z(Q)(O3(P ))| = 9. Hence

E/R = CQ/R(O3(P1)Q).

and so E is normalized by NG(S). As E is normal in S, we have
that O3(NG(E)) = O3(NF ∗(H)(E)). This yields that NF ∗(H)(E) is nor-

mal in NG(E), as NF ∗(H)(E) = O3′(NG(E)). Then NG(S) normal-
izes 〈NF ∗(H)(E), NF ∗(H)(Z(Q))〉 = F ∗(H). But then by assumption
NG(Q) = NG(S)NF ∗(H)(Q) ≤ H. This proves the proposition. �

Proof of Proposition 17.2. Suppose Hypothesis 17.1 holds. As
CH(z) is soluble for some 3-central element of H, Lemma D.15 yields
F ∗(H) ∼= PSL3(3e), G2(3e), PSp4(3), PSL4(3), PSU4(3), PΩ7(3), or
PΩ+

8 (3). We have already mentioned that Proposition 9.7, Propositions
15.1 and 16.1 focus on the cases F ∗(H) ∼= PSL3(3e), G2(3e) or PΩ+

8 (3)
respectively. By Lemma 17.3, F ∗(H) 6∼= PSp4(3). Propositions 17.4 and
17.5 handle the remaining three cases. Together these results prove the
proposition. �

18. Proof of Theorem 2 and Theorem 3

In this short section we prove Theorems 2 and 3.
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Proof of Theorem 2. The hypothesis of Theorem 2 is that Hy-
pothesis 6.1 holds and that NH(Op(CG(z))) is not soluble for all z ∈
Z(S0)# as well as NG(Op(CG(t)) 6≤ H for some t ∈ Z(S0)#.

Suppose first that Hypothesis 6.2 holds. Then Q is large by Lemma
7.2 and, by Proposition 7.1, Q = Op(CG(z)) for all z ∈ Z(S0). So, by
assumption, NG(Q) 6≤ H. Now Proposition 8.2 implies that p = 5 and
H ∼= G2(5). If on the other hand, Hypothesis 6.2 does not hold. Then
Lemma D.15 shows that

F ∗(H) ∼=


Sp2n(2e) n ≥ 2, e ≥ 1 and (n, 2e) 6= (2, 2), (3, 2)
2F4(22e+1) e ≥ 1

F4(2e) e ≥ 1

G2(3e) e > 2.

Now combining Propositions 13.8 and 15.1 yields a contradiction to the
assumptions of Theorem 2.

In the case that F ∗(H) ∼= G2(5), suppose that G is in addition a
K2-group. Then Proposition 8.3 states that G ∼= LyS. �

Proof of Theorem 3. The hypothesis of Theorem 3 states that
Hypothesis 6.1 holds and that there exist z, t ∈ Z(S0)# such that
NH(Op(CG(z))) is soluble and NG(Op(CG(t))) 6≤ H. So Hypothesis 6.1
holds with CH(z) soluble for some z ∈ Z(S0)#. Using Lemma D.15 we
have F ∗(H) ∼= PSL3(pe) with p odd or p ∈ {2, 3}. If F ∗(H) ∼= PSL3(pe),
then Proposition 9.7 shows that pe ∈ {3, 5, 7, 13} and Theorem 3 (iii)
holds. Proposition 17.2 provides the statement of Theorem 3 (ii) in the
special case that p = 3. So suppose that p = 2. In this case, Proposition
14.2 provides a complete determination of the groups which satisfy
Hypothesis 6.1 with CH(z) soluble and G 6= H. Using Proposition
14.3 we see that the pairs (F ∗(G), F ∗(H)) with F ∗(H) ∼= PSL4(2) or
PSU4(2) do not satisfy the hypothesis of Theorem 3. The remaining
pairs are all listed in the statement of Theorem 3 (i). This concludes
the proof of Theorem 3. �

19. Groups which satisfy Hypothesis 6.2 with NG(Q) ≤ H
and some p-local subgroup containing S not contained

in H

We continue the notation introduced in Section 6. In particular, R is
a root group in Z(S) and Q = Op(NF ∗(H)(R)). Our working hypothesis
for this section is:

Hypothesis 19.1. The group G is a Kp-group which satisfies Hy-
pothesis 6.2 and in addition
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(i) NG(Q) = NH(Q);
(ii) there exists a p-local subgroup M containing S such that M 6≤

H.

Our intention is to prove

Proposition 19.2. If Hypothesis 19.1 holds, then F ∗(G) = PSL4(3)
and F ∗(H) = PSU4(2).

First we recall that if p = 2 and CH(z) is soluble for some 2-
central involution z, then Proposition 14.2 classifies all the possible
pairs (F ∗(G), F ∗(H)) which satisfy Hypothesis 6.1 and, in particu-
lar, the only pair which satisfies Hypothesis 19.1 is (F ∗(G), F ∗(H)) =
(PSL4(3),PSU4(2)). Henceforward we therefore assume that when p =
2, CH(z) is not soluble for all 2-central involutions z.

Recall that when F ∗(H) is as in Hypothesis 6.2, then the results
from Section 7 are available. In particular, Q is semi-extraspecial, and
Q is large by Lemma 7.2. Therefore, in addition to NG(Q) = NH(Q),
we also know that

(L2) if 1 6= U ≤ G and [U,Q] = 1, then NG(U) ≤ NG(Q)

and Q is weakly closed in S0 with respect to G.
Our first lemma concerns the structure of over-groupsK ofQQp(M)

in M which are not in H. Since K ≥ Op(M) and CG(Op(M)) ≤ Op(M)
by Lemma 2.3(iv), we have

CG(Op(K)) ≤ Op(M) ≤ Op(K)

and so K has characteristic p.

Lemma 19.3. Suppose that QOp(M) ≤ K ≤ M and K 6≤ H. Set

YK = 〈Ω1(Z(S0))K〉 and K̃ = K/CK(YK). Then

(i) Q 6≤ Op(K);
(ii) YK ≤ Z(Op(K)) ≤ Op(K);

(iii) R < YK ∩Q ≤ YK and CYK (Q) = R;
(iv) CK(YK) ≤ H;
(v) YK is an irreducible K-module;

(vi) if YK ≤ Q, then, as a K̃-module, YK is a dual F -module with

dual offender Q̃; and

(vii) if YK 6≤ Q, then, as a K̃-module, YK is dual to a 2F -module

with 2-offender Q̃ acting strictly cubically.

Proof. If Q ≤ Op(K), then, as Q is weakly closed in S0, we have
K ≤ NG(Q) ≤ H which is a contradiction. Hence (i) holds.
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Because K has characteristic p and Ω1(Z(S0)) ≤ Q ≤ K, we have
Ω1(Z(S0)) ≤ Z(Op(K)) and therefore YK ≤ Z(Op(K)) ≤ Op(K) which
is (ii).

If YK ≤ R, then, as R = Z(Q) and Q is large, we have

K ≤ NG(YK) ≤ NG(Q) ≤ H

by (L2), which is not the case. Hence YK 6≤ R and, in particular, YK 6=
R. If YK ≤ Q, then, as Q is semi-extraspecial and YK 6≤ R, Lemma
D.16 implies that [Q, YK ] = R. If YK 6≤ Q, then [Q, YK ] ≤ Q ∩ YK is
not contained in R because NG(Q)/Q acts faithfully on Q/R. Hence
R = [YK , Q,Q] ≤ YK again by Lemma D.16. Finally, as R ≤ YK and
YK is abelian we have

R ≤ CYK (Q) ≤ CG(Q) ≤ CQ(Q) = R.

Thus (iii) holds.
Since R ≤ YK we have CK(YK) centralizes R and is therefore con-

tained in H by (L2). So part (iv) holds.
Suppose that U is a non-trivial K-invariant subgroup of YK . If

U is centralized by Q, then U ≤ R and we have K ≤ H by L(2).
Since K 6≤ H, we conclude U is not centralized by Q. If U ≤ Q, then
[U,Q] = R ≥ Ω1(Z(S0)) and so YK = U by the definition of YK . If
U 6≤ Q, then [U ∩ Q,Q] = R and again we have U = YK . Thus YK is
irreducible as a K-module. Hence (v) holds.

To prove (vi), suppose YK ≤ Q. Then [YK , Q,Q] = 1 and YK 6≤ R
by (iii), so we have |Q : CQ(YK)| ≥ |R| and [Q, YK ] = R by Lemma

D.16. Thus |Q̃| ≥ |[YK , Q]| which means that YK is dual to an F -module

with dual offender Q̃.
Now for part (vii). Assume that YK 6≤ Q. Then [YK , Q] 6≤ R and so

Lemma D.16 implies that [YK , Q,Q] = R and

[YK , Q,Q,Q] ≤ [Q,Q,Q] = 1.

Hence Q operates strictly cubically on YK .
Set |YK ∩Q| = px+e. Then, as Q is semi-extraspecial,

|Q̃| = |Q : CQ(YK)| ≥ |Q : CQ(YK ∩Q)| ≥ px.

Denoting the dual of YK by Y ∗K , noting that px ≥ pe by Lemma 2.10
and using Lemma 2.19, we have

|Y ∗K : CY ∗K (Q)| = |[YK , Q]| ≤ |YK ∩Q| = pe+x ≤ p2x ≤ |Q̃|2.

Thus YK is a dual 2F -module for K̃ with Q̃ a strictly cubic 2-offender
on Y . This proves (vii). �
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Select P ≤ M of minimal order subject to P ≥ SOp(M) and P 6≤
H. Notice that the results of Lemma 19.3 are available for P .

Lemma 19.4. The following hold:

(i) P ∩ H is the unique maximal subgroup of P which contains
SOp(M);

(ii) if S1 ∈ Sylp(P ) with SOp(M) ≤ S1, then NP (S1) ≤ H; and
(iii) P is a p-minimal group.

Proof. By the minimal choice of P , P ∩H is a maximal subgroup
of P . Assume that P1 is a maximal subgroup of P which contains
SOp(M). The minimal choice of P implies that P1 ≤ H. Therefore
P ∩H is the unique maximal subgroup of P containing SOp(M). This
is (i).

Since Q ≤ S and Q is weakly closed in S0 with respect to G, we
have that NG(S1) ≤ NG(Q) ≤ H. So (ii) holds.

If 〈SP1 〉 < P , then 〈SP1 〉 ≤ H by (i). In addition, P = 〈SP1 〉NP (S1)
by the Frattini Argument. By (ii) P ≤ H, a contradiction. We conclude
that P = 〈SP1 〉 and with (i) this shows that P is p-minimal. Hence (iii)
holds. �

For the remainder of this section we fix the following notation

- S1 ∈ Sylp(P ) with SOp(M) ≤ S1 ≤ S0 ∈ Sylp(H).

- Y = YP = 〈Ω1(Z(S0))P 〉.
- P = P/CP (Y ).

Since P is p-minimal by Lemma 19.4, the structure of P is generally
portrayed by Lemma 2.7. By Lemma 19.3 (iv), CP (Y ) is contained in
H and, since P ∩H is the unique maximal subgroup of P containing S1,
it follows from Lemma 2.7 (ii) and (iv) that Op(P ) ∈ Sylp(CP (Y )) and

CP (Y ) is nilpotent. Remember also that Op(M) ≤ Op(P ) ≤ CP (Y )
so that P is of characteristic p and even though P is not a p-local
subgroup it is a K-group as G is a Kp-group.

Lemma 19.5. Let |Y | = 16 and |[Q, Y ]| = 8, |CY (Q)| = 2, then
Y 6≤ Q but Y ≤ S.

Proof. As [Y,Q,Q] 6= 1, we have Y 6≤ Q. Assume now Y 6≤ S.
As [Y, S] = [Y,Q] we see that Y Q/Q centralizes S/Q. By Lemma D.25
we have that Y induces a group of inner automorphisms on the Levi
complement of NF ∗(H)(R). Set L = O2′(NF ∗(H)(R)/Q). Then there is
some 1 6= ỹ with ỹ2 ∈ Q which induces an outer automorphism on
F ∗(H) with [L, ỹ] = 1. Assume F ∗(H) 6∼= PSLn(2). Then by Lemma
D.1 we have that L acts irreducibly on Q/R and so [ỹ, Q] ≤ R (re-
call PSU4(2) ∼= Ω−6 (2) is excluded as CH(z) is soluble for a 2-central
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involution of H.) This implies that there is some 1 6= y1, y2
1 ∈ R such

that [S, y1] = 1 and y1 induces an outer automorphism on F ∗(H) which
contradicts Lemma D.25.

We are left with F ∗(H) ∼= PSLn(2). We now have n ≥ 5 and so
there are exactly two non-trivial, non-isomorphic L-modules involved
in Q/R, which then again implies that there is y1 which centralizes S,
again a contradiction. �

Lemma 19.6. Suppose that E(P ) = 1. Then p ∈ {2, 3}, Y ≤ Q has
order p2 and P ∼= SL2(p).

Proof. Suppose that E(P ) = 1. We will show that P ∼= SL2(2) or
SL2(3) and Y ≤ Q has order 4 or 9 respectively.

Since E(P ) = 1, F (P ) 6= 1. Let K0 ≥ CP (Y ) be such that K0 =
F (P ). Then S1 ∩ K0 ∈ Sylp(K0) and (S1 ∩ K0)CP (Y ) is a normal
subgroup of P . Thus

P = NP (S1 ∩K0)(S1 ∩K0)CP (Y ) = NP (S1 ∩K0)CP (Y ).

Since S1 ∩ K0 is normalized by S1, and CP (Y ) ≤ P ∩ H, we deduce
that P = NP (S1 ∩ Y ) and S1 ∩K0 = Op(P ) ≤ CP (Y ). Hence K0 is a
p′-group. Since, CP (K0) ≤ K0, we now have CQ(K0) = 1. Define

K = [K0, Q]CP (Y ).

Then, as Q 6≤ Op(P ), K 6= 1 and CQ(K) = 1 by coprime action.

Suppose that Q is not cyclic. Then

K = 〈CK(J) | |Q : J | = p〉.
Since [K,Q] = K, there exists a maximal subgroup J of Q such that
KJ = CK(J) is not centralized by Q. Let KJ be the preimage of KJ .
Then KJ normalizes [Y, J, J ] ≤ R.

Suppose that 1 < U ≤ R < Y is KJ -invariant. Then KJ ≤
NG(U) ≤ NG(Q) by (L2). Now [KJ , Q] is a p-group and so [KJ , Q] = 1,
a contradiction to our selection of J . Thus no such U exists.

If [Y, J, J ] 6= 1, then, setting U = [Y, J, J ] ≤ [Q,Q] = R, we have a
contradiction. Therefore J operates quadratically on Y . In particular,
[Y, J ] is centralized by J . If [Y, J ] ≤ R, we set U = [Y, J ] and have a
contradiction. Hence

[Y, J ] 6≤ R and Y 6≤ Q.

Since [Y, J ] is centralized by J which has index p inQ we have [Y, J,Q] =
R is of order p and Lemma 2.10 implies that Q is extraspecial and [Y, J ]
has order p2. Now KJQ acts non-trivially on [Y, J ] and so KJQ maps
into GL2(p). By Dickson’s list of subgroups of GL2(p) [33, Satz 8.27],
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we see that a p-group acts non-trivially on a p′-group only for p = 2 or
3. Hence we have that

p ∈ {2, 3}.

Because Q is not cyclic, CK(J) 6= K and so there is a further maximal
subgroup J1 of Q with CK(J1) not centralized by Q. We have

R ≤ R[Y, J ∩ J1] ≤ [Y, J ] ∩ [Y, J1].

As |[Y, J ]| = |[Y, J1]| = p2, we either have [Y, J ] = [Y, J1] or [Y, J ∩
J1] ≤ R. Option one is impossible as [Y, J ] = [Y, J1] is then centralized
by JJ1 = Q which means that [Y,Q] ≤ R and delivers Y ≤ Q, a
contradiction. Thus U = [Y, J ∩ J1] ≤ R. If U 6= 1, then KJ normalizes
U which we have already seen is impossible. Therefore [Y, J ∩ J1] = 1.
In particular, |Q| = p2. Since J operates quadratically on Y as an
element of order p, we have |Y/CY (J)| ∼= [Y, J ] as CK(J)Q-modules. In
particular, |Y : CY (J)| = |Y : CY (J1)| = p2 and |Y/CY (J)CY (J1)| =
|Y/[Y,Q]| = p. Since R = CY (J) ∩ CY (J1), we have

|Y | = p4.

Suppose that p = 3. Then P = 〈SP1 〉 is isomorphic to a subgroup of
GL4(3) which is contained in SL4(3). The only nilpotent subgroups in
SL4(3) on which an elementary abelian subgroup of order 9 can act
faithfully are isomorphic to Q8 × Q8 or Q8 ◦ Q8 (recall that SL4(3)
does not contain elementary abelian subgroups of order 16). Now we

have that Q = S and P = KNP (Q). In particular K 6≤ (H ∩ P ). But
then QCK(J) and QCK(J1) are in different maximal subgroups of P ,
a contradiction. Therefore

p = 2.

Because p = 2, P is contained in GL4(2). This time the only nilpotent
group of odd order in GL4(2), on which a fours group acts faithfully is
a Sylow 3-subgroup. This means that P is isomorphic to a subgroup of
O+

4 (2). As P is 2-minimal, we get

P ∼= O+
4 (2) ∼ 32.Dih(8).

Since R has order 2, F ∗(H) is a group of Lie type satisfying Hypoth-
esis 6.2 with pe = 2. Furthermore, using |Y/[Y,Q]| = 2 and Y 6≤ Q,
we determine that Y Q/Q has order 2 and is normalized by S/Q and
[Y,Q]/R has order 4. Hence by Lemma 19.5 we have Y ≤ S and then
by Lemma D.19 F ∗(H) ∼= PSUn(2) or PSLn(2). But then [Q, Y, S] = R.
This shows [Q, Y ] = Z2(S). Now we see that CQ(Z2(S)) = Q ∩ O2(P )
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and then Y ≤ CS(CQ(Z2(S))) which gives that Y = V (Q,S) and con-
tradicts Proposition 7.7. Hence

Q is cyclic.

Because Q is cyclic, we have CQ(Y ) has index p in Q. Since Y ∩Q 6≤ R
by Lemma 19.3 (iii), we have pe = p. Suppose that Y 6≤ Q. Then, by
Lemma 19.3 (vii), CY (Q) = [Y,Q,Q] = R has order p, and so we infer
that Q has exactly one Jordan block when it acts on Y . As Q acts
cubically we get |Y | = p3. Furthermore, Y operates as a transvection
on Q/R and therefore, by Lemma D.20, F ∗(H) ∼= PSp2n(p) with p odd
and S = S0. Now

Op(P ) = CS(Y ) = CS(Z2(S)) = Op(P (S, L))

and so, by Lemma D.23, Ω1(Z(Op(P ))) = V (Q,S) is normalized by P
and this contradicts Proposition 7.7 and P 6≤ H.

On the other hand, if Y ≤ Q, we obtain |Y | = p2 and so KQ is
a subgroup of SL2(p). Since two distinct cyclic subgroups of order p
in GL2(p) generate SL2(p) we deduce that P = KQ ∼= SL2(p) and so
p ∈ {2, 3} in this case. This proves the result. �

Lemma 19.7. Suppose that E(P ) 6= 1. Then Q normalizes every
component of P .

Proof. Assume E(P ) = J1 · · · Jk with J i components of P and,
for 1 ≤ i ≤ k, let Ji ≥ CP (Y ) be the preimage of Ji. Recall that S1

permutes J1, . . . , J l transitively and so J i ∼= J j for 1 ≤ i ≤ j ≤ k.

Aiming for a contradiction we may assume that {J1, . . . , J`} = JQ1
is a Q-orbit on the components of P with ` ≥ 2 a power of p. As
R ≤ Op(P ), we have that Q is elementary abelian. Let

S1 = S1 ∩ J1.

Then

[S1, Q] ≤ Q.

Let w ∈ Q with J1
w

= J2. Then Q ≥ [S1, w] ∼= S1, so S1 is elemen-
tary abelian (recall that Z(J1) is a p-prime group, so S1 is a Sylow
p-subgroup of J1/Z(J1) as well.) and as [Q, [S1, w]] = 1, we have

|(S1)Q| = 2.

In particular,

` = p = 2.

Let

S2 = S1 ∩ E(P )
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and let

N = NJ1···Jk(S2).

Then, as J1 has elementary abelian Sylow 2-subgroups and J1 does
not have a normal 2-complement, N contains NJ1(S

1) > S1. Since
NSOp(M) 6= P , we have

N ≤ H

by Lemma 19.4. Using Q 6≤ O2(NS), we see that S 6≤ O2(NS). We
further have that [N,Q]S ≤ F ∗(H) is normalized by a parabolic sub-
group of F ∗(H) which contains S (see [27, Theorem 2.6.7]). Since S is
not normal in [N,Q]S and since [N,Q]S is soluble (recall p = 2 and
N/S2 has odd order), we infer

pe = 2 and N/S2 is an elementary abelian 3-group.

In particular,

|R| = 2.

Recall that Jw1 = J2 and then defineD = CJ1J2
(w). We haveD/Z(D) ∼=

J1/Z(J1), D ≥ [S1, w] ∼= S1. Now [Y,w] ≤ Q and, as Q is abelian,
[Y,w] is normalized by Q as well as by D. Since |R| = 2, R ≤ [Y,w]
and

[Y,w, [S1, w]] = [Y,w,Q] ≤ R.

Suppose that D does not centralize [Y,w]. Then [Y,w] is an F -module
for D with a Sylow 2-subgroup of D acting as a GF(2)-transvection
group. Therefore, Lemma C.21 implies that D ∼= PSL2(5) ∼= Alt(5).
But this group contains no GF(2)-transvections (as an involution in-
verts an element of order 5 for example). This contradiction shows
that D centralizes [Y,w] and hence also centralizes R. But then D ≤
NG(R) = NG(Q) ≤ H and so D normalizes Q ≥ [S1, w] and this is

nonsense as [S1, w] ∈ Syl2(D). Thus Lemma 19.7 is proved. �

Until the last results of this section, we focus on the cases when
E(P ) 6= 1. For this purpose we fix once and for all a component J of
P and a subgroup J ≥ CP (Y ) mapping to J . Then

E(P ) = 〈JS1〉 = F ∗(P )

and JNS1
(J) is p-minimal by Lemma 2.8. Lemma 19.7 implies that Q

normalizes J and we define

K = JQ.

Since

K ≥ CP (Y ) ≥ Op(P ) ≥ Op(M),
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K is characteristic p and, as P = 〈JS1〉S1, we have K 6≤ H. Therefore
the results of Lemma 19.3 apply to K. In particular, we recall that

YK = 〈Ω1(Z(S0))K〉.

Lemma 19.8. Define X = F ∗(K/CK(YK)). Then the possibilities
for X and p are as follows:

(i) X/Z(X) ∼= PSL2(pa) all p ≥ 2;
(ii) X/Z(X) ∼= PSU3(pa) all p ≥ 2;

(iii) p = 2 and X/Z(X) ∼= 2B2(22a+1);
(iv) p = 2 and X/Z(X) ∼= PSL3(2a) and NS1(J)J has an el-

ement which swaps the two maximal parabolic subgroups of
F ∗(K/CK(YK)) containing (S1 ∩ J)CK(YK)/CK(YK);

(v) p = 2 and X ∼= Sp4(2a)′ and NS1(J)J has an element which
swaps the two maximal parabolic subgroups of F ∗(K/CK(YK))
containing (S1 ∩ J)CK(YK)/CK(YK);

(vi) p = 2 and X ∼= Alt(2a + 1) with a ≥ 3 (two possible actions
on Y for Alt(9) both with |Y | = 28);

(vii) p = 3 and X ∼= Alt(9) or Alt(3a + 1) with a ≥ 2;
(viii) p = 3 and X ∼= 2.Alt(9);
(ix) p = 3 and X ∼= Sp6(2);
(x) p = 3 and X ∼= 2.Sp6(2).

Proof. By Lemma 2.8, KNS(K) is p-minimal. If K is a group of
Lie type in characteristic p we get cases (i)-(v) by Lemma A.18. In the
remaining cases we have, by Lemma 19.3 (vi) and (vii), that YK is either
a dual F -module or a dual of a cubic 2F -module. As a dual F -module
in particular is also a dual 2F -module by Lemma C.19 we may apply
Theorem C.24. The cases (vi)-(x) follow from Theorem C.24. The fact
that X 6∼= 2G2(32a+1) comes from Lemma C.25. �

The candidates for X given in Lemma 19.8 give us the possibilities
for J and we now consider these in turn.

Lemma 19.9. We have J 6∼= PSL3(2a), SL3(2a) or Sp4(2a)′.

Proof. Assume that we have such a component. Then, by Lemma
19.8 (iv) and (v), NS1(J) has an element which exchanges the two max-
imal parabolic subgroups of J containing S1 ∩ J . Suppose for a moment
that J 6∼= Alt(6). Since Q is elementary and normalized by NS1

(J),

Lemmas D.2, D.3 and D.4 imply that Q is contained in O2(U) where
U projects to a maximal 2-local subgroup of JQ/CQ(J) ∼= PSL3(2a),

SL3(2a) or Sp4(2a). Let U be the preimage of U . Since Q is weakly
closed in S0, we infer that U ≤ NG(Q) ≤ H and this is a contradiction
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as 〈US0〉 = K. Now for J ∼= Alt(6), we have S1 ∩ J ∼= Dih(8) and Q
must normalize both parabolic subgroups of J for otherwise Q∩S1 ∩ J
has an element of order 4. Thus QJ = J or QJ ∼= Sp4(2) ∼= Sym(6). In
any case Q is normalized by a parabolic subgroup of J and so the above
argument goes through unchanged. This completes the lemma. �

Lemma 19.10. Suppose p is odd and J/Z(J) is not a simple group
of Lie type defined in characteristic p. Then P = JS1, Op(P ) is ele-
mentary abelian and [Op(P ), Op(J)] ≤ Y . In particular S normalizes
J .

Proof. By Lemma 19.8, we have p = 3 and J is one of the groups
listed in parts (vii)-(x) of Lemma 19.8. By construction YK ≤ Y and
YK is an irreducible K-module by Lemma 19.3 (v).

Since [Op(K), Q,Q] ≤ R < YK , Q acts quadratically or trivially on
Op(K)/YK .

By definition we have J/CP (Y ) is quasisimple and we know that
CP (Y ) ≤ NH(Q). Hence [J,Q]Op(K)/Op(K) is quasisimple. Suppose
there is a non-central KQ-chief factor in Op(K)/YK . Then by Lemma
C.12

|QOp(K)/Op(K)| = |Q : CQ(YK)| = 3.

Thus, as K is non-soluble, YK does not have order 9,

YK 6≤ Q, and YK induces transvections on Q/R.

Hence, by Lemma D.20,

F ∗(H) ∼= PSp2n(3) and |YK : YK ∩Q| = 3 = |R|.
As YK centralizes a subgroup of index 3 in Q, we get that YK ∩Q has
order 9. Hence YK has order 33 and we have a contradiction as SL3(3)
has order coprime to 5 but 5 divides |J |.

So we have shown that Op(J) acts trivially on Op(K)/YK . As YK is
an irreducible K-module, we now have YK ∩Φ(Op(P )) = 1. As R ≤ YK
and COp(K)(K) is normalized by Q, we have that COp(K)(K) = 1 which
implies Φ(Op(K)) = 1. Since Op(K) is abelian, Op(P ) ≤ Op(K) and
P has characteristic p, Op(P ) = Op(K). Since J ∩ Q 6≤ Op(P ), for

s ∈ S1, (K ∩ Q)s 6≤ Op(P ) = Op(K). If J 6= J
s
, this is impossible.

Hence JS1 = J and we are done. �

Lemma 19.11. Suppose p is odd. Then J/Z(J) is a simple group of
Lie type defined in characteristic p.

Proof. Otherwise, again p = 3 and J is one of the groups in listed
in parts (vii)-(x) of Lemma 19.8. Consider N = JS1 ∩ F ∗(H) ≥ S by
Lemma 19.10. Then, by [27, Theorem 2.6.7], N is normal in a parabolic
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subgroup of F ∗(H). If J/Z(J) ∼= Sp6(2) or Alt(3a+1) with a ≥ 2, then
N/Z(N) ∼= PSp4(3) or Alt(3a) respectively. Since N must be a group
of Lie type in characteristic 3 defined over a field of order at least 3e,
we see that J/Z(J) ∼= Sp6(2) and that e = 1. The only other candidate
is J/Z(J) ∼= Alt(9) and in this case NS is soluble but not 3-closed.
Hence again we get that e = 1. In particular

|R| = 3 and J/Z(J) ∼= Sp6(2) or Alt(9).

In J we can find a subgroup 23:7 and so Lemma 2.23 implies that
|Y | ≥ 37. From the structure of KS, we see that S/Op(K) ∼= 3 o 3.
Hence, as JS/CP (Y S) ∼= J , we have

|S| ≥ |Y ||S/Op(K)| = 37 · 34 = 311.

Furthermore,

|Q : Q ∩O3(K)| = |QO3(K)/O3(K)| ≤ 27

and so, as O3(K) is abelian by Lemma 19.10 and Q is extraspecial,
Q/R has order at most 36. If |Q| = 35, then, as |Sp4(3)|3 = 34, we
obtain |S| ≤ 39, a contradiction to |S| ≥ 311. Therefore Q has or-
der 37, |O3(K) ∩ Q| = 34 and |S/Q| ≥ 34. Now Lemmas A.2 and
D.1 show that F ∗(H) ∼= PSp8(3) and |S| = 316. Since Y centralizes
O3(K) ∩ Q, we have |Y Q/Q| ≤ 36. Hence |Y Q| ≤ 313. By Lemma
19.10 O3(K)/Y ≤ Z(S/Y ). Hence O3(K)Q/QY ≤ Z(S/QY ). As
NPSp8(3)(QY )/QY contains SL3(3), we see that |Z(S/QY )| = 3 and
so |O3(K)/Y | has order at most three. As O3(K)Q has index 3 in S
this implies |S| ≤ 315, a contradiction as 316 = |S|. �

Lemma 19.12. We cannot have p = 2 and J ∼= Alt(2a + 1), a ≥ 3.

Proof. We have J ∩H ∼= Alt(2a) and so using the fact that (KS∩
F ∗(H))S is normal in a parabolic subgroup of F ∗(H) by [27, Theorem
2.6.7], we deduce

a = 3 and p = 2 = |R|.
Furthermore, we see that S normalizes K∩F ∗(H) and so S normalizes
K. Thus YK = YKS and |YK | = 28 by Lemma 19.3 (v).

If YK ≤ Q, then [YK , Q] = R has order 2. Hence the non-trivial
composition factor of YK is the natural K-module by Lemma C.21
and so Q operates as a transposition. Thus [YK , Q] is normalized by S
and CJ(Q) ∼= Alt(7). But then the preimage N of CJ(Q) is contained
in H, a contradiction as J = 〈N,S1 ∩ J〉. Thus YK 6≤ Q, and addi-
tionally CYK (Q) = R and [YK , Q,Q] = R by Lemma 19.3(vii). Thus
Lemma C.29 implies that |[YK , Q|| > 2|Q|. On the other hand, we have
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|Q| = |Q : Q ∩ O2(K)| and Q ∩ YK ≤ Z(Q ∩ O2(K)). Hence, as Q is
extraspecial, we have

|[YK , Q]| ≤ |YK ∩Q| ≤ 2|Q : Q ∩O2(K)| = 2|Q| < |[YK , Q]|,
which is a contradiction. �

Summarising, by Lemmas 19.8, 19.12 and 19.9, J is a group of Lie
type defined in characteristic p. This means

J ∼= SL2(pa),PSL2(pa), SU3(pa),PSU3(pa) or 2B2(2a).

Lemma 19.13. If E(P ) 6= 1, then E(P ) = J is quasisimple. In
particular, P = JS1.

Proof. Assume the result is false. Let S2 = S1 ∩ 〈JS1〉 and define

N = N〈JS1 〉(S2CP (Y )).

Then S2 ∈ Sylp(E(P )) and N = NE(P )(S2). Furthermore (N∩J)/(S2∩
J) is a cyclic group of order pa − 1, (pa − 1)/2, p2a − 1, (p2a − 1)/3 or
2a − 1 according to Lemma A.19 and NS < P . This forces NS ≤ H.
Since [N,S]S ≤ F ∗(H), we have that [N,S]S is normal in a parabolic
subgroup of F ∗(H) in which S is not normal. Since [N,S]S/S2 is solu-
ble, we deduce p = 2 or p = 3 and |R| = p. Furthermore, [N,S]S2/S2 is
either an elementary abelian 3-group or an elementary abelian 2-group
when p = 2 or 3 respectively. If p = 3, we get 3a−1 = 2, (3a−1)/2 = 2,
32a− 1 = 2 or (32a− 1)/3 = 2, respectively, which all have no solution.
Let p = 2, then as J is non-soluble we have a > 1. Now some of 2a − 1
or 22a − 1 must be equal to 3. We deduce that a = 2 and

J ∼= SL2(4) with p = 2.

In this case Q induces a group of order at most 22 on J . Set SJ = J∩S2

and QJ = Q∩SJ . Suppose that Q 6≤ S2. Then QJ 6= 1. If Q ≤ S2 then
as Q is weakly closed in S, N normalizes Q and as a consequence,
Q = Ω1(Z(S2)). In both cases QJ 6= 1.

Let J
∗

be a component of P with J
∗ 6= J and let J∗ be its preimage.

Now we consider [Y,QJ ] ≤ Q. As Q normalizes [Y,QJ ] and |R| = 2, we
see thatR ≤ [Y,QJ ] and, as J∗ normalizes [Y,QJ ] so YJ∗ ≤ [Y,QJ ] ≤ Q.
Since

|QCQJ∗(YJ∗)/CQJ∗(YJ∗)| ≤ 22,

we see that |Q : Q ∩ CQ(YJ∗)| ≤ 22 and so |YJ∗| ≤ 23. But then J
∗

cannot act on such a group, a contradiction. Hence P has a unique
component. �

Lemma 19.14. We do not have J/Z(J) ∼= PSU3(pa) or 2B2(22a+1).

125



Proof. Suppose that J ∼= SU3(pa), PSU3(pa), 2B2(22a+1). Assume
that Q 6≤ J . Then Q contains some element g, which induces an outer
automorphism on J . Then, by Theorem A.11, J/Z(J) ∼= PSU3(pa) and
g induces a field automorphism on GF(p2a). If p is odd, then g does
not act quadratically on Z(S1 ∩ J), which contradicts the fact that Q
is abelian. Hence p = 2 and J/Z(J) ∼= PSU3(2a). Now [S1 ∩ J,Q] ≤
Ω1(S1 ∩ J) = Z(S1 ∩ J) and so Q centralizes (S1 ∩ J)/Z(S1 ∩ J), but
in fact it induces an automorphism of order 2. Hence Q ≤ J .

So we have that Q ≤ S ∩ J and consequently J ∩H normalizes Q
as Q is weakly closed in S. As, by Lemma A.19 (ii) and (iii), J ∩ H
acts irreducibly on (S1 ∩ J)/Z(S1 ∩ J) and S1 ∩ J is non-abelian, we
see that Q = Z(S1 ∩ J). If p = 2, using Lemmas C.26 and C.27 we
obtain [Y,Q,Q] = 1. But then [Y,Q] = R and Y ≤ Q which means
that Y is a dual F -module with offender Q = Z(S1 ∩ J). We have a
contradiction using Lemma C.21 and then C.23. Hence p is odd and
J/Z(J) ∼= PSU3(pa). Since p is odd, Q commutes with an involution
i ∈ J . Thus Y = [Y, i] × CY (i) is a Q-invariant decomposition. Since
i 6∈ Z(J), we have Y > [Y, i] 6= 1. Hence [Y, i] ∩ R 6= 1 6= CY (i) ∩ R.
If CY (i) 6≤ Q, then [CY (i), Q] 6≤ R and CY (i) > [CY (i), Q,Q] = R, a
contradiction. Similarly [Y, i] ≤ Q. But then Y ≤ Q, a contradiction
as Y is not a dual F -module by Lemma C.23. �

Lemma 19.15. Neither of the following configurations can occur.

(a) J/Z(J) ∼= PSL2(pa); or
(b) p ∈ {2, 3}, Y ≤ Q has order p2 and P ∼= SL2(p).

Proof. Deny the claim and assume that either (a) or (b) holds.
We first show that in case (a), we have Q ≤ J , Y ≤ Q and Y is the

natural J-module. After this we go on to handle both cases (a) and (b)
simultaneously.

Suppose that Q 6≤ J . Then, as Q acts quadratically on a Sylow p-
subgroup of J and some element fromQ acts as a field automorphism on
J , we must have p = 2. Furthermore, [J ∩H,Q]S is a normal subgroup
in a parabolic subgroup of F ∗(H) and so [J ∩H,Q]/(S ∩ J) has order
3 and |R| = 2. Since J ∼= SL2(22b), we have |[J ∩H,Q]| = 2b + 1 = 3
and hence b = 1. Thus J ∼= SL2(4) and JQ = JS1

∼= Sym(5). As Y is
irreducible by Lemma 19.3, we also have |Y | = 16. If Y is the permuta-
tion module (otherwise known as the O−4 (2)-module), then, as Q 6≤ J
and Q is elementary abelian, we reach the contradiction

2 = |R| = |CY (Q)| = 4

126



using Lemma 19.3 (iii). So we have that Y is the natural SL2(4)-module
for J . Let N = NJ(S1 ∩ J). Then [N,Q]Q ≤ H and, in particular,
(Q ∩ J)N ≤ S. Thus S ∼= Dih(8). Since |Q| = 4, Y centralizes a
subgroup of index four in Q/Z(Q) and so by Lemma D.19 we have
F ∗(H) ∼= PSLn(2) or PSUn(2) and furthermore [Y,Q] = Z2(S) by
Lemma D.21. Now [Y,Q,O2(P )S] = R, whereas when we calculate in
Y as a GL2(4)-module we see that [Y,Q, S] has order 4. This shows
that

Q ≤ J.

Because Q ≤ J , Q is weakly closed in S0 and NJ(S1 ∩ J) acts irre-
ducibly on S1 ∩ J , we have that Q is a Sylow p-subgroup of J .

Suppose that Y 6≤ Q. Then Lemma 19.3 (vii) shows that Q is a strictly
cubic 2-offender on Y . Thus we may apply Lemma C.28. As on the natu-
ral module a Sylow p-subgroup acts quadratically, we obtain that either
|Y | = p2a and Y is the orthogonal Ω−4 (pa/2)-module for J ∼= SL2(pa) or
|Y | = p3a, p odd and Y is the Ω3(pa)-module for J/Z(J) ∼= PSL2(pa).
In both cases R = [Y,Q,Q] has order pe. Hence J ∼= SL2(p2e) in the
first case and J/Z(J) ∼= PSL2(pe) in the second case. Furthermore, as
S normalizes J and centralizes R, we either have

S = Q ≤ J or p = 2 and |SJ/J | = 2.

Suppose first that [Y,Q] = Z2(S). Then, as Y is either the Ω−4 (pe)-
module or the Ω3(pe)-module, we have |[Y,Q]/R| = |Z2(S)|/R = |Q|.
Hence Q ∩Op(P ) = CQ(Z2(S)). But then Y ≤ CS0(CQ(Z2(S)))).

If Y 6≤ S, then Y induces some automorphism on F ∗(H), which cen-
tralizes R. By Theorem A.11 we get that it has to induce a graph
automorphism in case of F ∗(H) ∼= PSLn(pe) and a field automorphism
in case of F ∗(H) ∼= PSUn(pe). But in both cases Y would not centralize
Z2(S). Hence we even have that Y ≤ CS(CQ(Z2(S)))) and we conclude
that Y = V (Q,S). This contradicts Proposition 7.7. Thus we have

[Y,Q] 6= Z2(S).

Suppose that S = Q. Then [Y,Q,Q] = [Y, S, S] = R and so [Y, S] ≤
Z2(S). Then, as |[Y, S]| ≥ p2e, by Lemma D.21 we must have F ∗(H) =
PSUn(pe) or PSLn(pe) and this contradicts Lemma D.1, as |[Y,Q/R]| <
p2e. Hence we have shown S 6= Q and [Y,Q] 6= Z2(S). Furthermore, we
have |Y | = 24e as well as |[Y,Q]| = 23e.
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Since [NJ(S∩J), S]S ≤ F ∗(H) and |[NJ(S∩J), S] : S∩J | = 2e+1
is inverted by S. The structure of parabolic subgroups of F ∗(H) im-
plies that 2e + 1 = 3. In particular, e = 1, J ∼= SL2(4) and JS ∼=
O−4 (2) ∼= Sym(5). By Lemma 19.5 we have that Y ≤ S. Then 1 6=
Y Q/Q ≤ Z(S/Q) and [Y,Q]/R has order 4. Thus Lemma D.19 implies
that F ∗(H) ∼= PSLn(2) or PSUn(2). But then [Y,Q] = Z2(S), a con-
tradiction. Therefore Y ≤ Q. Now Lemma 19.3 (vi) implies that Y is
an F -module with offender Q and so Lemma C.28 shows that Y is the
natural J-module.

We now continue assuming that both (a) and (b) hold. Since Q ∈
Sylp(J) and [Y,Q] = R = CY (S), we have S = Q. In particular,
pe = |R| = [Y,Q] = pa, |Y | = p2e and Y ≤ Z2(S). Suppose that
Y = Z2(S). Then as P 6≤ H we have that RP 6= RH ∩ Y . Application
of D.22 shows that F ∗(H) ∼= PSp2n(pe), p odd. In particular by The-
orem A.11 we have that CS0(Z2(S)) = CS(Z2(S)) and so Op(P ) ≤ S.
Then

Op(P ) ≤ CS(Z2(S)) = Op(P (S, L)).

On the other hand, CS0(Z2(S)) ≤ CP (Y ) and, asOp(P ) ∈ Sylp(CP (Y )),
we have Op(P ) = Op(P (S, L)). We conclude from Lemma D.23 that

V (Q,S) = Z(Op(P (S, L)))

is normalized by P . Thus P ≤ NG(V (Q,S)) ≤ H by Proposition 7.7,
a contradiction. Hence Y 6= Z2(S). It follows from Lemma D.21 that
|Z2(S)| = p3e and that

F ∗(H) ∼= PSLn(pe) or PSUn(pe).

Let y ∈ Y \R. Then, as P acts transitively on the elements of Y #, y =
rx for some x ∈ P \ (P ∩H). If there is some h ∈ H with yh ∈ R. Then
xh ∈ H and we obtain P ≤ 〈x, P ∩H〉 ≤ H, a contradiction. In par-
ticular, we have NF ∗(H)(Y ) ≤ NF ∗(H)(R). Since Y x = Y , R ≤ Y ≤ Qx

and so CQx(Y ) ≤ NH(Q). However Qx = Op(CG(y)) is normalized by
CH(y) and so CQx(Y ) = Qx ∩H is also normalized by CH(y). We have
Y = Z(CQ(Y )), therefore Y = Z(CQx(Y )) is normalized by CH(y). We
now have CH(y) ≤ NG(R). Now note that y ∈ V (Q,S) which is an
orthogonal module for P (S, L)/Op(P (S, L)) ∼= Ω±4 (pe). Since y is not
H-conjugate to an element of R, it certainly is not P (S, L)-conjugate to
an element of R. Hence y corresponds to a singular vector in V (Q,S).
Now we see that CP (S,L)(y) does not normalize R and we have a con-
tradiction. �
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Proof of Proposition 19.2. Assume that Hypothesis 19.1 holds.
If p = 2 and CH(z) is soluble for 2-central involution in H, then as we
have already remarked F ∗(G) ∼= PSL4(3) and F ∗(H) ∼= PSU4(2). So as-
sume that if p = 2, then CH(z) is soluble is not soluble for all z ∈ Z(S).
If E(P ) = 1, then Lemma 19.6 implies that the Lemma 19.15 holds,
a contradiction. Thus E(P ) 6= 1. The possibilities for J/Z(J) are enu-
merated by Lemma 19.8. The candidates in parts (iv) and (v) are elim-
inated in Lemma 19.9, those in parts (vii) to (x) in Lemma 19.11, and
those in (vi) by Lemma 19.12. All that remains are the rank one groups
of Lie type in parts (i), (ii) and (iii) of Lemma 19.8. These are shown
to be impossible in Lemmas 19.14 and 19.15. In conclusion, Hypothesis
19.1 is only satisfied in the exceptional p = 2 configuration. �

20. Proof of Theorem 4

In this section we prove Theorem 4.

Proof of Theorem 4. Suppose that G satisfies the hypothesis of
Theorem 4. Then CH(z) = CG(z) for every p-central element of H.
Since H is a group of Lie type in characteristic p, CH(z) has char-
acteristic p. It follows from Lemma 2.1 (iii) that G is of parabolic
characteristic p. Furthermore G satisfies Hypothesis 6.1. If G satisfies
Hypothesis 6.2, then Hypothesis 19.1 holds and we may apply Propo-
sition 19.2 to obtain the first possibility in Theorem 4(i). So assume
that Hypothesis 6.2 is not satisfied. Then F ∗(H) ∼= 2F4(22e+1), F4(2e),
Sp2n(2e), n ≥ 3, G2(3e), PSL3(pe) or PSL4(2). The first three types
are examined in Proposition 13.8 and so yield a contradiction. When
F ∗(H) ∼= G2(3e), then Proposition 15.1 yields a contradiction. Finally,
if F ∗(H) ∼= PSL3(pe), p odd, Proposition 9.1 yields Theorem 4 (ii).

Suppose now that F ∗(H) ∼= PSL4(2). Then Proposition 14.3 implies
that F ∗(G) ∼= Alt(9) or Alt(10). The second case is included in Theo-
rem 4(i). The case F ∗(H) ∼= Alt(9) does not show up, as in this case
H is the only maximal subgroup of G which contains S0, which con-
tradicts the assumption of Theorem 4 that there is a 2-local subgroup
M of G containing S0, which is not contained in H. �

21. Proof of Theorem 1

To complete the proof of Main Theorem 2, Theorems 2, 3 and 4
imply that we have to consider the situation in which, for all 1 6=
E E S0, we have that NG(E) ≤ H. Ideally we would like to show that
H is strongly p-embedded in G in this situation, however we can only
do this at the present time under the hypothesis that G is of local
characteristic p. Thus the objective of this section is to prove Theorem
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1. Because of the results in Theorem 4.7, we may assume that F ∗(H)
is a group of Lie type in odd characteristic p and of Lie rank two. For
F ∗(H) ∼= PSL3(pe), p odd, and F ∗(H) ∼= G2(3e) we have shown in
Proposition 9.1, Proposition 15.1, respectively, that Theorem 1 holds.
So we only have to treat the cases with F ∗(H) one of

PSp4(pe),PSU4(pe),PSU5(pe), 3D4(pe), p odd, or G2(pe), p ≥ 5.

The overall development of this section to a certain extent follows the
proof of Theorem 4.7 in [66], but, because of the very restricted struc-
ture of F ∗(H), at various stages we can adopt more elementary argu-
ments.

To make things precise, in this section we work under the following
hypothesis.

Hypothesis 21.1. Assume that Hypothesis 6.1(i), (ii) and (iii)
hold and in addition assume

(i) G is of local characteristic p;
(ii) for all 1 6= E E S0, we have that NG(E) ≤ H; and

(iii) F ∗(H) ∼= PSp4(pe), PSU4(pe), PSU5(pe), 3D4(pe), p odd, or
G2(pe), p ≥ 5.

We begin by repeating some of the general setup as developed in
[66]. For a p-subgroup U of H we define the set

M(U) = {M | M 6≤ H,Op(M) 6= 1, U ≤M}.

Thus Hypothesis 21.1 (ii) states that

M(Sh0 ) = ∅ for all h ∈ H.

Also, if NG(U) 6≤ H for some non-trivial p-subgroup U ≤ H, then
M(U) 6= ∅.

We define a relation on M(U) as follows: let J,K be in M(U),
then J @ K if and only if there is Sylow p-subgroup T of K ∩H such
that T ∩ J is a Sylow p-subgroup of J ∩ H but T ∩ J 6= T . Notice
that @ is not a partial order. Nevertheless, we say that K ∈ M(U) is
maximal with respect to @ provided there are no members L ∈M(U)
with K @ L. Now define

Mmax(U) = {K | K ∈M(U) and K is maximal with respect to @}.

Further we define

P(U) = {K | K ∈Mmax(U) and K minimal by inclusion}.
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IfM(U) is non-empty for some non-trivial p-subgroup U ≤ H, then
also P(U) is non-empty. Set

P =
⋃

1 6=U≤H
Ua p-group

P(U).

We will show that up to the two exceptional cases in Theorem
1 we have P = ∅. To demonstrate this, it is enough to show that
P(CG(t)) = ∅ for all t ∈ H, o(t) = p for then CG(t) ≤ H and so, as
NG(S0) ≤ H, H is strongly p-embedded by [26, Proposition 17.11].

We first present some general results about the structure of K ∈ P .
The first result should be compared with [66, Lemma 1.2].

Lemma 21.2. Suppose that K ∈ Mmax(U) and T ∈ Sylp(H ∩ K)
with U ≤ T . Then

(i) NG(T ) = NH(T ), T is a Sylow p-subgroup of K and T 6∈
Sylp(G).

(ii) If V is a non-trivial normal p-subgroup of K, then K contains
a Sylow p-subgroup of NG(V ).

(iii) If 1 6= C is characteristic in T , then NG(C) ≤ H.
(iv) If K ∈ P(U), then K is a p-minimal group.

Proof. We first prove (i). By Hypothesis 21.1 (ii), T is not a Sylow
p-subgroup of H. Hence |NH(T )|p > |T |. Assume NG(T ) 6≤ H. Then
NG(T ) ∈M(U). Let T1 ∈ Sylp(NH(T )). Then T1 ∩K = T1 ∩K ∩H =
T < T1. This shows K @ NG(T ), a contradiction. Hence NG(T ) ≤ H
and, in particular, T ∈ Sylp(K).

For the proof of part (ii), set M = NG(V ). Then K ≤ M , and so
M ∈M(U). Furthermore, T ∈ Sylp(NH(V )) for otherwise K @ NG(V )
which is impossible. Suppose M1 ∈M(U) with M @M1. Then there is
some T1 ∈ Sylp(H∩M1) such that T1∩NH(K) < T1 and T1∩NH(V ) ∈
Sylp(NH(V )). As T ∈ Sylp(NH(V )), there exists g ∈ NH(V ) such that
T = T g1 ∩NH(V ). Then T g1 ∈ Sylp(H∩M

g
1 ) and T = T g1 ∩NH(V ) < T g1 .

Hence K @ M g
1 , a contradiction. This implies M ∈ Mmax(U) and so

T ∈ Sylp(M) by part (i).
Next we prove (iii). As C is characteristic in T and T 6∈ Sylp(H),

we have that |NG(C)|p > |T |. Suppose NG(C) 6≤ H. Then NG(C) ∈
M(U). By (i), NNG(C)(T ) ≤ NH(C). Now we choose T1 ∈ NH(C),
with T ≤ T1. Then T1 > T . Furthermore T1 ∩ K = T < T1 and so
K @ NG(C), a contradiction. Hence NG(C) ≤ H.

Finally, we prove part (iv). By (i), T is not normal in K. Let T ≤
L1 < K. We show L1 ≤ H. Otherwise L1 ∈M(U). Assume that there
exists L2 ∈M(U) with L1 @ L2. Then there is a Sylow p-subgroup T2
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of L2∩H such that T1 = T2∩H∩L1 is a Sylow p-subgroup of H∩L1 and
T1 < T2. By Sylow’s Theorem, there exists g ∈ L1 ∩ H with T = T g1 .
Then we get that K @ Lg2, contradicting K ∈ Mmax(U). Hence we
have that L1 ∈Mmax(U). As K ∈ P(U), this is not possible. We have
shown that L1 ≤ H and so H ∩K is the unique maximal subgroup of
K containing T , this means that K is a p-minimal group. �

Lemma 21.3. Let K ∈ P, then F ∗(K) = Op(K).

Proof. By Lemma 21.2(ii), K contains a Sylow p-subgroup of
M = NG(Op(K)). In particular, Op(M) ≤ K and so Op(K) = Op(M).
As G is of local characteristic p, we have CG(Op(M)) ≤ Op(M) and so
F ∗(K) = Op(K). �

The next lemma is taken from [66, Lemma 1.4].

Lemma 21.4. Let K ∈ P(U) and T be a Sylow p-subgroup of K∩H
with U ≤ T . If V ≤ T , then K ∈ P(V ).

Proof. Obviously, K ∈ M(V ). If K 6∈ Mmax(V ), there is K1 ∈
M(V ) and T1 ∈ Sylp(H ∩K1) such that T1 ∩K ∈ Sylp(H ∩K) with
T1 > T1 ∩ K. Let g ∈ H ∩ K such that (T1 ∩ K)g = T . Then also
Kg

1 ∈M(V ). As X ≤ T ≤ Kg
1 , we have that Kg

1 ∈M(U). But T g1 > T
and so K @ Kg

1 , a contradiction. So we have that K ∈ Mmax(V ) and
then K ∈ P(V ). �

For the structure of B(T )-blocks we refer the reader to Defini-
tion 2.18. We now apply the Bundy-Hebbinghaus-Stellmacher C(G, T )-
Theorem [15].

Lemma 21.5. Suppose that K ∈ P. For T ∈ Sylp(K ∩H) let

{X1, X2, . . . , Xf}
be the set of maximal B(T )-blocks in K. Then X1 · · ·Xf is a normal
subgroup of K,

K = T (X1 · · ·Xf ),

T acts transitively by conjugation on {X1, X2, . . . , Xf} and [Xi, Xj] = 1
for 1 ≤ i < j ≤ f .

Proof. This follows from Lemmas 21.3, 21.2 and [15, Corollary
1.9]. �

Notation 21.6. For the remainder of this section, whenever K ∈
P, we fix the following notation (which depends on the choice of P ).
We choose S0 ∈ Sylp(H), so that T is a Sylow p-subgroup of H ∩ K
with T ≤ S0. We write K = XT where

X = X1 · · ·Xf = 〈XT
1 〉,
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with, for 1 ≤ i ≤ f , Xi a B(T )-block of K and Xi/Op(Xi) ∼= SL2(pd)′.
Further, for 1 ≤ i ≤ f ,

(i) Yi = [Op(K), Op(Xi)] and Y = Y1 · · ·Yf .
(ii) Wi = [Z(Op(K)), Op(Xi)] and W = W1 · · ·Wf .

(iii) Fi is such that Fi/Yi = Z(Xi/Yi) and F = F1 · · ·Ff .
(iv) I ∈ Syl2(F ) and Ii = I ∩ Fi.
(v) R is a long root group in Z(S) and Q = Op(CF ∗(H)(R)).

Notice that if Xi is not an exceptional bock then Yi = Wi and
|Wi| = p2d.

We also relax our notation by setting

q = pe

and, once K ∈ P is given,
r = pd.

Recall that
Q is semi-extraspecial

by Lemma D.16.

Lemma 21.7. CG(t) ≤ H for all 1 6= t ∈ Z(Q).

Proof. The statement is true if t ∈ Z(S0) by Hypothesis 21.1
(ii). As Z(Q) = R, we have by Lemma A.4 that all elements in R are
H-conjugate into Z(S0). �

Lemma 21.8. Let K ∈ P. Then for all w ∈ (Z(Q) ∩ Op(K))# and
all 1 ≤ i ≤ f , [w,Xi] 6= 1. If Z(Q) ∩Xj 6= 1 for some j, then f = 1.
In particular, if Z(Q) ∩Wj 6= 1 for some j, then f = 1.

Proof. Assume that w ∈ (Z(Q) ∩ Op(K))# and [w,Xi] = 1 for
some 1 ≤ i ≤ f . Then by Lemma 21.7 we have Xi ≤ H. But then,
as T acts transitively on {X1, . . . , Xf}, K = 〈XT

1 〉T ≤ CG(w) ≤ H, a
contradiction.

Now, if w ∈ (Z(Q) ∩ Xj)
# and f > 1, then for i 6= j, [Xi, Xj] =

[Xi, w] = 1 which is a contradiction. Hence, if Z(Q)∩Wj 6= 1 for some
j, then f = 1. �

Since K ∩H is the unique maximal subgroup of K which contains
T , we have

FT ≤ H.

We use this fact to show that Y ≤ F ∗(H).

Lemma 21.9. Let K ∈ P. Then

(i) Y ≤ S ≤ F ∗(H);
(ii) R ≤ Z(S) ≤ Z(Op(K));
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(iii) RW is normal in K; and
(iv) r ≥ q.

Proof. Suppose (i) is false. Then, for some 1 ≤ i ≤ f , there exist
non-trivial elements of YiF

∗(H)/F ∗(H) which induce outer automor-
phisms of H of order p. Since Yi = [Yi, Ii], we see that the involution in
Ii inverts some non-trivial element of YiF

∗(H)/F ∗(H) of order p. This
contradicts Theorem A.11 (i) and (ii). Hence (i) holds.

Since Y ≤ S by (i), Z(S) ≤ NS0(Y ) = T by Lemma 21.2 (ii).
Therefore, as CK(Y ) ≤ Op(K),

R ≤ Op(K).

As [Op(K)′, X] = 1, we have that R ∩ Op(K)′ = 1. As R is normal in
Op(K) this implies R ≤ Z(Op(K)).

For (iii), we note that W = [Z(Op(K)), X] and so RW is normalized
by K = XT .

Finally, as R ≤ Op(K), R projects into eachWi faithfully by Lemma
21.8. Hence by Lemma E.7 we have that r ≥ |R| = q. This proves
(iv). �

Lemma 21.10. Assume that K ∈ P. Then there exists ω ∈ W such
that CG(ω) 6≤ H. In particular, if CG(t) ≤ H for all t ∈ F ∗(H) with t
of order p, then H is strongly p-embedded in G.

Proof. Since K = 〈TK〉 6≤ H, there exists k ∈ K such that T k 6≤
H. Select ω ∈ CW (T k). Then T k ≤ CG(ω) 6≤ H.

Since W ≤ S by Lemma 21.9, if CG(t) = CH(t) for all t ∈ F ∗(H),
then we must have P = ∅ and this means that H is strongly p-
embedded in G. �

Next we treat the case F ∗(H) ∼= PSp4(q). Here by Lemma C.15 R
is weakly H-closed in Q and all elements in Q \R are conjugate.

Lemma 21.11. Suppose that F ∗(H) ∼= PSp4(q). If H is not strongly
p-embedded in G, then p = 5, H = Aut(PSp4(5)) and for any element
ω ∈ H with o(ω) = 5 such that 53 divides |CH(ω)| we have CG(ω) =
CH(ω).

Proof. Suppose false. Since H is not strongly p-embedded in G,
P 6= ∅. Bearing in mind Lemma 21.10, select K ∈ P and t ∈ T so that
|CS(t)| has maximal order. By Lemma 21.9 (iii), RW is normal in K
and so, as R = Z(S), Z2(S) ≤ NS(RW ) and by Lemma 21.2 (ii)

Z2(S) ≤ T ≤ K.

If [Z2(S),W ] = 1, we have by Lemma D.22 that W ≤ CS(Z2(S)) =
J(S), which is elementary abelian of order q3. Since J(S) centralizes
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W , J(S) ≤ Op(K) and so J(S0) = J(S) ≤ Op(K). By Lemma 21.2
we have that K ≤ NG(J(S0)). But then NG(J(S0)) ∈ M(S0) = ∅, a
contradiction.

So we have that [Z2(S),W ] 6= 1. Then R ≥ [W1, Z2(S)] 6= 1 and so
by Lemma 21.8

f = 1.

Furthermore, as, for x ∈ Z2(S)\Op(K), we have |[W,x]| = r we obtain
so q = |R| ≥ r. Thus Lemma 21.9 (iv) implies that |R| = q = r. In
particular |Y | ≤ r4 and so X is not exceptional.

Since R = [W,Z2(S)] ≤ W , we have W 6≤ J(S) and W ∩ J(S) =
CW (Z2(S)) = R. If t ∈ Q, by Lemma 21.7 then t ∈ Q \ R. As H
induces SL2(q) on Q/R, the maximal choice implies t ∈ Z2(S) and
CS(t) ≥ J(S). We obtain J(S) ≤ T and T ≥ WCS(t) = WJ(S) = S,
which is a contradiction as W is not normal in S. Thus t 6∈ Q. If
W ∩Q > R, then there exists w ∈ (W ∩Q) \R such that CG(w) 6≤ H
and |CF ∗(H)(w)|p ≥ q3, we must have |CS(t)| ≥ q3. Since |CQ(t)| ≤ q2,
we again get S = QCS(t) ≤ T , a contradiction. Hence W ∩Q = R and
T ∩Q = Z2(S). It follows that

T ∩ S = WZ2(S).

Application of [62, Theorem 2.9] implies F ∗(H) ∼= PSp4(5), Op′(K) ∼
52:SL2(5), which gives |CS(t)| = 25. In particular by the choice of t for
any element ω ∈ H with o(ω) = 5 such that 53 divides |CH(ω)| we have
CG(ω) = CH(ω). Furthermore that NXB(T )(R)/B(T ) is cyclic of order
4 and so NH(R)/Q ∼= GL2(5), which gives H = Aut(PSp4(5)).

Finally, using Lemma 21.10 shows that either H is strongly p-
embedded in G or we have the exceptional configuration as described.

�

From now on we have

F ∗(H) ∼= G2(q), PSU4(q), PSU5(q) or 3D4(q).

Lemma 21.12. Suppose that K ∈ P and put Q1 = K ∩ Q. Then
Q1 ≤ NK(Xi), Q1 6≤ Op(K) and [Wi, Q1, Q1] = 1 for all 1 ≤ i ≤ f .

Proof. Let t ∈ Q1 and assume that X t
1 = X2. Then [T ∩X1, t] ≤

Q. As p is odd, we have that t induces an orbit of length at least three
on the Xi, so 1 6= [T ∩X1, t, t] ≤ R. Now R1 = [W1, [T ∩X1, t, t]] 6= 1
and R1 ≤ R. Application of Lemma 21.8 gives the contradiction f = 1.
Hence Q1 ≤ NK(X1) and so Q1 ≤ NK(Xi) for 1 ≤ i ≤ f .

Again let t ∈ Q1 and assume that [(T ∩X1)/Op(X1), t] 6= 1. Then t
induces a field automorphism on X1/Op(X1) and on (T ∩X1)/Op(X1).
Since [T∩X1, Q1, Q1] ≤ [Q1, Q1]∩X1 ≤ R ≤ Op(X1), this is impossible.
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Hence Q1 induces automorphisms of W1, which are induced by some
element from SL2(r).

Suppose thatQ1 ≤ Op(K). ThenQ1Y is normalized byK asQ1Y ≤
T ≤ S0, Q1Y normalizes Q. If Q1 < Q, then NQ(Q1Y ) > Q1 and we
have a contradiction to Lemma 21.2 (ii). Thus Q1 = Q and QY ≤
Op(K). But then R = Q′ ≤ Op(K)′ ≤ CT (X) and so K ≤ NG(R) ∈
M(S0), which is a contradiction. Therefore Q1 6≤ Op(K).

Finally as Q1 induces elements from SL2(r) on W1, Q1 acts quadrat-
ically on W1 and hence also on Wi. �

Lemma 21.13. We have M(Q) = ∅.

Proof. Assume that M(Q) 6= ∅ and choose K ∈ P(Q). Let D =
COp(K)(O

p(K)). If D 6= 1, then there is d ∈ D# with [Q, d] = 1.
But then d ∈ Z(Q) and so by Lemma 21.7 K ≤ H, a contradiction.
Hence D = 1 and, in particular, X1 is not exceptional. Furthermore
Op(K) = W is elementary abelian.

By Lemma 21.12 we have that [W1, Q,Q] = 1. Hence 1 6= [W1, Q] ≤
Z(Q), so by Lemma 21.8 we have

f = 1.

So

|Op(K)| = |W | = r2.

Since Q acts quadratically on W by Lemma 21.12 and Q does not
centralize W , we now have X1Q/W ∼= SL2(r). Especially, |Q| ≤ r3.

As Z(Q) = Z(S) has order q and Q acts quadratically on W by
Lemma 21.12, we have [W,Q] ≤ Z(Q) = R and hence r = |[W,Q]| ≤
|R| = q and so Lemma 21.9 (iv) implies that q = r. This shows |Q| = q3

which is a contradiction. Hence P(Q) = ∅. �

Lemma 21.14. Let K ∈ P. Then W 6≤ Q.

Proof. Suppose that W ≤ Q. By Lemma 21.9 (iii), RW is normal
in K and is also normalized by Q. But then NG(RW ) ∈M(Q) = ∅. �

Lemma 21.15. Let K ∈ P(U). Then Op(K) ∩ Q is not a maximal
elementary abelian self-centralizing subgroup of Q.

Proof. Set A = Op(K) ∩ Q and assume that A is a maximal
elementary abelian self-centralizing subgroup of Q. Then by Lemma
2.21 [W,Q] ≤ A and so Q ≤ NG(WA). But WA also is normalized by
K, which contradicts Lemma 21.13. �

Lemma 21.16. Let K ∈ P(X). Then X1 is not of exceptional type.
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Proof. Suppose that X1 is of exceptional type. Then p = 3. By
Lemma 21.12, we have that Q1 = Q ∩ K acts on Y as a subgroup
of XB(T ) and Q1 6≤ O3(K). Therefore, the Definition 2.18 (iii) states
thatQ1 does not act quadratically on Y . Therefore, Lemma 21.12 shows
that

1 6= [Y1, Q1, Q1] ≤ R

and so R ∩ CY1(X1)W 6= 1. Application of Lemma 21.8 gives f = 1.
Now [Y,Q1] ≤ Y ∩ Q and [Y,Q1] 6≤ Z(Y ). Thus 1 6= [Y,Q1, Y ] ≤

Y ′ ∩ Q. Let t ∈ [Y,Q1, Y ]#. Since Y ′ ≤ CY (X), Lemma 21.2(ii) im-
plies that CQ(t) ≤ T . By Lemma 2.10, |Q : CQ(t)| = q. In addition,
|CQ(t)O3(K)/O3(K)| ≤ |Q1O3(K)/O3(K)| ≤ r. Now Q1 ∩ O3(K) has
index at most qr in Q and

(Q ∩O3(K))′ ≤ O3(K)′ ∩Q′ = CO3(K)(X) ∩R = 1.

Since Q is semi-extraspecial this gives

q5 ≤ |Q| ≤ r2q3.

Suppose that |Q| = q5. Then F ∗(H) ∼= PSU4(q) and |S| = q6. As
CQ(t)Y ≤ S has order at most r6 and r ≥ q by Lemma 21.9 we get
r = q. Then Q ≤ S = CQ(t)Y ≤ T ≤ K contrary to Lemma 21.13.

Hence |Q| > q5 which means that |Q| ≥ q7. Therefore r2 ≥ q4. On
the other hand, q3 ≥ |Y Q/Q| ≥ r2 and so we have the absurd situation

q3 ≥ q4,

which is a contradiction. �

Because of Lemma 21.16, we now have Y = W .

Lemma 21.17. Let t ∈ Q# be an element of order p. Then NG(〈t〉) ≤
H.

Proof. Assume the statement is false. Then, by Lemma 21.7, t ∈
Q \ Z(Q) and |Q : CQ(t)| = q by Lemma 2.10. Choose K ∈ P(CS0(t)).
By Lemma 21.4 K ∈ P(CS(t)). Application of Lemmas 21.9 and 21.14
gives R ≤ Op(K) and W 6≤ Q. So we may assume that W1 6≤ Q ∩K.
By the transitive action of T on the Xi we get that Wi 6≤ Q∩K for all
1 ≤ i ≤ f .

Assume that R1 = R∩Φ((Q∩Op(K))) 6= 1. Then [R1, X1] = 1 and
so by Lemma 21.7, we get K ≤ H, a contradiction. This shows

Q ∩Op(K) is elementary abelian.

By Lemma 21.12 we have that 1 6= [W1, Q ∩ K] ≤ Z(Q ∩ K).
Furthermore as T normalizes Q∩K, we get 1 6= [Wi, Q∩K] ≤ Z(Q∩K)
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for all i. As |[W1, Q∩K]| = r, we get that |Z(Q∩K)| ≥ rf . Using Q is
semi-extraspecial we have |Z(Q∩K)| ≤ q2. Therefore, by Lemma 21.9

rf ≤ q2 ≤ r2.

As f is a power of p, we obtain

f = 1 and r ≤ q2.

By Lemma 21.12, CQ(t)Op(K)/Op(K) ≤ B(T )X/Op(K) and so
|CQ(t) : CQ(t) ∩ K| ≤ r ≤ q2. It follows that |Q : CQ(t) ∩ K| ≤ q3

and, as Q ∩ Op(K) is abelian and Q is semi-extraspecial, this yields
|Q| ≤ q7. In particular, F ∗(H) 6∼= 3D4(q). Furthermore, if |Q| = q7,
then Q ∩ Op(K) is a maximal abelian self-centralizing subgroup of Q
and this violates Lemma 21.15. Hence F ∗(H) 6∼= PSU5(q).

We now know that F ∗(H) ∼= PSU4(q) or G2(q) with p ≥ 5 and
|S/Q| = q.

Choose w ∈ W \ [W,Q ∩K], then [w,Q ∩K] 6= 1. Hence if w ∈ Q,
we get [w,Q ∩K] ≤ R and so R = [W,Q ∩K], which shows q = r. If
[W,Q∩K] = W ∩Q, then, as W ≤ S, |W : W ∩Q| = r ≤ q and again
q = r. Hence we have

q = r.

Therefore, |Q : Q ∩ Op(K)| ≤ q2 and again we contradict Lemma
21.15. �

Lemma 21.18. If t ∈ S is an element of order p, then NG(〈t〉) ≤ H
or F ∗(H) ∼= G2(7) and CS∩F ∗(H)(t) is of order 49.

Proof. Suppose false. By Lemma 21.17 t 6∈ Q. Choose t with
|CS(t)| maximal. Select K ∈ P(CS(t)). By Lemma 21.13 we have Q 6≤
K and, by Lemma 21.14,W 6≤ Q. Using Lemma 21.12, we have [W1, Q∩
K] 6= 1 and so application of Lemma 21.17 yields

f = 1.

Furthermore, Lemmas E.7 and 21.17 imply that W ∩Q = CW (T ∩
XB(T )) has order r. If R 6≤ W ∩Q, then, as R ≤ Z(Op(K)) by Lemma
21.9, CZ(Op(K))(O

p(K)) ∩Q 6= 1 and this is also against Lemma 21.17.
Hence R ≤ W ∩Q. Since R ≤ CW (T ∩XB(T )), R is normalized by F
and therefore so is Q. Hence Q ∩Op(K) = CQ∩Op(K)(I)[Q ∩Op(K), I].
Since CQ∩Op(K)(I) ≤ COp(K)(O

p(K)), Lemma 21.17 implies that

Q ∩Op(K) = [Q ∩Op(K), I] = Q ∩W = CW (T ∩XB(T ))

has order r. In particular, |K ∩Q| ≤ r2.
Since R = Z(S) ≤ W , we have

Z2(S) ≤ NS(W ) = T ≤ K
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by Lemma 21.2.
Assume that q = r. Then |K ∩Q| ≤ r2 = q2. Since Z2(S) ≤ Q∩K,

it follows that |Z2(S)| ≤ q2 and, as CQ(t) ≤ XB(T ) by Lemma 21.12,
|CQ(t)| ≤ q2. Now Lemma D.24 shows that F ∗(H) 6∼= 3D4(q) and
Lemma D.21 shows that F ∗(H) 6∼= PSU4(q) or PSU5(q).

Hence we are left with F ∗(H) ∼= G2(q) with p ≥ 5. As Op(K) ≤
CS0(R) = S, we have that |Op(K) : Op(K) ∩ Q| ≤ |S : Q| = q. But
|W : W ∩Q| = q, so Op(K) = W and then application of [62, Theorem
2.9] gives F ∗(H) = G2(7), the assertion. In particular we have that
O7′(K) ∼ 72:SL2(7) and so |CS(t)| = 72.

For the remainder of the proof we may assume

q 6= r.

Since W ∩ Q has order r, we have q < r = |WQ/Q| ≤ |S/Q|. Hence
F ∗(H) ∼= PSU5(q) or 3D4(q). If Z2(S) 6≤ Op(K) = W , R ≥ [W,Z2(S)],
and we have r ≤ q, a contradiction. Hence Z2(S) ≤ W ∩ Q. Assume
that F ∗(H) ∼= PSU5(q). Then, by Lemma D.21, |Z2(S)| = q3 ≤ r and
q3 ≤ |WQ/Q| ≤ |S/Q| ≤ q3, whence WQ/Q = S/Q is abelian, a
contradiction. Hence F ∗(H) ∼= 3D4(q) in which case |Z2(S)| = q2 by
Lemma D.24. In particular,

q2 ≤ r.

Since Z2(S) ≤ W , Z3(S) normalizes W and so by Lemma 21.2 Z3(S) ≤
K. Furthermore by Lemma D.24 we have that |Z3(S)| ≥ q5 and Z3(S) ≤
Q by Lemma D.24 (iv). As |W : W ∩ Q| = r, and |S/Q| = q3

we have r ≤ q3. In particular |Q ∩ W | = r ≤ q3 and so Z3(S) 6≤
W ∩ Q = Op(K) ∩ Q. In particular Z3(S) 6≤ Op(K). Hence we have
[W,Z3(S)] 6= 1. As [Z3(S),W ] ≤ Z2(S) ≤ W ∩Q, which is of order q2,
we get r ≤ q2. But then

q5 ≤ |Z3(S)| ≤ |Q ∩K| ≤ r2 ≤ q4,

which is a contradiction. Hence Lemma 21.18 holds. �

Lemma 21.19. Let F ∗(H) ∼= G2(q), PSU4(q), PSU5(q) or 3D4(q). If
H is not strongly p-embedded and G 6= H, then p = 7, F ∗(H) ∼= G2(7)
and for any element ω ∈ H with o(ω) = 7 such that 73 divides |CH(ω)|
we have CG(ω) = CH(ω).

Proof. The assertion follows from Lemmas 21.18 and 21.10. �

Lemma 21.20. Let F ∗(H) ∼= PSp4(5) and assume that H is not
strongly 5-embedded in G. Then H controls G-fusion of involutions in
H. Furthermore H has four conjugacy classes of involutions.
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Proof. By Lemma 21.11 we have |H : F ∗(H)| = 2 and H ∼=
Aut(PSp4(5)). Therefore the second assertion follows from [27, Table
4.5.1].

According to Lemma E.2, for all ω ∈ H of order 5 with |CH(ω)|
even, we have 53 divides |CH(ω)|. Therefore, Lemma 21.11 implies that
NG(〈ω〉) ≤ H. Another application of Lemma E.2 shows that there are
three classes of such groups in H, and the orders of their normalizers
are pairwise distinct. So we have that H controls G-fusion of these
subgroups of order 5.

By Lemma E.2 5 divides |CH(i)| for all involutions i ∈ H. Let U be
a Sylow 5-subgroup of CH(i) and U1 ≤ CG(i) with |U1 : U | divides 5.
Then U1 centralizes some 1 6= ω ∈ U and therefore U1 ≤ H. We have
that CH(i) contains a Sylow 5-subgroup of CG(i).

Let i, j be involutions in H and assume that ig = j for some g ∈ G.
Choose ω ∈ CH(i) some element of order 5. Then ωg ∈ CG(j) But
as CH(j) contains a Sylow 5-subgroup of CG(j) we may assume that
ωg ∈ CH(j). As H controls G-fusion of ω there is some h ∈ H with
ωg = ωh. Then, as NG(〈ω〉) ≤ H, we have g ∈ H. This shows that H
controls fusion of involutions in H. �

Lemma 21.21. Suppose that H is not strongly p-embedded in H and
F ∗(H) ∼= PSp4(5) or G2(7). Then Op′(G) = 1.

Proof. Let E ≤ Q with |E| = p2. Then by Lemmas 21.11 and
21.19, CG(e) ≤ H for all e ∈ E#. In particular, Op′(CG(e)) = 1 for all
e ∈ E#. Therefore,

Op′(G) = 〈COp′ (G)(e) | e ∈ E#〉 = 1,

as claimed. �

Lemma 21.22. Suppose that H is not strongly p-embedded in H
and F ∗(H) ∼= PSp4(5) or G2(7). Let i be a 2-central involution in H.
If CG(i) ≤ H, then G = H.

Proof. Assume G 6= H. If F ∗(H) = G2(7), then F ∗(H) = H =
G2(7) and by [27, Table 4.5.1] we have that H has just one conjugacy
class of involutions. So F ∗(H) controls fusion of involutions. If F ∗(H) ∼=
PSp4(5), then |H : F ∗(H)| = 2 and so F ∗(H) controls fusion of 2-
central involutions according to Lemma 21.20.

Let i be a 2-central involution of H. Then by assumption CG(i) =
CH(i). Because of Lemma 21.21, we may apply Lemma 4.4 and, as
F ∗(H) 6∼= Alt(n), we have shown G = H. �

140



Lemma 21.23. Suppose that H is not strongly p-embedded in H
and F ∗(H) ∼= PSp4(5) or G2(7). Assume further that G is a K2-group.
Then for a 2-central involution i in H we have that CG(i) ≤ H.

Proof. Let R be a root subgroup in F ∗(H). Then by Lemmas D.1
and Lemma D.10 we get

Op′(CF ∗(H)(R)) ∼

{
51+2

+ :SL2(5) H ∼= Aut(PSp4(5)) or

71+4
+ :SL2(7) H ∼= G2(7).

Let i be an involution in Op′(CF ∗(H)(R)). Then i centralizes R and also
a subgroup of H which is isomorphic to SL2(p), p = 5 or 7. Furthermore
i inverts Op(CF ∗(H)(R))/R. If F ∗(H) ∼= G2(7), then there is exactly one
conjugacy class of involutions in H, so i is a 2-central one. If F ∗(H) ∼=
PSp4(5), we have i ∈ F ∗(H) and by Lemma E.2 we get that just the
2-central involutions of F ∗(H) have a centralizer in H of order divisible
by 25. So in both cases

i is a 2-central involution of H.

Application of [27, Table 4.5.1] shows

F ∗(CH(i)) = K1 ◦K2,

where K1
∼= K2

∼= SL2(p), p = 5 or 7 and 〈i〉 = K1 ∩K2. In particular
NH(R) contains a Sylow p-subgroup of CH(i). As i inverts Z2(S)/R and
centralizes R, we find that any p-element in CH(i)∩NH(R) centralizes
Z2(S), hence the centralizer of such a p-element has order divisible by
p3. By Lemmas 21.11 and 21.19, for ω ∈ CH(i) of order p, we have

NG(〈ω〉) ≤ H.

Assume that CG(i) 6= CH(i). Let E be a Sylow p-subgroup of CH(i)
which contains R. Then

〈NG(〈e〉) | e ∈ E#〉 = 〈NH(〈e〉) | e ∈ E#〉 ≥ NH(R).

As NH(R) is a maximal subgroup of H, we have that 〈NG(〈e〉) | e ∈
E#〉 = NH(R) or H. Since 〈NG(〈e〉) | e ∈ E#〉 is normalized by NG(E),
we find that NG(E) normalizes either Q or H. In either case, NG(E) =
NH(E). Hence NCG(i)(E) ≤ CH(i) and we conclude that

CH(i) is strongly p-embedded in CG(i).

As E is a Sylow p-subgroup of CG(i) we can apply coprime action to
receive

Op′(CG(i)) = 〈COp′ (CG(i))(e) | e ∈ E#〉 ≤ H.

In particular Op′(CG(i)) ≤ Op′(CH(i)) ≤ Z(CH(i)) = 〈i〉. So

Op′(CG(i)) = 〈i〉.
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Furthermore, Op(CG(i)) = Op(CG(i)) ∩ E ≤ Op(CG(i)) ∩ K1K2 = 1.
Hence F (CG(i)) = 〈i〉. Since i ∈ K1K2, we get F ∗(CG(i)) = E(CG(i)).
Set K = E(CG(i)). If K has components L1 and L2, then E∩L1 is cen-
tralized by L2 and L1 centralizes E ∩L2. Thus K = E(CH(i)) = K1K2

and this means that CG(i) = KNCG(i)(E) ≤ H, a contradiction to the
assumption CG(i) 6= CH(i). Therefore K is quasisimple. Moreover, by
the Schreier property [27, Theorem 7.1.1 (a)], K1K2 ≤ K.

Since K is quasisimple and mp(K) > 1, we can apply [27, Theorem
7.6.1]. We consider each of the candidates for K given in [27, Theorem
7.6.1]. Recalling that E ≤ K1K2 ≤ K, and the subgroup K3 of K gen-
erated by the normalizers of the subgroups of order p in E is contained
in CH(i) ≥ K1K2. Hence F ∗(K3)/〈i〉 ∼= PSL2(p) × PSL2(p). Now we
can apply [27, Theorem 7.6.2]. The only possibility which fits with our
K3 then will be

p = 5 and K ∼= Alt(10).

In CH(i) we see that NCH(i)(E) = NCG(i)(E) is of order 25.52. This is the
same order for the normalizer of a Sylow 5-subgroup in K. This shows
that CG(i) ∼= 2.Alt(10). But in this group the involutions of K/Z(K)
which are products of two transpositions will become elements of order
4 in CG(i). Therefore CG(i) has at most three conjugacy classes of
involutions. On the other hand CH(i), as i is a 2-central involution in
H, contains a Sylow 2-subgroup of H and so by Lemma 21.20 contains
four G-classes of involutions, we have a contradiction to the assumption
CG(i) 6= CH(i). �

We now prove Theorem 1.

The proof of Theorem 1. Suppose that G 6= H and that H is
not strongly p-embedded in G. Then by Theorem 4.7, F ∗(H) is a
rank 2 group of Lie type and p is odd. If F ∗(H) ∼= PSL3(pe), then
Proposition 9.1 gives (id) of Theorem 1. Proposition 15.1 shows that
F ∗(H) 6∼= G2(3e). Thus we may assume that Hypothesis 21.1 holds and
so Lemmas 21.11 and 21.19 show that (ib) and (ic) hold. Under the
additional assumption that G is a K2-group, Lemma 21.23 with Lemma
21.22 shows that (ib) and (ic) lead to the contradiction G = H. This
yields Theorem 1 (ii). Finally, assuming that G is a K{2,p}-group in the
case that p is odd, Propositions 4.5 and 4.6 yield Theorem 1(iii). �

22. Proof of Main Theorem 1 and Main Theorem 2

In this section we now will prove both of our Main Theorems.

Main Theorem 1 follows immediately from Theorems 2, 3 and 4.
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The proof of Main Theorem 2. In addition to our standard as-
sumption that G is almost a group of Lie type in characteristic p sup-
pose that G is a K{2,p}-group, G 6= H and F ∗(H) 6∼= PSL3(p), p an odd
prime.

Since Propositions 4.5 and 4.6 imply that H is not strongly p-
embedded in G, Main Theorem 1 and Theorem 1 combine to give that
F ∗(G) and p are as follows:

- p = 2 and F ∗(G) ∼= Mat(11), Mat(23), PSL4(3), Alt(10),
G2(3) or PΩ+

8 (3); or
- p = 3 and F ∗(G) ∼= PSU6(2), F4(2), 2E6(2), Co2, M(22),

M(23), McL or F2; or
- p = 5 and G ∼= LyS.

AsG = PSL4(3) contains an involution j with F ∗(CG(j)) ∼= PSL2(9)
(see Lemma D.28) and in G = Alt(10) for j = (12)(34) we have
F ∗(CG(j)) ∼= Alt(6), both groups are not of local characteristic 2. Ac-
cording to Lemma D.26 we have an involution i in PΩ+

8 (3) such that
F ∗(CG(i)) ∼= 2.PSU4(3), so G is not of local characteristic 2. Suppose
that p = 3. Then McL has local characteristic 3 whereas all the other
groups are not. For example there is an element ρ of order three in G
such that E(CG(ρ)) ∼= PSU4(2), PSp6(2), PSU6(2), PSU4(2), PSU4(3),
PΩ7(3), M(22). For PSU6(2) this is in [50, Lemma 22], for F4(2) we
get the result with [60, Lemma 8.2], and for M(22) with [55, Lemma
7.1]. For the sporadic simple groups this follows from [27, Table 5.3].
This proves Main Theorem 2. �

A. Properties of finite simple groups of Lie type

We take the monograph [27] as our fundamental source of data
about the finite simple groups of Lie type. Thus, following [27, Def-

inition 2.2.1], for a prime p, we let GF(p) be the algebraic closure of

GF(p), K be a semisimple GF(p)-algebraic group and σ be a Steinberg
endomorphism of K. Then, as in [45, Definition page 2], we make the
following definition.

Definition A.1. A genuine group of Lie type in characteristic p
is a group isomorphic to Op′(CK(σ)) and a simple group of Lie type in
characteristic p is a non-abelian composition factor of a genuine group
of Lie type in characteristic p.

The simple groups of Lie type in characteristic p, which are not gen-
uine groups of Lie type in characteristic p are Sp4(2)′, G2(2)′, 2F4(2)′

and 2G2(3)′. Almost always, we will use classical notation for those sim-
ple groups of Lie type which have an alternative classical description.
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Thus, for simple groups, we have An(pe) = PSLn+1(pe), 2An(pe) =
PSUn+1(pe), Bn(pe) = PΩ2n+1(pe), Cn(pe) = PSp2n(pe), Dn(pe) =
PΩ+

2n(pe) and 2Dn(pe) = PΩ−2n(pe). The groups 2B2(22e+1) are called
Suzuki groups and the groups 2F4(22e+1) and 2G2(32e+1) are called Ree
groups. Collectively we call them Suzuki–Ree groups.

Let T be a maximal torus of K, Σ a root system with respect to
T and Π a set of fundamental roots in Σ. Taking a σ-stable Borel
subgroup B = UT with T

σ
= T , N = NK(T ) and W = N/T , we

define
W̃ = CW (σ) = CW (τ)

where τ is the symmetry induced on the Dynkin diagram of K by

application of σ. Then, by [27, Proposition 2.3.2], W̃ is a Weyl group

with respect to a root system Σ̃. The rank of K is then defined to be

dim〈Σ̃〉 (see [27, page 42]) and the untwisted rank of K is dim〈Σ〉.
For example, the simple groups of rank one are PSL2(pe), PSU3(pe),

2B2(2e) and 2G2(3e)′ and our main theorems refer to the remaining
simple groups of Lie type.

For α ∈ Σ, let Xα = {xα(t) | t ∈ GF(r)} be a T root subgroup

of K. Then, for α̃ ∈ Σ̃, Xα̃ is the subgroup of 〈X〈σ〉α 〉 in K centralized
by σ. Then Xα̃ is called a root subgroup of K. The structure of root

subgroups is given in [27, Table 2.4] and K = 〈Xα̃ | α̃ ∈ Σ̃〉. For a long

root α̃ ∈ Σ̃, by a long root subgroup, we mean

Ω1(Z(Xα̃)).

In [27, page 103], the authors define long root subgroups slightly dif-
ferently: they choose a σ-invariant long root α ∈ Σ and then define the
corresponding long root subgroup to be CXα

(σ). For this definition they
exclude the Suzuki-Ree case, see definition above. With this exception
these two definitions coincide. The order of the field of definition of
K is |X| for X a long root subgroup. Thus, for example, the field of
definition of 2An(q) ∼= PSUn+1(q) is GF(q). The standard definition of
a parabolic subgroup is taken from [27, Definition 2.6.4] and we take
the definition of a Levi factor or Levi complement from [27, Definition
2.6.6]. If L is a Levi factor then we call Op′(L/Z(L)) a Levi section. If
K is a simple group of Lie type, then to cover the non-genuine groups
we define a parabolic subgroup to be the intersection of a parabolic
subgroup of the corresponding genuine group of Lie type with K. The
lattice of parabolic subgroups containing a fixed Borel subgroup of K
is congruent to the lattice of subsets of a set of size the rank of K.

Lemma A.2. Suppose that X is a genuine group of Lie type defined
over GF(pe). Then |X|p = (pe)m where m is given in the following
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table.

X/Z(X) PSLn(pe) PSUn(pe) PSp2n(pe) PΩ2n+1(pe) PΩ−2n(pe)

m
n(n−1)

2
n(n−1)

2
n2 n2 n(n− 1)

X/Z(X) PΩ+
2n(pe) 2B2(2e) 3D4(pe) E6(pe) 2E6(pe)

m n(n− 1) 2 12 36 36

X/Z(X) E7(pe) E8(pe) F4(pe) 2F4(2e) G2(pe) 2G2(3e)

m 63 120 24 12 6 3

Proof. This is taken from [27, Table 2.2]. �

Lemma A.3. Suppose that X is a genuine group of Lie type defined
in characteristic p and U is a Sylow p-subgroup of X. Then either Z(U)
is a root group or X ∼= Sp2n(2e), F4(2e) or G2(3e), where Z(U) is a
product of two root groups one long and one short.

Proof. See [27, Theorem 3.3.1]. �

Lemma A.4. Let X be a group of Lie type over GF(pe) and R be a
long root subgroup of X.

(i) If X is not PSL2(pe) or a Suzuki–Ree group, then for g ∈ X,
either 〈R,Rg〉 is p-group or 〈R,Rg〉 ∼= SL2(pe). Moreover,
both cases occur.

(ii) If X = 2F4(22e+1), then there is a conjugate Rg of R such
that 〈R,Rg〉 ∼= 2B2(22e+1).

(iii) If g ∈ X and Rg ∩R 6= 1, then g ∈ NX(R)

In particular in any case NX(R) acts irreducibly on R. Furthermore
if U is a Sylow p-subgroup of Aut(X) with R ≤ Z(U ∩ X), then any
element in R is conjugate into Z(U).

Proof. Part (i) is [27, Theorem 3.2.9] and (ii) can be found in
[27, Example 3.2.5, page 102] and (iii) is explained on page 103 [27].

As in both groups SL2(pe) and 2B2(2e) the normalizer of a Sylow
p-subgroup acts irreducibly on the centre of the Sylow p-subgroup the
follow up statement holds as well. Furthermore in 2B2(2e) the normal-
izer acts transitively on the non-trivial elements of R. In the typical
case where 〈R,Rg〉 ∼= SL2(pe) there can be two orbits on the subgroups
of order p when p is odd whereas there is only one if p = 2. This shows
that for a Sylow p-subgroup U of Aut(X) such that R ≤ Z(U ∩X) we
have that any subgroup of order p in R is conjugate into Z(U). �

Lemma A.5. Let X be a group of Lie type over GF(pe) which is
not PSL2(pe) or a Suzuki-Ree group. Assume that R,R1, R2 and R3

are long root subgroups in X and set A = 〈R1, R2〉. If A ∼= SL2(pe) and
[A,R3] = 1, then R ∩ AR3 ⊂ A ∪ R3. In particular, if R ∩ R1R3 6= 1,
then R = R1 or R = R3.
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Proof. Suppose that x ∈ (R ∩ AR3)# and assume x 6∈ A ∪ R3.
Let y ∈ A be the projection of x onto A. Then we may suppose that y
does not normalize R1. Hence 〈R,R1〉 ≥ 〈x,R1〉 > 〈R1, R

x
1〉 = A. Using

Lemma A.4 (i) gives a contradiction. Hence R ∩ AR3 ⊂ A ∪ R3. Now,
if R ∩ R1R3 6= 1, then either R ∩ R1 6= 1 or R ∩ R3 6= 1. Lemma A.4
(iii) now gives R = R1 or R = R3. �

Lemma A.6. Let X ∼= PSU3(pe), pe > 2, and R be a root subgroup
of X. Then X is generated by three conjugates of R.

Proof. By Lemma A.4 (i) there is an X-conjugate Rg of R such
that Y = 〈R,Rg〉 ∼= SL2(pe). We use [27, Theorem 6.5.3], to see that
if Rh 6≤ Y , then G = 〈R,Rg, Rh〉. �

Lemma A.7. Let X be a group of Lie type isomorphic to one of
Sp2n(2e), F4(2e) or G2(3e) and R be a short root subgroup of X. Then
NX(R) acts irreducibly on R and, if Rg ∩R 6= 1 for some g ∈ X, then
g ∈ NX(R).

Proof. If X is either F4(2e) or G2(3e), then by [27, Theorem 3.3.1
(c)] there is an automorphism of X mapping R to a long root subgroup.
If X ∼= Sp2n(2e), then we use the fact that X ∼= Ω2n+1(2e) by [27,
Theorem 1.15.9] and that in this incarnation R becomes a long root
subgroup. Hence the result follows from Lemma A.4. �

Lemma A.8. Suppose that X is a genuine group of Lie type defined
in characteristic p and U is a Sylow p-subgroup of X. Let R be a root
subgroup in Z(U). Then CX(r) = CX(R) for all r ∈ R#.

Proof. By Lemma A.3 either R is a long root subgroup or X ∼=
Sp2n(2e), F4(2e) or G2(3e). Set P = NX(R). By Lemma A.4(iii) and
Lemma A.7, R is a TI-subgroup of X, so RECX(r), and hence CX(r) =
CP (r). We know that P is a parabolic subgroup of X and as CX(R) ≥
Op′(P ), we have NX(R) = NX(U)CX(R). As NX(U)/U is abelian,
P/CX(R) is abelian. In particular, CP (r) is normal in P . Since P acts
irreducibly on R by Lemmas A.4 (iii) and A.7, we deduce that CP (r) =
CP (R). �

Suppose that K is a genuine group of Lie type signified by the
symbol dΣ(q) as in [27]. In [27] they adopt two distinct notations for
graph automorphisms one in [27, Theorem 2.5.1] and a different one in
[27, Definition 2.5.13]. We have elected to adopt the former notation
which follows Steinberg’s Yale notes [72, Section 10]. This decision
means that we have to be extremely careful when we apply results
about automorphisms from later sections of [27] on the other hand it
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does mean that Theorem A.10 below remains valid. Here is a definition
which is extracted from [27, Theorem 2.5.1].

Definition A.9. Suppose that K is a genuine group of Lie type
defined over GF(pe).

(i) A diagonal automorphism of K is an automorphism d which
is induced by conjugation by an element h ∈ NT (K), so that
for all α ∈ Σ,

xα(t)d = xα(α(h)t).

If K is untwisted, this gives the action of d on each Xα. If K
is a twisted group, then d normalizes every Xα̃;

(ii) A field automorphism f of K is one arising from the restric-

tion of an automorphism ϕ of GF(p), and carrying the gen-
erators

xα(t)f = xα(tϕ);

and
(iii) A graph automorphism of K is trivial unless K is untwisted,

and then is defined as follows:
(a) If Σ has one root length, then for some isometry ρ of Σ

carrying Π to Π,

xα(t)g = xαρ(εαt)

for all α ∈ Σ, t ∈ GF(pe), where the εα = ± are signs
and εα = 1 if α ∈ Π or −α ∈ Π; or

(b) If Σ = B2, F4, or G2, with p = 2, 2, or 3, respectively
then

xα(t)g =

{
xαρ(t) if α is long

xαρ(t
p) if α is short

where ρ is the unique angle-preserving, length-changing
bijection from Σ to Σ carrying Π to Π.

The fundamental theorem about the automorphism group of a gen-
uine group of Lie type is as follows:

Theorem A.10. Every automorphism of K is a product idfg where
i ∈ Inn(K), d is a diagonal automorphism, f is a field automorphism
and g is a graph automorphism of K.

Proof. This is [72, (3.2)] (see also [27, Theorem 2.5.1]). �
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We define

DiagK = Inn(K)〈d | d a diagonal automorphism of K〉
ΦK = 〈f | f a field automorphism of K〉 and

ΓK = 〈g | g a graph automorphism of K〉.
Thus DiagK consists of all the inner and diagonal automorphisms of
K.

Theorem A.11. Suppose that K is a genuine group of Lie type
with K ∼= dΣ(q) and Z(K) = 1. Identify K with Inn(K). Then the
following hold.

(i) Aut(K) is the semidirect product of DiagK by ΦKΓK where
ΦKΓK is abelian.

(ii) DiagK/K has order coprime to p.
(iii) ΦK

∼= Aut(GF(qd)).
(iv) If K is twisted, then ΓK = 1.
(v) If ΓK 6= 1 and K 6∼= PΩ+

8 (q), then either
(a) ΓK has order 2 and K ∼= PSLn(q), n ≥ 3, PΩ+

2n(q),
n ≥ 4, or E6(q).

(b) ΓK has order 2e2, |ΦKΓK : ΦK | = 2 and K ∼= Sp4(2e),
F4(2e) or G2(3e).

(vi) If K ∼= PΩ+
8 (q), then ΓK ∼= Sym(3) and DiagKΓK/K ∼=

Sym(4).

Proof. See [27, Theorem 2.5.12]. �

Lemma A.12. If K ∼= Sp4(2e), F4(2e) or G2(3e), then Out(K) is
cyclic.

Proof. This can be taken from [27, Theorem 2.5.12]. �

Lemma A.13. Let K = 2F4(q)′, q = 22e+1 with e ≥ 0. If e > 0,
then Out(K) has odd order. If e = 0, then Aut(K) ∼= 2F4(2) and there
is no involution in Aut(K) \K.

Proof. These results follow from [27, Theorems 2.5.12, 2.5.15 and
3.3.2]. �

Lemma A.14. Let K be a genuine group of Lie type in characteristic
p and U ∈ Sylp(K). Identify K with Inn(K). Suppose that E ≤ Aut(K)
normalizes all the parabolic subgroups of K which contain NK(U). Then
E ≤ NDiagK (U)ΦK. In particular, Aut(K) = KNDiagK (U)ΦK if and
only if ΓK = 1.

Proof. This follows from Definition A.9 and Theorem A.10. �
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We shall be interested in automorphisms of K of order p, the defin-
ing characteristic of K. We distinguish two cases.

Lemma A.15. Suppose that K is a genuine group of Lie type over
a field of odd characteristic p, Z(K) = 1 and α ∈ ΦK has order p. If
K 6∼= PΩ+

8 (3e) or 3D4(3e), then all elements of order p in the coset Kx
are DiagK-conjugate.

Proof. This is [27, Proposition 4.9.1]. �

Lemma A.16. Suppose that K is a genuine group of Lie type over
a field of characteristic 2 of type dΣ(q) with Z(K) = 1 and identify
K with Inn(K). Let U be a Sylow 2-subgroup of K, α ∈ NAut(K)(U)
have order 2 and let z ∈ Z(U〈α〉)#. Denote the image of a subgroup or

element of Out(K) by adding a hat. Then α̂ is conjugate into Φ̂KΓK
and furthermore

(i) If α̂ ∈ Φ̂K, then one of the following holds
(a) K is not twisted, α is DiagK-conjugate to an element of

ΦK and Op′(CK(α)) ∼= Σ(q
1
2 ).

(b) K ∼= PSUn(q), n odd, α is DiagK-conjugate to an ele-
ment of ΦK and CK(α) ∼= PSpn−1(q).

(c) K ∼= PSUn(q), n even, or 2E6(q), α is DiagK-conjugate
to an element of 〈z〉ΦK. If α ∈ ΦK, then CK(α) ∼=
PSpn(q), or F4(q) in the respective cases and

CK(zα) = CK(α) ∩ CK(z) = CCK(α)(z).

(ii) If α̂ ∈ Γ̂K, then K is untwisted and
(a) K ∼= PSLn(q), n odd, α is DiagK-conjugate to an element

of ΓK and CK(α) ∼= PSpn−1(q);
(b) K ∼= PSLn(q), n even, or E6(q), α is DiagK-conjugate to

an element of 〈z〉ΓK. If α ∈ ΓK, then, in the respective
cases, CK(α) ∼= PSpn(q), or F4(q) and

CK(zα) = CK(α) ∩ CK(z) = CCK(α)(z).

(c) K ∼= PSp4(2e) or F4(2e) and α is K-conjugate to an
element of ΓK. In the respective cases, if e is odd, then
CK(α) ∼= 2B2(2e) or 2F4(2e) whereas, if e is even, then
CK(α) ∼= PSp4(2e/2) or F4(2e/2).

(iii) If K ∼= PΩ±2n(2e) and α ∈ Γ̂K ∪ Φ̂K, then either α ∈ ΓK ∪ΦK

and CK(α) ∼= PΩ2n−1(2e) ∼= Sp2n−2(2e) or F ∗(CK(α)) is a
2-group.
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(iv) If α̂ ∈ Φ̂KΓK \ (Φ̂K ∪ Γ̂K) is a product of a graph and a field
automorphism, then all involutions in the coset αDiagK are

DiagK-conjugate to α. Furthermore, O2′(CK(α)) ∼= 2Σ(q
1
2 ).

Proof. Remember that our notation is not exactly the same as
that in [27]. Part (i)(a), (iii) and (iv) are taken from [27, Propositiona
4.9.1 and 4.9.2]. Parts (i)(b), (i)(c), (ii)(a) and (ii)(b) are found in [27,
Proposition 4.9.2] and [5, (19.8)]. Part (ii)(c) is given in [5, (19.5)]. �

Lemma A.17. Let p be a prime and M be a group with Op(M) = 1.
If K is a group of Lie type in characteristic p such that M ≤ K and p
does not divide |K : M |, then K = M .

Proof. Suppose first that K is a genuine group of Lie type. Let
U ∈ Sylp(M) and B = NK(U) be a Borel subgroup of K. Then [27,
Theorem 2.6.7] yieldsMB is a parabolic subgroup inK. As Op(M) = 1,
we have MB = K. Furthermore by [27, Theorem 2.6.7], B normalizes
M and so M = K as K = Op′(K). This proves the result when K is
genuine.

It remains to treat the groups K/Z(K) ∼= 2G2(3)′, Sp4(2)′, G2(2)′ and
2F4(2)′. As 2G2(3)′ ∼= PSL2(8) and Sp4(2)′ ∼= PSL2(9), we may apply
Dickson’s Theorem [33, Satz 8.27] to obtain the result. We use [14, Ta-
bles 8.5 and 8.6] to obtain the result for G2(2)′ ∼= PSU3(3). This leaves
us with K ∼= 2F4(2)′. So |K| = 211 · 33 · 52 · 13. Thus, if Ot(M) 6= 1
for some odd prime t, then |Ot(M)| ≤ 33, 52 or equal 13. Hence in
any case CU(Ot(M)) 6= 1 and so Ot(M) commutes with a 2-central
involution r, contrary to CK(r) having characteristic 2. Thus F ∗(M) is
semisimple and as the centralizer of an involution is soluble, F ∗(M) is
a simple group. Since M is a 7′-group and |S| = 211, F ∗(M) is not an
alternating group. Using [27, Table 5.3] for the orders of the sporadic
simple groups, we see that M is not sporadic. If F ∗(M) is a group of Lie
type in odd characteristic r, then, using Lemma A.2, F ∗(M) is either
PSL3(3), PSU3(3), 2G2(3)′ or PSL2(ra) where ra ∈ {3, 32, 33, 5, 52, 13}.
Thus

211 = |M |2 ≤ |Aut(M)|2 ≤ 26,

a contradiction.

So consider the case that F ∗(M) is a group of Lie type in charac-
teristic 2. Suppose that F ∗(M) has Lie rank at least 2 and let P be a
maximal parabolic subgroup of F ∗(M). Then by the Borel-Tits The-
orem [27, Theorem 3.1.3], P is contained in a parabolic subgroup of
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the genuine group of Lie type Aut(K). In particular, P/O2(P ) is ei-
ther SL2(2) or a subgroup of 2B2(2). Since 2F4(2) is the only group of
Lie type in characteristic two, which possesses a parabolic subgroup
with Levi complement a Suzuki group, we deduce that P/O2(P ) ∼=
Sym(3). It follows that F ∗(M) ∼= PSL3(2), PSp4(2)′ or G2(2)′, which
yields |Aut(F ∗(M))|2 < 211, a contradiction. Hence F ∗(M) ∼= SL2(2f ),
PSU3(2f ) or 2B2(2f ) with f > 1 and in the last case odd. Since there
is always an element of order 2f − 1 in NF ∗(M)(S ∩ F ∗(M)), we have
2f − 1 = |NF ∗(M)(S ∩ F ∗(M))/(S ∩ F ∗(M))| ∈ {3, 5} which means
that f = 2. But then |S ∩ F ∗(M)| ≤ 26 and |Aut(F ∗(M))|2 < 211, a
contradiction. �

Lemma A.18. Let X be a p-minimal group such that K = F ∗(X) is
a simple group of Lie type in characteristic p. Let U ∈ Sylp(K). Then
NX(U) is maximal in X and one of the following holds:

(i) K ∼= PSL2(pe);
(ii) K ∼= PSU3(pe);

(iii) p = 2 and K ∼= 2B2(22e+1), e ≥ 1;
(iv) p = 3 and K ∼= 2G2(32e+1)′, e ≥ 0;
(v) p = 2 and K ∼= PSL3(2e) and X > K and NX(U) inter-

changes the two minimal parabolic subgroups of K containing
NK(U);

(vi) p = 2 and K ∼= PSp4(2e)′ and X > K and NX(U) inter-
changes the two minimal parabolic subgroups of K containing
NK(U).

Proof. Let U ∈ Sylp(K) and U0 ≥ U be a Sylow p-subgroup of
X. Let M be the unique maximal subgroup of X containing U0 and
let F = NX(U). Then X = KF , F permutes the minimal parabolic
subgroups of K which contain NK(U) and F ≤ M . If Θ is an orbit
of F on the minimal parabolic subgroups of K, then 〈Θ〉F = X or
〈Θ〉 ≤M . Since K 6≤M and K is generated by the minimal parabolic
subgroups containing NK(U), there must exist an orbit Ψ such that
K = 〈Ψ〉. That is F is transitive on the minimal parabolic subgroups
of K containing NK(U). If K has rank 1, then we have cases (i) to (iv).
So the rank of K is at least 2. By Theorem A.10 and Lemmas A.13
and A.14, K is not a twisted group and |Ψ| = 2 or 3. Since PΩ+

8 (pe)
has rank 4, we have |Ψ| = 2 and K has rank 2. Now X has a normal
subgroup Y of index 2. If p is odd, then X = Y F ≤M , a contradiction.
Hence p = 2. Now Theorem A.11 (v) gives the result. �

Lemma A.19. Suppose that X is a simple group of Lie type defined
in characteristic p and of rank one, S ∈ Sylp(X) and B = NX(S).
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(i) If X ∼= PSL2(pe), then B = SH where H is cyclic of order
(pe − 1)/ gcd(pe − 1, 2) and H acts irreducibly on S.

(ii) If X ∼= PSU3(pe), then B = SH where H is cyclic of order
(p2e − 1)/ gcd(pe + 1, 3) and S is special of order q3. The
subgroup H acts faithfully and irreducibly on S/Z(S) which
has order q2 and CH(Z(S)) has order (pe + 1)/ gcd(pe + 1, 3).
If p is odd, then S has exponent p while, when p = 2, Ω1(S) =
Z(S).

(iii) If X ∼= 2B2(22e+1), then B = SH where H is cyclic of order
(22e+1−1), S is special with Ω1(S) = Z(S), SH is a Frobenius
group and H acts transitively on Ω1(S).

Proof. In case (i), we obtain the result by an elementary calcu-
lation in SL2(pe) noting that B is the image of the subgroup of lower
triangular matrices.

For (ii) we refer to [33, Satz II.10.12] where most of the required
calculations are performed. Enough information is also provided to cal-
culate the remaining points.

For (iii), we refer to [73, page 113 and Theorem 9]. �

B. Properties alternating groups

In this short appendix we present the basic structural results that
we require about the alternating and symmetric groups.

Lemma B.1. Assume that n ≥ 8, X = Sym(n), H ≤ X and
F ∗(H) is quasisimple. If H contains a Sylow 2-subgroup of F ∗(X),
then F ∗(H) ∼= Alt(m) for m ∈ {n− 3, n− 2, n− 1, n}. In particular if
H is transitive then m = n.

Proof. If n = 8, then every proper over-group of the Sylow 2-
subgroup has characteristic 2 by Lemma A.17 and thus we may assume
n ≥ 9.

Assume first that H is primitive. Then, as H contains as fours group
transitive on 4 points, Marggraf’s Theorem [80, Theorem 13.5] implies
H ≥ Alt(n) and so we are done.

Assume next that H is transitive, but not primitive. Then H is
contained in Sym(c) oSym(b) where n = cb with c ≥ 2 and b ≥ 4. Since
F ∗(H) is quasisimple and H contains a Sylow 2-subgroup of F ∗(X)
this is impossible.

Thus H is not transitive and so H is isomorphic to a subgroup of
Sym(a)×Sym(b) where a+b = n and a is the length of a maximal orbit
of H. Further, as n ≥ 9, we have that H contains a Sylow 2-subgroup
of Alt(9), and so a ≥ 8. Since H contains a Sylow 2-subgroup of F ∗(X),
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H ∩ Sym(a) 6= 1, which gives F ∗(H) ≤ Sym(a) and so F ∗(H) = Alt(a)
by induction. Furthermore, Sym(b)∩Alt(n) has odd order for otherwise
1 6= H ∩ Sym(b) ≤ CH(F ∗(H)) ≤ Sym(a). Therefore b ≤ 3 and the
result follows. �

Lemma B.2. Assume that n ≥ 5, X = Sym(n), H ≤ X and F ∗(H)
is quasisimple. If H contains a Sylow 3-subgroup of X, then F ∗(H) ∼=
Alt(m) for m ∈ {n−2, n−1, n}. In particular if H is transitive n = m.

Proof. Suppose first that H is primitive. Then, as H contains a
3-cycle, Jordan’s Theorem [80, Theorem 13.3] implies F ∗(H) = Alt(n).

If H is transitive, but not primitive, then H ≤ Sym(c) o Sym(d)
with n = dc where d and c both greater than 1. If c 6= 2, the F ∗(H) ≤
Sym(c) ∩ Sym(d) which is absurd. Hence c = 2 but this is impossible
as the Sylow 3-subgroup of Alt(n) does not preserve blocks of size 2.
Therefore we have:

(B.2.1) If H acts transitively, then F ∗(H) ∼= Alt(n).

Assume now that H is intransitive. Write H ≤ Sym(a) × Sym(b),
where a is the length of a maximal orbit of F ∗(H). As a ≥ 5, we get
that F ∗(H) ∩ Sym(a) 6= 1 and so F ∗(H) ≤ Sym(a) and |Sym(b)| is
not divisible by 3. This gives b ≤ 2. As H ∩ Sym(a) contains a Sylow
3-subgroup of Alt(a) and H acts transitively on the orbit of length
a, we have that F ∗(H) ∼= Alt(a) by (B.2.1). Thus, as b ≤ 2, we get
m = a ∈ {n− 2, n− 1} and we are done. �

Lemma B.3. Assume that X is 2-minimal and F ∗(X) ∼= Alt(n)
for some n ≥ 5. Then either F ∗(X) = Alt(2a + 1) for some a ≥ 2
or F ∗(X) ∼= Alt(6) ∼= Sp4(2)′ and X involves a graph or a graph-field
automorphism of X.

Proof. See [40, Lemma 2.2] for the cases where X is contained in
Sym(n). For F ∗(X) ∼= Alt(6) and X contained in Sym(6), the intersec-
tion with X of the parabolic subgroups 2 o Sym(3) and 2 × Sym(4) of
Sp4(2) ∼= Sym(6), show that X is not 2-minimal. Suppose that X con-
tains a graph or a graph-field automorphism of F ∗(X). Let S ∈ Syl2(X)
and assume that S is not a maximal subgroup of X. Let M be a max-
imal subgroup of X containing S. Then, as X/F ∗(X) is a 2-group,
M ∩F ∗(X) is proper over-group of T = S∩F ∗(X) which is normalized
by S. The only proper over-groups of T in F ∗(X) are the parabolic
subgroups of F ∗(X) and these are not normalized by S. Hence S is a
maximal subgroup of X and it follows that X is 2-minimal. �

Lemma B.4. Assume that X is 3-minimal and F ∗(X) ∼= Alt(n) for
some n ≥ 5. Then X = F ∗(X) and n ∈ {6, 9, 3a + 1 | a ≥ 2}.
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Proof. Let Ω be a set of size n and T ∈ Syl3(X). Since T ≤
F ∗(X), and X = F ∗(X)NX(T ), we conclude that X = F ∗(X). We
will repeatedly apply Jordan’s Theorem [80, Theorem 13.3] to see that
certain pairs of subgroups generate X.

Assume that n = at3
t+· · ·+a131+a0 where ai = 0, 1, 2 be the 3-adic

decomposition of n. Assume that
∑t

i=1 ai ≥ 3. Then T has at least 3-
orbits on Ω. In particular, we may find distinct non-empty T -invariant
subsets α, β, γ and δ of Ω such that Ω = α ∪ β = γ ∪ δ are disjoint
decompositions. But then T is a subgroup of H = Sym(α) × Sym(β)
and of K = Sym(γ) × Sym(δ). Since X = 〈K ∩ X,H ∩ X〉, we have
that X is not 3-minimal in this case. Thus 1 ≤

∑t
i=1 ai ≤ 2. If T fixes

a point, we then have X ∼= Alt(3a + 1). Continuing the considerations
in this case, if H ≥ T is transitive on Ω, then it is 2-transitive and as
T contains a 3-cycle we conclude that H ≥ Alt(Ω). Hence every proper
over-group of T in X fixes the same point as T and so Alt(3a + 1) is
3-minimal.

Suppose that n = 3a + 3b with a ≥ b ≥ 1. Then T is contained
in subgroups H = Sym(3) o Sym(n/3) and K = Sym(3a)× Sym(3b). If
n 6= 6, then X = 〈H∩X,K∩X〉, and so X is not 3-minimal. Therefore
n = 6 and a = b = 1, then K ≤ H and indeed we obtain X = Alt(6)
is 3-minimal.

Finally assume that n = 3a. If a > 2, then T is contained in H =
Sym(3) o Sym(3a−1) and in K = Sym(3a−1) o Sym(3) and X = 〈H ∩
X,K ∩X〉. Hence, as n ≥ 5, n = 9. In this case, T acts transitively on
Ω and any proper subgroup of X containing T must be imprimitive.
But then setting H = Sym(3)× Sym(3), H ∩X is the unique maximal
subgroup of X containing T and so X ∼= Alt(9) is 3-minimal. �

C. Small modules for finite simple groups

This appendix focuses on small representations of simple groups.
The results have been applied throughout the proof of Main Theorem 1.
In particular, Section 5 requires most of the results presented here. For
studying irreducible modules for groups of Lie type the following lemma
is fundamental.

Lemma C.1. Let X be a genuine group of Lie type in character-
istic p and V be an absolutely irreducible GF(pe)X-module. If P is
a parabolic subgroup of X and U = Op(P ). Then CV (U) is an irre-
ducible GF(pe)P -module. In particular, for S a Sylow p-subgroup of X
and B = NX(S), we have that CV (S) is 1-dimensional as a GF(pe)B-
module.

Proof. See [70] or [27, Theorem 2.8.11]. �
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We fix the following notation. If X is a simple group then we denote
by Rt(X) the minimal dimension of a faithful projective representation
of X in characteristic t over a splitting field and by

Rp′(X) = min
t6=p

Rt(X).

Lemma C.2. Let p be a prime and X be a sporadic simple group.
Then the following table presents lower bounds for Rp(X).

X Mat(11) Mat(12) Mat(22) Mat(23) Mat(24) J1 J2 J3 J4

Rp(X) 5 6 6 11 11 7 6 9 110

X HiS McL He Ru Suz O’N Co1 Co2 Co3
Rp(H) 20 21 18 28 12 31 24 22 22

X M(22) M(23) M(24)′ F5 LyS F3 F2 F1

Rp(X) 27 234 702 56 110 48 234 729

Proof. See [37, page 187] for these approximations. �

For the groups Mat(11) and Mat(22) and p = 3 we will need more
precise information.

Lemma C.3. Let X be a quasisimple group with X/Z(X) ∼= Mat(11)
or Mat(22).

(i) If X ∼= Mat(11), then X has no 6-dimensional irreducible
GF(3)-module.

(ii) If X/Z(X) ∼= Mat(22), then R3(X) ≥ 7.

Proof. By [34, Theorem 7.1], Mat(11) has no 6-dimensional irre-
ducible GF(3)-module, which is (i).

Let X/Z(X) ∼= Mat(22). By [27, Table 5.3c], X/Z(X) has a sub-
group of shape 23 : SL3(2) = 23:PSL2(7) and this subgroup has a
preimage in X which is an elementary abelian group of order at most
24 extended by PSL2(7). Since the minimal faithful permutation rep-
resentation of PSL2(7) is of degree 7 as 7 does not divide |Alt(m)|,
m ≤ 6, then Lemma 2.23 implies that R3(X) ≥ 7, which is (ii). �

The next result is due to Wagner.

Lemma C.4. Let X be an alternating group of degree n with n ≥ 9.
Then, for all primes p, Rp(X) = n− 1− δn,p ≥ n− 2.

Proof. See [74, 75, 76]. �

Lemma C.5. Let X be a simple group of Lie type defined over
GF(q), q = pe. Then lower bounds for Rp′(X) and Rp(X) are presented
in the following table.
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X lower bounds for Rp′ (X) Rp(X) exceptions

PSL2(q), q odd (q − 1)/2 2 Rp′ (PSL2(9)) = 3
PSL2(q), q even (q − 1) 2 Rp′ (PSL2(4)) = 2

PSLm(q),m ≥ 3 (qm − 1)/(q − 1)−m m Rp′(PSL3(2)) = 2
Rp′ (PSL3(4)) = 4
Rp′(PSL4(2)) = 7
Rp′(PSL4(3)) = 26

PSUm(q),m ≥ 3 odd q(qm−1 − 1)/(q + 1) m
PSUm(q),m ≥ 4 even (qm − 1)/(q + 1) m Rp′ (PSU4(3)) = 6

Rp′ (PSU4(2)) = 4

PSp2m(q),m ≥ 2, q even q(qm − 1)(qm−1 − 1)/2(q + 1) 2m
PSp2m(q),m ≥ 2, q odd (qm − 1)/2 2m

PΩ+
2m(q),m ≥ 4, q = 2, 3 q(q2m−2 − 1)/(q2 − 1) 2m Rp′ (PΩ+

8 (2)) = 8
−(qm−1 − 1)/(q − 1)− 7δ2,p

PΩ+
2m(q),m ≥ 4, q 6= 2, 3 q(q2m−2 − 1)/(q2 − 1) 2m

+qm−1 −m
PΩ−2m(q),m ≥ 4 q(q2m−2 − 1)/(q2 − 1) 2m

−qm−1 −m+ 2

PΩ2m+1(q),m ≥ 3, q 6= 3 (q2m − 1)/(q2 − 1)−m 2m+ 1
PΩ2m+1(3),m ≥ 3 (32m − 1)/(32 − 1)− (3m − 1)/2 2m+ 1 Rp′ (PΩ7(3)) = 27

E6(q) q9(q2 − 1) 27
2E6(q) q9(q2 − 1) 27
E7(q) q15(q2 − 1) 56
E8(q) q27(q2 − 1) 248

F4(q), q even 1
2
q7(q3 − 1)(q − 1) 26 Rp′ (F4(2)) ≥ 44

F4(q), q odd q6(q2 − 1) 26− δp,3
G2(q) q(q2 − 1) 7− δp,2 Rp′ (G2(3)) = 14

Rp′ (G2(4)) = 12
3D4(q) q3(q2 − 1) 8

2F4(q), q = 2e+1, e > 1 q4(q − 1)
√
q/2 26

2B2(q), q = 2e+1, e > 1 (q − 1)
√
q/2 4 Rp′ (

2B2(8)) = 8
2G2(q), q = 3e+1, e > 1 q(q − 1) 7

2G2(3)′ 2 7
Sp4(2)′ 2 3

G2(2)′ 3 6
2F4(2)′ 16 26

Proof. For the genuine groups of Lie type the bounds for Rp′(X)
are found in [68]. For Rp(X) we refer to [37, Theorem 5.4.13]. For the
remaining four simple groups, as 2G2(3)′ ∼= PSL2(8), Sp4(2)′ ∼= PSL2(9)
and G2(2)′ ∼= PSU3(3) we obtain the bounds using the results we al-
ready have. For R2′(

2F4(2)′) the proof is the same as in [38, Lemma
4.9] and for R2(2F4(2)′) we refer to [37, Proposition 5.4.13]. �

Lemma C.6. Let X be a simple group of Lie type defined over
GF(q), q = pe.

(i) If Rp′(X) ≤ 4Rp(X), then X is one of the following groups.
- PSL2(q), q ≤ 17 with q odd, PSL2(4), PSL2(8), PSL3(2),

PSL3(4), PSL3(3), PSL4(2).
- PSU3(3), PSU3(4), PSU4(2), PSU4(3), PSU5(2), PSU6(2).
- PSp4(2)′, PSp4(3), PSp4(5), PSp6(2), PSp6(3), PΩ7(3),

PΩ+
8 (2), PΩ−8 (2).
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- F4(2), G2(2)′, G2(3), G2(4), 3D4(2), 2F4(2)′, 2B2(8),
2G2(3)′.

(ii) If Rp′(X) ≤ Rp(X), then X ∼= PSL2(4), PSL2(5), PSL3(2),
PSp4(2)′, PSU4(2), 2G2(3)′, G2(2)′, 2F4(2)′ or PΩ+

8 (2), where
we must have equality besides when X ∼= PSL3(2), PSp4(2)′,
G2(2)′, 2F4(2)′ or 2G2(3)′.

(iii) If Rp′(X) ≤ 8, then X is one of the following groups
- PSL2(q), q ≤ 17 with q odd, PSL2(4), PSL2(8), PSL3(2),

PSL3(4), PSL4(2).
- PSU3(3), PSU4(2), PSU4(3).
- PSp4(2)′, PSp4(3), PSp6(2), PΩ+

8 (2).
- G2(2)′, 2B2(8), 2G2(3)′.

Proof. This result is obtained from the data presented in the table
from Lemma C.5. �

Lemma C.7. Suppose that p and r are primes with p 6= r and X is
a simple group of Lie type defined in characteristic r. Then Rr(X) ≥
mp(X).

Proof. Let k = Rr(X). Then by the definition of Rr(X), we have
that X is isomorphic to a subgroup of PGLk(r

e) for some suitable e.
Therefore mp(X) ≤ mp(PGLk(r

e)) ≤ k by [37, 5.5.2] and consequently
mp(X) ≤ Rr(X). �

A special role is played by the so-called quadratic and cubic repre-
sentations of quasisimple groups.

Definition C.8. Suppose that p is a prime, A is a group and V is
a non-trivial GF(p)A-module. Then

(i) A acts quadratically on V provided [V,A,A] = 0; and
(ii) A acts cubically on V provided [V,A,A,A] = 0.

If A acts cubically on V but not quadratically on V , then we say that
A acts strictly cubically on V .

We remark that

Lemma C.9. If A acts quadratically and faithfully on a vector space
V defined over GF(p), then A is an elementary abelian p-group.

Proof. This is well-known. �

We will now study quadratic modules more closely. The first result
is independent of the classification of the finite simple groups.

157



Lemma C.10. Suppose that p is an odd prime, V is a faithful
GF(p)X-module and x ∈ GL(V ) normalizes X. If x acts quadrati-
cally on V and |X| is coprime to p, then [X, x] ≤ O2(X). In particular
[E(X), x] = 1.

Proof. By coprime action, X = CX(x)[X, x]. Let X be a minimal
counterexample, then X = [X, x]. Set Y = X〈x〉. Let r be a prime
which divides |X| and R ∈ Sylr(X). Then NY (R) contains a conjugate
of x by the Frattini Argument. Thus R〈x〉 is a subgroup of Y . By [22,
Chap. 3, Theorem 8.4], if r is odd, Op(R〈x〉) 6= 1 and so [R, x] = 1. In
particular, letting T ∈ Syl2(X) be x-invariant, we have X = TCX(x).
Therefore X = [X, x] = [T, x] ≤ T , which is a contradiction as surely
X is not a 2-group.

For the second assertion we now have that [E(X), x] ≤ O2(E(X)) ≤
Z(E(X)). So [〈x〉, E(X), E(X)] = 1. The Three Subgroup Lemma gives
[〈x〉, E(X)] = 1, the assertion. �

Lemma C.11. Let X be a finite group, p an odd prime and V be a
faithful, irreducible GF(p)X-module. Assume the following conditions.

(a) There is a non-trivial subgroup A of X which acts quadrati-
cally on V and X = 〈AX〉; and

(b) CX(F (X)) ≤ F (X).

Then we have the following:

(i) |A| = p = 3;
(ii) F (X) = O2(X) = Z(X)E, where E is an extraspecial 2-group

of order 21+2n, Z(X) is cyclic of order 2 or 4; and
(iii) X/O2(X) is isomorphic to Alt(2n+ 1), Alt(2n+ 2), GUn(2),

Ω±2n(2) or Sp2n(2). Furthermore F (X)/Z(X) is a natural mod-
ule for X/F (X).

Proof. See [16, Theorem A]. �

Lemma C.12. Let X be a finite group, p be an odd prime and V be
a faithful, irreducible GF(p)X-module. Assume that

(a) A ≤ X with 〈AX〉 = X and A acts quadratically on V ; and
(b) K is a normal quasisimple subgroup of X and CX(K) =

Z(X).

Then either Z(X) ≤ K and X = K is a group of Lie type in charac-
teristic p, or |A| = p = 3 and one of the following holds:

(i) X ∼= PGUn(2), n ≥ 5;
(ii) |Z(X)| = 2, X/Z(X) ∼= Alt(n), n ≥ 5 and n 6= 6;

(iii) |Z(X)| = 2, X/Z(X) ∼= PΩ+
8 (2), G2(4), PSp6(2), Co1, Suz

or J2.
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Proof. See [17, Theorem A]. �

Lemma C.13. Suppose that X is a group with F ∗(X) quasisimple
and V is an irreducible faithful GF(2)X-module. Assume that A ≤ X
is a 2-subgroup of order at least 4 and that A acts quadratically on V .

(i) If F ∗(X)/Z(F ∗(X)) is a sporadic simple group, then one of
the following hold:
(ia) F ∗(X) ∼= Mat(12) and V is 10-dimensional.
(ib) F ∗(X) ∼= Mat(22) and V is 10-dimensional.
(ic) F ∗(X) ∼= Mat(24) and V is 11-dimensional.
(id) F ∗(X) ∼= J2 and V is 12-dimensional.
(ie) F ∗(X) ∼= Co2 and V is 22-dimensional.
(if) F ∗(X) ∼= Co1 and V is 24-dimensional.
(ig) F ∗(X) ∼= 3.Suz and V is 24-dimensional.
(ih) F ∗(X) ∼= 3.Mat(22) and V is 12-dimensional.
Furthermore, if |A| ≥ 8, then F ∗(X) ∼= 3.Mat(22) and, in
this case, if |A| = 16, then NF ∗(X)(A)/A ∼= 3.Alt(6).

(ii) If F ∗(X)/Z(F ∗(X)) is a group of Lie type defined in odd char-
acteristic which is not isomorphic to a group of Lie type de-
fined in characteristic 2, then F ∗(X) ∼= 3.PSU4(3). Further-
more dimV = 12 and |A| ≤ 25.

(iii) If F ∗(X)/Z(F ∗(X)) is an alternating group, then either V is
the natural module or a spin module or F ∗(X) ∼= 3.Alt(6) and
V is a 6-dimensional module, or F ∗(X) ∼= 3.Alt(7) and V is
12-dimensional. Furthermore,

(iiia) if |A| > 8, then V is a natural module or X ∼= Alt(8)
and |V | = 16.

(iiib) If V is a spin module and X 6∼= Alt(6) or Alt(8), then
either |A| = 4 and A is conjugate to 〈(12)(34), (13)(24)〉,
or |A| = 8, n = 9 and A is conjugate in Sym(9) to
〈(12)(34)(56)(78), (13)(24)(57)(68), (14)(26)(37)(48)〉.

Proof. (i) This is [49, Theorems 1, 2 and 3].
(ii) This is [48, Theorem and Proposition 3.2]. To see that |A| ≤ 25

we argue as follows: by [27, Proposition 6.2.2] we have Out(PSU4(3)) ∼=
Dih(8) acts faithfully on the 3-part of the Schur multiplier of PSU4(3).
This shows Z(F ∗(X)) is normalized by a fours group in Out(PSU4(3))
and just centralized by a group of order 2. If A 6≤ F ∗(X), then by
quadratic action we have that A has to centralize Z(F ∗(X)). Hence
|A : A ∩ F ∗(X)| ≤ 2. Since m2(PSU4(3)) = 4 by [27, Theorem 4.10.5],
we see that |A| ≤ 25.

(iii) If Z(F ∗(X)) 6= 1 this is [45, Lemma 7.4]. So assume that
F ∗(X) ∼= Alt(n). Then we get that V is the natural module or a spin
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module from [49, Theorem 4]. The final statements are presented in
[45, Lemma 7.5]. �

Lemma C.14. Let X be a classical group defined over GF(q), V a
natural module and A ≤ X be a quadratic subgroup of X of maximal
order. Then the following hold:

(i) if X ∼= SLn(q) with n ≥ 2, then |A| ≥ qn
2/4 if n is even and

|A| ≥ q(n+1)(n−1)/4 if n is odd;

(ii) if X ∼= SUn(q) with n ≥ 3, then |A| ≥ qn
2/4 if n is even and

|A| ≥ q(n−1)2/4 if n is odd;
(iii) if X ∼= Sp2n(q) with n ≥ 2, then |A| ≥ q(n+1)n/2;
(iv) if X ∼= Ω+

2n(q), then |A| ≥ qn(n−1)/2;
(v) if X ∼= Ω−2n(q), then |A| ≥ q(n−1)(n−2)/2; and
(vi) if X ∼= Ω2n+1(q), then |A| ≥ qn(n−1)/2.

Proof. This result is taken from [45, Lemma 3.4]. �

The next lemma is about transvection subgroups of certain classical
groups.

Lemma C.15. Let X ∼= Sp2n(pe), O±n (pe) or GUn(pe) and V be the
corresponding natural module. Assume that Y ≤ X acts quadratically
on V and dim[V, Y ] = 1. If X is either symplectic or unitary, then
|Y | ≤ pe and, if X is orthogonal, then p = 2 and |Y | = 2.

Proof. Since Y acts quadratically on V , we have CV (Y ) = [V, Y ]⊥

by Lemma 2.20 and Y is an elementary abelian p-group by Lemma
C.9. Since dim[V, Y ] = 1, we deduce that CV (Y ) is a hyperplane of V .
Let U ≤ CV (Y ) be a non-degenerate space of dimension n − 2. Then
Y centralizes U and leaves U⊥ invariant. Now U⊥ is a 2-dimensional
symplectic, orthogonal or unitary space. Thus Y embeds into Sp2(pe),
O±2 (pe) ∼= Dih(pe ± 1) or GU2(pe). In the first and the last case we see
that Y has order at most pe. In the second case we see that Dih(pe±1)
has order coprime to p unless p = 2 and then we have that |Y | = 2. �

Lemma C.16. Assume X ∼= Ω−6 (2) and V is the natural GF(2)X-
module. Then there is a fours subgroup of X which operates quadrati-
cally on V .

Proof. The group SO−6 (2) contains a subgroup D = SO−2 (2) ×
SO−2 (2)×SO−2 (2) ∼= Sym(3)×Sym(3)×Sym(3). The Sylow 2-subgroup
of D acts quadratically on V . Thus Ω−6 (2) contains a quadratic fours
subgroup. �
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Lemma C.17. Let X = Alt(5) and V be a GF(2)X-module. Assume
that there is a submodule V1 of V such that both V1 and V/V1 are natural
SL2(4)-modules. Let U be a Sylow 2-subgroup of X. Then

(i) Any X-orbit in V of length 15 generates a proper submodule;
and

(ii) If U acts quadratically on V then V over V1 splits.

Proof. (i) Choose v ∈ V with |vX | = 15. We may assume v ∈
CV (U). If CV (U) ≤ V1, then vX ⊆ V1 and we are done. Hence we may
assume that CV (U) 6≤ V1. Let A = NX(U) = 〈U, ρ〉 ∼= Alt(4) with ρ of
order 3. Then, as ρ acts fixed-point-freely on V and A acts on CV (U),
we get |CV (U)| = 16 and CV (U) = CV (u) = [V, u] for all u ∈ U#.
Let t ∈ X be an involution with X = 〈t, U〉. Then vt 6∈ CV (U) since
otherwise X centralizes 〈v, vt〉. Since CV (ρ) = 0 and CV (U) = CV (u)
for all u ∈ U#, |(vt)A| = 12 and, as CV (U) = [V, U ],

〈(vt)A〉+ CV (U)/CV (U) = 〈(vt)〈ρ〉〉+ CV (U)/CV (U)

has dimension at most 3. Since vA has size 3,

vX = (vt)A ∪ vA ⊆ 〈(vt)A〉+ CV (U) < V

and this proves the first claim.
For part (ii) we have that CV (U) 6≤ V1. In particular there is some

v ∈ V \ V1 such that |vX | = 15. By (i) we have that vX is contained in
a proper submodule and so V2 = 〈vX〉 is a natural SL2(4)-module and
V = V1 ⊕ V2. �

Definition C.18. Suppose that X is a group and V is a GF(p)X-
module. Then, for natural numbers m, V is an mF -module with m-
offender A ≤ X if A/CA(V ) is an elementary abelian p-group and

|V/CV (A)| ≤ |A/CA(V )|m.

We call an mF -module sharp if for any m-offender A we have that

|V/CV (A)| = |A/CA(V )|m.
We call V a dual mF -module with dual m-offender A ≤ X if A/CA(V )
is an elementary abelian p-group and

|[V,A]| ≤ |A/CA(V )|m.
If m = 1, then 1F -modules are called F -modules and dual 1F -modules
are called dual F -modules the corresponding subgroup A is called an
offender or a dual offender respectively.

Lemma C.19. Let V be a faithful GF(p)X-module and A be an
elementary abelian p-subgroup of X. Let V ∗ be the dual module of V .
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(i) If A acts quadratically on V , then A acts quadratically on V ∗.
(ii) If A acts (strictly) cubically on V , then A acts (strictly) cu-

bically on V ∗.
(iii) If A is an m-offender on V , then A is a dual mF -offender

on V ∗.
(iv) If A is a dual m-offender on V , then A is an m-offender

on V ∗.

Proof. Parts (i) and (ii) are an easy calculation using the defini-
tion of the dual module. We prove (iii) and (iv).

Suppose that A is an m-offender on V . Then, as V is a faith-
ful GF(p)X-module, |V/CV (A)| ≤ |A|m. By Lemma 2.19, CV (A)† =
[V ∗, A] and V ∗/CV (A)† ∼= CV (A)∗. Thus, as duality preserves dimen-
sion, we have

|A|m ≥ |V/CV (A)| = |V ∗|/|CV (A)∗| = |CV (A)†| = |[V ∗, A]|.
Hence A is a dual m-offender on V ∗. Similarly, if |[V,A]| ≤ |A|m, then,
as V ∗/[V,A]† ∼= [V,A]∗ and [V,A]† = CV ∗(A), we obtain

|A|m ≥ |[V,A]| = |[V,A]∗| = |V ∗/[V,A]†| = |V ∗/CV ∗(A)|.
Thus A is an m-offender on V ∗. This proves (iii) and (iv). �

Quadratic action and F -modules play a pivotal role in many sophis-
ticated group theoretical problems such as problems involving factori-
sations or pushing-up. The two concepts are linked as follows: suppose
that V is an F -module with offender A. Then we may apply the Thomp-
son replacement theorem [22, Chap. 8, Theorem 2.5] to the semidirect
product V A to see that V A contains a subgroup B which is also an
offender on V and which operates quadratically on V .

In the next lemma we identify certain modules as “natural mod-
ules” and “spin” or “half spin” modules. The formal definitions of these
modules is given in [47, Section A.2]. For example, if X ∼= Sym(n) or
Alt(n), then the non-trivial irreducible section of the n-dimensional
permutation is called the natural X-module.

We have taken the following lemma from [15].

Lemma C.20. Suppose that G is p-minimal, S ∈ Sylp(G) and M be
the unique maximal subgroup of G which contains S. Let V be a faith-
ful GF(p)P -module. Assume that there exists an elementary abelian
subgroup A ≤ T of order pn and

(i) |V/CV (A)| ≤ |A| and |A0||CV (A0)| < |A||CV (A)| for every
1 6= A0 < A,

(ii) [CV (T ), P ] 6= 1, and
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(iii) P = 〈A,Ax〉 for every x ∈ G \M .

Then P ∼= SL2(pn), CV (A) = [V,A]CV (P ), and V/CV (P ) is a natural
SL2(pn)-module for P .

Proof. See [15, Lemma 3.5]. �

Lemma C.21. Let X be a group such that F ∗(X) is quasisimple
and let V be a faithful, irreducible GF(2)F ∗(X)-module which is an
F -module for X. Then F ∗(X) is either a classical group defined in
characteristic 2, G2(2e)′ (e ≥ 1), Alt(n), (n ≥ 5), or 3.Alt(6). Fur-
thermore, one of the following holds:

(i) F ∗(X) is a classical group in characteristic 2 and V is a nat-
ural module.

(ii) F ∗(X) ∼= Alt(n), n ≥ 5 and V is a natural module.
(iii) F ∗(X) ∼= SLn(2e), e ≥ 1, and V is the exterior square of a

natural module. Furthermore, in this case, V is sharp.
(iv) F ∗(X) ∼= Sp6(2e) or Ω+

10(2e), e ≥ 1, and V is a spin module
or half-spin module, respectively. If F ∗(X) ∼= Ω+

10(2e), then V
is sharp.

(v) F ∗(X) ∼= G2(2e) and V is a natural module. In this case V is
sharp.

(vi) F ∗(X) ∼= 3.Alt(6) and |V | = 26 and V is sharp.
(vii) X ∼= Alt(7) and |V | = 24 and V is sharp.

Proof. This can be obtained by combining [45, Theorems 2 and
3]. �

Lemma C.22. Suppose that X is a group with F ∗(X) quasisimple.
Let V be a faithful, irreducible GF(p)X-module. Assume that X =
〈AX〉, A is a dual offender on V and [v, A] = [V,A] for all v ∈ V \
CV (A). Then one of the following holds:

(i) X ∼= SLn(pe) or Sp2n(pe) with n ≥ 2 and V is a natural
module;

(ii) X ∼= Alt(6) or Alt(7), dimV = 4 and |A| = 4; or
(iii) p = 2 and X = O±2n(2) with n ≥ 3 or Sym(n) with n = 5 or

n ≥ 7, V is the corresponding natural module and |A| = 2.

Proof. This is [46, 3.1]. �

Lemma C.23. Let X ∼= PSU3(pe) or SU3(pe) and V be an irre-
ducible GF(p)-module for X. Let S be a Sylow p-subgroup of X and
A = Z(S). Then A does not induces an F -module offender on V .

Proof. We have |A| = pe. If A induces an F -module offender, then
|V : CV (A)| ≤ pe. By Lemma A.6 X is generated by three conjugates
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of A. This implies |V | ≤ p3e. Hence X is a subgroup of GL3e(p). We
have that p3e + 1 divides the order of X. Let r be a primitive prime
divisor of p6e− 1 according to Theorem 2.28. Then r divides |X| but r
does not divide |GL3e(p)|, a contradiction. �

Next we study the class of 2F -modules which will come up when
studying p-minimal subgroups. We do not need the full strength of the
classification given in [29] and [30]. In particular we do not require
the classification of the 2F -modules for groups of Lie type in defining
characteristic given in [30].

Theorem C.24. Suppose that p is a prime and X is p-minimal,
Y = F ∗(X) is quasisimple but not isomorphic to a group of Lie type
in characteristic p, and that V is a faithful GF(p)G-module which is a
cubic 2F -module or dual 2F -module. Then one of the following holds:

(i) p = 2 and Y ∼= Alt(2a + 1) with a ≥ 3(two possible actions
for Alt(9) both with |V | = 28);

(ii) p = 3 and Y ∼= Alt(9) or Alt(3a + 1) with a ≥ 2;
(iii) p = 3 and Y ∼= 2.Alt(9);
(iv) p = 3 and Y ∼= Sp6(2); or
(v) p = 3 and Y ∼= 2.Sp6(2).

Proof. By Lemma C.19 it is enough to prove the theorem for cubic
2F -modules. Suppose Y/Z(Y ) is an alternating group which is not a
simple group of Lie type. Then [29, Theorem 6.2 and Table 6.3] yields
that p ∈ {2, 3}. Then, as X p-minimal, Lemmas B.3 and B.4 imply
that (i), (ii) or (iii) holds.

If Y/Z(Y ) is a simple group of Lie type defined in characteristic r
with r 6= p (which cannot be identified with a simple group of Lie type
in characteristic p), then we apply [29, Theorem 6.4 and Table 6.5].
This yields p = 2 and Y/Z(Y ) ∼= PSU4(3) or p = 3 and Y ∼= 2.PSL3(4),
Sp6(2), 2.Sp6(2) or 2.Ω+

8 (2).
In the first case, [14, Table 8.10] shows that the centralizer of a

2-central involution is a maximal subgroup of X and the subgroup
42 : Sym(4) is normalized by a Sylow 2-subgroup but does not centralize
an involution. Thus Y/Z(Y ) ∼= PSU4(3) is not 2-minimal.

Suppose that p = 3. If Y/Z(Y ) ∼= Sp6(2) we have (iv) or (v). Thus
we have to deal with Y ∼= 2.PSL3(4) or 2.Ω+

8 (2). By [27, Proposition
6.2.2] we have that Out(PSL3(4)) acts faithfully on the 2-part of the
Schur multiplier of Y/Z(Y ). Hence, as X is 3-minimal, X = O3′(X)
and so we now see that X = Y . Using [14, Tables 8.3 and 8.4], we
see that PSL3(4) has maximal subgroups PSU3(2) and PSL2(9) both
containing a Sylow 3-subgroup. Hence this group is not 3-minimal. So
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we may assume that X ∼= 2.Ω+
8 (2). In this case [14, Table 8.50] shows

that the subgroup (3×Ω−6 (2)):2 is a maximal subgroup of X/Z(X) and
so as this subgroup does not contain SO−2 (3) oSym(4)∩X we have that
X is not 3-minimal.

If Y/Z(Y ) is a sporadic simple group, then the appropriate reference
is [29, Theorem 6.6 and Table 6.7] which gives p = 3 and Y/Z(Y ) ∼=
Mat(11) or Mat(12) or p = 2 and Y/Z(Y ) ∼= Mat(22),Mat(23),Mat(24)
or J2. All maximal subgroups of these groups are given in [27, Tables
5.3a . . . 5.3e] and these lists reveal that the groups listed are not p-
minimal. �

Lemma C.25. Suppose X ∼= 2G2(3e) and V is a faithful GF(3)X-
module. Then V is not a 2F -module.

Proof. This is taken from [29, Lemma 8.5]. �

Lemma C.26. Suppose that X ∼= PSU3(2e) and V is a faithful
GF(2)X-module. If V is a 2F -module with 2-offender A, then A acts
quadratically on V .

Proof. Let S ∈ Syl2(X) and assume that A ≤ S. Since A is
elementary abelian we have A ≤ Z(S) and |A| ≤ 2e by Lemma A.19
(iii). Noticing that all the involutions in Z(S) are conjugate, we have,
for z ∈ Z(S)#, |V : CV (z)| ≤ |V : CV (A)| ≤ 22e. If |V : CV (z)| = 22e,
then |A| = 2e and A = Z(S) and, furthermore, as CV (z) ≥ [V, z], Z(S)
acts quadratically on V .

Notice that by Lemma A.19, for z ∈ Z(S)#, we have CNX(S)(z) =
CNX(S)(Z(S)) = SH where H is cyclic of order 2e + 1.

Suppose that |V : CV (z)| < 22e. Then CX(z) acts on V/CV (z). As
|V : CV (z)| < 22e, H does not act faithfully on V/CV (z) and we see
that 〈CH(V/CV (z))S〉 = SCH(V/CV (z)) centralizes V/CV (z) and so
[V, S] ≤ CV (z) for all z ∈ Z(S). Hence [V, S, Z(S)] = 0 and therefor A
acts quadratically. �

Lemma C.27. Suppose X ∼= 2B2(2e) and V is a faithful GF(2)X-
module. If V is a 2F -module with 2-offender A, then A = Z(S) acts
quadratically on V .

Proof. We start as in the previous lemma, let S ∈ Syl2(X) and
assume that A ≤ S. Then, by Lemma A.19 (iv), A ≤ Z(S) and |A| ≤
2e. As all the involutions in Z are conjugate, we have, for z ∈ Z(S)#,
|V : CV (z)| ≤ |V : CV (A)| ≤ 22e. Now z inverts an element of order
2e±2(e+1)/2+1 one of which contains a primitive prime divisor of 24e−1.
It follows that |V : CV (z)| = 22e and so A = Z(S) and CV (Z(S)) =
CV (z) for all z ∈ Z(S). Hence Z(S) acts quadratically on V . �
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Lemma C.28. Let X ∼= SL2(pe) and V be an irreducible GF(p)X-
module. Assume that V is a 2F -module with 2-offender a Sylow p-
subgroup S of X. Then V is either the natural module for X, the 4-
dimensional module for SL2(pe) ∼= Ω−4 (pe/2) or, p is odd and V is the
3-dimensional PSL2(pe) ∼= Ω3(pe)-module. The same also holds if V is
a dual 2F -module with dual 2-offender a Sylow p-subgroup S of X.

Proof. Let first V be a 2F -module. By Definition C.18 we have
|V/CV (S)| ≤ |S|2. Assume that the field of definition of V is GF(pf ).
Then, setting e/f = x, we have dimGF(pf ) V ≤ 2x + 1 by Lemma

C.1. Let 〈σ〉 = Gal(GF(pe)/GF(pf )). By the Steinberg Tensor Product
Theorem [27, Corollary 2.8.6] we have that

V ⊗GF(pf ) GF(pe) = V σ1
1 ⊗ · · · ⊗ V σr

r

of algebraic conjugates of basic modules. Then, as V is defined over
GF(pf ), V σ ∼= V by [2, 26.3]. In particular, there are at least x (the or-
der of σ) tensor factors in the above expression. Since dimGF(pe) V1 ≥ 2,
we have dimV ≥ 2x. Hence we require that 2x+ 1 ≥ 2x. Hence x ≤ 2.
If x = 2, we must have that V1 is 2-dimensional, so V ⊗GF(pf ) GF(pe) =
V1 ⊗ V σ

1 , which is the orthogonal module. If x = 1, V is defined over
GF(pe) and so dimV ≤ 3 and is a basic module. Application of [13]
or [27, Example 2.8.10] now gives that V is the natural module or the
3-dimensional module for p odd.

As all modules are self-dual we see with Lemma C.19 that the assertion
also holds if V is a dual 2F -module. �

We need the following rather explicit result about the 8-dimensional
GF(2)Alt(9)-modules.

Lemma C.29. Suppose that G ∼= Sym(9), H = G′ and Q is an
elementary abelian subgroup of G normalized by a Sylow 2-subgroup
S of H. Let V be an irreducible 8-dimensional GF(2)HQ-module and
assume

(a) CV (Q) = CV (S) has dimension 1; and
(b) [V,Q,Q] = CV (Q).

Then |[V,Q]| > 2|Q|.

Proof. Aiming for a contradiction assume that |[V,Q|| ≤ 2|Q|.
Then, as m2(G) = 4, |[V,Q]| ≤ 25. Recall that HQ is a 2-minimal
group. The maximal subgroup of H containing S is Alt(8).

Suppose that w ∈ Q is a product of at most two transpositions. Since
[V,Q] is normalized by S and HQ = 〈O2(CHQ(w)), S〉, [V,w] < [V,Q].
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Hence |[V,w]| ≤ 24. Since w ∈ Q and Q is abelian, by (a), CV (Q) ≤
[V,w] and so CHQ(w) does not centralize [V,w] for otherwise HQ nor-
malizes CV (Q). If w is a transposition then CHQ(w) ∼= 〈w〉 × Sym(7).
But Sym(7) does not act on a 4-dimensional space. It follows that
w is a product of two transpositions. As CHQ(w) contains A5, we
get |[V,w]| = 16. Now we have CV (w) = [V,w] < [V,Q] and so
|Q| = 24. Thus |Q ∩ O2(CHQ(w))| = 22 and O2(CHQ(w)) ∼= Alt(5).
But [V,w,Q] ≤ [V,Q,Q] = CV (Q) by (b) and has order 2 by (a) this
contradicts the fact that Alt(5) has no transvections on its non-trivial
irreducible GF(2)-modules. Hence Q contains no elements which are
transpositions or products of two transpositions.

Since a Sylow 2-subgroup of G is isomorphic to Dih(8) o 2 and any
elementary abelian subgroup of order 24 is contained in the base group
of this wreath product, we obtain

|Q| ≤ 23

and consequently

|[V,Q]| ≤ 24.

Let Q0 = Q∩H. Baring in mind that Q is normalized by S, Q0 6= 1. The
non-trivial elements of Q0 are of cycle type 24. Suppose |Q| ≤ 4. For

w ∈ Q#
0 then [V,w] ≤ [V,Q] has order at most 23 and so |CV (w)| ≥ 25.

We will draw the same conclusion if |Q| = 8. In this case |Q0| ≥ 22.

Choose w ∈ Q#
0 . If [V,w] = [V,Q], then as all involution in Q0 are

conjugate we have that [V,w1] = [V,Q] for all w1 ∈ Q0. As Q does not
act quadratically by (b), we have |Q0| = 4 and G = QH. Now [V,Q]

is invariant under K = 〈CHQ(z) | z ∈ Q#
0 〉. We have that CH(w) is a

minimal parabolic subgroup of H ∼= SL4(2). Hence K∩H is a parabolic
subgroup of H with Levi factor SL3(2). As Q 6≤ H, some element of
Q induces an outer automorphism on H ∼= Alt(8) and so K = G.
But then [V,Q] is G-invariant, a contradiction as V is irreducible. This
contradiction shows [V,w] < [V,Q] and so again |CV (w)| = 25. That is

|CV (w)| ≥ 25 for w a product of four transpositions.

Since w inverts an element f of order 5, we have |CV (f)| = 24. Now
select k = (1, 2, 3, 4, 5) and w = (2, 6)(3, 7)(4, 8)(5, 9) and we see that
〈k, w〉 centralizes a non-zero subspace of V . On the other hand we have
a = [w, k]3 = (1, 7, 3)(2, 5, 8)(4, 9, 6) and b = kaw = (1, 9, 2)(3, 5)(6, 8).
Hence 〈k, w〉 contains a 3-cycle. As 〈w, k〉 is primitive, Jordan’s Theo-
rem [80, Theorem 13.3] implies that H = 〈w, k〉. But then Alt(9) has
a fixed point on V and this is our final contradiction. �
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Lemma C.30. Suppose that X ∼= Alt(9) and W is a GF(2)X-
module of dimension 9 with U a submodule of W of codimension 1.
If U is a spin module for X, then CW (X) 6= 0.

Proof. Let A = CX((1, 2, 3)) and B = CX((4, 5, 6)). Then X =
〈A,B〉, CW ((1, 2, 3)) is normalized by A and CW ((4, 5, 6)) is normalized
by B. As 3-cycles act fixed point freely on the spin module, we have that
CW ((1, 2, 3)) and CW ((4, 5, 6)) are 1-dimensional. Thus CW ((4, 5, 6)) =
CW ((1, 2, 3)). Then CW ((1, 2, 3)) is invariant under X = 〈A,B〉, the
assertion. �

D. p-local properties of groups of Lie type in characteristic p

In this section we will compile some facts about the p-local sub-
groups of the simple groups of Lie type in characteristic p. If G 6=
F4(2n), PSp2m(2n) or G2(3n), then by Lemma A.3 the centre of a Sylow
p-subgroup of G is a long root group. The structure of the normalizer of
a long root group in these cases and in the cases of F4(2n), PSp2m(2n),
G2(q) and 2F4(q), will be given in Lemmas D.1, D.5, D.11, D.10 and
D.13. In the next lemma we use the notation Vn to denote a natural
module for a classical group defined in dimension n. Thus, if X is a
classical group defined over GF(pe), then |Vn| = pne.

Lemma D.1. Let p be a prime, X be a simple group of Lie type
defined in characteristic p and R be a long root subgroup of X. Set
Q = Op(NX(R)) and L = Op′(NX(R)/Q). Then for specified X, the
following table displays the Levi section L/Z(L), the p-rank of Q/R
and, for the classical groups X, describes the action of L on Q/R.

X L/Z(L) mp(Q/R) Q/R

PSLm(pe),m ≥ 5 PSLm−2(pe) 2(m− 2)e Vm−2 ⊕ V ∗m−2

PSUm(pe),m ≥ 5 PSUm−2(pe) (m− 2)2e Vm−2

PSp2m(pe),m ≥ 2, p odd PSp2(m−1)(p
e) 2(m− 1)e V2m−2

PΩ2m+1(pe),m ≥ 3, p odd PSL2(pe)× PΩ2(m−2)+1(pe) 2(2(m− 2) + 1)e V2 ⊗ V2m−3

PΩ±2m(pe),m ≥ 4 PSL2(pe)× PΩ±
2(m−2)

(pe) 4(m− 2)e V2 ⊗ V2m−4

PΩ±6 (pe) PSL2(pe) 4e V2 ⊕ V2
E6(pe) PSL6(pe) 20e
2E6(pe) PSU6(pe) 20e

E7(pe) PΩ+
12(pe) 32e

E8(pe) E7(pe) 56e

F4(pe), p odd PSp6(pe) 14e
3D4(pe) PSL2(p3e) 8e

Furthermore, other than for X ∼= PSLm(pe) and PΩ±6 (pe), Q/R is an
irreducible L-module and, for the exceptional groups, it is defined over
GF(pe). If X ∼= PΩ−6 (pe), then CX(R) acts irreducibly on Q/R unless
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pe = 3. If X ∼= PSL2(pe), PSL3(pe) or PSU3(pe), we have that Q is a
Sylow p-subgroup of X.

Proof. This can be checked using the Chevalley commutator for-
mula (see [27, Chapter 3.2]). But we will sketch some arguments. Com-
pare also [27, Example 3.2.3].

We begin with the classical groups. For simplicity we consider qua-
sisimple variants SLn(pe), SUn(pe), Sp2n(pe) and Ω±n (pe). Let V be the
corresponding natural module.

We start with X ∼= SLn(pe), n ≥ 4. Then r ∈ R# induces a transvection
with center 〈v〉 on V . Set W = CV (r). Let X1 be the stabiliser of v in X,
then by [27, Example 3.2.3] Op′(X1) = Q1L1, where L1

∼= SLn−1(pe)
and Q1 may be considered as the natural module for L1. We have
[W,Q1] = 〈v〉. Let Xn−1 be the stabiliser of W , then also, by [27,
Example 3.2.3], we have that Op′(Xn−1) = Qn−1Ln−1, where Ln−1

∼=
SLn−1(pe) and Qn−1 is the natural module. We have R = Q1 ∩ Qn−1

and [V,Qn−1] = W . Now we see that CX(R) = Q1Qn−1L1,n−1, where
L1,n−1

∼= SLn−2(pe). Furthermore L1,n−1 induces the natural module
on Q1/R and the dual module on Qn−1/R. An easy calculation shows
[Q1, Qn−1] = R = Z(Q). This proves all the claims in this case.

Next consider X ∼= Ωε
n(pe), ε = ± and n ≥ 7. Let v be an isotropic

vector in V and Xv be the stabiliser of v in X. Then the structure of
Op′(Xv) is given in [18, Proposition 3.1]. We have Op′(Xv) = QvLv,
where Lv ∼= Ωε

n−2(pe) and Qv is the natural module for Lv. We may
assume that R ≤ Qv and that [V,R] = 〈v, w〉, which is of dimension 2.
Furthermore we have that [v⊥, Qv] = 〈v〉. Let Lv,w be the stabiliser
of w in Lv, then Lv,w ∼= Ωε

n−4(pe). We see that for the normalizer
Xv,w of [V,R] we have Xv,w ≥ 〈Qv, Qw, Lv,w〉. Set Q1 = CQv(w) and
Q2 = CQw(v). Then Q1Q2 is normal in Xv,w and Qv/Q1 induces the
full transvection group with center 〈v〉 and Qw/Q2 the one with center
〈w〉 on [V,R]. As V is a GF(pe)-module, we see that 〈Qv, Qw〉/Q1Q2

∼=
SL2(pe). Hence Op(Xv,w) = Q1Q2 and

〈Qv, Qw, Lv,w〉/Op(Xv,w) ∼= Ωε
n−4(pe)× SL2(pe).

As this group is invariant underNX(S) we seeOp′(Xv,w) = 〈Qv, Qw, Lv,w〉.
Recall, as n ≥ 7, we have that Ωε

n−4(pe) 6= 1. We have that Q1Q2/R ∼=
HomGF(pe)(〈v, w〉⊥/〈v, w〉, 〈v, w〉) ∼= Vn−4⊗V2. This proves the result for
the orthogonal groups in dimension at least 7. In dimension 6, the first
part of the proof is just the same. Only now Op′(Xv,w)/Q1Q2

∼= SL2(pe)
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and so Q1Q2/R is a direct sum of two natural SL2(pe)-modules.

The result for X = Sp2n(pe) follows from [18, Proposition 3.2] and the
one for SUn(pe) comes from [18, Proposition 3.3]. The only thing which
remains to prove is that L acts irreducibly on Q/R as a GF(p)-module.
In the case of X ∼= Sp2n(pe) this is obvious as L acts transitively on
the on the non-trivial elements of Q/R. Consider X ∼= SUn(pe). In this
case L ∼= SUn−2(pe). As Q/R is a vector space over GF(p2e) it is enough
to show that the stabiliser of an isotropic 1-space U over GF(p2e) in L
acts irreducibly on this space as considered over GF(p). Now any such
1-space is a subspace of a non-degenerate unitary 2-space. On this 2-
space GU2(pe) acts irreducibly. In particular the stabiliser of a 1-space
acts irreducibly considered as a GF(p)-space. As n − 2 ≥ 3, we are in
a position to adjust determinants to obtain GU2(pe) is contained in L
and the result follows.

Next consider X ∼= E6(pe), E7(pe) or E8(pe). The facts aside from the
irreducibility of L on Q/R can be found in [18, Proposition 4.4]. For
X ∼= F4(pe) we cite [18, Proposition 4.5]. For the fact that the action
on Q/R is irreducible and defined over GF(pe) we use [6, Theorem
2]. Suppose that X ∼= 2E6(pe). Then again everything apart from the
irreducibility of L on Q/R can be found in [18, Proposition 4.6]. The
irreducible action of L on Q/R and field of definition comes from [6,
Theorem 3]. In [27, Example 3.2.5] the reader will find the calcula-
tion for 3D4(pe), and we remark 2E6(pe) is also discussed in the same
example. �

The groups PSL3(2e) and PSp4(2e) play a special role in the proof
of the theorems. Hence we have to have a very detailed knowledge of
their 2-local structure.

Lemma D.2. Let X ∼= PSL3(q), q = 2e, and S be a Sylow 2-
subgroup of X. Then X possesses two parabolic subgroups P1, P2 which
contain S, such that Ei = O2(Pi) is elementary abelian of order q2 and
O2′(Pi/Ei) ∼= SL2(q), for i = 1, 2. Furthermore Pi induces the natural
module on Ei, i = 1, 2, S = E1E2 and any involution of S is contained
in E1∪E2. Finally there is an automorphism α of X, which normalizes
S with Pα

1 = P2.

Proof. [42, Lemma 2.40]. �

Lemma D.3. Let X ∼= PSp4(q), q = 2e > 2, and S be a Sylow
2-subgroup of X. Then X has exactly two parabolic subgroups P1, P2

which contain S. For i = 1, 2, Ei = O2(Pi) is elementary abelian of
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order q3 and Pi/Ei ∼= GL2(q). We have that Ei is an indecompos-
able module for Pi and Z(O2′(Pi)) = Ri is a root group. Furthermore
Z(S) = R1R2 = S ′, S = E1E2 and any involution in S is contained in
E1∪E2. There is an automorphism α of X with Rα

1 = R2 and Pα
1 = P2.

Proof. This is [42, Lemma 2.48]. �

Lemma D.4. Suppose that X is a group such that F ∗(X) ∼= PSL3(2e)
with e ≥ 1 or F ∗(X) ∼= Sp4(2e) with e ≥ 2. Let T ∈ Syl2(X) and
S = T ∩ F ∗(X). Then

(i) every elementary abelian normal subgroup of T is contained
in S;

(ii) J(T ) = J(S).

Proof. We adopt the notation from Lemmas D.2 and D.3. Let
Q be an elementary abelian normal subgroup of T and assume that
w ∈ Q \ F ∗(X). If Ew

1 = E2, then for e ∈ E1 \ E2, we have [w, e] ∈
S \ (E1 ∪ E2). Since [e, w] ∈ Q ∩ S and E1 ∩ E2 = Z(S), we have
a contradiction as [e, w] has order 2. Hence Q normalizes E1 and E2.
Therefore, by Lemma A.16, w induces a field automorphism on F ∗(X).
It follows that w induces a field automorphism on P1/E1 and then on
S/E1

∼= E2E1/E1. Hence [E2, w] 6≤ E1 ∩ E2 and similarly [E1, w] 6∈
E1 ∩ E2. Since [S,Q] ≥ [E1, w][E2, w], we see that Q ∩ S has elements
of order 4, a contradiction. This proves (i).

Now consider (ii). Let A be an elementary abelian subgroup of T
of maximal rank and assume that A 6≤ S. Then, by Lemmas D.2 and
D.3,

m2(A) ≥ m2(S) =

{
2e F ∗(X) ∼= PSL3(2e)

3e F ∗(X) ∼= Sp4(2e).

From Theorem A.11, |AS/S| ≤ 4 if F ∗(X) ∼= PSL3(2e) and |AS/S| ≤
2 if F ∗(X) ∼= PSp4(2e). In particular, m2(A ∩ S) ≤ m2(S)− 1. Let
w ∈ A\S. We use Lemma A.16 without further reference. Assume first
that w induces a graph-field automorphism on F ∗(X). Then F ∗(X) ∼=
PSL3(2e) and O2′(CF ∗(X)(w)) ∼= PSU3(2e/2) and 2e− 2 ≤ m2(A∩S) ≤
m2(CS(w)) ≤ e/2. This is impossible and so conclude that in both
cases we now have |AS/S| ≤ 2. In particular, m2(A∩ S) ≤ m2(S)− 1.
If w induces a field automorphism on F ∗(X), then

m2(A ∩ S) ≤ m2(CS(w)) ≤

{
e F ∗(X) ∼= PSL3(2e)

3e/2 F ∗(X) ∼= Sp4(2e).

which is impossible. Suppose that w ∈ A is conjugate to a graph
automorphism. If F ∗(X) ∼= PSL3(2e), then CF ∗(X)(w) ∼= PSp2(2e)
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and, if F ∗(X) ∼= PSp4(2e), then CF ∗(X)(w) ∼= 2B2(2e). In both cases,
m2(CS(w)) ≤ e which is impossible. Thus A ≤ S and J(S) = J(T ) as
claimed. �

Lemma D.5. Suppose that X ∼= Sp2n(q) with q = 2e and n ≥ 3,
and let R1 be a long root subgroup and R2 be a short root subgroup of
X. For i = 1, 2, set Qi = O2(NX(Ri)) and

Li = O2′(NX(Ri)/Qi).

Then

(i) L1
∼= Sp2n−2(q), Q1 is elementary abelian and Q1/R1 is a

natural Sp2n−2(q)-module; and
(ii) L2

∼= Sp2n−4(q) × SL2(q), Φ(Q2) = Q′2 = R2, Z(Q2)/R2 is
a natural SL2(q)-module and Q2/Z(Q2) is the tensor product
of natural modules of the direct factors of L2. In addition, if
q > 2, then Z(Q2) does not split over R2 as an L2-module.

Proof. Let V be the natural module for X. The structure of
NX(R1) in part (i) is taken from [18, Proposition 3.2].

So we consider NX(R2). Let V = V1 ⊥ V2 where dimV1 = 4. For
i = 1, 2, set Yi = Sp(Vi) and let Y = Y1 × Y2 ≤ X. We may sup-
pose that R1R2 ≤ Y1 and the parabolic subgroups P1 = NY1(R1) and
P2 = NY1(R2) preserve totally isotropic subspaces of V1 or dimensions
1 and 2 respectively. In particular, we see that P2×Y2 normalizes W =
[V,R2] = [V1, R2] which is totally isotropic of dimension 2 admitting
P2 irreducibly and being centralized by Y2. Furthermore, setting E2 =
O2(P2), we have that E2 is elementary abelian of order q3 by Lemma
D.3. Furthermore, [V,E2] = W . Now [V,E2, Q2] = [W,Q2] < W is nor-
malized by P2 and so [V,E2, Q2] = 0 and as W⊥ = W ⊥ V2, a similar
argument give [V,Q2, E2] = 0. The Three Subgroup Lemma now yields
R2 ≤ Z(Q2). Since NX(R2) normalizes the chain V > W⊥ > W > 0 we
also see that NX(R2)/Q2 = (P2×Y2)Q2/Q2. Notice that E2 = CP2(W )
and so E2 = CX(W⊥) and Q2/E2 embeds into HomGF(q)(W

⊥/W,W ).
Since |Q2/E2| = q4n−8, we deduce that Q2/E2 is isomorphic to the
tensor product of the natural P2/E2-module with a natural Y2-module.
Since this module is irreducible, we also deduce that either E2 = Z(Q2)
or Q2 is abelian. Since Q2Y2 centralizes E2, Q2Y2 centralizes R1 and
hence normalizes Q1. From the structure of NX(R1)/Q1, we see that
|Q2Q1/Q1| has order at most q2n−3 Since |Q2| = q4n−5 and Q1 6≤ Q2,
we deduce that |Q1Q2/Q1| = q2n−3 and |Q1 : Q1 ∩ Q2| = q. In par-
ticular, Q2 does not centralizes Q1 ∩ Q2 and Φ(Q2) ≤ Q1 and so we
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have Z(Q2) = E2 and Φ(Q2) ≤ Q1 ∩ E2 = R1R2. Since Q2 is non-
abelian and NX(R2) acts irreducibly on R2 by Lemma A.4, we have
Φ(Q2) = Q′2 = R2. �

Lemma D.6. Suppose that X ∼= Sp2n(2e) with n ≥ 3. Let V be the
natural symplectic module, P be the stabiliser of a maximal isotropic
subspace of V and S ∈ Syl2(P ). Then J(S) = O2(P ) is elementary
abelian.

Proof. By [30, Lemmas 3.12 and 3.13] the 2-rank of X is (n +
1)n/2 and if A is an elementary abelian subgroup of X of maximal
2-rank, then A is conjugate in X to O2(P ). Hence if J(S) 6= O2(P ),
then O2(P ) is not weakly closed in S with respect to X contrary to
[28, Lemma 4.2]. �

Lemma D.7. Suppose that X ∼= F4(q) with q = 2e and let R1 be a
long root subgroup and R2 be a short root subgroup of X. For i = 1, 2,
set Qi = O2(NX(Ri)) and

Li = O2′(NX(Ri)/Qi).

Then, for i = 1, 2, we have Li ∼= Sp6(q) and

Φ(Qi) = Ri.

Furthermore, as Li-modules, Z(Qi)/Ri is a natural module of dimen-
sion 6, Qi/Z(Qi) is a spin module of dimension 8, the modules Z(Qi)
and Qi/Ri are indecomposable.

Proof. This can be taken from [18, Proposition 4.5] or [27, Ex-
ample 3.2.4, page 100]. �

Lemma D.8. Suppose that X ∼= F4(q) with q = 2e, S ∈ Syl2(X) and
Ω1(Z(S)) = R1R2 with R1 a long root subgroup of X and R2 a short
root subgroup of X. We use the notation introduced in Lemma D.7 and
additionally set I12 = CX(R1R2), Q12 = O2(I12) and L12 = I12/Q12.
For i = 1, 2, define

Vi = [Z(Qi), Q12]R1R2,

put V12 = V1V2 and W12 = Z(Q1)Z(Q2).
Then the following hold:

(i) L12
∼= Sp4(q) and Q12 = Q1Q2.

(ii) V12 and W12 are normal in I12 and

1 < R1R2 < V12 < W12 < Q12.

In addition, we have Z(Q1) ∩ Z(Q2) = R1R2, Q1 ∩Q2 = V12

is elementary abelian and, setting V12 = V12/R1R2,

V12 = V1 ⊕ V2,
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where V1 and V2 are irreducible L12-modules of GF(q)-dim-
ension 4 which are not isomorphic as GF(2)L12-modules. Fur-
thermore, if q > 2, W ′

12 = R1R2 whereas, if q = 2, W ′
12 =

〈r1r2〉 where ri ∈ R#
i .

(iii) [V12,W12] = 1 and W12/V12 has order q2 and is centralized by
L12.

(iv) We have

Q12/W12
∼= Q1W12/W12 ⊕Q2W12/W12,

Q1W12/W12 and Q2W12/W12 are irreducible, non-isomorphic
L12-modules of GF(q)-dimension 4. Furthermore, as L12-mod-
ules, for i = 1, 2,

QiW12/W12
∼= V3−i/R1R2.

(v) We have

Q12/V12 = Q1/V12 ⊕Q2/V12

is a direct sum of two indecomposable L12-modules of GF(q)-
dimension 5.

(vi) The group Aut(Q12) has a subgroup of index 2 which normal-
izes all of R1, R2, Q1, Q2, Z(Q1), Z(Q2), V12 and W12.

Proof. By Definition A.9 there is an automorphism α of X such
that Rα

1 = R2. So α exchanges CX(R1) and CX(R2) and so normalize
I12 and exchanges the parabolic subgroups CI12(R1) and CI12(R2). In
particular, this allows us to apply symmetric arguments for i = 1, 2.

We use the structure of CX(Ri), i = 1, 2, as given in Lemma D.7.
Thus

Φ(Q1 ∩Q2)′ ≤ Φ(Q1) ∩ Φ(Q2) = R1 ∩R2 = 1

and so Q1∩Q2 is elementary abelian. By [27, Table 3.3.1], |Q1∩Q2| ≤
q11 and so |Q2Q1/Q1| ≥ q4. Now NL1(I12/Q1) is a parabolic subgroup
in L1

∼= Sp6(q) which normalizes Q12/Q1 and Q12/Q1 is an indecom-
posable GF(q)L12-module of order q5 with L12

∼= Sp4(q), see Lemma
D.5. Since I12 normalizes Q1Q2, we deduce that Q2Q1 = Q12. This
proves (i).

Using (i), we have Q1/(Q1 ∩Q2) ∼= Q12/Q2 as L12-modules and so
Q1/(Q1 ∩Q2) is an indecomposable L12-module of GF(q)-dimension 5.
By symmetry, the same is true for Q2/(Q1∩Q2) and so we have proved

Q12/(Q1 ∩Q2) = Q1/(Q1 ∩Q2)⊕Q2/(Q1 ∩Q2)

is a direct sum of two indecomposable L12-modules of GF(q)-dimension
5. Since this module is invariant under the action of α, then non-trivial
modules involved are not isomorphic. Notice that Z(Q1)(Q1∩Q2)/(Q1∩
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Q2) is normalized by NX(S) and so has order q. Hence W12/(Q1 ∩Q2)
has order q2 and is centralized by L12.

By construction, V1 ≤ Q2 and V2 ≤ Q1 and so V12 ≤ Q12 and as
V1 6= V2 are both I12-invariant, |V12| = q10 and so V12 = Q1 ∩ Q2 and
V1 ∩ V2 = R1R2. Thus V12 = V1 ⊕ V2. Since V α

1 = V2, we have V1 is not
isomorphic to V2 as L12-modules.

As, by definition, [W12, Q1]R1R2 = V2 and [W12, Q2]R1R2 = V1,
we have that V1/R1R2 is isomorphic to Q2W12/W12 and V2/R1R2 is
isomorphic to Q1W12/W12 as a GF (2) L12-module. we have now proved
all parts (i) to (v) other than the statement about W ′

12 given in part(ii).
Using the fact that Z(Qi) is an indecomposable L12-module, we

have
[W12, Z(Qi)]R3−i = R1R2.

We have that NX(S) acts on W ′
12. If q > 2 NX(S) induces a homocyclic

group of shape (q − 1) × (q − 1) on R1R2 and so the only non-trivial
invariant subgroup under this group and α is R1R2. Hence W ′

12 = R1R2

when q > 2. If q = 2, then, as |Z(Q1)/V1| = |Z(Q2)/V2| = 2, we
have W ′

12 has order 2 and then as W ′
12 is invariant under α we get

W ′
12 = 〈r1r2〉.

Finally we come to part (vi). Since α conjugates Q1 to Q2, to prove
(vi) it suffices to show that the set {Q1, Q2} is permuted by Aut(Q12).

We know W12 = Z(Q1)Z(Q2) and V12 = Q1 ∩ Q2. For i = 1, 2,
let Fi = V12Z(Qi) and assume that x = f1f2 ∈ W12 which is not
contained in F1 or F2. We claim that x has order 4. Suppose false.
Then 1 = x2 = f1f2f1f2 = [f1, f2] which means that f1 ∈ CF1(f2). As
f2 6∈ F1, f2Q1 induces a GF(q) transvection on Z(Q1). Now f1 = z1v1

where z1 ∈ Z(Q1) and v1 ∈ V12 ≤ F2. Since f2 centralizes f1 and
v1 it must also centralize z1. Hence z1 ∈ CZ(Q1)(f2) = Z(Q1) ∩ V12.
But then x = f1f2 = z1v1f2 ≤ F2 which is a contradiction. Since
V12 = Q′12, and W12 = CQ12(V12), V12 and W12 are both invariant un-
der the action of Aut(Q12). Hence Aut(Q12) permutes the set of invo-
lutions in W12 and therefore {F1, F2} is permuted by Aut(Q12). Now
we see that {CQ12([F1, Q12]), CQ12([F1, Q12])} is permuted by Aut(Q12).
Now CQ12([F1, Q12]) = W12Q1 and Q1 has index q in this group. Now
Q1/Z(Q12) is the unique elementary abelian subgroup of order q13

in W12Q1/Z(Q12). Therefore {Q1, Q2} is permuted by Aut(Q12) as
claimed. �

Lemma D.9. Let X ∼= F4(q), q = 2e, and S be a Sylow 2-subgroup
of X. Set Z2 = Z2(S) the second centre of S. Then P = NX(Z2(S)) is
a parabolic subgroup of X,

O2′(P/O2(P )) = F1/O2(P )× F2/O2(P ),
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F1/O2(P ) ∼= F2/O2(P ) ∼= SL2(q) and Z2 = U1⊕U2, with U1 = 〈RF1
2 〉 a

natural F1/O2(P )-module and U2 = 〈RF2
1 〉 a natural F2/O2(P )-module.

Moreover, for i = 1, 2, [Ui, F3−i] = 1.

Proof. We employ the notation from Lemmas D.7 and D.8. In
particular, we select S so that Z(S) = R1R2. First of all we have that,
for i = 1, 2, [Z2, Qi] ≤ Z(S) ≤ Z(Qi). Hence, as Qi/Z(Qi) is a non-
trivial Li-module, Z2(S) ≤ Q1 ∩ Q2 = V12. By Lemma D.8 we have
that V12/R1R2 is a direct sum of two irreducible Sp4(q)-modules and
so by Lemma C.1 we have that |Z2(S)| = q4.

Let P be the parabolic subgroup of X containing NX(S) such that
O2′(P/O2(P )) = F1/O2(P ) × F2/O2(P ), F1/O2(P ) ∼= F2/O2(P ) ∼=
SL2(q) with notation chosen so that [F1, R1] = 1 = [F2, R2]. Then
L1 = F1I12 and L2 = F2I12. In particular, [R1, F2] 6= 1 6= [R2, F1]. We
set U1 = 〈RF1

2 〉 and U2 = 〈RF2
1 〉. Then U1U2 is normalized by F1F2

and is centralized by O2(P ). Since U1 ≤ Z(Q1) and is F1-invariant,
we see that U1/R1 is a natural F1/O2(P )-module. Furthermore, by
construction, [U2, F1] = 1 = [U1, F2] and so U1 6= U2 and Z2(S) = U1U2.
Furthermore, U1∩U2 is centralized by F1F2 and, as CR1R2(F1F2) = 1, we
deduce that Z2 = U1⊕U2. Finally we observe that P = NX(Z2(S)). �

The groups G2(q) and 2F4(q) play a special role in this paper. Hence
we have a closer look at their parabolic subgroups.

Lemma D.10. Suppose that X ∼= G2(pe), p 6= 3, pe 6= 2, S ∈
Sylp(X), P1 = NX(R) where R a long root subgroup contained in
Z(S), and P2 = NX(Z2(S)). For i = 1, 2, put Qi = Op(Pi) and
Li = Op′(Pi/Qi). Then

(i) P1 and P2 are maximal parabolic subgroups of X;
(ii) L1

∼= L2
∼= SL2(pe);

(iii) Q′1 = Φ(Q1) = Z(Q1) = R;
(iv) If pe 6= 4, then L acts irreducibly on Q1/R;
(v) If pe = 4, then P acts irreducibly on Q1/R while L ∼= SL2(4) ∼=

Alt(5) induces a direct sum of two natural Alt(5)-modules on
Q1/R. Furthermore, in the latter case, if R < E ≤ Q1 is
normalized by L1, then E is not abelian.

(vi) We have Z2(S) ≤ Q1 and Z2(S) is a natural L2-module. Fur-
thermore, setting W =

⋂
x∈P2

Qx, we have W is elementary

abelian of order p3e, W/Z2(S) is centralized by L2 and Q2/W
is a natural L2-module.

Proof. Up to the statement concerning the structure of E when
X ∼= G2(4) everything can be extracted from [19, 10.10 and page 238]
or [27, Example 3.2.4 page 99].
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So suppose that X ∼= G2(4) and E is such that R < E ≤ Q1 is nor-
malized by L1. Suppose that E is abelian. Then E 6= Q. Let W be such
that W/R = CE/R(S). As Q/R is a direct sum of two natural Alt(5)-
modules, E/R is a natural Alt(5)-module for L1. Therefore |W | = 8,
W is normalized by NL(S) and NL(S)/Q ∼= Alt(4). Obviously, CQ(W )
is also normalized by NL(S). Because E is abelian, CQ(W ) ≥ E,
Q/E is a natural Alt(5)-module for L and |Q : CQ(W )| ≤ 4, we
deduce that |Q : CQ(W )| = 2. Set U = [W,Q]. Then |U | = 2 and
W/U ≤ Z(Q/U). As L centralizes U , we get that E/U ≤ Z(Q/U).
Now choose g ∈ NX(R) with Eg 6= E. Then we have that EEg = Q.
As Eg is abelian and [E,Eg] = U , we see that Q′ = U . But NG(R)
acts irreducibly on R by Lemma A.4 and so Q′ = R. This provides a
contradiction. �

Lemma D.11. Suppose that X ∼= G2(3e), S ∈ Syl3(X), P1 and
P2 are the maximal parabolic subgroups of X containing S, and Qi =
O3(Pi) for i = 1, 2. Then

(i) P1
∼= P2;

(ii) O3′(P1/Q1) ∼= SL2(3e), S = Q1Q2 and Z(S) = R1R2 where
Ri is a root subgroup centralized by O3′(Pi);

(iii) Q′1 = Φ(Q1) = R1;
(iv) |Z(Q1)/R1| = 32e, Z(Q1) = [Z(Q1), O3′(P1)] × R1 and in

addition R2 ≤ [Z(Q1), O3′(P1)];
(v) Q1/R1 is an indecomposable extension of two natural modules

for O3′(P1/Q1);
(vi) all the elements of Z(Q1)# and Z(Q2)# are 3-central;
(vii) Q1∩Q2 = Z(Q1)Z(Q2) is elementary abelian of order 34e and

every element of order 3 in X is conjugate into Q1 ∩Q2;
(viii) if x ∈ (Q1 ∩ Q2) \ (Z(Q1) ∪ Z(Q2)), then x is not 3-central

and Q1 ∩Q2 ∈ Syl3(CX(x)); and
(ix) Q1 and Q2 have exponent 3 and every element of order 3 in

S is contained in Q1 ∪Q2.

In particular, we have

O3′(P1) ∼ ((3e)2 × (3e)1+2):SL2(3e).

Proof. Part (i) follows from the existence of the graph automor-
phism of F ∗(H) (see Definition A.9). Parts (ii), (iii) and (v) as well as
the first statement in (iv) can be extracted from [27, Example 3.2.4,
page 99]. We take part (ix) from [53, Lemma 6.5].

Since S = Q1Q2 by (ii), Q1 ∩ Q2 has order 34e and (iii) shows
that Q1 ∩ Q2 is elementary abelian. If Z(Q1) 6≤ Q2, then, as Z(Q1)
centralizes Q1∩Q2 which has index 3e in Q2 and O3′(P2/Q2) ∼= SL2(3e),
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we have that Q2 has only one non-central P2-chief factor in Q2 and
this contradicts (v). Thus Z(Q1)Z(Q2) ≤ Q1 ∩ Q2. Since Z(Q1) ∩
Z(Q2) ≤ CZ(Q1)(S) = CZ(Q1)(S), part (v) implies that Z(Q1) ∩ Z(Q2)
has index at least 3e in Z(Q1). As |Z(Qi)| = 33e by (iv), we have
Z(Q1)Z(Q2) has order 34e. We conclude that Q1 ∩ Q2 = Z(Q1)Z(Q2)
and Z(Q1) ∩ Z(Q2) = R1R2 = Z(S). Since every element of order 3
is contained in Q1 or Q2 and, for i = 1, 2, O3′(Pi/Qi) acts transitively
on the non-trivial elements of Qi/Z(Qi), we see that every element of
order 3 in X is conjugate to an element of Q1 ∩Q2. This proves (vii).

Because Q1 has exponent 3, Z(Q1) is a O3′(P1/Q1)-module and the
centre of O3′(P1/Q1) inverts Z(Q1)/R1 and centralizes R1. Thus

Z(Q1) = [Z(Q1), O3′(P1/Q1)]×R1.

This proves a further statement of part (iv). Using

[Z(Q1), O3′(P1/Q1)] ≤ Z(Q1) ≤ Q2

we deduce
[[Z(Q1), O3′(P1/Q1)], Q2] ≤ Q′2 = R2.

Since |[[Z(Q1), O3′(P1/Q1)], Q2]| = 3e, we have equality. Thus (iv)
holds.

Suppose that x ∈ (Q1∩Q2)\(Z(Q1)∪Z(Q2)) and y ∈ S centralizes
x. Then, as S = Q1Q2, y = q1q2 for some qi ∈ Qi, i = 1, 2. Hence

1 = [x, y] = [x, q1q2] = [x, q2][x, q1]q2 .

Since Q′1 = R1 and Q′2 = R2, R1∩R2 = 1 and R1R2 = Z(S), we deduce
that [x, q1] = [x, q2]−1 ∈ R1∩R2 = 1. So we may as well assume that y =
q1 6∈ Q1 ∩Q2. Now, as Q1 ∩Q2 = Z(Q1)Z(Q2), we can write x = z1z2

with z1 ∈ Z(Q1) and z2 ∈ Z(Q2). Hence 1 = [y, x] = [q1, z1z2] = [q1, z2].
Thus z2 ∈ CZ(Q2)(q1). As Z(Q2)/R2 is a natural P2/Q2-module, we see
that z2 ∈ Z(S). But then x ∈ Z(Q1), a contradiction. Hence CS(x) =
Q1 ∩ Q2. Notice that NX(Q1 ∩ Q2) ≥ NX(S) and so, as the proper
over-groups of NX(S) in X are P1 and P2 and these subgroups do not
normalize Q1∩Q2, we have NX(Q1∩Q2) = NX(S). If W ∈ Syl2(CG(x))
is such that W ≥ Q1 ∩Q2, then

Q1 ∩Q2 ≤ NW (Q1 ∩Q2) ≤ CS(x) = Q1 ∩Q2

and so W = Q1 ∩Q2. Hence Q1 ∩Q2 ∈ Syl3(CG(x)) and, in particular,
x is not 3-central. This proves (viii). �

We now finish with the group G2(2).

Lemma D.12. Suppose that X ∼= G2(2), S ∈ Syl2(X), R = Z(S)
is a long root subgroup and z ∈ R#. Let P1 and P2 be the maximal
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parabolic subgroups of X which contain S and choose notation so that
P1 ≥ CX(R). For i = 1, 2, set Qi = O2(Pi). Then the following state-
ments hold.

(i) X ′ ∼= SU3(3) and every involution of X ′ is conjugate to z. In
particular, P1 = CX(z),

CX′(z) = P1 ∩X ′ ∼= GU2(3)

and Q1
∼= 4 ◦Q8. Moreover, m2(X ′) = 2.

(ii) If i ∈ S \X ′, then CX(i) ∼= 〈i〉 × Sym(4).
(iii) Q2∩X ′ ∼= 4× 4 and (P2∩X ′)/(Q2∩X ′) ∼= Sym(3) and there

exists an involution in Q2 which inverts Q2 ∩X ′.
(iv) Q1 is extraspecial of order 32 and +-type, P1/Q1

∼= Sym(3)
and O2(P1) ∼= SL2(3).

Proof. By [1], G2(2)′ ∼= SU3(3) and consequently that G2(2) ∼=
Aut(SU3(3)). Therefore, the number of conjugacy classes of involutions
and the centralizers of a representative can be taken from [27, Table
4.5.1, page 172]. That the 2-rank of X ′ is 2 can be read from [27,
Theorem 4.10.5 (c)]. The group of monomial matrices in SU3(3) has
shape (4× 4):Sym(3) and so this gives the structure of P2 ∩X ′. Since
the outer automorphism of X ′ can be chosen to be inverse transpose
map, we can also deduce the structure of P2 as described.

This leave part (iv). It is clear that |Q1| = 32. Let H = G2(4). Then
X is the centralizer in H of a field automorphism α. Now z corresponds
to a root element and so Q1 = CO2(CH(z))(α). The structure of CH(z)
is given in Lemma D.10. From this it follows that Q1 is extraspecial.
Finally, we have O2(P1) = O2(P1 ∩X ′) ∼= SL2(3).

�

Lemma D.13. Let X ∼= 2F4(q) with q = 22e+1, S ∈ Syl2(X), R be
a long root subgroup in Z(S), P = CX(R) and Q = O2(P ). Then

(i) P/Q ∼= 2B2(q).
(ii) R = Z(Q), Z2(Q) is elementary abelian and Z2(Q)/R is an

irreducible 4-dimensional module for P/Q.
(iii) CQ(Z2(Q)) is of order q6, Φ(CQ(Z2(Q))) = R and Q/CQ(Z2(Q))

is the natural P/Q-module.
(iv) If q > 2, then Q/Z2(Q) is an indecomposable module.
(v) If q = 2, then F ∗(X) = F4(2)′ has index 2 in X. We have

that R = Z(O2(P ∩ F ∗(X))), Z2(Q) = Z2(Q ∩ F ∗(X)) and
|(Q∩F ∗(X))/Z2(Q)| = 16. Furthermore, (Q∩F ∗(X))/Z2(Q)
and Z2(Q)/R admit P ∩ F ∗(X) irreducibly.
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(vi) Let P1 = NX(Z2(S)). Then P1 is a maximal parabolic sub-
group of X, P1 6= P , P1 normalizes Z3(S) which has order q3

and P1 induces GL2(q) on Z(O2(P1)) = Z2(S).

Proof. For the structure of P see [27, Example 3.2.5 page 101] or
[19, 12.9]. For part (vi) we refer to [19, 12.9]. �

Additionally we require a special fact about 2F4(2).

Lemma D.14. Suppose that X ∼= 2F4(2), let S ∈ Syl2(X) and R =
Z(S). Set Q = O2(CX(R)) and Q∗ = Q∩F ∗(X). Then Q∗ is generated
by involutions.

Proof. We use the results and notation from [27] especially Corol-
lary 2.4.6 and the passages on pages 101 and 102. Thus we have root
groupsX1 toX16 withXi of order 2 if i is even and cyclic of order 4 if i is
odd. For odd i we define Yi = Ω1(Xi). The opposite root group of Xi is
Xi+8 for 1 ≤ i ≤ 8. We have S =

∏8
i=1 Xi. By [27, Theorem 3.3.2 (d)],

S ∩ F ∗(H) contains the subgroups Xi, i even. In particular, note that,
as Q =

∏8
i=2 Xi, X2 ≤ Q∗ (see [27, page 102]). Furthermore, by Lemma

D.13 (v), Z2(Q) = Z2(Q∗) and Z2(Q) = Y5Y3X4X6X7 by [27, Example
3.2.5, page 102]. Since Q∗/Z2(Q∗) is an irreducible NX′(R)-module by
Lemma D.13 (v) and X2 ≤ Q∗, we have proved the result. �

For the proof of Theorem 3 we need to know those groups of Lie type
which have the centralizer of some p-central element which is soluble.

Lemma D.15. Suppose that X is a simple group of Lie type defined
in characteristic p of rank at least 2. Assume that CX(z) is soluble for
some p-central element of X. Then one of the following holds.

(i) X ∼= PSL3(pe) for some f ≥ 1;
(ii) p = 2 and X ∼= PSp6(2), PSU4(2) ∼= PSp4(3), PSU5(2),

G2(2)′ ∼= PSU3(3), 2F4(2)′, PΩ+
6 (2) ∼= PSL4(2), PΩ+

8 (2) or
PSp4(2e)′ for some f ≥ 1; or

(iii) p = 3 and X ∼= PSp4(3) ∼= PSU4(2), PSL4(3), PSU4(3),
PΩ7(3), PΩ+

8 (3) or G2(3e) for some f ≥ 1.

Proof. Let S ∈ Sylp(X) and n represent the rank of X. Then by
Lemma A.3 either Z(S) is a long root group or X ∼= PSp2n(2e)′, F4(2e)
or G2(3e) for e ≥ 1 and Z(S) is the product of the root groups corre-
sponding to the highest long root and the highest short root. As G2(3e)
is one of the groups in the statement of the lemma, we may assume
that X 6∼= G2(3e). Furthermore we also may assume that X 6∼= PSL3(pe)
or PSp4(2e). Using Lemmas D.1, D.5, D.10 and D.13 it is easy to see
that if z ∈ Z(S) is a long root element and if pe > 3 and n ≥ 3, then

180



CX(z) is non-soluble.

So assume first that Z(S) is a root group. Suppose further that n = 2.
Let z ∈ Z(S) be a long root element. If X ∼= PSp4(pe) with pe > 3 and
p odd, then by Lemma D.5 CX(z) is non-soluble besides X ∼= PSp4(3)
which is listed in (iii). If G ∼= PSU4(pe) or PSU5(pe), then by Lemma
D.1 CX(z) contains a section isomorphic to PSL2(pe) or PSU3(pe)
respectively. Hence CX(z) is non-soluble if f ≥ 2 or pe = 3 and
X ∼= PSU5(3). Thus PSU4(2) and PSU5(2) are included in (ii) and
PSU4(3) is listed in (iii). If G ∼= G2(pe)′, then by Lemma D.10 CX(z)
contains a section isomorphic to PSL2(pe) and so is non-soluble un-
less pe = 2, which is listed in (ii). If X ∼= 2F4(22e+1), then by Lemma
D.13 CX(z) contains a section isomorphic to 2B2(22e+1) and is thus
non-soluble if e > 1 and 2F4(2)′ is itemized in (ii). This completes the
analysis when n = 2.

So assume that n ≥ 3 and pe ∈ {2, 3}. If n ≥ 4, then CX(z) is non-
soluble (containing a section of Lie rank at least 2) or X ∼= PΩ+

8 (p) and
these groups are included in (ii) and (iii). We now may assume that
the rank of X is 3 and that pe = p ∈ {2, 3}. Thus

X ∼= PSL4(2),PΩ−8 (2),PSU6(2),PSU7(2) or

X ∼= PSp6(3) or Ω7(3).

Application of Lemma D.1 shows that for X ∼= PΩ−8 (2), CX(z) contains
a section isomorphic to PSL2(4), for X ∼= PSU6(2) or PSU7(2), CX(z)
has a section isomorphic to PSU4(2) or PSU5(2) and for X ∼= PSp6(3),
CX(z) contains a section isomorphic to PSp4(3). So all these cases
are eliminated. The remaining groups are PSL4(2) listed in (ii) and
X ∼= PSL4(3), PΩ7(3) presented in (iii).

So we are left with the case where Z(S) is not a root subgroup of
K. If X ∼= F4(2e), then by Lemma D.7 CX(Z(S)) contains a section
isomorphic to PSp4(2e)′ and so this group is not listed. Suppose that
X ∼= PSp2n(2e). Then also by Lemma D.5 CX(Z(S)) contains a section
isomorphic to PSp2(n−2)(2

e)′. This group is not soluble if 2e > 2 or
n > 3. Hence PSp6(2) is listed in (ii). �

We will now study the structure of Op(NX(R)) for those groupsX of
Lie type in which R = Z(S) is a long root subgroup where, as usual, S
is a Sylow p-subgroup of X. Recall the definition of a semi-extraspecial
group from Definition 2.9.
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Lemma D.16. Suppose that X is a group of Lie type in character-
istic p listed in the table of Lemma D.1 or is G2(pe), p 6= 3 and pe 6= 2.
Assume that R is a long root subgroup of X and Q = Op(NX(R)). Then
Q is semi-extraspecial. Moreover, if x ∈ Q \R, then |Q : CQ(x)| = |R|
and [x,Q] = R.

Proof. Suppose U is a maximal subgroup of R and assume that
Q′ ≤ U . Then, as NX(R) by Lemma A.4 acts irreducibly on R, we de-
duce that Q is abelian which is not the case. Hence Q/U is not abelian.
In all the cases other than X ∼= PSLn(pe), PΩ−6 (pe) or X ∼= G2(4),
L = Op′(NX(Q)/Q) acts irreducibly on Q/R and centralizes R by
Lemmas D.1 and D.10. In the irreducible cases, then Q/U admits L,
so, if W = Z(Q/U), we have W = Q/U or W = R/U . As Q/U is not
abelian, the latter is the case and so Q is semi-extraspecial. Similarly,
if X ∼= PΩ−6 (pe), then, as Q is not extraspecial, pe 6= 3 and Lemma D.1
shows that CX(R) acts irreducibly on Q/R. Thus we are done in this
case as well.

Suppose X ∼= PSLn(q) and Z(Q/U) > R/U . Then, the action of L
on Q described in Lemma D.1, implies that Q/U has centre W/U of
order pqn−2 and W has order qn−1. Let E1 and E2 be the elementary
abelian normal subgroups of Q of order qn−1 which are normalized by
a maximal parabolic subgroup of X. Then, without loss of generality
E1 ∩W = R. Now [E1,W ] ≤ U and so, as E1 is a natural module for
NX(E1)/E1

∼= SLn−2(q) and |U | < q, we conclude that [E1,W ] = 1,
which is a contradiction.

So suppose X ∼= G2(4). Then, according to Lemma D.10, L ∼= SL2(4) ∼=
Alt(5) acts on Q/R preserving a decomposition into a direct sum of
two 4-dimensional natural Alt(5)-modules. Let P1 = NX(Q) and P2 be
the parabolic subgroup of X containing S with P2 6= P1. Then Lemma
D.10 yields W = Z(O2(P2)) = Z2(S) has order 16 and is contained in
Q. Furthermore, W is a natural module for O2′(P2/O2(P2)) ∼= SL2(4)
and S = QO2(P2). It follows that for w ∈ W \R, we have [w,Q] = R.

Again let U be a maximal subgroup of R. Then we may either
apply the previous argument or Q/U could potentially have a centre
of order 25. Assume the latter case and let X be the preimage of the
centre. Then X ∩ Z(O2(P2)) 6≤ R and so we get that [X,Q] = R a
contradiction. The final statements follow from Lemma 2.10. �

To exploit the results about quadratic action given in Appendix C
we frequently use the following lemma.
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Lemma D.17. Suppose that X is isomorphic to one of the following
PSLn(pe), n ≥ 4, PSUn(pe), n ≥ 3, PSp2n(pe), n ≥ 2, p odd, E6(pe),
2E6(pe), E7(pe), E8(pe) or F4(pe), p odd. Let R be a long root subgroup
of X, Q = Op(NX(R)) and L = Op′(NX(R))/Q. Then we have the
following statements.

(i) There is an X-conjugate T of R in NX(Q) such that T ∩Q =
1 and T acts quadratically on Q/R. Moreover, for t ∈ T#,
CQ/R(t) = CQ/R(T ). In particular if e > 1, there is a group
of order p2 in L, which acts quadratically on Q/R.

(ii) If pe = p, then either there is an elementary abelian group
of order p2 in L which acts quadratically on Q/R or X ∼=
PSL4(p), PSp4(p), PSU4(p), PSU5(p), or p is odd and X is
possibly one of 2E6(p), E8(p) or F4(p) and the (L/Z(L), |Q/R|)
is one of (PSU6(p), p20), (E7(p), p56) or (PSp6(p), p14).

Proof. According to [27, Eq. (3.2.5), page 104] if we have a con-
jugate Rh of R such that 〈R,Rh〉 ∼= SL2(pe), then NX(〈R,Rh〉) =

〈R,Rh〉L̃, where L̃ is the Levi complement in NX(R). As the rank of X

is at least three, we have that L̃ is a genuine group of Lie type and as

NX(〈R,Rh〉) contains a torus, we have that S ∩ L̃ contains a conjugate
T of R. This proves the first part of (i).

Suppose that y ∈ CQ/R(t). Then ty ∈ 〈t, R〉 and so ty ∈ RT . Since
[〈R,Rh〉, T ] = 1, Lemma A.5 implies that ty ∈ T as it cannot be in R.
Thus T y = T by Lemma A.4 (iii). But then [y, T ] ≤ Q ∩ T = 1. Hence
y ∈ CQ/R(T ). This proves the final part of (i).

Let P be a maximal parabolic of X with NX(Q) 6≤ P and set
YP = 〈RP 〉. Suppose YP 6≤ Q. As YP is normalized by NX(S), we
see first of all that Z(S/Q) ∩ YPQ/Q 6= 1 and further by Lemma A.4
that TQ/Q ≤ YPQ/Q. Hence (i) holds as [Q/R, YP , YP ] = 1. If |YP :
YP ∩ Q| ≥ p2, then also (ii) holds. By Lemma D.16 in all cases Q is
semi-extraspecial.

Suppose that X is a classical group. If X is linear, let P be the
stabiliser of a 2-space and otherwise let P be the stabiliser of a max-
imal isotropic subspace. In all cases, the subgroup V described in
Lemma D.22 is contained in YP . Thus YP 6≤ Q by Lemma D.22 (ii).
This proves (i) in all these classical cases. Suppose that X is an ex-
ceptional group and that P is a maximal parabolic subgroup of X
containing NX(S) chosen as in the following table. Here M denotes
Op′(P/Op(P ))/Z(Op′(P/Op(P ))) and similarly N is the central quo-
tient of Op′(NX(S) ∩ P )/Op(NX(S) ∩ P ).
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X M N
2E6(pe) Ω−8 (pe) Ω−6 (pe)
E6(pe) Ω+

10(pe) SL5(pe)
E7(pe) E6(pe) Ω+

10(pe)
E8(pe) Ω+

14(pe) Ω+
12(pe)

F4(pe) Ω7(pe) Sp4(pe)

where these structures have been obtained from [27, Examples 3.2.4
and 3.2.5 pages 99 to 101] except for E8(pe) where P/Op(P ) is taken
as M{α8} and calculated as described in the previous citation.

Using the descriptions of the Levi sections given in Lemma D.1 and
comparing this information with the details presented in the above
table, we see that

(D.17.1) QOp(P )/Op(P ) is not normalized by the normalizer of a root
subgroup of Z(S/Op(P )).

If YP ≤ Q, then [Q, YP ] = R. Let y ∈ P\NX(R), then [YP , QOp(P )∩
QyOp(P )] ≤ R∩Ry = 1 by Lemma A.4. Hence QOp(P )/Op(P ) is a triv-
ial intersection set in P/Op(P ). Since QOp(P )/Op(P ) contains a root
subgroup R1, and NP/Op(P )(R1) does not normalize QOp(P )/Op(P ) by
(D.17.1), we have a contradiction. This completes the proof of (i).

Suppose now that pe = p. If we have one of PSL4(p), PSp4(p),
PSU4(p), PSU5(p) then there is no elementary abelian group of order
p2 in NX(Q)/Q, hence these groups are listed as exceptions in (ii). Thus
we may assume that the untwisted Lie rank of X is at least 4. We con-
sider YPQ/Q, which is normalized by P ∩NX(R). If |YPQ/Q| > p, we
have nothing more to prove. Thus YPQ/Q is a root subgroup in Z(S/Q)
and P ∩NX(R) is the normalizer of a root subgroup in NX(R)/Q. The
Levi sections of P ∩NX(R) are given in the table above in the case of
the exceptional group and the Levi sections of NNX(R)(YPQ) are given
in Lemma D.1. The groups E6(p) and E7(p) have incompatible struc-
tures and so are eliminated while the other cases for p odd are listed
in (ii). We will return to the case p = 2 later.

Suppose that X is a classical group and take P to be as described
earlier. Then if X is a linear group, P ∩NX(R) is maximal in NX(R)
and so cannot be the normalizer of a root subgroup in NX(R)/Q, re-
call that the Lie rank is at least 4. If X is unitary or symplectic, then
the Levi section of NX(R) ∩ P is a linear group defined over GF(p2)
respectively GF(p), whereas the normalizer of a root subgroup involves
a unitary group over GF(p) or a symplectic group. By [37, Proposition
2.9.1] we conclude that n = 6 and X ∼= PSp6(p) is a symplectic group
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(as in this case p is odd). However in PSp6(p) we have YP has order p6

and Q is extraspecial of order p5. Thus |YPQ/Q| = p3, a contradiction.
Suppose that pe = 2. Then as just seen we have only to deal with

X ∼= 2E6(2) and X ∼= E8(2). Suppose that QYP = QO2(P ). Then
Φ(O2(P )) ≤ Φ(Q ∩ O2(P )) = R as YP ≤ Z(O2(P )). Since P does
not normalize R, we have O2(P ) is elementary abelian. Hence, as Q
is extraspecial, |O2(P )| ≤ 212 in the first case and 230 in the second
case. On the other hand, using Lemma A.2 we contradict |S|. Hence
YPQ < O2(P )Q. Now applying Lemma D.1 shows that O2(P )Q/Q is
extraspecial of order greater than 8. In particular, there is an involution
x ∈ O2(P )Q/Q which is not contained in YPQ/Q. Now [Q/R, YP , x] =
1 = [Q/R, x, YP ] and so [Q/R, 〈x, YP 〉] ≤ CQ/R(YP ) ∩ CQ/R(x) as invo-
lutions act quadratically on Q/R. As 〈x, YPQ/Q〉 is a fours group, this
proves (ii). �

Lemma D.18. Let X ∼= Ω+
2n(2) with n ≥ 3 and i an involution

in the centre of a Sylow 2-subgroup of X. Then X is generated by 2n
conjugates of i.

Proof. Suppose that n = 3. Then by [37, Proposition 2.9.1], X ∼=
Alt(8). Furthermore, X has a maximal subgroup isomorphic to Y =
Sym(6) and i corresponds to an element of cycle type 24 in X. These
elements act on the 6 set preserved by Y with cycle type 23 and, as
Y is generated by 5 transpositions it is also generated by 5 elements
of cycle type 23 and so by 5 conjugates of i. Hence X is generated by
6 conjugates of i. Now suppose that n > 3 and the result is true for
3 ≤ m < n. Let P be the stabiliser of a non-zero singular vector in the
natural module for X. Then P has shape 22n−2:Ω+

2n−2(2). By induction
this group is generated by 2n− 1 conjugates of i. As P is maximal, we
therefore have X is generated by 2n conjugates of i. �

Lemma D.19. Let X ∼= PSLn(2), n ≥ 5, PSUn(2), n ≥ 5, PΩ±2n(2),
n ≥ 4, En(2), n = 6, 7, 8, 2E6(2) or 3D4(2). Let S be a Sylow 2-subgroup
of X and Q = O2(CX(r)), 〈r〉 = Z(S). Suppose that there is some
involution i ∈ Z(S/Q) such that |[Q/〈r〉, i]| = 4, then X = PSLn(2),
or PSUn(2).

Proof. By Lemma D.1 and Lemma D.16 in these cases we have
that Q is an extraspecial group. Furthermore in case of PSLn(2) and
PSUn(2) we have that i is a transvection and so the lemma holds
for these groups. Assume now that X ∼= PΩ±2n(2). Then according to
Lemma D.1 we have that NX(Q)/Q ∼= Ω±2n−4(2) × Sym(3) and Q/〈r〉
is a direct sum of two orthogonal modules. As Ω±2n−4(2) contains no
transvections on the natural module (see Lemma C.22), we see that
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|[Q/〈r〉, i]| ≥ 16. So assume now X ∼= En(2) or 2E6(2). Then we have
by Lemma D.1 that NX(Q)/Q ∼= PSL6(2), PΩ+

12(2), E7(2) or PSU6(2).
The case PΩ+

12(2) is impossible by Lemma D.18 as NX(Q)/Q is gen-
erated by 12 conjugates of i, i1, . . . , i12 and Q/R = 〈[Q/R, ij] | 1 ≤
j ≤ 12〉 has order at most 224. In the remaining case Lemma D.1
gives CNX(Q)/Q(i) ∼= 21+8

+ : SL4(2), 21+32
+ : Ω+

12(2) or 21+8
+ : SU4(2).

Hence [CNX(Q)/Q(i), [Q/〈r〉, i]] = 1. We therefore get a contradiction to
Lemma C.1.

So we are left with X ∼= 3D4(2). By Lemma D.1 we have that
NX(Q)/Q ∼= SL2(8). But then i inverts some element ω of order 9 in
NX(Q). As |[V, i]| = 4, this shows [V, ω3] = 1, a contradiction. �

Lemma D.20. Suppose that X is a group and F ∗(X) is a group
of Lie type in characteristic p. Let S be a Sylow p-subgroup of F ∗(X)
and assume that R = Ω1(Z(S)) is a long root subgroup of order pe. Set
Q = Op(CX(R))) and let A be a subgroup of NF ∗(X)(R)/Q of order at
least pe. If |[Q/R,A]| = pe, then either p is odd and F ∗(X) ∼= PSp2n(pe)
or F ∗(X) ∼= G2(2)′.

Proof. Lemma D.13 shows that F ∗(X) is not 2F4(22e+1)′ and
Lemma A.3 shows that X is not Sp2n(2e), F4(2e) or G2(3e). Thus,
by Lemmas D.1 and D.10, Q/R is a module over GF(pe) or GF(p2e) for
L = Op′(NX(R)/Q). As |[Q/R,A]| = pe, we get that Q/R is a GF(pe)L-
module. In particular, X 6∼= PSUn(pe). As Q/R is defined over GF(pe),
[y, A] = [Q/R,A] for all y ∈ Q \ CQ/R(A). Furthermore, as |A| ≥ pe,
A is a dual offender on Q/R and every element of A operates as a
GF(pe)-transvection on Q/R. Thus Lemma D.1 implies that X is not
a linear group. If X is an orthogonal group defined of dimension m
at least 7, then Q/R is a tensor product module for L = L1L2 where
L1
∼= SL2(pe) and L2

∼= Ω±m−4(pe). Since Q/R is a direct sum of more
than one non-trivial Li-module, we see that A cannot act non-trivially
on either L1 or L2. Hence X is not an orthogonal group. If L is soluble,
then by D.1 and D.10 we are left with X ∼= PSp4(3) or G2(2)′ and these
groups are listed. The remaining groups all have L is quasisimple and
Q/R is an irreducible module. Thus by comparing the possibilities for
Q/R and L given in Lemmas D.1 and D.10 with the possibilities given
by Lemma C.22 yields L ∼= Sp2n−2(pe) with Q/R the natural module
and so X ∼= PSp2n(pe). �

In our proof of Theorem 4 the structure of p-minimal subgroups P
of G such that Z2(S) ≤ Z(Op(P )), S ∈ Sylp(G), play a very important
role. To handle this type of situation we require the structure of the
corresponding groups in simple groups of Lie type.
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Lemma D.21. Suppose that X is a simple group of Lie type defined
over GF(pe) and of rank at least 2, let S be a Sylow p-subgroup of X,
R be a long root subgroup contained in Z(S) and set Q = Op(NX(R)).
Assume that X 6∼= PSL3(pe), 2F4(22e+1)′, F4(2e), PSp2n(2e)′, G2(2)′ or
G2(3e). Then the following hold

(i) Z(S) = Z(Q) = R is a long root subgroup and Z2(S) ≤ Q.
(ii) Either |Z2(S)| = p2e, or X ∼= PSUn(pe) or PSLn(pe) in which

case |Z2(S)| = p3e.

Proof. The first statement of (i) is already recorded in Lemma
A.3. Since Q = Op(NG(R)), the Borel-Tits Theorem [27, Theorem
3.1.3] implies thatQ = CNX(R)(Q/R). Hence, asR = Z(S) ≥ [Z2(S), Q],
we have Z2(S) ≤ Q.

Denote by L = Op′(NX(Q)). Assume first that X ∼= PΩ±m(pe), m ≥
7. Then L = L1L2, L1

∼= SL2(pe, L2
∼= Ω±m−4(pe) and Q/R is the tensor

product module (see Lemma D.1). Now Q/R is a direct sum of two
natural L2-modules and then by Lemma C.1 |CQ/R(S ∩ L2)| = p2e. As
L1 induces the natural module on CQ/R(S∩L2), we get |CQ/R(S)| = pe.
Therefore |Z2(S)| = p2e. Thus from now on X 6∼= PΩ±m(pe), m ≥ 7.

Assume next that L acts irreducibly on Q/R. Then, by Lemma
C.1, |CQ/R(S)| = |k| where k is the field of definition of the L-module
Q/R. By Lemma D.1 this is GF(pe) as long as X 6∼= PSUn(pe), in which
case Q/R is defined over GF(p2e). In the first cases we therefore have
|Z2(S)| = p2e and in the exceptional case |Z2(S)| = p3e.

Using Lemmas D.1 and D.10 it remains to consider X ∼= PSLn(pe),
PΩ±6 (pe), G2(4). If we have X ∼= PSLn(pe) there are two irreducible
modules in Q/R and so |Z2(S)| = p3e. If we have X ∼= G2(4), then
we have two natural Alt(5)-modules and so |Z2(S)| = 16 = 42. When
X ∼= PΩ±6 (pe), Q/R has order p4e and |CQ/R(S)| = p2e. �

Lemma D.22. Let X, S and R be as in Lemma D.21. Assume
that P > NX(S) is a parabolic subgroup of X chosen to be maximal
subject to P ∩ NX(R) = NX(S). Set V = Ω1(Z(Op(P ))) and K =
Op′(P/Op(P )). Then Z2(S) = V ∩Q and the following hold.

(i) If V = Z2(S), then K ∼= SL2(pe) and V is a natural K-
module. In particular, all elements in Z2(S)# are conjugate
in P .

(ii) If V > Z2(S), then V = Z2(S)Rg for suitable g ∈ P and we
have
(a) X ∼= PSp2n(pe), n ≥ 2, |V | = p3e, K ∼= Ω3(pe) and V is

a natural K-module;
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(b) X ∼= PSUn(q), n ≥ 4, |V | = p4e, K ∼= Ω−4 (pe) and V is
a natural K-module; or

(c) X ∼= PSLn(q), n ≥ 4, |V | = p4e, K ∼= Ω+
4 (pe) and V is a

natural K-module.

Proof. We have that P is a minimal parabolic subgroup or in case
of X ∼= PSLn(q) we have P = P1P2, where the Pi are minimal parabolic
subgroups. By Lemma D.21 (i), Z2(S) ≤ Q.

Let first X ∼= PSLn(q). Let X1 be the stabiliser of a point and
X2 be the stabiliser of a hyperplane in the natural representation of
GLn(q). Then Op(Xi) is the natural module forXi/Op(Xi) ∼= GLn−1(q).
Furthermore we have that Pi ≤ Xi, i = 1, 2. This shows |〈RPi〉| = q2

and so 〈RP1 , RP2〉 = Z2(S). Hence we have that Z2(S) ≥ V.
Assume now that P is a minimal parabolic. We have that P contains

the Borel subgroup B. If Q/R is an irreducible module for Op′(NX(R)),
we receive by Lemma C.1 that B acts irreducibly on Z2(S)/Z(S) and
so Z2(S) ≤ V . If X ∼= PΩn(q), then we have a tensor product module
and so the same holds. In case of X ∼= G2(4), we get the result with
Lemma D.10. Hence in any case we have

(D.22.1) Z2(S) ≤ V.

Suppose first that V = Z2(S). If |Z2(S)| = q2, then V = RRg for
a suitable g ∈ P . But as Q is semi-extraspecial by Lemma D.16, all
elements in the coset Rrg, r ∈ R are conjugate by Q. This implies that
all elements in V are conjugate under 〈Q,Qg〉.

Assume that |Z2(S)| 6= q2. Then by Lemma D.21 we have |Z2(S)| =
q3. Assume first thatX ∼= PSUn(q). Then we have thatOp′(P/Op(P )) ∼=
PSL2(q2). But PSL2(q2) cannot act non-trivially on a group of order
at most q3. So we may consider X ∼= PSLn(q). Now P = P1P2. But
again this group cannot act faithfully on a group of order q3. This can
be seen as follows: we have [V, P1] is of order at most q3 and so it must
be an irreducible P1-module. But then as P2 is non-abelian we get that
[[V, P1], P2] = 1. As |[V/[V, P1]| ≤ q, we now get [V, P2] = 1. So we have
shown that

(D.22.2) If V = Z2(S), then all elements in Z2(S)# are conjugate.

If X = PSLn(q), we just have seen that S = QOp(P ). If X 6=
PSLn(q), then P is a minimal parabolic of type PSL2 and so B acts
irreducibly on S/Op(P ) hence also

S = Op(P )Q.

Further we see that
CS(Z2(S)) = Op(P ).
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Assume now V > Z2(S). We first will show that V ∩ Q = Z2(S).
Otherwise by Lemma D.16 we have that |Q : Q∩Op(P )| ≥ |V ∩Q/R| >
|Z2(S)/R|. But then CQ(Z2(S)) 6≤ Op(P ), a contradiction. So we have

V ∩Q = Z2(S).

Then [V,Q] ≤ Z2(Q). Assume first that |Z2(S)| = q2. Then [Q/R, V ] =
Z2(S)/R has order q. As V Q/Q ∩ Z(S/Q) is normalized by NX(S)
and is non-trivial, we have |V Q/Q| ≥ q by Lemma A.4. Thus Lemma
D.20 implies that X ∼= PSp2n(q). Then application of Lemma C.15
gives |V : V ∩ Q| ≤ q. Now V Q/Q ≤ Z(S/Q). We have that the
Borel subgroup B acts irreducibly on Z(S/Q), so V Q/Q = Z(S/Q).
In particular |V | = q3 and V = Z2(S)Rg for suitable g ∈ P . Further-
more |[V,Q]| = q2 = |Q/CQ(V )|2. So V is a dual 2F-module, which by
Lemma C.28 gives the statement for PSp2n(q).

So assume that |Z2(S)| = q3. If X ∼= PSUn(q), then V induces transvec-
tions on Q/R regarded as a GF(q2)-module and so again by Lemma
C.15 |V : V ∩Q| = q. Now |V | = q4, V = Z2(S)Rg and |[Q, V ]| = q3 <
q4 = |Q/CQ(V )|. So again V is a dual 2F-module and the statement
for PSUn(q) follows from Lemma C.28.

If we have X ∼= PSLn(q), then by Lemma D.1 we have that Q/R =
E1E2, where both E1 and E2 are modules for NX(R) and |Z2(S)/R ∩
Ei| = q. Suppose that V Q/Q 6≤ Z(S/Q) As V induces transvections
on the natural module to a point, we now get that V Q/Q is the full
transvection group to Z2(S)/R∩E1. On the other hand the same is true
for E2. But these transvection groups generate a non-abelian group.
This shows that V Q/Q = Z(S/Q) again. So we have |V | = q4.

We had that P = P1P2, where Pi normalizes the intersection Zi of Z2(S)
with the preimage of Ei, i = 1, 2. But if [V,Op′(P1)] = [Z1, O

p′(P1)],
then this group is centralized by Op′(P2) and so P2 ≤ NX(R), a con-
tradiction. So we have that V involves two natural P1-modules and
the same applies for P2, which shows that we have a tensor product
module, which is the statement for PSLn(q). �

Lemma D.23. Let X, S, V be as in Lemma D.22. Set

V (Q,S) = Z(CS(CQ(Z2(S)))).

Then V = V (Q,S).

Proof. Assume first that V = Z2(S). Then |Z2(S)| = p2e. Let
x ∈ S \ Q, such that x centralizes CQ(Z2(S)). Then x induces a
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GF(pe)-transvection on Q/R. Thus V (Q,S) acts as a group of GF(pe)-
transvections onQ/R. As V (Q,S)ES, we have V (Q,S)Q/Q∩Z(S/Q) 6=
1. As NX(S) normalizes Q and Z2(S) it also normalizes V (Q,S) and
so |V (Q,S)Q/Q| ≥ pe. We have

[Q,CQ(Z2(S)), V (Q,S)] = 1 = [CQ(Z2(S)), V (Q,S), Q] = 1.

The Three Subgroup Lemma gives [Q, V (Q,S), CQ(Z2(S))] = 1. That
is [Q, V (Q,S)] ≤ CQ(CQ(Z2(S))) = Z2(S). Hence [Q, V (Q,S)] ≤
Z2(S). Application of Lemma D.20 shows F ∗(H) ∼= PSp2n(pe), p odd.
But then V is the orthogonal 3-dimensional module for P/CP (V ), a
contradiction. Hence we have V (Q,S) ≤ Q and so V (Q,S) = Z2(S).

We may assume that V 6= Z2(S). As seen in Lemma D.22 we have
|V : V ∩ Q| = pe and V ∩ Q = Z2(S). Let P be as in Lemma D.22,
then P induces an orthogonal group on V and so Q does not induces
GF(pe)-transvections on V . In particular CQ(Z2(S)) ≤ Op(P ) and then
[V,CQ(Z2(S))] = 1. This shows that V ≤ CS(CQ(Z2(S))). As S =
Op(P )Q, we get that

V ≤ Z(CS(CQ(Z2(S)))) = V (Q,S).

Now suppose that x ∈ V (Q,S). Then x induces a GF(pe)-transvection
on Q/R in case of X ∼= PSp2n(pe), a GF(p2e)-transvection on Q/R in
case of X ∼= PSUn(pe) and a GF(pe)-transvection to a point on both
natural SLn−2(pe)-modules in Q/R. As |V : V ∩Q| = pe, we get in the
first two cases by Lemma C.15 that x ∈ QV . For SLn−2(pe) the only
group in S/Q, which induces transvections to a point in both modules
is a root group, hence again we have that x ∈ QV . So x = yv, v ∈ V ,
y ∈ Q. As [x, Z2(S)] = 1 we also have [y, Z2(S)] = 1. We now get that
y ∈ Z(CQ(Z2(S))) = Z2(S), by the structure of Q. Hence y ∈ V and
so x ∈ V . This shows V = V (Q,S), the assertion. �

Lemma D.24. Let X ∼= 3D4(q), q = pe, and S be a Sylow p-subgroup
of X. Then we have

(i) |Z(S)| = q;
(ii) |Z2(S)| = q2;

(iii) |Z3(S)| ≥ q5;
(iv) if Q = Op(CX(Z(S))), then Z3(S) ≤ Q and |CQ(t)| ≥ q3 for

any element t ∈ S, o(t) = p.

Proof. By Lemma D.1 we have that R = Z(S) is of order q,
|S| = q12 and |Q| = q9. Furthermore by Lemma D.16 Q is semi-
extraspecial. By Lemma D.21 we have that |Z2(S)| = q2 and Z2(S) =
RRg for suitable g ∈ X. So (i) and (ii) hold. In particular Z2(S) ≤ Qg.
Set P = 〈Q,Qg〉, then Z2(S) is normal in P and by Lemma D.22
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we have that P/Op(P ) ∼= SL2(q) and acts naturally on Z2(S). As
Q ∩ Qg is elementary abelian, we get that |Q ∩ Qg| ≤ q5. Further-
more U = (Q ∩ Op(P ))(Q ∩ Op(P ))g is a normal subgroup of P and
|U : Q ∩ Qg| ≥ q6. As |Op(P )| ≤ q11 we get equality everywhere, i.e.
U = Op(P ) and |Q ∩ Qg| = q5. As Q′ = R ≤ Z2(S), we see that
[〈Q,Qg〉, Q∩Qg] ≤ Z2(S). In particular Q∩Qg ≤ Z3(S). So (iii) holds.

As [Q,Op(P )] ≤ Q ∩ Op(P ) we have Z3(S) ≤ Q. Finally if t ∈ S,
o(t) = p, then we have [Q ∩ Qg, t] ≤ Z2(S). Hence |[Q ∩ Qg, t]| ≤ q2

and so |CQ∩Qg(t)| ≥ q3. This proves (iv). �

Lemma D.25. Let X be a genuine group of Lie type over a field of
characteristic p and α be an automorphism of X with αp inner. If α
centralizes a Sylow p-subgroup S of X, then α is inner.

Proof. Suppose false. Then, by Theorem A.11(ii), α is in the coset
of either a graph, graph-field or a field automorphism of X. As α cen-
tralizes S, we see that α has to normalize every parabolic subgroup of X
which contains S and so α is not in the coset of a graph automorphism.
Hence, by Lemma A.14, α has to induce a field automorphism on X.
If X is not a twisted group, then α acts non-trivially on Z(S) which is
impossible. Hence X is a twisted group. If p = 3, then X ∼= 3D4(3e). Let
L = O3′(NX(Z(S))/O3(NX(Z(S)))). By Lemma D.1, L ∼= PSL2(33e)
and α induces a field automorphism on L, which certainly does not
centralize a Sylow 3-subgroup of L. Hence p = 2.

Then X ∼= 2F4(22e+1), PSUn(2e), Ω−2n(2e), n ≥ 3, or 2E6(2e). By
Lemma A.13, the group 2F4(22e+1) has no outer automorphisms of or-
der two. By [37, (4.2.3)] PSUn(2e) possesses a parabolic subgroup P
with Levi section L such that L ∼= PSLbn

2
c(2

2e). In Ω−2n(2e) the point

stabiliser P has Levi section Ω−2n−2(2e) and in 2E6(2e) by [27, Exam-
ple 3.2.5, page 101] there is a parabolic P subgroup with Levi section
Ω−8 (2e). In all cases α induces a field automorphism on the Levi sec-
tion, in particular α acts non-trivially. But α centralizes O2(P ) and as
CP (O2(P )) ≤ O2(P ), we see that α must centralize the Levi section, a
contradiction. �

We end this appendix with some results about specific groups.

Lemma D.26. Let X ∼= PΩ+
8 (3). Then the following hold.

(i) There is an involution i ∈ X such that E(CX(i)) ∼= Ω−6 (3) ∼=
2.PSU4(3).

(ii) If R is a root subgroup of X, then

NX(R)/O3(NX(R)) ∼ (SL2(3) ◦ SL2(3) ◦ SL2(3)) : 2 ∼ 21+6
− .33.2.
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Furthermore O3(NX(R)) is extraspecial of order 39.
(iii) We have Out(X) ∼= Sym(4).

Proof. Part (i) is either [63, Lemma 3.8] or [14, Table 8.50] and
part (ii) follows immediately from Lemmas D.1 and D.16. Part (iii) can
be read of from [27, Lemma 2.5.12(b) and (j)]. �

Lemma D.27. Suppose that X ∼= PΩ7(3). Then there is a parabolic
subgroup P of X such that P/O3(P ) ∼= SL3(3), |O3(P )| = 36 and
Z(O3(P )) = Φ(O3(P )) has order 33.

Proof. Let P be the stabiliser of an isotropic 3-space in the natural
module for Ω7(3). Then P/O3(P ) ∼= SL3(3). Now |O3(P )| = 36. By [27,
Table 3.3.1] the 3-rank of X is 5 hence O3(P ) cannot be elementary
abelian. �

Lemma D.28. Let X ∼= PSL4(3) or PSU4(3) and S be a Sylow
3-subgroup of X. Then

(i) J(S) is elementary abelian of order 34 and
(ia) NX(J(S))/J(S) ∼= (SL2(3) ◦ SL2(3)):2 if X ∼= PSL4(3)

and
(ib) NX(J(S))/J(S) ∼= PSL2(9) ∼= Alt(6) if X ∼= PSU4(3).

(ii) if X ∼= PSL4(3), then there is an involution i ∈ X with
E(CX(i)) ∼= PSL2(9) ∼= PSU2(9).

Proof. By [14, Table 8.8] in the linear case and [14, Table 8.9]
in the unitary case, there is an elementary abelian subgroup E of S of
order 34, such that NX(E)/E has the structure given in (i). To prove
(i), it remains to show that E = J(S). By Lemma D.1 we have that
|Z(S)| = 3 and Q = O3(CX(Z(S))) is extraspecial of order 35. This
shows that there are no elementary abelian subgroups of S of order
35. Let F be an elementary abelian subgroup of S of order 34. Then
from the action of SL2(3) on Q/Z(Q) given in Lemma D.1 we have
that |CQ/Z(Q)(F )| = 9. Hence CQ(F )/Z(Q) = CQ/Z(Q)(F ) and so F is
uniquely determined, in particular J(S) = E.

(ii) follows from [27, Table 4.5.1, page 172]. �

E. Miscellanea

This final appendix contains a collection of unrelated results about
simple groups which do not belong in any of the other appendices.

Lemma E.1. Suppose that X ∼= PSU5(2). Then Aut(X) has three
conjugacy classes of involutions. If i ∈ Aut(X) is an involution which
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induces an outer automorphism on X, then 5 divides |CX(i)| while
CX(z) is a 5′-group for all involutions z in X.

Proof. Application of [5, (6.1),(6.2)] yields PSU5(2) has exactly
two classes of involutions and the centralizer in X of any involution
has a 5′ order. The assertion about the outer involutions follows from
Lemma A.16. �

Lemma E.2. Let X ∼= PSp4(5), i ∈ X be an involution and w ∈ X
have order 5. Then the following hold

(i) |CX(i)| is divisible by 5;
(ii) if |CX(i)| is divisible by 25, then i is 2-central;

(iii) |CX(w)| is even if and only if 53 divides |CX(w)|; and
(iv) there are three X-conjugacy classes of subgroups of X of or-

der 5 which are centralized by an involution. Furthermore, if
H1, H2, H3 are representatives of these conjugacy classes and
|NX(Hi)| = |NX(Hj)|, then i = j.

Proof. This is taken from the table in [71, page 489-491]. �

Lemma E.3. Let X ∼= PSL3(3). Then the maximal subgroups of X
whose order are divisible by 6 but not by 9 are isomorphic to Sym(4).

Proof. This can be found in [14, Tables 8.3 and 8.4]. �

Lemma E.4. Suppose that X ∼= PSL2(4), PSL2(8), PSL3(2), PSL3(3)
or 2B2(8) and H be a proper subgroup of X. Then H is soluble.

Proof. This is well-known. �

Lemma E.5. Suppose X ∼= Sp4(3) and X = X/Z(X). Then the
following statements hold.

(i) There is a maximal subgroup of X which is isomorphic to
GU3(2) ∼ 31+2

+ :SL2(3).

(ii) Let E be an elementary abelian subgroup of order 27 in X
and U be a subgroup of X with E ≤ U . If E is not normal in
U , then U ∼= GU3(2) ∼ 31+2

+ :SL2(3) or U = X.
(iii) Suppose that U ≤ X and |U | = 2a ·3 for some a ≥ 4. If U has

a proper subgroup Y with Y ∼= SL2(3) and U has no normal
subgroup isomorphic to Y , then U is contained in a group of
shape (Q8 ×Q8).Sym(3).

Proof. (i) can be seen in [14, Table 8.12].
Let E be an elementary abelian subgroup of order 27 in a Sylow

3-subgroup of X. As |Z(S)| = 3 by Lemma A.3 and |S : E| = 3, we
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see that E = J(S) is uniquely determined. The result now follows from
[14, Table 8.12].

Recall that PSp4(3) ∼= PSU4(2) by [37, Proposition 2.9.1]. As U is
a {2, 3}-group and O3(U) = 1, U is a 2-local subgroup of X and the
Borel–Tits Theorem [27, Theorem 3.1.3] yields U is contained in one
of the two maximal parabolic subgroups P1 and P2 of X containing a
given Sylow 2-subgroup of X. Choose notation so that P 1 ∼ 24.Alt(5).
Then P1 ∼ (Q8 ◦ Dih(8)).Alt(5). Then UO2(P1)/O2(P1) is either con-
tained in a subgroup isomorphic to Sym(3) or U is contained in the
normalizer of a Sylow 2-subgroup of X. In the first case we find U ≤
W ∼ (Q8 ◦ Dih(8)).Sym(3) and so Y is normal in U , a contradiction.
In the second case we may suppose that U ≤ P2. Thus in any case
U ≤ P2 ∼ (SL2(3) × SL2(3)).2 and, as 9 does not divide |U |, we have
that U is as claimed. �

Lemma E.6. Let X ∼= Sp6(3) and V be the natural module. Suppose
that W ∼= (SL2(3)×Ω3(3)).2 is a subgroup of X which acts irreducibly
on V . If U is an over-group of W different from X, then U is iso-
morphic to a subgroup of (Sp2(3) o Sym(3)) : 2. Furthermore, Ω1(W ) is
normal in U .

Proof. We consider the maximal subgroups of Sp6(3) given in [14,
Table 8.28 and Table 8.29] testing which ones could contain W . Let
M be a maximal subgroup of X containing W . Then by comparing
|W | and |M |, we see that the only possibilities for M are GU3(3):2,
GL3(3):2, Sp2(33):3 and (Sp2(3) o Sym(3)):2. The Sylow 2-subgroups of
Sp2(33) are quaternion, so W cannot be contained in such a group. The
group GL3(3) fixes an isotropic 3-space of V , but W ′ acts irreducibly,
a contradiction. Hence we are left with M = GU3(3):2 or the target
example. As GU3(3) is a rank one group, by the Borel–Tits Theorem
[27, Theorem 3.1.3], the centralizer of any element of order three in
a given Sylow 3-subgroup of M is contained in the Borel subgroup,
hence W ′ is contained in a Borel subgroup of M , which is absurd. This
completes the proof. �

Lemma E.7. Suppose that X ∼= SL2(pe) and V is the natural X-
module. Let T ∈ Sylp(X) and V1 = CV (T ). If v ∈ V \ CV (T ), then
〈T,CX(v)〉 = X.

Proof. We have that CV (T ) is a 1-dimensional subspace of V
regarded as a GF(pe)-space. As X acts transitively on these subspaces
we have that v is centralized by T g, for some g ∈ X, where T 6= T g.
Now application of [33, Satz 8.27] yields X = 〈T, T g〉. �
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Lemma E.8. Suppose that H ≤ X with X ∼= Alt(7) and H ∼=
Sym(5). Assume that V is an irreducible 4-dimensional GF(2)X-module.
Then the elements of order three in H act fixed-point-freely on V . In
particular H, does not induce the orthogonal O−4 (2)-module on V .

Proof. A Sylow 3-subgroup of GL4(2) is elementary abelian of
order 9 and so by coprime action just one class of elements of order three
act fixed-point-freely. Let ν ∈ X be of order 7, then dimCV (ν) = 1.
Hence an element of order three, which normalizes 〈ν〉 has a fixed point.
These elements are products of two 3-cycles. Thus the 3-cycles in X
operate fixed point freely on V . As H ∼= Sym(5) contains an element ρ
of order three, which is centralized by an involution and involutions are
products of two transpositions, the element ρ is a 3-cycle and therefore
it acts fixed point freely on V , the assertion. Since elements of order
3 in H have fixed points on the orthogonal module for H, we have V
restricted to H is not the orthogonal module. �

Lemma E.9. Let H1
∼= O+

6 (2) and H2
∼= O−6 (2). Then H1 and H2

have isomorphic Sylow 2-subgroups. Furthermore, F ∗(H1) and F ∗(H2)
have isomorphic Sylow 2-subgroups.

Proof. To prove the main claim, we show that both groups have a
Sylow 2-subgroup isomorphic to a Sylow 2-subgroup of H3

∼= Alt(10).
This is plain to see for O+

6 (2) ∼= Sym(8), so consider H2. Consider the
subgroup J = 2 o Sym(5) ≤ Sym(10). Then J has shape 2× 24:Sym(5)
and any two subgroups of J of shape 24:Sym(5) are isomorphic. Note
that J∩H3 has shape 24:Sym(5) and contains a Sylow 2-subgroup ofH3.
Then the stabiliser L of an isotropic point in the natural representation
of H2 has shape 24:Sym(5) and it has a subgroup of index 10 of shape
23:Sym(4) which is contained in a maximal subgroup 24:Sym(4) of index
5. It follows that L is isomorphic to a subgroup of 2 o Sym(5) and so L
and Alt(10) have isomorphic Sylow 2-subgroups. This proves the first
claim.

Next consider H ′2. This group contains a subgroup of shape J =
24:Alt(5) which is a subgroup of 2 oSym(5). Now consider the subgroup
J1 of J of shape 24:Alt(4) (which may be considered as a subgroup of
2 o Sym(4) for ease of calculation). Suppose that O2(J) = 〈e1, e2, e3, e4〉
is the base group of J1. Then S = 〈e1, e2, e3, e4, (1, 2)(3, 4), (1, 3)(2, 4)〉
is a Sylow 2-subgroup of J1. The subgroup 〈e1, e2, (1, 2)(3, 4)〉 has index
8 in S and the representations on the cosets of this subgroup embed S
into Alt(8). �
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