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Abstract  

Not only has the railway accidental prevention been a prime focus, but it has also become a key 

challenge for the industry in recent years. For many decades, rail authorities have attempted to 

significantly improve rail safety, whilst facing various passengers’ risks and uncertainties. The 

overarching goal of this study is to develop a new posterior probability model to quantify uncertainties 

for benchmarking. This is the world’s first to establish new insights from the benchmarking of risk and 

safety across different rail networks. The insights will point out the advantages and practicability of 

launching safety policies and reducing railway accidents for other rail networks. The new model has 

been developed using unparalleled long-term accidental data sets, including ‘a trailer an accident’ and 

‘causes of the accident’. The investigation adopts a Bayesian approach (via Python) to codify the novel 

model. The new findings lead to the better understanding into the uncertainty of railway accidents. Five 

notable rail networks have been selected as case studies. This study has also compared the effectiveness 

of the decision tree and Petri-net models using the posterior probability and number of injuries and 

fatalities. Based on the benchmarking outcomes, Chinese and Japanese railway systems denote the 

lowest risk over other networks, followed by Spanish, French and South Korean rail networks. The 

study also demonstrates that the novel benchmarking criteria can effectively measure and compare any 

rail networks’ risk and uncertainties. Its adoption will lead to performance improvement in terms of 

safety, reliability and maintenance policies of railway networks globally.  

 

Keywords: Bayesian inference, risk and uncertainty, railway accident, decision tree, Petri-nets. 

 

 

Highlights  

• The research is the world’s first to establish a novel Bayesian model based on prior belief and 

probabilistic methods for railway operations.  

• The unprecedented model is definitely capable of predicting the future railway accident rate.  

• Model verifications against the long-term FRA’s accident data sets clearly exhibit excellent 

accuracy above 95% confidential level. 
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• Both of DT (decision tree) and PT (Petri-nets) models are embedded to evaluate the risk level 

of railway networks. Those models can be practically applied to any railway authorities 

worldwide.  

• Reducing the railway accident, saving passengers’ lives, and increasing reliability can be 

achievable by adopting both models into railway companies’ action plan. 

1. Introduction 

Railway networks are expected to cater exceptional travel services and safety to passengers and 

rail users. The railway sector has the lowest accidental rate compared with other transportation modes. 

The number of casualties had decreased approximately one-third across the EU during 2010 - 2018 

(ERA, 2018, EC, 2020). Gradual reduction of the accidental number has pushed forward rail authorities’ 

campaign to enable zero accident across rail networks globally.  

It is well known that uncertainties play a key role in railway safety management and accidental 

prevention. In this study, the long-term accidental data sets, which include causes and consequences of 

an accident over 20 years, have been collected from railway authorities. The study examines the primary 

data sources to identify the impact of train accidents with respect to the number of injuries and fatalities. 

This study develops a novel Python-based model using a modified Bayesian approach for predicting 

railway accidental rate. One of the key benefits of this new model is the better understanding into the 

uncertainty propagation of accident, which indicates the future accident rate.  

A primary issue about the unified measurement of safety performance is that rail authorities 

have developed their own safety policies and performance standards. Rail organisations usually claim 

that they are operating a low-risk network; however, it may contain systemic bias stemmed from the 

unbalanced safety performance standard used in a particular rail network or even within an operating 

company. An innovative solution to this problem is to establish a new framework catalyzed to 

benchmark balanced safety performance among railway networks, taking into account the uncertainties 

through the decision tree (DT) and Petri-nets (PT) models. The outcome offers a novel standardisation 

criterion with four groups of risk levels. The novel contribution of this study has a broad range of 

applications to benchmark risk performance for all HSR networks. This study also highlights the novel 

prediction and benchmarking risk models capable of quantifying uncertainties and balancing systems 

performance criteria. Both models will lead to the sustainable development on the upcoming rail 

networks that can help rail authorities to improve risk management strategies and assess the 

consequences of existing rail policies. This approach will enhance the public safety, which is paramount 

to social value, a pillar for sustainable development. 

 

 

 

2. Literature review 



 

 

2.1 Existing causes and effects of railway accidents  

With the vast development of HSR technologies, the number of railway accidents has decreased 

during this decade. The EU-27 report reveals that the number of railway accidents in European countries 

was 666 in 2018, in which 748 passengers received severe injuries. However, the number of injured 

passengers showed a 30% decrease from 2010 (ERA, 2018). Similarly, London Underground states that 

the number of accidents had slightly decreased for five consecutive years during 2013-2018, while the 

number of accidents shows a 30.83% decrease (ORR, 2019).  

Comparing by mode of transportation, research finds that railway services show the smallest 

number of passenger injuries and fatalities among all modes of transportation. The European Transport 

Safety Council’s (ETSC) report reveals that the rate of fatalities due to railway services is only 0.035 

persons per 100 million person-kilometres. In contrast, the overall fatality rate due to road accidents 

(motorcycle, foot, bike, car, bus and coach) is 0.95 persons per 100 million person-kilometres, as shown 

in Figure 1 (ETSC, 2003). Another study also mentions that three quarters of railway accidents across 

the EU occur due to trespass; accidents at level crossings are 15% of these (UIC, 2018; Schaefers and 

Hans, 2000).  

 

Fig. 1 Comparison of fatality rates for motorcycle, foot, bike, car, bus and coach, ferry, air and rail across the EU (unit: 100 million 

passenger-miles) (source: European Transport Safety Council, 2003) 

 

Consequently, the US National Safety Council has found that railways have low injury and 

death rates. Figure 2 shows the fatality rate to be 0.01-0.12 per 100 million passenger-miles, whereas 

the rate for light duty vehicles is 0.46-0.66 per 100 million passenger-miles (USA National Safety 

Council, 2020). 

 



 

 

 

Fig. 2 Comparison of fatality rates between light vehicles, buses, railways and airlines across the USA (unit: 100 million passenger-miles) 

(source: National Safety Council, 2020) 

 

In conclusion, the trend in railway accidents has been a gradual decrease, with railway services 

showing a small number of injuries and fatalities compared with other transportation modes. However, 

the challenge to achieve zero accidents and to reduce the level of damage are key drivers for rail 

organisations.  

 

2.2 Application of Bayesian statistics to railway accidents 

Bayesian statistics (Bayesian network, Bayes belief network, BN) was created to calculate 

conditional probability in complex models. Others probability-based methods, i.e. fault tree analysis 

(FTA), event tree analysis (ETA), and failure mode effect analysis (FMEA) could not solve this issue 

(Zhang et al., 2014; Dindar et al., 2018; Wang, Liu and Ni, 2018). The BN model has been widely 

applied in railway risk, safety analysis and other risk assessments. The BN model can be used to predict 

the probabilities for causes of accidents based on experience from working with existing data. BN 

allows the input of multiple hazards and uncertainties, which are suitable for complicated causes of 

railway accidents. The outcomes from BN applied to railway accidents show a higher degree of 

accuracy for risk assessment than from other models.  

Marsh (2004) uses a Bayesian network, in relation to risk assessment, to model accidents in the 

UK railway industry. The research focuses on the issue of signals passed at danger (SPAD), when trains 

dangerously pass stop signals without authority. The outcome from the study has led changes in the UK 

railway industry’s driver training activities in order to reduce the number of rail accidents. Similarly, 

there is research concerning three types of level crossings in the UK, the railway-controlled, automatic 

and passive types. The findings show that, among the three different types of level crossing, automatic 

crossings have higher accident rates than the other crossing types (Evans, 2011; Igari and Hoshino, 

2018).  
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 Moreover, BN has been applied in the study of train derailments caused by severe weather 

conditions at railway turnouts (RTs), which are critical parts of railway infrastructure. This study's 

outcomes led to improved railway operation during uncertain climatic conditions (Dindar et al., 2018; 

Zoeteman, 2020). Similarly, the failure prediction model for RTs, which is affected by weather 

conditions, was launched. The study also uses the BN model to evaluate the impact of extreme weather 

on the RTs. The results provide for suitable RT maintenance decisions, which can significantly save 

maintenance costs and improve safety performance (Wang et al., 2016). The BN is also used to monitor 

the conditions of RTs, and the model can accurately account for track damage (Wang, Liu and Ni, 

2018). 

 

2.3 Uncertainties in railway risk assessment 

Safety risk assessment is a key driver for railway operations, and that uncertainty analysis for 

railway systems plays a crucial role in rare cases. Uncertainties in railway systems can occur due to 

internal and external events. For example, internal events happen on trains or networks, whereas 

external events occur due to outside sources, such as disasters. Fukuoka (1999) mentions that railway 

risk assessment is challenging because accident frequency is low. This highlights the problem that lack 

of information (or data limitation) creates a considerable barrier for railway operators in assessing risk 

and uncertainty in railway systems. 

On the other hand, various mathematical models have been developed to solve the issue of lack 

of reliable and sufficient information. In particular, de Miguel et al. (2019) use the output from a Monte 

Carlo simulation (MCS) to analyse uncertainty at railway turnouts. This method ultimately produces 

total sensitivity indices. A life cycle study on user value of rail and road level crossings in Austria was 

aimed at optimising maintenance costs (Grossberger, Mauler and Michelberger, 2017). The research 

faced complexity in terms of time and conditions of parameters; however, the MCS was applied to 

generate a probabilistic scenario and estimate uncertainties. Another rail life cycle study led to a 

decision to renew support infrastructure maintenance. This research mentions that rail track 

maintenance costs have increased dramatically; thus, the MCS is applied to find quantifications of 

uncertainty in track life cycle (Vandoorne and Gräbe, 2018). Similarly, a study of risk in railway tunnels 

included an MCS model to generate probability distributions. This research states that using probability 

distribution offers realistic descriptions that are influential in railway risk assessment (Vanorio and 

Mera, 2012).  

 

2.4 Railway risk classification 

To classify railway risk, this study groups all risks according to the root cause of accidents. It 

is necessary to understand the effects and root causes of accidents because this leads to developments 

in the sustainability of railway system safety policies. The data collected is classified into three groups 



 

 

based on the effects on the train after an accident, including (i) collision, (ii) derailment and (iii) other 

effects. The ‘other effects’ on trains mostly occur due to human failures, such as vandalism, passenger 

carelessness and objects on the track, as shown in Table 1.  

  

 

Table 1. The classification of effect of accidents 

Collision (A1) 

Head-on collision 

Rear-end collision 

Slanting collision 

Collision with buffer stop or obstruction on the track  

Derailment (A2) 

Any derailment at: 

Plain 

Curve 

Junction 

Other (A3) 

Fire, explosion and the leak of the hazardous chemical (including sabotage) 

Fall of the passenger on track 

Collision with people on track 

 

The causes of accidents can also be classified into seven groups, including (i) driver error, (ii) 

signal operator error, (iii) infrastructure failure, (iv) equipment failure, (v) human error, (vi) natural 

causes and (vii) contributory factors. With respect to the human error, this means the fault of staff other 

than drivers and signal operators. Moreover, the sub-causes of accidents can be classified into seven 

groups, as represented in Table 2.  

 

 

 

  



 

 

Table 2. Summary of cause of accident and sub-causes of accidents.  

 

Cause of accident Sub-cause of accident 

B1: Driver’s error 
Failure to release the hand brake 

Failure to control the speed of the car 

B2: Signalmen’s error 
Signal equipment failure 

Loss of communication device 

B3: Infrastructure failure 

Track geometry 

Frogs, switches and track appliances 

Other ways and structure (bridge/design construction) 

Rail Joint bar 

Roadbed 

B4: Equipment failure 

Axles and journal bearings 

Coupler and draft system 

Doors 

General mechanical and electrical failures 

Locomotives 

Truck components 

Wheels 

Body 

Brake 

Trailer or container on flatcar 

B5: Human error 

(Exclude Signalmen’s and driver’s error) 

Cab signals 

Employee physical condition 

Flagging, fixed, hand and radio signals 

General Switching Rules 

Loading Procedures 

Main track authority - failure to stop the train in clear 

Miscellaneous 

Speed 

Switches 

Train handling or train make-up 

B6: Natural causes 

Snow, ice, mud, gravel, coal, sand, and others on track 

Heavy rain, tornado and landslide 

Flood, tsunami and landslide 

Dense fog or smog or things that make unclearly visible 

Extreme wind velocity 

B7: Contribution factors 

Trainload or overloaded car 

Highway 

Object on track 

Vandalism or track damage 

 

However, table 2 points out only the frequency factors and prevailing conditions to affect 

railway accidents. This study excludes unobserved heterogeneity, which may influential and potentially 

by other possible circumstances (Saeed and et. al, 2017; Saeed and et. al, 2020; Waseem and et. al, 

2019; Saeed T. U., 2019).  



 

 

3. Risk assessment model 

Risk assessment is the process of understanding risk characteristics in railway networks, and 

leads to the elimination or reduction of the risk of railway accidents. Research has developed various 

models of risk assessment in relation to railway accidents. 

In Great Britain (GB), the RSSB’s risk safety models are the standard used to measure safety 

and harm on the country’s mainline. The measurement unit is known as ‘fatalities and weighted injuries’ 

(FWI), with one FWI being defined as one fatality, ten major injuries, 200 reportable minor injuries, or 

1,000 non-reportable minor injuries (Gilmartin, 2010). Leitner (2017) also assesses railway-related risk 

by using the FWI unit on Slovakian railway systems. Such research focuses intensely on numbers of 

fatalities and injuries.  

On the other hand, some research applies other factors in risk assessment equations, e.g. 

vulnerability, capacity to cope and frequency of hazards. For example, for Canadian railways, danger 

and vulnerability are combined in the assessment of risk corridors. Both factors play a primary role in 

evaluation without using numbers of injuries and fatalities. The reason is that most trains operating in 

these corridors are freight trains. Therefore, the risk to passengers and staff should be lower than for 

passenger trains. Business factors can also involve in risk on railway networks. Xue et al. (2020) studies 

the business factors involved in a risk coupling model of China’s high-speed rail. This research focuses 

on the defects of technology, capital and management, and states that single risk categories can lead to 

accidents. 

Moreover, big data analysis is applied to reveal failures and to assess infrastructure risks (Li et 

al., 2010). Jamshidi et al. (2017) adopt risk models that use the MCS method in Bayesian data analysis 

to determine posterior distributions. This model can precisely estimate failure due to cracks in 

infrastructure enabling prevention of railway accidents in the long term.    

Additionally, various risk assessment methods are applied in research, including DT, ETA, 

FTA, PT, risk evaluation, human factor analysis and others (Bayesian and fuzzy). A summary of risk 

analysis methodology in existing research is shown in Table 3. 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 3. Summary of railway risk assessment models 

 

 

The literature review shows that studies are mostly intended to increase performance on railway 

networks. Dindar et al. (2018) provide suggestions to railway companies on how to operate under severe 

weather conditions. Their research uses fuzzy logic and Bayesian network to improve reliability for the 

railway industry (Dindar et al., 2020). Some research uses the MCS, DT and ETA models to analyse 

risks from human errors, including rail employees, passengers and road users (Zhou and Lei, 2020; 

Khalid et al., 2019; Vileiniskis and Remenyte-Prescott, 2017). Moreover, improvements in 

infrastructure and maintenance on rail networks is addressed using DT and other tools (Zhou et al., 

2020; Eisenberger and Fink, 2017; Jia et al., 2011). 

Regarding safety policies, some studies offer policies that include measurement to help avoid 

railway accidents. The analytical hierarchy process (AHP), along with the maximum absolute weighted 

residual (MAWR) and maximum entropy method (MEM) tools that calculate the dangerous failure rate 

for equipment, are provided to reduce the scale of accidents (Liu and et al., 2020). Song and Schnieder 

Authors Risk models / Risk assessment model Gaps 

Leitner (2017), Gilmartin 

(2010) 

This research uses ‘fatalities and weighted injuries’ as a primary 

standard. The FWI measure is calculated as equal to one fatality, ten 

major injuries, 200 reportable minor injuries, or 1,000 non-reportable 

minor injuries. 

Using the FWI measure may not 

be compatible with 
benchmarking between 

countries. For example, accidents 

with a lower number of injuries 
or fatalities cannot be measured. 

Alexander (2012), 

Westerman (2020) 

𝑅 =  
𝐻 × 𝑉

𝐶
  

where R = Risk, H = Hazards, V = Vulnerability, C = Capacity to 

cope with decreases. 

The model suits natural events 

and human impacts. Although 
natural events are one cause of 

railway accidents, the model 
cannot fit all causes. 

 

CsChe (2017) 

Risk = Hazard x Vulnerability 

Hazard = likelihood of occurrence of derailment on a discrete mile 

segment based on incident history, infrastructure, and operating 

practices. 

Vulnerability = valuation of exposure to physical elements. 

The model concerns only hazard 

and vulnerability factors. It is 

applied to freight train risk 
assessment. The model is not 

suited to benchmarking for 

passenger trains and for any 
impacts with passengers.  

Xue et al. (2020) 

𝜀𝑅 =  
(𝐿𝑅 ×  𝑊𝑅)

∑(𝐿𝑅 ×  𝑊𝑅)
 

 

CE(A − B) =
(𝑋 ∥ 𝑡 = 𝑘 − 𝑋𝐶𝐸(𝐴 − 𝐵) ∥ 𝑡 = 𝑘)

𝑋 ∥ 𝑡 = 𝑘
 

 

CE(A − B) is the coupling effect of risk factors A and B 

X∣∣t = k is the total risk level at the end of the kth year, XCE(A − B) 

∣∣t = k represents the total risk level at the end of the kth year after 

removing the coupling effect of risk factors A and B. 

This research is deeply 

concerned with technical, capital 

and management issues in 
railway risk. Also, the study 

examines economic impacts and 

organisational problems in detail.  

Jamshidi (2017) 

𝜋 (𝜃 |Δ𝐿) =  
𝑓 (Δ𝐿|𝜃)𝜋0 (𝜃)

𝑓(𝜃)
 ∝ 𝑓 (Δ𝐿|𝜃)𝜋0 (𝜃) 

 

𝜋0 (𝜃) = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑓 (Δ𝐿|𝜃) = likelihood from statistical observation 

𝜋 = 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

This research conducts posterior 

distribution methods to predict 

failure or cracks in railway 

infrastructure. Posterior 
distribution is a suitable method. 



 

 

(2018) proposed to eliminate head to tail collisions using the FTA and PT methods. The driving model, 

which classifies drivers on a scale from excellent to poor, has been developed through the DT method 

(Ochiai and et al., 2019). The result has led to decreased risk from human error. A similar result has 

been achieved from using subtree models with high demand rail. These outcomes have shown safety 

performance improvements of up to 48.05% (Chen et al., 2018).  

Several authors have addressed accident analysis. Fuzzy FTA has been applied in quantitative 

studies to predict railway accidents on HSR networks. The outcome shows that it is useful in making 

decisions when there is incompleteness and complexity (Liu et al., 2015). Accidents due to signals 

passed danger have been focused on using risk factors to reduce the cost of accidents (Kyriakidis et al., 

2019). Similarly, Zheng et al. (2016) have collected previous accident data to make forecasts, in rare 

events, concerning profit decisions. Moreover, FT, fuzzy belief models and various other risk models 

have been adopted for risk assessments on freight trains. The outcomes can improve logistic 

performances in relation to dangerous products (Huang et al., 2020; Huang et al., 2021).  

Previous studies have exclusively focused on the number of accidents, injuries, fatalities and 

other related factors (vulnerability, hazard level). Also, some models cannot be applied on other railway 

networks. Therefore, this study adopts new models to benchmark risk assessment across railway 

networks. These new models can be evaluated as tools to enhance safety performance without facing 

the issue of lack of information.  



 

 

Table 4. Summary of risk analysis methodology in existing research  

 

Author (s) Decision tree analysis Event tree analysis Fault tree analysis Petri-nets Risk evaluation Human factor analysis Others 

Jia, Xu and Wang, 2011     ✓ 
 

  

Khan et al., 2014    ✓ 
 

   

Liu et al., 2015   ✓ 
 

    

Boudi and et al, 2015    ✓ 
 

   

Zheng, Lu and Tolliver, 2016 ✓ 
 

      

Leitner, 2017 ✓ 
 

      

Eisenberger and Fink, 2017    ✓    

Vileiniskis and Remenyte-Prescott, 2017    ✓   ✓ 
 

Chen, Dollevoet and Zhao, 2018  ✓ 
 

     

Song and Schnieder, 2018   ✓ 
 

✓ 
 

   

Dindar et al., 2018       ✓ 
 

Ochiai, Masuma and Tomii, 2019 ✓ 
 

      

Cheng and Yang, 2009    ✓ 
 

  ✓ 
 

Consilvio et al., 2019     ✓ 
 

  

Li et al., 2019      ✓ 
 

 

Kyriakidis et al., 2019       ✓ 
 

Khalid et al., 2019  ✓ 
 

     

Zhou et al., 2020 ✓ 
 

      

Huang, Liu, et al., 2020   ✓ 
 

   ✓ 
 

Zhou and Lei, 2020      ✓ 
 

 

Liu et al., 2020     ✓ 
 

  

Huang, Zhang, Xu, et al., 2020     ✓ 
 

 ✓ 
 

Huang, Zhang, Kou, et al., 2020      ✓ 
 

✓ 
 

Dindar, Kaewunruen and An, 2020      ✓ 
 

✓ 
 

Huang et al., 2021     ✓ 
 

  



 

 

4. Research framework 

One approach to solving the information scarcity problem involves the use of Bayesian 

inferences. The research gathers long-term secondary passenger train accident data sets from railway 

companies’ official reports. First of all, data collection and data cleansing processes are required, 

focusing in detail only on passenger train accidents. The data cleansing process for railway accidents 

includes stages to remove invalid data sets, match rail authorities’ published documents, and recheck 

missing data sets. In this case, the invalid data sets mean that the data from unofficial records and the 

accidents under investigation. 

 

Fig. 3 The research framework 

 

The risk assessment analysis is then provided by using Bayesian statistics. This stage plays a vital 

role in the estimated probabilities for railway accidents. One important key is to infer the posterior 

probability for each effect on a train after an accident. Uncertainties can be estimated from the data 

collected, based on experts’ beliefs, due to the fact that such data usually contains uncertainty. As 

mentioned, some types of accident have an extremely low frequency and cannot be evaluated without 

using mathematical models. As a result, the research provides the outcomes from this stage as posterior 

probability values.  

Long-term data collection

Data pre-processing

Risk assessment based 
on likelihood

Risk assessment based 
on prior beliefs

Sensitivity analysis

Created posterior model 
through Python

Created Decision tree model Created Petri-net model

Results comparison

Risk benchmarking through Python

Results and dicussions



 

 

Following this, the analysis uses a non-uniform distribution (∝ = 4:4:1) to predict the posterior 

probabilities for A1, A2, and A3. This is because the research reveals that the likelihoods of effects 

after train accidents are not equal. The researchers have also placed the ‘confidence interval’ at 95%, 

leading to more precise predictions and more accurate interpretation outcomes than other publications. 

Lastly, benchmarking for risk levels is provided for five countries: China, France, Japan, South Korea 

and Spain. This study analyses data via Python and has developed the DT and PT models based on the 

posterior probability of effect after an accident, and the levels of severity of injuries and fatalities. 

Furthermore, understanding long-term risk and the uncertainties in data sets can ultimately enhance the 

safety levels on rail networks. 

 

5. Methodology  

5.1 Data availability  

This study has collected railway accident data from official company, government and rail 

authority reports. The research focuses on passenger train accidents that occurred during 2000-2019. 

There are 650 appropriate data sets, which include injury and fatality numbers, are included in this 

study. 

5.2 An application on the Bayesian network 

In this study, a Bayesian network has been created to help readers clearly understand the causes 

and effects of railway accidents within conditions of uncertainty. This has led to the correct 

development of causes of railway accidents and the reduction of fatalities and injuries (Heckerman, 

Geiger and Chickering, 1995; Uusitalo, 2007).  

By following the Bayesian network in this study, the list of all causes has been adopted from 

the FRA and other railway authorities (FRA, 2019), as illustrated in Tables 1 and 2. The basic model 

defines the relationship between (A) effects of accidents, (B) causes of accidents, and (C) sub-causes 

of accidents, as shown in Figure 4. It can be stated that ‘C’ is conditionally dependent upon ‘B’ and ‘A’ 

(P(C | A, B)), and that ‘B’ is conditionally dependent on A (P (B | A)). All variables ‘A’ denotes the 

effects of railway accidents, with A1, A2 and A3 referring to collisions, derailments and others, 

respectively.  



 

 

 

Fig. 4 Overall Bayesian network framework for railway accidents 

 

5.3 Bayes’ Theorem 

 Bayesian statistics can be explained as probabilities that express a degree of belief or 

information about an event called ‘prior knowledge’. It involves the conditional probabilities of two 

events, A and B. Also, Bayes’ theorem can be inverted to find the likelihood of a single event, as shown 

in equations 1 and 2 (Briggs, Ades and Price, 2003; Sobradelo, Bartolini and Martí, 2014). 

 

 
𝑃 (𝐴 | 𝐵) =  

𝑃 (𝐵 | 𝐴)  ∗  𝑃 (𝐴)

𝑃(𝐵)
 

(1) 

 

 
𝑃 (𝐵) =  

𝑃 (𝐵 | 𝐴)  ∗   𝑃 (𝐴)

𝑃(𝐴 | 𝐵)
 

(2) 

  

Referring to the classification of the effects and causes of accidents in Tables 1 and 2, the 

conditional probability of the effects, A, given the causes, B, can be calculated from equation 1. 

Alternatively, the probability of the causes, B, can be attained from equation 2. Hence, the above 

equations can reveal the inherent relationship between Tables 1 and 2. For example, given the 

probability of train derailment, A1, due to driver error, B1, Bayes’ theorem can be restated as the 

equations below. 

𝑃 (𝑇𝑟𝑎𝑖𝑛 𝑑𝑒𝑟𝑎𝑖𝑙𝑚𝑒𝑛𝑡 | 𝐷𝑟𝑖𝑣𝑒𝑟′𝑠 𝑒𝑟𝑟𝑜𝑟)

=  
𝑃 (𝐷𝑟𝑖𝑣𝑒𝑟′𝑠 𝑒𝑟𝑟𝑜𝑟 | 𝑇𝑟𝑎𝑖𝑛 𝑑𝑒𝑟𝑎𝑖𝑙𝑚𝑒𝑛𝑡) ×  𝑃 (𝑇𝑟𝑎𝑖𝑛 𝑑𝑒𝑟𝑎𝑖𝑙𝑚𝑒𝑛𝑡)

𝑃(𝐷𝑟𝑖𝑣𝑒𝑟′𝑠 𝑒𝑟𝑟𝑜𝑟)
 

(3) 

 

𝑃 ( 𝐷𝑟𝑖𝑣𝑒𝑟′𝑠 𝑒𝑟𝑟𝑜𝑟) =  
𝑃 (𝐷𝑟𝑖𝑣𝑒𝑟′𝑠 𝑒𝑟𝑟𝑜𝑟 | 𝑇𝑟𝑎𝑖𝑛 𝑑𝑒𝑟𝑎𝑖𝑙𝑚𝑒𝑛𝑡)  ×  𝑃 (𝑇𝑟𝑎𝑖𝑛 𝑑𝑒𝑟𝑎𝑖𝑙𝑚𝑒𝑛𝑡)

𝑃 (𝑇𝑟𝑎𝑖𝑛 𝑑𝑒𝑟𝑎𝑖𝑙𝑚𝑒𝑛𝑡 | 𝐷𝑟𝑖𝑣𝑒𝑟′𝑠 𝑒𝑟𝑟𝑜𝑟)
 

(4) 

 



 

 

By following the mathematical proofs for equations 3 and 4, the probability of the cause of an 

accident can be calculated. In addition to Bayes’ theorem, Bayesian inference has been used; this is a 

statistical inference method in which the probability of a hypothesis is updated as more evidence or 

information becomes available (Payzan-Lenestour and Bossaerts, 2011; Dindar et al., 2018). In general, 

Bayesian inference is carried out by (i) choosing the prior distribution, which is a probability density 

𝑝(𝜃) expressing one’s beliefs about a parameter 𝜃 before seeing any data, (ii) choosing a statistical 

model 𝑝(𝑥|𝜃) that reveals one’s beliefs about data 𝑥 given parameter 𝜃, and (iii) updating the beliefs 

and calculating the posterior distribution 𝑝(𝜃|𝐷) after observing data 𝐷. By Bayes’ theorem, the 

posterior distribution can be written as: 

 𝑝 (𝜃|𝐷) =  
𝑝 (𝐷|𝜃) ∗𝑝(𝜃)

𝑝(𝐷)
  

(5) 

 

where 𝑝 (𝜃|𝐷) is the joint posterior distribution, which expresses uncertainty after taking both 

the prior distribution and data into account; 𝑝 (𝐷|𝜃) is the likelihood function; 𝑝(𝜃) is the set of prior 

distributions; and 𝑝(𝐷) is the normalising constant, which is also called the evidence. Figure 5 

illustrates an overview of Bayesian inference. 

 

Fig. 5 An overview of Bayesian inference representing how one’s beliefs are updated after observing the data 

 

5.4 Bayesian statistics in Python and other computer programming languages 

As posterior probability is expected to be the outcome from the research, the study adopts 

‘PyMC’, a well-known Bayesian statistics package in Python. The research creates a novel model 

through Python to find the probabilities of railway accidents. Using this method, the outcome provides 

posterior distribution and statistical information, such as mean, variance, and confidence intervals. 

These can undoubtedly represent the uncertainty in the data collected for the research. 

Various studies combine the Bayesian network model with computer programming (Pol, 2003; 

Patil, Huard and Fonnesbeck, 2010). Bayes’ functionality has been created in computer programming 

languages because it can solve complicated conditional probability problems and offer visualised 



 

 

solutions. It can also be broadened and applied to other related fields such as statistics or mathematics. 

With respect to the Python language, PyMC is based on the Markov chain Monte Carlo (MCMC) 

method, which is a class of algorithm for sampling from probability distributions. The MCMC is a 

useful technique for attaining information about distributions, especially for estimating posterior 

distributions in Bayesian inference, which are often difficult to determine using analytical examination.  

 

6. Data Analysis 

In this study, Bayesian inference is used to examine uncertainty in collected data using proposed 

prior distributions. The Dirichlet distribution, which is a non-uniform distribution, is analysed and 

discussed. This is important for correctly interpreting the results obtained from experts’ beliefs and data 

collection. Many scholars have widely applied the Dirichlet distribution into research for prediction, 

classification and match probabilities. This method suits the multinomial proportion analysis though 

the Bayesian model (Geiger and Heckerman, 1995; Bouguila and Ziou, 2008; Lange, 1995). In this 

study, the outcome is to enable the finding of probability density functions, in order to validly predict 

the probability of future accidents.  

Dirichlet distributions, or multivariate beta distributions, are a family of continuous probability 

distributions for 𝑘 categories. Let 𝑥 form the probability of each parameter, 𝜃 = {𝜃1, 𝜃2, … , 𝜃𝑘}, where 

0 ≤ 𝜃𝑖 ≤ 1 for 𝑖 ∈ [1, 𝑘] and, ∑ 𝜃𝑖
𝑘
𝑖=1 = 1. The probability density function of the Dirichlet distribution 

is given by: 

 𝐷𝑖𝑟(𝜃|𝛼) =
1

𝐵(𝛼)
∏ 𝜃𝑖

𝛼𝑖−1𝑘
𝑖=1   (6) 

where 𝐵(𝛼) is the multinomial beta function, 𝐵(𝛼) =
∏ Γ(𝛼𝑖)

𝐾
𝑖=1

Γ(∏ 𝛼𝑖
𝐾
𝑖=1 )

; and 𝛼 is a vector of positive real values 

called a hyperparameter, 𝛼 = (𝛼1, 𝛼2, … , 𝛼𝑘). The expected value of a Dirichlet distribution can be 

directly calculated from the vector 𝛼, which is 𝐸[𝑋𝑖] =
𝛼𝑖

𝛼0
; 𝛼0 = ∑ 𝛼𝑠

𝑘
𝑠=1 . 

In order to estimate posterior distribution (𝑝) using Dirichlet distributions (𝛼) as priors based 

on given observations (𝑋) with a discrete distribution, this study uses the Dirichlet-multinomial model, 

which is a multinomial distribution with Dirichlet priors. Using Bayes’ rule, the posterior distribution 

is: 

 𝑃(𝑝|𝑋, 𝛼) = 𝐷𝑖𝑟(𝑁 + 𝛼) (7) 

This means that the posterior distribution is a Dirichlet distribution with parameters 𝑁 + 𝛼, 

where 𝑁 is the occurrence count. Hence, the expected value can be analytically expressed as: 

 𝐸[𝑝𝑖|𝑋, 𝛼] =
𝑁𝑖+𝛼𝑖

𝑁+∑ 𝛼𝑠
𝑘
𝑠=1

   (8) 

where 𝑁𝑖 is the observed count for each category, and 𝛼 is the pseudo-observations for each type. 

With regards to the long-term data collected, the Dirichlet distribution analysis is provided 

based on the assumption that the fractions for A1 and A2 are equal, and the fraction for A3 is less than 



 

 

for A1 and A2 (P(A3) < P(A1); P(A3) < P(A2)). This assumption is based on the collected data, which 

shows the fraction for A3 to be only 13%. Therefore, the Dirichlet models for non-uniform distribution 

are given as A1: A2: A3 = 4:4:1.  

The research takes the long-term FRA data set and compares it with the actual rate of railway 

accidents to validate the created model. The 63,770 data sets are analysed within the developed Python 

model at a 95% confidential level. Many experts have mentioned that the probabilities for the effects of 

railway accidents are equal; in other words, the likelihoods of train collision, derailment and other 

effects should be given as ∝ = 1:1:1. However, the model created proposes the fractions for prior belief 

to be ∝ = 4:4:1 instead of ∝ = 1:1:1.  

Table 5. Comparison of the actual values: model 4:4:1 and model 1:1:1 

Model/Type of accident A1-Collision A2-Derailment A3-Others 

Actual value 0.549 0.341 0.110 

∝ = 4:4:1 0.546 0.352 0.102 

∝ = 1:1:1 0.536 0.351 0.112 

 

The results in Table 5 show that the model created with prior belief fractions of ∝ = 4:4:1 has 

a high degree of efficiency, and more precisely predicts the actual A1, A2 and A3 values better than for 

prior belief fractions of ∝ = 1:1:1. These findings imply that the probability of effects after accidents 

are not equal. For the current work, it is sufficient to point out that the non-uniform distribution type, 

‘∝ = 4:4:1’, is the best-fitting model. 

 

7. Benchmarking levels of risk of railway accidents 

In section 6, the research finds that a non-uniform distribution (4:4:1) is the most appropriate 

model for this study. This section aims at benchmarking the risk levels of railway accidents across five 

countries: China, Japan, South Korea, Spain and France. The research is conducted using accident 

datasets, which include the effects on trains, and the number of injuries and fatalities, during a time 

frame of 20 years. 

According to the classification of effects on trains after accidents, this study reveals that the 

effect type ‘A3’ is associated with a significantly higher number of injuries and fatalities than effect 

types ‘A1’ and ‘A2’. The level of damage associated with A3 is approximately four times the usual 

level. The data collected on the five countries of interest illustrate that effect type ‘A3’ occurs only 14 

times, with 2,354 injuries and 438 fatalities (ERA, 2018; ETSC, 2020; ORR, 2020; Statista, 2020; JR 

Central, 2021; CRRC, 2020; ARAIB, 2021). On the other hand, ‘A1’ and ‘A2’ occurred 47 and 45 

times, respectively, with injury and death rates for ‘A1 and A2’ being close to the ‘A3’ figures. It can 

be concluded that ‘A3’ is associated with significantly more damage than other types of effect. 

 



 

 

7.1 Posterior probability distribution results 

The study uses the non-uniform distribution model (4:4:1) to find the posterior probabilities for 

collision, derailment and other effects. The analysed results are shown in Table 6, and are taken into 

account in the risk assessment process. The comparison of the posterior distributions for collision, 

derailment, other effects by country, and the overall posterior distributions, are shown in Figure 6. 

Table 6. Comparison of the results of non-uniform distribution by country 

 

 

(a.)                                                                               (b.) 

 

(c.)       (d.) 

Fig. 6 Comparison of the posterior distributions for (a.) collision (b.) derailment (c.) other by country, and (d.) overall posterior distributions. 

  
mean sd hpd_2.5% hpd_97.5% mcse_mean mcse_sd ess_mean ess_sd ess_bulk ess_tail r_hat 

China 

A1 0.425 0.098 0.234 0.62 0.003 0.002 1447 1442 1443 1057 1 

A2 0.462 0.098 0.281 0.656 0.002 0.002 1557 1546 1551 1299 1 

A3 0.113 0.06 0.023 0.24 0.001 0.001 1730 1562 1751 1219 1 

France 

A1 0.407 0.095 0.225 0.588 0.003 0.002 1252 1252 1239 1144 1 

A2 0.517 0.096 0.338 0.704 0.003 0.002 1406 1406 1396 1207 1 

A3 0.076 0.051 0.001 0.173 0.001 0.001 1571 1530 1449 974 1 

Japan 

A1 0.357 0.118 0.154 0.603 0.003 0.002 1500 1495 1464 1033 1 

A2 0.585 0.119 0.345 0.804 0.003 0.002 1548 1538 1534 1278 1 

A3 0.058 0.054 0 0.168 0.001 0.001 1629 1576 1483 884 1.01 

South Korea 

A1 0.424 0.113 0.203 0.629 0.003 0.002 1474 1392 1484 1144 1 

A2 0.473 0.115 0.267 0.702 0.003 0.002 1600 1600 1605 1333 1 

A3 0.103 0.067 0.004 0.235 0.002 0.001 1538 1437 1440 1042 1.02 

Spain 

A1 0.492 0.063 0.374 0.619 0.002 0.001 1468 1461 1469 1444 1 

A2 0.327 0.061 0.218 0.457 0.002 0.001 1609 1604 1607 1559 1 

A3 0.181 0.05 0.085 0.279 0.001 0.001 1507 1428 1533 1035 1 

Overall 

A1 0.444 0.045 0.36 0.533 0.001 0.001 1830 1809 1843 1313 1 

A2 0.426 0.045 0.335 0.511 0.001 0.001 1928 1918 1933 1326 1.01 

A3 0.129 0.031 0.072 0.189 0.001 0.001 1808 1781 1817 1416 1 



 

 

 

7.2 Risk assessment models 

By analysing the existing risk models in Table 3, there is no previous research using posterior 

probability to benchmark railway network risk levels. Posterior probability offers highly accuracy 

prediction from the long-term data collected and expert beliefs. On the other hand, the existing models 

are mostly applied to vulnerability and hazard factors. This study concerns accident damage (numbers 

of fatalities and injuries) and posterior probabilities of the effects of train accidents (A1, A2, A3). With 

respect to benchmarking the risk levels among the five rail networks, the research combines the DT and 

PT models.  

 

7.2.1 The design of the DT model 

The DT model is a predictive structure flowchart used for classification after the input of 

attributes. In this study, the DT model is applied for the evaluation of the risk levels among rail 

networks. This research defines outcomes on each branch, which are either ‘yes’ or ‘no’. The leaf nodes 

represent decision rules containing five conditions: fatality rate, injury rate, and the values of A1, A2 

and A3. The model’s end nodes break down into 32 outcomes to represent risk levels, in which the 

minimum score means the lowest risk and the maximum score means the highest risk. 

 

7.2.2 The PT model 

The PT model is a potential mathematical model that contains three elements: place, transition 

and arc. The model is mostly applied in the manufacturing process to explain the flow of elements in 

the system. In this study, the PT model is also used to evaluate risk level, as shown in equations 9-13. 

Let S be an integer number representing the risk level, which is an expected outcome. S relies 

on two factors, as shown in equation 9. 

 

 𝑆 (𝑒 ̅, �̅�) (9) 

where; 𝑒 ̅ = events and �̅� = weight 

  

The vector 𝑒 ̅ represents events or model’s conditions, which consist of fatalities rate, injuries 

rate, A3, A1 and A2 values. 

 

𝑒 ̅ =

[
 
 
 
 
𝑒1

𝑒2

𝑒3

𝑒4

𝑒5]
 
 
 
 

=  

[
 
 
 
 
𝑑𝑒𝑎𝑡ℎ
𝑖𝑛𝑗𝑢𝑟𝑦

𝐴3
𝐴1
𝐴2 ]

 
 
 
 

    

(10) 

 

where; 𝑒𝑛 = 1 if 𝐼𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝑒𝑛 = 0 if 𝐼𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙 

Given the vector �̅� is the weight of vector 𝑒 ̅, as shown in equation 11.  



 

 

 

�̅� =  

[
 
 
 
 
𝑤1

𝑤2

𝑤3

𝑤4

𝑤5]
 
 
 
 

  = 

[
 
 
 
 
16
8
4
2
1 ]

 
 
 
 

 

(11) 

 Then, the dot product of �̅� and �̅� vectors are a key operation in using vectors in geometry, as 

shown in equation 12. And, the risk level (S) can be evaluated by equation 13. 

 

𝑆 = �̅� ∙ �̅� =

[
 
 
 
 
16
8
4
2
1 ]

 
 
 
 

 .  

[
 
 
 
 
𝑒1

𝑒2

𝑒3

𝑒4

𝑒5]
 
 
 
 

 

(12) 

 

 𝑆 = 16𝑒1 + 8𝑒2 + 4𝑒3 + 2𝑒4 + 𝑒5 (13) 

 

The structure of the PT model, which is called ‘Synchronisation’, is designed as shown in 

Figure 9. The PT model has the advantage that it clearly represents the complex discrete events model. 

The model’s form can be shortened, but it remains a flow of information and outcomes. In this study, 

the PT model is used to evaluate risk levels. And, the DT and PT outcomes are then compared.  

 

7.3 Sensitivity analysis 

A sensitivity analysis is conducted in this study to find the optimal threshold for railway risks, 

which is used for decision-making. Additionally, it aims to determine the certainty of the DT and PT 

models created while new data sets are added to the models caused by changes in A1, A2 and A3. The 

preliminary analysis states that the model has a high level of certainty, which can be verified from the 

sharp edges in the graphs in Figure 5. Hence, the sensitivity analysis varies with the standard deviation 

in the ranges of ±1s.d. and ±2s.d., while the injury and fatality rates vary with the Q1 (quartile 1), mode 

value, Q3 (quartile 3) and mean values (�̅�).  

Six analysis models have been created, all of which have been validated in the range ±1s.d. and 

±2s.d. To evaluate and select the best model, the ‘total absolute error’ is used as a critical measurement. 

The model with the lowest total absolute error value can be interpreted as the model with the highest 

degree of certainty. 

The total absolute error is calculated using the summation of the ‘percentage changed’ from the 

mean value, as shown in equation 14. Also, the absolute error and total absolute error are expressed in 

equations 15 and 16. 

 

 
𝑃𝑒rcentage changed (%) =

𝑋 − �̅� 

31
×  100 

(14) 

 



 

 

 
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 (%)  = ∑(% 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑖)

𝑖=1

 
(15) 

 

 𝑇𝑜𝑡𝑎𝑙 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 (%) =  ∑ (𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑗)𝑗=1     (16) 

where x is an outcome from the data analysed through the model, i is an index in the sensitivity 

analysis, 𝑖 ∈ {-2s.d., -1s.d., 1s.d., 2s.d.}; and j is a country index, j ∈ {China, France, Japan, South 

Korea, Spain}. 

In conclusion, the results from the models and for total absolute error are shown in Table 7. The 

research reveals that model 2, which uses Q3 thresholding for both the injury and fatality rates, shows 

the minimum total absolute error at 61.29%. As a result, the sensitivity analysis for model 2 by country 

gives graphs with low levels of fluctuation, as illustrated in Figure 7. Lastly, the DT and PT models 

created in this research are shown in Figures 8 and 9, respectively. 

 

Table 7. Summary of the model and the total absolute error 

 

Model Sensitivity analysis Total absolute error (%) 

1 Mean value thresholding with injury and fatality rates 112.90 

2 Q3 thresholding with injury and fatality rates 61.29 

3 Mode thresholding with injury and fatality rates 64.52 

4 Q1 thresholding with injury and fatality rates 119.35 

5 Q3 thresholding with injury rate and Q2 thresholding with a fatality rate 71.29 

6 Q2 thresholding with injury rate and Q3 thresholding with a fatality rate 74.19 

 

 

Fig. 7 Sensitivity analysis of Q3 thresholding for injury and fatality rates 



 

 

 

Fig. 8 Overall DT framework for evaluating risk score 

 

 

 

Fig. 9 Design of the PT model, containing five conditions: fatality rate, injury rate, and values for A1, A2 and A3 



 

 

7.4  Result and discussion of benchmarking railway risk 

The results from analysing the data sets via the DT and PT models produce discrete numbers 

in the range 1 to 32. The risk level can be classified into four groups based on the risk score. A score in 

the range 1-8 means low risk, 9-16 means moderate risk, 17-24 means high risk, and 25-32 means 

extremely high risk. 

The benchmarking results across the five HSR networks are provided in Table 8. These 

outcomes give a significant advantage because safety policies can be adopted from those of ‘low risk’ 

networks for upcoming projects. The risk level analysis results show that South Korea’s railway system 

has the greatest risk among these selected countries. The safety level of South Korea’s network has 

score at 18 that classifies as ‘high risk’; whereas, France’s network has a score of 10, which is in the 

‘moderate risk’ range. China’s, Japan’s and Spain’s railway systems have scores of 2, 2 and 7, 

respectively, which are in the ‘low risk’ range.  

 

Table 8. The result of risk level analysis 

HSR networks Risk score Risk level Ranked 

China 2 Low  1st 

France 10 Moderate 4th 

Japan 2 Low 1st 

South Korea 18 High 5th 

Spain 7 Low 3rd 

 

From the most in-depth analysis of China’s and Japan’s networks, both countries have a small 

number of accidents, and the injury and fatality rates per accident have been shown to be low. Therefore, 

the risk levels across these networks are ‘low’. Moreover, advanced safety systems have been installed 

on these networks. For example, high magnitude earthquakes have affected train derailment in Japan, 

so the Japanese network has installed an urgent earthquake detection system on the track to cut off the 

power supply. This has led to a long-term improvement in passenger safety levels and prevention of 

damage to trains.  

Similarly, Spain’s network has a ‘low’ risk level, with a score of 7. Although Spain has the 

largest number of accidents, most accidents have not affected passengers or have caused few injuries. 

It is these low injury and fatality rates that lead to the Spanish network having a ‘low’ risk. France’s 

network, meanwhile, shows a ‘moderate’ risk level of 10. The number of accidents is three times lower 

than in Spain. Nevertheless, the average fatality and injury rates are 15 and 96 persons per accident, 

respectively, which are more than the global average.  

On the other hand, South Korea has a higher risk level than the other countries. Despite the low 

number of a train accidents, the severity of these accidents is ‘high’. The data collected show average 

fatalities and injuries per accident of 18 and 41 persons. This brings South Korea’s severity level above 

the global average, thereby causing the estimated risk score for South Korea’s network to be ranked 

highest.  



 

 

It is worth discussing these interesting facts revealed by the results of this risk benchmarking 

model. Extensive and overcrowded rail networks have high accident probabilities; therefore, this 

benchmarking model suggests that the levels of risk due to other related factors should be evaluated 

instead of the accident rate. The risk levels in the results can be standardly explained by case studies as 

above, and the model can be benchmarked with other networks. 

In comprehensive detail, the causes in accident type ‘A3’ (other train-related causes) occur due 

to two primary reasons: mechanical failures and contributing factors. With respect to minimising risk 

level, the research highly recommends railway operators to provide adequate maintenance schemes for 

trains, tracks, and systems, and to enhance safety policies and staff training in coping with severe 

accidents. 

 

8. Conclusions 

With the growth of HSR and rail networks worldwide, safe rail services are a key driver for 

railway operators in supporting passenger journeys. Based on the long-term accident data sets, rail 

accidents can be classified into three groups: collisions, derailments and other effects. This study has 

found that the ‘other effects’ category caused four times more damage than collisions and derailments. 

Therefore, the research has analysed the accident data sets through novel models and has selected best 

practice. The results illustrate that the non-uniform distribution, with ∝ = 4:4:1, offers the most accurate 

results.  

 This research aims at understanding the uncertainties of railway accidents to precisely reduce 

the impact of casualties. In terms of benchmarking risk levels, five countries have been selected: China, 

France, Japan, South Korea and Spain. The research has developed a ‘benchmarking risk’ model, which 

is a linear transform model based on posterior probability, and the severity levels of injuries and 

fatalities. Moreover, the analysis is conducted through the DT and PT methods. The benchmarking 

results illustrate that China’s, Japan’s and Spain’s networks are in the ‘low risk’ category, while 

France’s network is ‘moderate risk’ and South Korea’s network is ‘high risk’. 

To improve safety on railway networks, this study recommends that ‘other effects – A3’ should 

be eliminated or minimised; because the severity level of A3 accident is extremely higher than A1 and 

A2. The causes of A3 are mechanical failure and contributory factors. Future studies should fruitfully 

explore this issue further by intensely discussing the root causes of accidents by using posterior 

distributions. Our findings on posterior probabilities can also be applied as a new form of measurement 

for policymakers or railway companies. 
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