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Abstract
αβT cells are an essential component of effective immune responses. The heterogeneity that lies within them includes subsets
that express diverse self-MHC-restrictedαβT cell receptors, which can be further subdivided into CD4+ helper, CD8+ cytotoxic,
and Foxp3+ regulatory T cells. In addition, αβT cells also include invariant natural killer T cells that are very limited in αβT cell
receptor repertoire diversity and recognise non-polymorphic CD1d molecules that present lipid antigens. Importantly, all αβT
cell sublineages are dependent upon the thymus as a shared site of their development. Ongoing research has examined how the
thymus balances the intrathymic production of multiple αβT cell subsets to ensure correct formation and functioning of the
peripheral immune system. Experiments in both wild-type and genetically modified mice have been essential in revealing
complex cellular and molecular mechanisms that regulate thymus function. In particular, studies have demonstrated the diverse
and critical role that the thymus medulla plays in shaping the peripheral T cell pool. In this review, we summarise current
knowledge on functional properties of the thymus medulla that enable the thymus to support the production of diverse αβT cell
types.
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Introduction

The thymus plays an essential role in the immune system by
providing a unique environment to support αβT cell develop-
ment. Unlike the bone marrow, the only other primary lym-
phoid organ, lymphocyte development in the thymus requires
the continued importation of lymphoid progenitors to ensure
that αβT cells are produced throughout life. As such, the
ability of the thymus to recruit, foster, and export αβT cells
effectively determines how the peripheral immune system
mounts effective responses. It is now clear that the multi-
stage process of αβT cell development requires serial interac-
tions with stromal environments that form cortical and med-
ullary area of the thymus. While early events in thymocyte
development take place in the thymic cortex and are

controlled by the cortical thymic epithelial cells (cTEC), the
thymus medulla plays a pivotal role in events that ensure the
correct formation of multiple αβT cell sublineages [1–3]. For
example, for conventional αβT cell receptor (αβTCR) ex-
pressing thymocytes, the medulla purges the newly selected
repertoire of autoreactive specificities via negative selection,
and supports their post-selection thymocyte maturation and
egress from the thymus [4]. In addition, through interactions
with medullary thymic epithelial cells (mTEC) and dendritic
cells (DC), the thymus medulla enables lineage diversion of
CD4+ single-positive (CD4SP) thymocytes to Foxp3+ T reg-
ulatory (T-Reg) cells that control anti-self-immune responses
[5]. Finally, the thymus medulla provides multiple signals that
enable CD1d-restricted invariant natural killer T (iNKT) cells
to complete their intrathymicmaturation [6]. Thus, the thymus
medulla generates multiple αβT cell types that play important
roles in both innate and adaptive immunity. Indeed, the func-
tional importance of the thymus medulla is readily evident in
the disruption of immune homeostasis and manifestation of
autoimmunity that occurs when its development and/or func-
tion is impaired. This can include the consequences of natu-
rally occurring or experimentally induced genetic mutations
that take place either in the cells that help form the medulla
(e.g. Aire, Relb in mTEC) or in the cells that the medulla
fosters (e.g. Foxp3 in T-Reg) [7–10]. Given this importance
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and the recent advances made in understanding the cellular
complexity of mTEC, the primary focus of this review is to
examine the cell types that reside within the thymus medulla,
and examine how they form microenvironments that shape
key events during intrathymic αβT cell development.

mTEC functionality and function

MHCIIhiCD80hi mTEChi

mTEC are classically defined as an Ly51−UEA-1+ subset of
total EpCAM+ TEC. Within the bulk mTEC population, anal-
ysis of MHCII and CD80 reveals mTEClo (MHCIIloCD80lo)
andmTEChi (MHCIIhiCD80hi) subsets.While much effort has
been made to understand the developmental relationships of
mTEC subsets, mTEC pathways are still not fully understood.
For example, while mTEClo are known to contain progenitors
of mTEChi, they also contain cells that are ‘ex-mTEChi’ and so
represent late stages of mTEC development.

An important role of mTEChi is the induction of central
tolerance, which involves the screening of αβTCR specificities
that newly positively selected single positive (SP) thymocytes
express. This becomes possible as a proportion of mTEChi

express autoimmune regulator (Aire), with the development
of Aire+ being driven by cell surface receptors that are members
of the tumour necrosis factor superfamily, notably RANK
[11–14]. Aire expression bymTEChi allows for the presentation
of tissue-restricted antigens (TRAs) by via MHCI and MHCII,
enabling the effective screening of developing thymocytes for
their TCR specificity against self [11]. The molecular mecha-
nisms that control Aire-mediated expression are beginning to
emerge [15, 16]. Some studies propose that Aire functions
through its recruitment to target genes where it causes localised
histone modifications via either histone methylation or acetyla-
tion which relaxes chromatin for subsequent TRA transcription
[17]. In addition, the protein deacetylase Sirtuin-1 or Sirt1 was
shown to be highly expressed in mature Aire-expressing mTEC
and it remains closely associated with Aire itself, resulting in
the deacetylation of Aire that is necessary for its transcriptional
activity [18]. In addition to Aire, some mTEChi express the
transcription factor FEZ family zinc finger 2 (Fezf2), which
has been reported to allow for expression of TRAs by mTEC
that are distinct from those under the control of Aire [19].
However unlike Aire, Fezf2 is not restricted solely to
mTEChi, with Fezf2+ cells also present within the mTEClo

compartment. Indeed, and in contrast to earlier observations,
both Aire and Fezf2 are controlled by RANK signalling, with
LTβR dispensable for Fezf2 expression [20]. Significantly, de-
letion of Fezf2 in TEC did not impair Aire expression, but
resulted in an autoimmune phenotype, suggesting the function-
al importance of Fezf2 expression in the thymus for immune
tolerance [19]. Therefore Aire and Fezf2 may function

cooperatively, allowing for a more extensive TRA expression
profile [21].

MHCIIloCD80lo mTEClo

The mTEClo subset was originally described as an immature
progenitor population that gave rise to mTEChi following
RANK and CD40 stimulation. However, it has also been
shown that mTEChi could revert back to a mTEClo phenotype
following Aire expression [12, 22], suggesting that there is
considerable heterogeneity within mTEClo. This fits well with
recent studies uncovering multiple and distinct mTEC subsets
using single-cell RNA-Seq analysis [23–26], and further work
is necessary to understand the development relationships and
functionality of these subsets.

mTEClo that are generated from mTEChi are composed of
multiple subsets. For example, they can begin to express
markers including involucrin that are representative of termi-
nally differentiated epithelial cells such as keratinocytes,
which may further lead to the formation of structures that
resemble Hassall’s corpuscles [27, 28]. These are readily iden-
tifiable in the human thymus, where they have been linked to
DC activation and T-Reg generation [29]. In mice, though less
pronounced in size and frequency, such structures have also
been reported to play a role in DC activation that drives IFN-α
production and T cell maturation [30]. An additional subset of
mTEClo, some of which are generated post Aire expression,
are thymic tuft cells [23, 24], which are also seen in the human
thymus [23, 27, 31, 32]. In mice (designated LTβRTEC), de-
letion of LTβR in TEC resulted in an absence of thymic tuft
cells [33], which fits well with the importance of LTβR sig-
nalling during mTEC terminal maturation [34, 35].
Interestingly, analysis of tuft cells from different anatomical
sites such as the colon, trachea, thymus, and bladder highlight-
ed tissue-specific features of tuft cells and also showed that gut
and thymus tuft cells had many similarities, including expres-
sion of IL-25, Dclk1, Trmp5, and Pou2f3 [36]. While the
functional properties of thymic tuft cells have not yet been
fully examined, conventional thymocyte development appears
grossly normal in the absence of tuft cells [23, 24]. However,
there is some evidence suggesting that through their expres-
sion of cell-type-specific molecules, tuft cells play a role in T
cell tolerance mechanisms [24]. In addition, subtle defects in
T-Reg [37], ILC2 [23], and iNKT cells [24, 33] have also been
reported in tuft cell–deficient mice. Indeed, IL-25 expression
by tuft cells was recently shown to influence IL-4-producing
iNKT cells that regulate thymic DC [33]. Thus, emerging
evidence suggests that tuft cells represent a functionally rele-
vant mTEC subset in the thymus, which fits well with the idea
that subsets within mTEClo are linked to thymus function.

Another striking example of the ability of mTEClo to influ-
ence T cell development is the identification of a subset that
expresses the chemokine CCL21 [38]. Indeed, an essential
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requirement for CCL21 in the control of cortex to medulla
migration of positively selected thymocytes identifies
CCL21+ mTEClo as a critical, functionally mature mTEClo

subset [39]. Interestingly, while the frequency of CCL21+

mTEClo is reduced in LTβR-deficient mice [38], their levels
of CCL21 expression are not altered [33]. Thus, LTβR may
control proliferation and/or survival of CCL21+ mTEClo.
However, the precursor-product relationships that give rise
to CCL21+ mTEClo in relation to other mTEClo subsets, in-
cluding tuft cells, are not well understood. The generation of
CCL21-reporter mice [39] and the recent identification of
CD104 as a cell surface marker of CCL21+-producing cells
within mTEClo [33] should enable the direct isolation and
further characterisation of these cells.

Thymic dendritic cells and central tolerance

As well as the documented function of mTEC, DC can also be
found in the thymus medulla from the late stages of embryo-
genesis, where they aid central tolerance induction [33, 40].
There are three populations of DC within the thymus, two
conventional DC subsets (cDC1 and cDC2) and plasmacytoid
DC (pDC) [41, 42].

Intrathymic conventional dendritic cells 1

Recent findings indicate that conventional dendritic cells 1
(cDC1) develop from migrant pre-cDC progenitors that are dis-
tinct from the lymphoid lineage, and are recruited to the thymus
via CCR7-CCL21 [43, 44]. Intrathymic cDC1 are typically
localised within the medulla as they express the chemokine re-
ceptor XCR1 and mTEC produce its ligand XCL1 in an Aire-
dependent manner [45]. The localisation of cDC1 near to mTEC
is likely paramount to their function, as they specifically assist
central tolerance by cross-presenting antigen via apoptotic ma-
terial release or trogocytosis from Aire+ mTEC [46–48]. In a
recent study, depletion of both cDC1 and mTEC resulted in
the induction of organ-specific autoimmunity that was not seen
in the selective absence of either mTEC or cDC1 alone, suggest-
ing a cooperative functioning between these two populations for
central tolerance [49]. Similarly, aly/aly mice with a point mu-
tation in the NF-κB-inducing kinase (NIK) gene show disrupted
mTEC and cDC1 numbers with subsequent peripheral autoim-
munity, thus reinforcing the requirement for cross-talk between
cDC1 and mTEC for negative selection [50].

Thymic recruitment and function of extrathymic DC

cDC2 and pDC migrate into the thymus as mature cells and
utilise cell adhesion molecules to gain thymic entry [51, 52].
cDC2 are recruited to the thymus through CCR2 expression
with CCL8 (MCP-2) expressed by cTEC and surrounding

blood vessels [53]. pDC migrate to the thymus via CCR9
expression and are likely attracted by CCL25-expressing
TEC [52]. Additionally, pDC recruitment to the thymus may
involve additional chemokine receptors and ligands. For ex-
ample, pDC are receptive to CCR7 ligands in transwell mi-
gration assays [54]. Following thymic entry, cDC2 and pDC
undergo extensive proliferation and upregulate expression of
MHCII and CD80/CD86 priming them to interact with devel-
oping thymocytes and support tolerance induction [41]. Their
ability to induce negative selection was demonstrated when
OVA-pulsed DC were transferred intravenously into OT-II
TCR transgenic mice, which resulted in the induction of thy-
mocyte negative selection [41, 51]. In addition, as cDC2 are
situated around blood vessels in the thymus, they are well
placed to capture and present circulating antigens to support
negative selection [53, 55, 56]. Furthermore, the capacity of
the thymus to induce negative selection was shown to be in-
creased by 4 weeks of age, and this correlated with a greater
number of cDC2 migrating to the thymus with enhanced abil-
ity to present and process self-antigen [57].

Thymic DC and T regulatory cell development

In addition to negative selection, DC have been associated
with a role for induction of T-Reg development in the thymus
[58]. This idea was originally controversial, as ablation of DC
did not influence thymic T-Reg numbers [59, 60]. However,
other studies have suggested that DC and mTEC play non-
overlapping roles in the production of T-Reg with distinct
TCR repertoires and that Batf3-dependent DC (cDC1) are
crucial for T-Reg selection through acquisition and presenta-
tion of Aire-dependent antigens [61]. Interestingly, while
these studies indicate the ability of DC to influence T-Reg
development, they also suggest that some thymic DC may
be more effective at supporting T-Reg generation than others.
Whether this is due to differences in the intrathymic position-
ing of different DC subsets, or differences in their functional
abilities as antigen-presenting cells, is not clear. Relevant to
this, it is interesting to note that thymic DC have been reported
as a source of IL-2 which is required for intrathymic T-Reg
development [62] suggesting that the involvement of these
cells in T-Reg generation extends beyond their provision of
TCR ligands. Interestingly, however, IL-2 has also been
shown to be produced by self-reactive CD4SP thymocytes
[63], indicating that multiple cellular sources of IL-2 can in-
fluence T-Reg development in the thymus.

Post-selection maturation of conventional
αβT cells

In addition to mediating tolerance induction, the medulla also
provides signals to ensure that conventional (i.e.
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CD25−Foxp3−CD1dtetramer−) CD4SP and CD8SP thymo-
cytes undergo a differentiation programme prior to their exit
from the thymus and entry into the circulation as recent thymic
emigrants (RTE). As such, medullary located conventional SP
thymocytes progress through a series of maturational stages
that can be identified by expression of phenotypic markers,
and acquisition of functional properties.

Defining maturational states in conventional SP
thymocytes

Classically, CD4 and CD8 are used to identify and study spe-
cific stages in T cell development in the thymus. For example,
immature T cell progenitors reside within the CD4−CD8−

compartment which give rise to CD4+CD8+ cortical thymo-
cytes. These then undergo selection events to generate
CD4SP and CD8SP cells. Following identification of 4 main
thymocyte populations based on CD4 and CD8 expression,
later studies identified further heterogeneity within SP thymo-
cytes. As discussed previously, this suggested different matu-
rational states of SP thymocytes in the thymus [64]. Indeed,
experiments involving BrdU pulse chase analysis provided
strong evidence for distinct stages in the post-selection matu-
ration of SP thymocytes [65]. Currently, many different pa-
rameters are also used to subdivide conventional SP thymo-
cytes, in the hope of reaching a consensus on the maturational
sequence of T cell development in the medulla [50, 66–69].
The use of Rag2GFP reporter mice has significantly helped in
the accurate study of SP thymocyte maturation. For example,
by separating bulk CD4SP thymocytes into 3 groups identi-
fied by differing Rag2GFP levels, initial studies showed that
the most immature cells expressed high levels of CD69 and
CD24. As these cells mature further, they downregulate CD69
and CD24 and upregulate CD62L and Qa2 [70, 71]. Thus,
immature CD4SP thymocytes are CD24+CD69+CD62L−,
while mature cells are CD24−CD69−CD62L+, and this transi-
tion is being accompanied by progressive loss of Rag2GFP
levels. Additional cell surface markers including 6C10 and the
chemokine receptors CCR7 and CCR9 also help define SP
thymocytes and their precursor-product relationships [66,
68]. For example, using 6C10, CD69, and Qa2 expression,
studies have shown that intrathymic transfer of immature
CD69+6C10+Qa2− (SP1) cells generated downstream
CD69+6C10−Qa2− (SP2), CD69−6C10−Qa2− (SP3), and
CD69−6C10−Qa2+ (SP4) populations [72, 73]. A summary
of the various ways SP thymocytes have been subdivided is
shown in Fig. 1.

While current studies frequently utilise combinations of the
above markers in analysis of SP thymocytes, important obser-
vations have been made regarding the use of Qa2 [74]. Here,
Qa2 levels in SP thymocytes were shown to be influenced by
type I interferon signalling and so may not accurately reflect
the maturational status of cell subsets [74]. Subsequently, an

alternative method was described using CD69 and MHC I to
identify 3 populations of SP thymocytes: SM (CD69+MHC
I−), M1 (CD69+MHC I+), and M2 (CD69−MHC I+) [74]. The
maturational relationship between these three populations was
confirmed by Rag2GFP levels, as well as by identifying SM,
M1, and M2 populations within previously established strate-
gies, such as the SP1–4 or CCR7/CCR9 staining combina-
tions [74]. Furthermore, the strength of this approach can be
seen in the stratification of cell function to each subset. First,
the switch to proliferation competence following TCR signal-
ling was shown to occur at the M1 stage of development [74].
Second, maturation to M2 defines when thymocytes become
‘cytokine licenced’ and produce IFNγ and TNF-α upon TCR
stimulation. Finally, the M2 stage marks the ability of SP
thymocytes to exit the thymus [74]. The ability to accurately
define progressive functional changes in SP thymocytes and
the processes that control this rely on the ability to phenotyp-
ically define distinct developmental stages. As such, reaching
a consensus on the panel of markers by researchers in the field,
perhaps CD69/MHCI/CD62L/CCR7/CCR9 may aid progress
in this area. It is also worth noting that much of the work
described above relates primarily to CD4SP thymocytes, and
while some marker combinations can help in subdividing
CD8SP, there are clear differences in marker expression with-
in the two lineages, suggesting that lineage-specific matura-
tionmarkers may be required to accurately draw up a roadmap
of both CD4SP and CD8SP thymocyte heterogeneity.

Regulation of post-selection maturation

Consistent with its importance in T cell tolerance, mice that
lack mTEC (e.g. Relb−/− mice) or lack controllers of medul-
lary access (e.g. Ccr7−/− mice and plt/plt mice) develop auto-
immunity [75, 76]. However, it is not clear to what extent
mTEC may provide important signals that guide post-
selection maturation. Indeed, the presence of phenotypically
mature SP thymocytes in the thymus of Relb−/− and Ccr7−/−

mice, and the presence of T cells in peripheral tissues, argues
against an essential requirement for mTEC in post-selection
maturation and thymic exit [39, 68, 77, 78]. However, it
should be noted that mice with medullary defects have been
reported to have defects in SP thymocytes, including a devel-
opmental block in CD4SP post-selection maturation in both
Relb−/− and Aire−/− strains [72]. However, as these observa-
tions used Qa2 expression to measure maturation status, it is
not clear whether there is indeed a maturation defect in these
mice or whether altered Qa2 expression levels are a result of
disruption of type I interferon signalling as discussed above
[74]. Indeed, when Relb−/− thymus lobes were grafted under
the kidney capsule of wild-type (WT) hosts, CD4SP thymo-
cyte maturation appeared normal, indicating that phenotypic
CD4SP thymocyte maturation can occur independently of
mTEC [68].
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Interestingly, other studies provide evidence that the thy-
mus medulla and/or mTEC may subtly influence the

functional qualities of mature SP thymocytes and RTE. For
example, when SP thymocytes of differing maturation states

CD55 expression

Susceptibility to complement

CD55

PERIPHERY
RTENAIVE T-CELL

CD55

S1P1

CORTEX

MEDULLA

cTEC

mTEC

BLOOD
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TCR-stimulation

Thymic egress
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TNFα
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2. CD69+CD62L-
3. HSA+CD62L-

4. CD69+6C10+QA2-
5. CD69+CCR7loCCR9+

CD4+
CD8+

CD4+
CD8-

1. CD69+MHC I+
2. CD69+CD62Lint/+
3. HSA+loCD62L-
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2. CD69-CD62L+
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5. CD69-CCR7+CCR9-

CCL21

Fig. 1 Phenotypic approaches to characterise post-selection maturation
of conventional CD4SP αβT cells. CD4SP conventional thymocytes
mature within the medulla, undergoing a number of phenotypic and
functional changes. A consensus on which combination of phenotypic
markers to use to identify each maturation state has not been reached, and
different gating strategies have been used within the literature. Markers
used, and how the expression of each changes through maturation, can be
followed using the 1–5 numbering system for each of the different
strategies that have been proposed. For example, #1 indicates the
express ion of CD69 and MHCI at each stage; immature
CD69+MHCI− ➔ CD69+MHCI+ ➔ mature CD69−MHCI+. Following

initial maturation from an ‘immature’ state, CD4SP thymocytes gain the
ability to proliferate in response to TCR ligation. Subsequent intrathymic
maturation marks a transition when CD4SP thymocytes gain a series of
functions: they upregulate CD55 to aid their protection from complement
[83], become ‘cytokine licenced’ wherein they produce cytokines upon
stimulation [74] and then expression of S1P1, which is essential for
thymic egress, and entry into the periphery as recent thymic emigrants
(RTE) [74, 81]. Although expression of CD55 is initiated in the thymus,
its expression continues to increase in the periphery, reaching maximum
levels on naïve αβT cells [83]
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were isolated, intrathymically injected, and analysed 1 or
4 days post-injection, Jin et al. showed that cells spending
longer in the thymus contained an increased proportion of
IL-2, IL-4, and IL-10, as well as IFNγ-producing cells [73].
Thus, intrathymic dwell time may be proportional to function-
al acquisition, suggesting that the longer the time that thymo-
cytes are able to spend within the thymus, the greater their
functional capabilities. While the signalling events and medi-
ators that control post-selection maturation are not well under-
stood, examination of SM/M1/M2 SP thymocyte populations
demonstrated that NF-κΒ- and IRF-regulated gene changes
occurred later after positive selection [74]. Moreover, follow-
ing deletion of Tak1 (an important kinase in the NF-κΒ path-
way), a block in the maturation at the SM stage was observed
[74], with Tak1 also protecting cells from TNF-induced death
[74]. Similarly, a study investigating the role of NF-κΒ sig-
nalling in thymocyte development showed that deletion of the
two subunits of the inhibitor of κΒ kinase (IKK) complex
(IKK1 and IKK2) in thymocytes resulted in complete arrest
of SP maturation at the immature CD24hi stage [79].
Moreover, TNF signalling via TNFR1 was found to be re-
quired for activation of the NF-κΒ pathway, which was essen-
tial in protecting cells from TNF-mediated cell death [79].
Additional work from the same group confirmed this role
for IKK in thymocyte survival and proliferation, but clarified
that the essential role of the IKK activity is to repress RIPK1-
kinase-dependent cell death by a mechanism which is inde-
pendent of NF-kB [80]. Importantly, while some of the intra-
cellular signalling cascades that are active in thymocytes to
control post-selection maturation have been identified, the
cell-cell interactions that trigger these signalling events are
unclear.

Thymus egress and SP thymocytes

The ability of SP thymocytes to exit the thymus is essential to
establish the peripheral T cell pool. Egress competence is re-
stricted to the mature fraction of thymocytes that express the
sphingosine-1-phosphate (S1P) receptor 1 (S1PR1), which is
essential for egress [81]. In relation to the control of this pro-
cess, it has been reported that ligation of CCR2 on SP thymo-
cytes induces activation of the transcription factor FOXO1-
KLF2 axis which ultimately leads to expression of S1PR1, as
well as enhancing S1P-induced chemotaxis itself [71, 73, 81,
82]. The importance of egress competency being limited to the
most mature SP fraction may be beneficial as it may mean that
only SP thymocytes that have undergone a full intrathymic
maturation programme have the ability to leave the thymus,
which may regulates the quality of the peripheral T cell pool.
Relevant to this are studies examining patterns of expression
of the cell surface marker CD55 in thymocyte subsets. For
example, as CD55 protects peripheral T cells from
complement-mediated cell death and high CD55 levels are

limited to the most mature SP thymocytes [83], this indicates
cells that have undergone full intrathymic maturation may
have an enhanced ability to survive in the periphery [83].
Whether or not medullary residency, and contact with
mTEC, is required for this process is not clear.

While the importance of S1PR1 expression by SP thymo-
cytes in thymus emigration is well described, several differing
models of emigration have been proposed. This is perhaps
best represented by ‘conveyor belt’ and ‘lucky dip’ models
of thymic exit [84]. In the former, exit of egress-competent
thymocytes occurs in a developmentally controlled manner,
suggesting that all SP thymocytes spend a similar period of
time in the thymus. By contrast, the lucky dip model suggests
that once SP thymocytes reach egress competence, they are
eligible to leave the thymus irrespective of the amount of time
they have spent in the medulla, and a consequence of this
would be the export of cells of different ages. Recently, we
used CD62L levels to identify subpopulations of
CD62L+CD69− M2 CD4SP thymocytes that we termed
M2a, M2b, and M2c on the basis of their Rag2GFP levels,
with M2a showing the highest GFP levels (as so are least
mature) and M2c showing the lowest GFP levels (and so are
the most mature). Using this approach, we showed that thy-
mus egress follows an ordered regimen that supports a con-
veyor belt process rather than a random lucky dip. Thus, M2c
thymocytes expressed the highest levels of S1PR1, perhaps
giving the most mature cells a greater ability to exit the thy-
mus, while cells within thymic perivascular spaces that repre-
sent sites of exit were enriched in M2c cells [85]. Therefore,
while M2 (mature) thymocytes have the capacity to exit the
thymus, within that population, there are cells with a greater
ability to leave that is based on their age. What controls this
ordered process of emigration is not known. However, it is
interesting that while LTβR is an important regulator of thy-
mic exit [67, 85], thymic emigration in LTβR-deficient mice
still follows a conveyor belt mechanism [67, 85]. Further work
is required to identify the microenvironmental signals that
ensure thymus emigration is biased towards the most mature
SP thymocytes.

As the cortico-medullary junction is a region containing
blood vessels that represent sites of thymic exit, it is likely
that TEC, and mTEC in particular, influence thymic egress.
Indeed, in neonatal Ccr7−/− mice where thymocyte migration
to mTEC-derived chemokines CCL19 and CCL21 is
abolished, thymus emigration is defective and results in
intrathymic SP accumulation and a reduction in peripheral T
cell numbers [78, 86]. That thymus emigration is not impaired
in adult Ccr7−/− mice [77, 86] indicates an interesting distinc-
tion to the neonate and suggests that the regulators of thymic
exit, perhaps including a requirement mTEC themselves, are
different at distinct stages of the life course. Additionally, in
adult mice, mTEC can influence thymic egress bymaintaining
the S1P gradient essential for egress via their expression of
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lipid phosphate phosphatase (LPP3), an enzyme which de-
phosphorylates S1P to maintain S1P gradients [87]. In this
study, deletion of LPP3 in K14Cre-positive TEC resulted in
the intrathymic accumulation of mature SP thymocytes. It has
also been shown that mTEC influence mature thymocyte
egress indirectly, by regulating other lymphocyte populations
that are present within the medulla. For example, LTβR-
dependent regulation of iNKT cells regulates thymic egress
[88, 89], while the influence of mTEC on DC via-NIK
(NF-κΒ-inducing kinase) signalling is also required for nor-
mal thymocyte egress [50]. Again, much of the work carried
out on thymus egress relates to CD4SP thymocytes and adult
thymus. Given the different maturational pathways for
CD4SP and CD8SP, and the differential requirement for
CCR7 in neonatal but not adult thymus egress, further work
is required to fully understand the role of the thymus medulla
in controlling this process.

iNKT cell development in the thymus medulla

Redefining pathways in iNKT cell development

As is the case for conventional CD4SP and CD8SP thymo-
cytes, iNKT cells arise from CD4+CD8+ thymocytes that re-
side in the cortex [90]. However, unlike these other lineages,
iNKT cells do not recognise self-peptide/MHC complexes
expressed by cTEC. Instead, interactions between
CD4+CD8+ thymocytes involving an invariant αβTCR and
lipid-presenting CD1d molecules initiate iNKT cell develop-
ment [91]. Importantly, iNKT cells are an effective compo-
nent of immune responses where they connect innate and
adaptive arms of the immune system through their rapid pro-
duction of cytokines that include IL-4, IFNγ, and IL-17 [6]. In
early studies, cell surface markers such as CD24, NK1.1, and
CD44 were used to suggest a linear sequence of iNKT cell
development [92, 93]. More recently, use of CD1d/α-
galactosylceramide (CD1d/αGC) tetramer reagents alongside
transcription factor and cytokine expression revealed the de-
velopment of multiple iNKT sublineages within the thymus.
Similar to T helper cell nomenclature, three iNKT sublineages
have been described: iNKT1 are T-bet+ and produce IFNγ,
and iNKT2 are PLZF+ and produce IL-4, while iNKT17 are
RORγt+ and produce IL-17 [94]. Although largely in agree-
ment with the original description of these subsets, a subse-
quent study has also shown co-production of cytokines by
iNKT cells following stimulation, in particular IL-4/IFNγ
and IL-4/IL-17 by iNKT2 [95]. Interestingly, the composition
of iNKT cells in the thymus of inbred strains of WT mice also
differs. For example, C57Bl/6 mice have a prominent popu-
lation of iNKT1, whereas iNKT in BALB/c mice are heavily
dominated by iNKT2. Given that iNKT1 are defined by IFNγ

expression while iNKT2 are defined by IL-4, this fits well
with the respective type 1/type 2 immunity in these strains.

The identification of multiple iNKT sublineages in the thy-
mus raises questions about the developmental pathways that
give rise to these cells. Importantly, Lee et al. identified CCR7
expression as a potential iNKT cell progenitor marker [96].
Analysis of iNKT cell development in Rag2GFPmice showed
that in contrast to CCR7− iNKT cells, CCR7+ iNKT cells
retain some GFP expression, indicative of an early stage in
iNKT cell development [97]. Importantly, CCR7+Rag2GFP+

iNKT cells gave rise to iNKT1, iNKT2, and iNKT17 cells
following their intrathymic transfer, providing direct evidence
they represent a common iNKT progenitor. Interestingly,
CCR7+Rag2GFP+ iNKT progenitors express markers previ-
ously shown to be present early in iNKT cell development
such as Plzf and Lef1 [97]. However, they lack expression
of transcription factors and cytokines that indicate more ma-
ture iNKT cells such as RORγ, T-bet, and IL-4 [97].
Interestingly, CCR7+ iNKT cell progenitors can also exit the
thymus and continue their development towards iNKT1,
iNKT2, and iNKT17 extrathymically [97]. Why some
CCR7+ iNKT progenitors choose to complete their maturation
intrathymically as opposed to maturing extrathymically is not
clear.

Intrathymic control of iNKT lineage heterogeneity

Although initial stages of iNKT cell development require in-
teractions between DP thymocytes in the cortex, analysis of
Relb−/− mice demonstrates a clear requirement for mTEC in
their downstream maturation [34] (Fig. 2). Consistent with
this, iNKT cells are primarily located within the thymus me-
dulla in the adult mouse [98]. This positioning is partially
dependent on CCR7, as mixed chimeras using WT and
Ccr7−/− bone marrow resulted in the mispositioning of some
Ccr7−/− iNKT cells to the thymic cortex [97]. Studies that
have highlighted the significance of the thymus medulla for
iNKT cells have raised important questions about factors pro-
duced by mTEC, and whether particular mTEC subsets influ-
ence the development of individual iNKT subsets.

The identification of multiple intrathymic iNKT subsets,
together with an expansion of our understanding of mTEC
heterogeneity, has allowed further examination of links be-
tween mTEC and iNKT cells. In a recent study, LTβRTEC

mice, which specifically lack expression of LTβR by TEC,
have been used to determine the effects of disruptedmedullary
environments on iNKT cell development [33]. This study
showed th a t LTβR con t r o l s t h e f r equency o f
CD104+CCL21+ mTEClo [33, 38] that are capable of IL-15
transpresentation, which has been linked to the proliferation
and survival of iNKT cells [34, 99]. Interestingly, CD122 (a
subunit of IL-15 receptor) is expressed by all thymic iNKT
cells with the highest levels being expressed by iNKT1 [33,
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94], and in vivo administration of IL-15/IL-15Rα complexes
increased iNKT1 and iNKT17 in LTβRTEC mice [33].
Importantly, and in contrast to in vivo experiments, in vitro
IL-15/IL-15Rα treatment increased numbers of iNKT1 only,
suggesting that iNKT17 require additional factors that are

present within the thymus but absent in vitro [33].
Interestingly, iNKT17 show evidence of recent TCR signal-
ling in Nur77GFP mice [100], suggesting that IL-15
transpresentation by mTEC, plus further interactions with
CD1d-expressing cells in the thymus, could be required for

CORTEX

IL-25

IL-15

THYMIC TUFT CELLS

mTECLO
CD104+

cTEC

CCL21

MEDULLA

CCR7+ iNKT
PROGENITOR

iNKT1

iNKT17

iNKT2

Fig. 2 Regulation of intrathymic iNKT cell development by distinct
populations of mTEC. CCR7+ iNKT cell progenitors migrate into the
thymus medulla in a CCR7-dependant manner. Here, perhaps under the
influence of medullary stroma, they can undergo further differentiation to
generate iNKT1, iNKT2, and iNKT17 subsets. The IL15Rα-mediated

transpresentation of IL-15 by CD104+ mTEClo influences the
intrathymic availability of both iNKT1 and iNKT17. In contrast,
iNKT2 numbers in the thymus are regulated by IL-25, a selective
product of thymic tuft cells that are generated during mTEC terminal
differentiation
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iNKT17 development. Other factors have been shown to in-
fluence the development of iNKT17 including TGFβ [101],
and the serine protease SerpinB1 [95]. The mechanisms be-
hind this involvement, and any potential synergy between
these pathways, are unknown.

Further evidence surrounding the importance of mTEC in
iNKT cell development comes from analysis of thymic tuft
cells that represent a terminally differentiated mTEC subset
[23, 24]. Interestingly, initial descriptions of iNKT cell devel-
opment in tuft cell–deficient Pou2f3−/− mice reported reduc-
tions in all 3 iNKT1, iNKT2, and iNKT17 sublineages [24].
However, a selective reduction in iNKT2 in the thymus of
Pou2f3−/− mice was reported [33], with numbers of iNKT1
and iNKT17 remaining unaltered. That iNKT cell subset fre-
quencies are background strain dependent may provide an
explanation for this discrepancy. However, that both studies
demonstrate a role for tuft cells in iNKT2 cell development is
consistent with a specific reduction in iNKT2 in Il25−/− mice,
which indicates that the importance of tuft cells in iNKT2 cell
development may be explained at least in part by their selec-
tive production of IL-25 [23, 33]. This finding fits well with
selective expression of IL-25 receptor by iNKT2 but not
iNKT1 and iNKT17 [24]. Collectively, these observations
suggest that multiple epithelial cell subsets reside within the
mTEClo population, which are functionally specialised to sup-
port the development of specific iNKT lineages.

Thymus emigration and retention of iNKT cells

While intrathymic CCR7+ iNKT cells have been shown to in-
clude cells with progenitor potential [97], these cells are also
significantly enriched within the pool of iNKT RTE that are
present in peripheral tissues [97]. Thus, these cells may represent
the predominant iNKT cell subset that exits the thymus [97] such
that CCR7+ iNKT progenitors play an important role in estab-
lishing the peripheral iNKT cell pool [97]. While expression of
CCR7 and RagGFP have been investigated as potential defining
markers of iNKT RTE, characterisation of RagGFP+ iNKT
shows an enrichment of CCR7+ cells in the lymph node but
not the spleen, suggesting that while CCR7 is a RTE useful
marker, it may not be a universal iNKT RTE marker [102]. In
agreement with this, another study used intrathymic biotin injec-
tion to label a cohort of thymic iNKT and subsequently track
these cells as RTE in the periphery. Interestingly, although
CCR7+ cells were enriched within the labelled fraction, only
around 50% of iNKT RTE expressed CCR7 [97].

An additional challenge to studying iNKT RTE is that, un-
like the case for conventional thymocytes, themajority of iNKT
cells in the thymus are RagGFP negative. Thus, in addition to
RagGFP+ iNKT cells, the thymus may also control the exit of
RagGFP− iNKT cell subsets, which also either act as progeni-
tors or represent cells that undergo lineage commitment
intrathymically. In agreement with the idea that iNKT RTE

undergo differentiation in the periphery, comparison of the
TCR repertoire highlights significant differences between
RagGFP+ iNKT RTE and RagGFP− iNKT [102]. Moreover,
the TCR repertoire of iNKT cells is distinct in different periph-
eral tissues, showing that the clonal expansion of iNKT cells is
determined by their anatomical location [102]. The frequency
of RagGFP+ iNKT RTE also differs between tissues, with a
high proportion of RagGFP+ iNKT RTE in mesenteric lymph
nodes (mLN), suggesting either a differential rate of RTE hom-
ing to certain tissues, or a more rapid turnover of RagGFP+

iNKT, resulting in a decline in RagGFP expression [102].
Importantly, although some iNKT RTE express CCR7 and

RagGFP, whether populations of intrathymically generated
iNKT1, iNKT2, and iNKT17 are permanent thymic residents
or can also contribute to the peripheral pool of iNKT remains
unclear [95, 97]. Relevant to this, studies using multiple ex-
perimental approaches including thymus grafting, parabiosis,
and measurement of Rag2GFP expression have shown that
the majority of iNKT cells are retained within the thymus
and are not under constant replenishment [97, 103]. The che-
mokine receptor CXCR3 has been identified as an important
factor involved in the thymic retention of iNKT cells. Analysis
of CXCR3-deficient mice revealed reduced frequencies of
iNKT cells in the thymus and an increased frequency in the
blood, suggesting its involvement in controlling the balance of
iNKT cells in the thymus and peripheral circulation [104].
Furthermore, intrathymic injection of FITC into WT and
Cxcr3−/− mice showed increased frequencies of FITC+

iNKT RTE in the absence of CXCR3 [104], thus illustrating
this chemokine receptor acts to prevent iNKT cell emigration
from the thymus. In addition, CXCR3 is expressed most high-
ly by iNKT1 [95], which may explain why despite their ex-
pression of S1PR1, very few iNKT1 leave the thymus.

That the thymus retains a large proportion of the iNKT cells
it generates raises intriguing questions over what function
these cells might possess. iNKT cells are known to be
steady-state producers of cytokines, including IFNγ, IL-17,
and IL-4. However, our understanding of the functional sig-
nificance of these cytokines in the thymus is largely limited to
IL-4. Using cell-specific deletion of CD1d, Wang et al.
showed that macrophages present endogenous ligands that
trigger the TCR of iNKT2 cells, resulting in IL-4 production
[100]. Intrathymic production of IL-4 by iNKT cells is re-
quired for the generation of innate memory-like CD8+ thymo-
cytes, which are characterised by their expression of
Eomesodermin. Such CD8+ thymocytes are reduced to near-
absent levels in Il4ra−/− and Cd1d−/− mice [105] and are also
found in much lower frequencies in C57Bl/6 thymus, com-
pared to BALB/c thymus, where IL4-producing iNKT2 are
the major population of iNKT cells [94]. In addition, iNKT2
have been identified as a key regulator of thymocyte emigra-
tion, as mice deficient in either iNKT cells, or components of
the IL-4 signalling pathway, show large perivascular

23Semin Immunopathol (2021) 43:15–27



accumulations of mature CD4SP thymocytes coupled with a
reduction in their levels of Rag2GFP [105]. Interestingly, this
study also showed that thymocyte emigration was further hin-
dered when Il4ra−/− mice were treated with FTY720, an ago-
nist for S1PR1 that downregulates this receptor and so pre-
vents S1P-mediated thymus emigration. Importantly, this
finding indicates that the mechanism by which IL-4 promotes
thymocyte egress is distinct from S1P [105]. As IL-4 is a
signature cytokine of iNKT2, these findings suggest that
iNKT2 cells represent at least some of the iNKT cells that
are retained within the thymus, and suggest a functional ex-
planation for their thymus residency. While the possible func-
tional importance of the intrathymic retention of iNKT cells
requires further study, that thymic iNKT cells regulate both
DC and mTEC suggests that individual iNKT subsets play
additional roles in governing multiple aspects of thymus me-
dulla development and function [33, 34, 94, 97].

Conclusions

The importance of intrathymic microenvironments to foster
and shape the αβTCR repertoire is now well established.
Currently, properties of the medullary areas of the thymus
are known to significantly extend beyond their capacity to
induce central tolerance in conventional αβT cells. While
additional support for these cells from mTEC and medulla
areas includes phases of post-selection maturation and emi-
gration into peripheral tissues, both of these aspects of medul-
la function remain incompletely understood. Importantly, that
the role of the medulla also extends to the generation of self-
regulating Foxp3+ T cells and CD1d-restricted iNKT cells,
further emphasises how this site influences the diversity of
intrathymic T cell development. By gaining a better under-
standing of how new heterogeneity in mTEC populations re-
lates to the diversity of medulla functions, future research will
provide insight into the development, function, and eventually
the therapeutic manipulation of thymic microenvironments.
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