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THE ELASTODYNAMIC BIMATERIAL INTERFACE UNDER MODE I AND
MODE II LOADING

B. GURRUTXAGA-LERMA

School of Metallurgy and Materials, University of Birmingham, B15 2TT Birmingham, UK

Abstract. This article provides the mathematical solutions to the elastodynamic fields of a semi-infinite

interface lying along two dissimilar media subjected to sudden loading. The article offers the solution to

the cases when: (1) the interface slips, i.e., it cannot transfer shear stress from one material to the other,

which represents a Hertzian contact; (2) the interface is welded, i.e., all stress components are transferred,

in which case it acts as a crack. We obtain the full, explicit analytic solutions to the fields of the interface

along the slipping boundary via the Wiener-Hopf and Cagniard-de Hoop techniques. We show that such

interface does not entail an oscillatory singularity at the crack tip owing to the fact that shear forces are not

transferred across the interface. The welded interface crack leads to a matricial Wiener-Hopf problem that

is not reducible to any form that would allow an immediate analytic factorisation of the resulting scattering

kernel matrix. The factorisation in this case is achieved via successive Abrahams approximations of the

scattering kernel itself, rather than via a Williams expansion of the elastic displacement field. This leads

to a quickly convergent solution that retains the asymptotic character in the near and in the far field.

Explicit proof of the nature of the oscillatory singularity at the crack tip is provided by studying the

scattering matrix, which in the near field is shown to reduce to a Daniele-Khrapkov form amenable to

analytic factorisation. The solutions presented in this article are explicit, and will prove eminently useful

in the modelling of fast fibre debonding in composite materials, and in the study of the scattering of

seismic waves by cracks and faults in layered media.

E-mail address: b.gurrutxagalerma.1@bham.ac.uk.

Key words and phrases. Elastodynamic, fracture mechanics, contact mechanics, bimaterial, crack.
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2 THE ELASTODYNAMIC BIMATERIAL INTERFACE UNDER MODE I AND MODE II LOADING

1. Introduction

This article concerns the mathematical solution to the elastodynamic fields of a non-moving interface

found along two elastically dissimilar media. Problems related to bimaterial interfaces are of particular

relevance for laminated media such as fibre reinforced composites[1], the phase boundaries between a

particle and matrix in metallic alloys[2], biomedical materials such as flexible joints[3], or in geophysics[4].

In such situations, pre-existing flaws along the interface may lead to the debonding of the interface via

the propagation and growth of an interfacial crack. Under high strain rate loading, it is possible for such

interfacial crack to propagate at a significant fraction of the speed of sound; alternatively, the loading

rate can be high enough that inertial considerations may be required to fully account for the role the

kinetic energy of the material plays in the fracture process. Such conditions are relevant in materials

physics, but particularly so in geophysical faulting, where layered media are common and where, indeed,

time-dependent considerations are often necessary to offer a complete account of the seismological signals

that faults such as cracks may trigger[4], particularly in the far field.

Owing to the relevance of the aforementioned interfacial debonding, the study of bimaterial inter-

faces has received considerable attention in the past. Most past studies focus on the elastostatic (time

independent) interfacial crack, the theoretical study of which largely began with Williams’ 1959 [5]

analysis of the asymptotic near elastic field of a bimaterial crack. As Williams found, the near field of

an interfacial crack displays an oscillatory singularity that suggests the crack faces would interpenetrate

one another[6] in a small region surrounding the crack tip[7]. The feasibility of this situation has long

since been questioned because no empirical evidence of that interpenetration is typically found. Sev-

eral solutions to this problem have been proposed. One avenue argues that the standard linear elastic

analysis used by Williams[5] and others[6, 7] to model such problem may be inappropriate. That is, one

may question whether the linear elastic formulation itself is adequate to model the interfacial crack’s

tip elastic fields, as the underlying constructive hypotheses (small displacement gradient, harmonic be-

haviour, neglecting lattice discreteness) are bound to break down at the crack tip[8]. Thus, large strain
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continuum level formulations such as those proposed by, amongst others, Knowles and Sternberg[9],

Geubelle and Knauss[10, 11, 12] or Gao and Shi[13], showed that interpenetration is not necessary so

long as a non-linear elastic behaviour is considered when describing the materials. A second source of

criticism focuses on whether the geometrical modelling of the crack tip itself as infinitely sharp may

be adequate in this case. For instance, Comminou[14, 15, 16] argued that if the crack faces were to

interpenetrate, the nature of the problem would shift from a pure fracture analysis to a contact me-

chanics problem where in the immediacy of the crack tip the crack faces are allowed to touch. In the

presence of interfacial friction, she showed that the interpenetration became redundant, and that the

oscillatory singularity cancelled[14, 15]: this configuration would in effect relax the sharp crack tip into

a cusp. Furthermore, in examining different crack tip geometries, Sinclair[17] showed that a crack tip

formed by faces meeting at an angle would not display such an oscillatory singularity either. Atkinson

[18] argued that the oscillatory singularity could also be cancelled if the interfacial crack were embedded

in a so-called ‘intervening layer ’ representing the interface itself. Although the physical motivation for

such a layer need not be clear in all cases, it has lent itself to several pragmatic attempts at modelling

interfacial cracks by employing perturbed elastic moduli at the interface, such that they cancel the

oscillatory singularity while enabling the definition of an effective fracture toughness[19, 20].

Compared to elastostatic studies, the elastodynamic treatment of bimaterial interfaces has been more

limited. Chief amongst the reasons for this appears to be the inherent difficulty in solving elastodynamic

problems compared to elastostatic ones, particularly in the presence of a bimaterial system, which entails

4 different speeds of sound. For this reasons, particular focus has been placed in the simplest bimaterial

crack problem: the anti-planar (mode III) crack, that concerns solely transverse perturbations. Brock

and Achenbach [21, 22] studied the problem of a crack expanding at uniform speeds in the steady

state, and under the influence of remote loading[21]. The problem of a mode III crack propagating at

uniform speed across a bimaterial interface was studied by Atkinson[23]. Non-uniform propagations

have also been studied for the mode III problem[24]. The self-similarly expanding unloaded plane strain
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crack was also studied by Brock[25] using an approach reliant on the Chaplygin transformation and on

conformal mapping, albeit this result drew criticism from Atkinson[26] that the recovery of the steady

state solution found in previous work by Gold’stheyn[27] and Willis [28] was not obvious. Further work

on solving full transient problems concerning plane strain cracks appears to be largely unavailable. Most

of subsequent theoretical work has been placed in solving problems concerning asymptotic studies of

crack tip fields and their energetics (e.g.,[29, 30, 31, 32, 33, 34, 35]) and numerical studies (e.g.[36, 37, 38])

of different aspects of the debonding at a bimaterial interface, or in the experimental verification of such

analyses(e.g.[33, 39, 40]).

This article solves the fully transient solution to the elastodynamic field of a suddenly loaded bimaterial

interface in plane strain, both for mode I and mode II type of loading. The interest of these solutions

lies in two separate areas of concern: dynamic contact, as these solutions can be employed to model

Hertzian contact; and in studying wave diffraction by pre-existing flaws in a material or the earths’

crust, as the solutions can be employed to model the elastodynamic wave scattered by the interfacial

flaw.

As is explained in section 2, the system under consideration consists of a planar fault running along

the interface of two different materials. The fault is suddenly loaded with a normal or tangential remote

load. The ensuing elastic field radiated away from the crack tip depends on the specific conditions

governing the interface. In section 3, the simpler problem of a slipping interface (i.e., unable to transfer

shear/normal stress) is solved in full using the Wiener-Hopf technique[41]. As will be shown, this

interface does not display an oscillatory singularity. In section 4, the welded bimaterial interface is

considered instead, where the interface can transfer both normal and shear stress. In this case, a matricial

Wiener-Hopf problem is reached; the matricial scattering kernel is unfortunately non-commutative and

irreducible to a Daniele-Khrapkov form[42, 43], which makes achieving a full analytic solution difficult.

Instead, an Abrahams approximation[44, 45] of the kernel matrix is offered, which facilitates a convergent

approximate solution to the welded bimaterial crack problem, and that the near field problem can be
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Figure 1. Schematic of the bimaterial crack under consideration

reduced to Daniele-Khrapkov form and displays the expected oscillatory singularity. Section 5 offers a

number of closing comments on this work and its significance.

2. Mathematical framework

The system we are considering here consists of two elastically dissimilar materials, material 1 and

material 2, of elastic constants µn, λn and density ρn with n = 1, 2. Without loss of generality, we shall

assume that material 1 is located in the y > 0 half-plane, and that material 2 corresponds with the

y < 0 half-plane, as depicted in fig.1. The system is remotely loaded by a tensile P or by a tangential Q

load, which triggers a time-dependent elastodynamic field at the crack tip in, respectively, mode I and

mode II fracture.
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2.1. Governing equations. The elastic response of each of the materials is governed by the Navier-

Lamé equation of linear isotropic elastodynamics:

(2.1) (λn + µn)u
(n)
j,ji + µnu

(n)
i,jj = ρnü

(n)
i

where repeated index denotes summation, n = 1, 2 denotes the first (y > 0) or the second (y < 0)

material, and ui(x, t) denotes the ith displacement

The problem under consideration is in plane strain, whereupon the Navier-Lamé equation can be

divided into two separate monochromatic wave equations by means of the scalar Kelvin-Helmholtz

potentials ψn and φn(cf.[46]). The potentials are such that

(2.2) u(n)
x =

∂φn
∂x

+
∂ψn
∂y

, u(n)
y =

∂φn
∂y
− ∂ψn

∂x

Upon substituting eqn.2.2 on eqn.2.1 we obtain the two governing equations of the problem:

∂2φn
∂x2

+
∂2φn
∂y2

= a2
n

∂2φn
∂t2

∂2ψn
∂x2

+
∂2ψn
∂y2

= b2
n

∂2ψn
∂t2

(2.3)

where

(2.4) an =
1

c
(n)
l

=

√
ρn

λn + 2µn
, bn =

1

c
(n)
s

=

√
ρn
µn

are the longitudinal and the transverse slownesses of sound, respectively, in the material n. Similarly

c
(n)
l and c

(n)
t are the longitudinal and transverse speeds of sound.

3. The slipping bimaterial interface

We first seek the solution to the problem of a mode I and a mode II elastodynamic crack acting along

a slipping interface between the two dissimilar media. The author is unaware of previous complete

solutions to these two problems, which we do in the sequel for the case when a sudden shock loads are

applied on the faces of the crack. Other loading conditions can then be obtained from convolution of
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this fundamental solution. The solution technique relies on the Wiener-Hopf technique[41]. We shall

solve the mode I and mode II problems independently from one another.

A slipping interface is an interface that in mode I carries no shear stress; by mathematical analogy,

in mode II we improperly call ‘slipping’ an interface that carries no normal stress. In single material

problems, the interface is always slipping by symmetry (see for instance [47, 48]). This is not necessarily

the case in bimaterial systems, where the symmetry argument does not stand anymore as the materials

at either side of the interface are different. In this case, the interface may need to accommodate the

elastic mismatch by transferring shear (mode I) or normal (mode II) stresses across. Such an interface

makes what we will refer to as a welded interface, because both sides of the interface are glued together.

We study this problem in section 4.

Slipping boundaries in mode I bear considerable physical interest, as they concern a type of Hertzian

contact. In any situation where the interface is lubricated, a slipping boundary of this kind offers a

reasonable model of the interface. Such circumstances are common in, for example, lubricated rotating

machinery, and in geophysical faults, where fluids may be intercalated between different material layers.

The presence and role of interfacial friction, which we neglect in the sequel, will be the subject of future

work. Besides, whereas the welded interface leads to a largely intractable problem, the slipping bound-

ary problem discussed in this section is relatively simple and tractable, and many of the factorisation

strategies we describe in the sequel apply to the welded interface problem as well, as we discuss in section

4. Slipping interfaces in mode II are more contrived in nature, and here they are solved for completion.

3.0.1. Statement of the Wiener-Hopf problem. The mode I and II problems are governed by the same

set of equations (eqn.2.3), and are defined by the usual boundary conditions (see for instance [47] ch.2).

In a slipping interface, we assume that no shear stress is transmitted across the interface (for mode I);

this entails an interface that is allowed to ‘slip’ in being unable to transfer shear stress across.
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In invoking the Wiener-Hopf technique, we extend the boundary conditions by continuity to the whole

real line. Thus, for mode I we have:

σ(n)
yy (x, 0, t) = σ+(x, t)− P0H(t)H(−x) x ∈ R(3.1)

σ(n)
xy (x, 0, t) = 0 x ∈ R(3.2)

Juy(x, 0, t)K ≡ u(1)
y (x, 0, t)− u(2)

y (x, 0, t) = v−(x, t) x ∈ R(3.3)

And for mode II:

σ(n)
yy (x, 0, t) = 0 x ∈ R(3.4)

σ(n)
xy (x, 0, t) = t+(x, t)−Q0H(t)H(−x) x ∈ R(3.5)

Jux(x, 0, t)K ≡ u(1)
x (x, 0, t)− u(2)

x (x, 0, t) = u−(x, t) x ∈ R(3.6)

where H(·) denotes the Heaviside step function, P0 and Q0 are the magnitude of two suddenly applied

normal and shear ‘shock’ loads, and σ+(x, t) and t+(x, t) are the unknown normal and tangential trac-

tions, both defined as non-vanishing in x ∈ R+. The u−(x, t) and v−(x, t) are, respectively, the unknown

ux and uy interfacial displacements along the crack’s faces, with compact support over x ∈ R−.

In order to solve the problem, we introduce the following Laplace transforms:

(3.7) f̂(x, y, s) =

∫ ∞
0

f(x, y, t)e−stdt, F (k, y, s) =

∫ ∞
−∞

f̂(x, y, s)e−ksxdx

By using these Laplace transforms, we can reduce the boundary conditions to a single Wiener-Hopf

equation. Here we detail how to achieve the one for mode I. Because mode II follows the same procedure,

we will not repeat it and shall merely quote the relevant results.
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Thus, for mode I the boundary conditions transform into:

µn

[
(b2
n − 2a2

n)s2Φn + 2
∂2Φn

∂y2
− 2sk

∂Ψn

∂y

]
y=0

=
Σ+(k)

s2
+
P0

s2k
(3.8)

µn

[
2sk

∂Φn

∂y
+
∂2Ψn

∂y2
− s2k2Ψn

]
y=0

= 0(3.9)

[(
∂Φ1

∂y
− skΨ1

)
−
(
∂Φ2

∂y
− skΨ2

)]
y=0

=
V−(k)

s3
(3.10)

where we have defined

(3.11) Σ+(k; s) = s2

∫ ∞
−∞

σ̂+(x, s)e−skxdx, V−(k) = s3

∫ ∞
−∞

v̂−(x, s)e−skxdx

The governing equations 2.3 transform into

(3.12)
∂2Φn

∂y2
= αn(k)s2Φn,

∂2Ψn

∂y2
= βn(k)s2Ψn

where αn(k) =
√
a2
n − k2, βn(k) =

√
b2
n − k2.

The solutions to these equations are of the form:

Φ1(k, y, s) = Cφ1(s, k)e−sα1(k)y, Ψ1(k, y, s) = Cψ1(s, k)e−sβ1(k)y (y > 0)(3.13)

Φ2(k, y, s) = Cφ2(s, k)esα2(k)y, Ψ2(k, y, s) = Cψ2(s, k)esβ2(k)y (y < 0)(3.14)

where Cφn and Cψn are integration constants.

Thus, we are faced with a problem consisting of 6 unknowns (the four integration constants and P+(k)

and U−(k)), for which we have in principle only 5 equations. This allows us to reduce the problem to

a single equation of Wiener-Hopf type, by adequate manipulation of the continuity requirements across

the interface. In particular, the stress field across the interface for y = 0 must be continuous, which

means that

Σyy|y=0 = µ1

[
(b2

1 − 2k2)s2Cφ1 + 2s2β1kCψ1

]
= µ2

[
(b2

2 − 2k2)s2Cφ2 − 2s2β2kCψ2

]
(3.15)
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Σxy|y=0 = µ1

[
(b2

1 − 2k2)s2Cψ1 − 2s2α1kCφ1

]
= µ2

[
(b2

2 − 2k2)s2Cψ2 + 2s2α2kCφ2

]
(3.16)

where here Σij denotes the dual Laplace transform of σij.

Thus, we are able to reduce the problem to the following Wiener-Hopf relation between P+(k) and

V−(k):

(3.17) K(k)

[
Σ+(k) +

P0

k

]
= V−(k)

where

(3.18) K(k) = −
[
α1(k)b2

1

µ1R1(k)
+
α2(k)b2

2

µ2R2(k)

]

Here the function

(3.19) Rn(k) = (b2
n − 2k2)2 + 4k2αn(k)βn(k)

is the secular equation for the Rayleigh waves of the ‘n’ material halfspace. The two real roots of this

function are the positive and negative inverses of the Rayleigh wave speed of the relevant material,

k = ±cn, where cn = 1/cRn with cRn the relevant Rayleigh wave speed[46].

For mode II, we similarly obtain the following Wiener-Hopf equation:

(3.20) G(k)

[
T+(k) +

Q0

k

]
= U−(k)

where

(3.21) G(k) = −
[
b2

1β1(k)

µ1R1(k)
+
b2

2β2(k)

µ2R2(k)

]

and we have defined T+(k) and U−(k) in an analogous way to mode I:

(3.22) T+(k; s) = s2

∫ ∞
−∞

t̂+(x, y, s)e−skxdx, U−(k) = s3

∫ ∞
−∞

û−(x, y, s)e−skxdx
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3.1. Analytic factorisation of the Wiener-Hopf problem. The key concern is therefore to reach a

successful factorisation of the kernels K(k) and G(k) into two sectionally analytic functions defined as

(3.23) K(k) = K+(k) ·K−(k),

and

(3.24) G(k) = G+(k) ·G−(k),

where K±(k) and G±(k) are holomorphic over some strip of the k ∈ R± segments of the real line.

In achieving these two product factorisations, we are able to express the corresponding Wiener-Hopf

equations as:

(3.25) K+(k)

[
Σ+(k) +

P0

k

]
=
V−(k)

K−(k)

and

(3.26) G+(k)

[
T+(k) +

Q0

k

]
=
V−(k)

G−(k)

As we detail below, by invoking Liouville’s theorem it is possible to separate the equations above and

reach a solution to the problem. Before that however, it is necessary to successfully separate K(k) and

G(k) into sectionally analytic functions. For brevity, in the sequel the product factorisation of K(k)

alone is detailed; that of G(k) follows an almost analogous procedure, and its main result is quoted at

the end.

3.1.1. The product factorisation of K(k). At this stage, we face a choice regarding the way of expressing

K(k) for its subsequent factorisation. This choice depends on the relative value of the slownesses of

sound and the Rayleigh wave speeds in both materials. Provided that ai < bi < ci, we find that

whether or not a1 > a2, b1 > b2 and c1 > c2 has an effect in the analytical form of the factorisation;

for most usual materials (those with ν > 0.2), ci ≈ 1.02 − 1.1bi, and c1 > c2 if b1 > b2. Nevertheless,

there are 20 distinct orderings, and 14 that lead to distinct factorisations. The procedure to follow



12 THE ELASTODYNAMIC BIMATERIAL INTERFACE UNDER MODE I AND MODE II LOADING

for all of them is nevertheless analogous. Thus, in the following we shall consider the case where

a1 > a2 > b1 > c1 > b2 > c2. In that event, we find it is advantageous to express K(k) as follows:

(3.27) K(k) = − α2(k)b2
2

µ2R2(k)

[
1 +

α1(k)

α2(k)

R2(k)

R1(k)

µ2b
2
1

µ1b2
2

]
= −S2(k)F (k)

where

(3.28) S2(k) =
α2(k)

R2(k)

b2
2

µ2

and

(3.29) F (k) = 1 +
α1(k)

α2(k)

R2(k)

R1(k)

µ2b
2
1

µ1b2
2

We extract S2(k) rather than S1(k) because c1 < b2. As will be seen in the sequel, this ensures that no

branch point in the auxiliary function lnF (k) falls outside the [a1, b2] strip.

We seek the product factorisation of K(k) into two sectionally analytic functions as

(3.30) K(k) = K+(k) ·K−(k) = S+
2 (k)F+(k) · S−2 (k)F−(k)

Thus, we reduce the problem to achieving the product factorisation of S2(k) = S+
2 (k)S−2 (k) and of

F (k) = F+(k)F−(k).

Factorisation of S2(k). The factorisation of S2(k) is well-known, as it appears in the solution to

the mode I crack running along elastically similar half-spaces (see [47, 49]). It requires the product

factorisation of α2(k), which can be achieved by inspection as:

(3.31) α2(k) = α2(k) =
√
a2 − k︸ ︷︷ ︸
α−2 (k)

√
a2 + k︸ ︷︷ ︸
α+
2 (k)

= α−2 (k)α+
2 (k)

It also requires the product factorisation of R2(k). This is done in the standard manner, by introducing

the auxiliary function

(3.32) D2(k) =
R2(k)

2(a2
2 − b2

2)(c2
2 − k2)
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which factorises into (see eq. 2.5.29 in [47])

(3.33) lnD±2 (k) = − 1

π

∫ b2

a2

arctan

[
4z2
√
z2 − a2

2

√
b2

2 − z2

(b2
2 − 2z2)2

]
dz

z ± k

This factorisation allows us to write

(3.34) S±2 (k) =
α±2 (k)

(c2 ± k)D±2 (k)

√
b2

2

2(a2
2 − b2

2)µ2

so that S+
2 (k) is holomorphic on Re[k] = [+a2,∞) and S−2 (k) on Re[k] = (−∞,−a2].

Factorisation of F (k). We are not aware of this factorisation having been offered before. We begin by

noting that the function F (k) is bounded at infinity with:

(3.35) lim
|k|→∞

F (k) = 1 +
µ2b

2
1(a2

2 − b2
2)

µ1b2
2(a2

1 − b2
1)
≡ κ,

Furthermore, the function F (k) has poles at k = ±a2, k = ±c1 along the real axis, and branch cuts

defined by Re[k] = ±[amin, bmax] where

(3.36) amin = min(a1, a2), bmax = max(b1, b2)

We can safely state that ai < bi < ci, but whether or not a1 > a2, a1 > b2, etc depends on the specific

materials in contact. In the current derivation, we have stated we assume that a1 < a2 < b1 < c1 < b2 <

c2, so that both poles fall within the branch cuts.

The factorisation of F (k) is achieved by using the auxiliary function lnF (k), and identifying the

sectionally analytic functions using the Plemelj formulae as[41]:

(3.37) lnF±(k) = ∓ 1

2πi

∫ d+i∞

d−i∞

lnF (z)

z − k
dz

where d is some arbitrary real number defined so that Re[k] > d for F+(k) and Re[k] < d for F−(k).

Eqn.3.37 already enables us to write F (k) = F+(k) ·F−(k) with F+(k) and F−(k) analytic on the strips

Re[k] > d and Re[k] < d respectively.

Albeit formally correct, eqn.3.37 does not provide an analytically useful expression for the F±(k)

terms in the factorisation. In order to achieve one, we shall consider the closed contour C shown in
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Re[z]

Im[z]

z=k

b
2

b
1

a
1

a
2

Γ
+

Γ
-

C

Γ
J

Figure 2. Integration contour for F+(k).

fig.2 for the case when Re[k] > d. This contour C encloses the pole at z = k, as well as the branch

cut Re[z] ∈ [a1, b2]. The contour comprises the line parallel to the imaginary axis Re[z] = d > 0 which

corresponds with to the integration contour in eqn.3.37, and the outer contour ΓJ that meets the former

at |k|→ ∞. Although not shown in fig.2, the Re[k] = d < 0 branch would comprise the mirror image of

the contour of integration in fig.2. In order to ease the derivation, we shall only perform it for F+(k),

and quote the results for F−(k) at the end. We note here that the function F (k) has poles at k = a2 and

k = ±c1. In defining F (k), we have chose it so that these pole falls by construction within the branch

cut [a1, b2] and, therefore, do not act as accumulation points in lnF (k).

We invoke the residue theorem[50], which states:

(3.38)

∮
C

lnF (z)

z − k
dz = 2πi lnF+(z) =

∫ d+i∞

d−i∞
+

∫
Γ+

+

∫
Γ−

+

∫
J

where J denotes the arc at infinity. Upon changing variables z = Reiθ with θ ∈ [π/2,−π/2] and R→∞,

it is immediate to show that the integral is non-vanishing, but constant:

(3.39)

∫
J

= ln

[
1 +

µ2b
2
1(a2

2 − b2
2)

µ1b2
2(a2

1 − b2
1)

]
= lnκ, with κ = 1 +

µ2b
2
1(a2

2 − b2
2)

µ1b2
2(a2

1 − b2
1)
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The integrals in eqn.3.38 along Γ+ and Γ− refer to, respectively, the Im[z] > 0 and Im[z] < 0 parts

of the contour enclosing the branch cut Re[z] ∈ [a1, b2] (see fig.2). They can be expressed in a more

agreeable analytical form. We note however that unlike in the antiplanar case discussed in [26], the

planar case here requires we express the Γ± in a piecewise fashion. This is because the imaginary

character of the factors α1(z), α2(z) and β1(z) changes as Re[z] varies from a1 through to a2 and b1 to

b2: for z < a1 all α1(z), α2(z) and β1(z) are real, but for a1 < z < a2, α1(z) is imaginary, and so on.

This difficulty is solved by partitioning the Γ± contour as follows:

(3.40)∫
Γ+

+

∫
Γ−

=

∫ a2

a1

[lnFU(z)− lnFL(z)]
dz

z − k
+

∫ b1

a2

[lnFU(z)− lnFL(z)]
dz

z − k
+

∫ b2

b1

[lnFU(z)− lnFL(z)]
dz

z − k

where FU(z) and FL(z) stand for the values of F (z) on the upper (θ = 0) and lower (θ = 2π) sides of

the branch cut. Over each partition of the integration interval, different parts of F (z) take imaginary

values. This leads to the following analytic formulae:1

(1) For Re[k] ∈ [a1, a2]

(3.41)

∫ a2

a1

[lnFU(z)− lnFL(z)]
dz

z − k
= −2i

∫ a2

a1

fa(z)
dz

z − k

where

(3.42)

fa(k) = arctan

4k2
√
b21 − k2

(
b21µ2

(
k2 − a2

1

) (
4k2
√
a2

2 − k2
√
b22 − k2 +

(
b22 − 2k2

)2)
+ b22µ1

√
k2 − a2

1

√
a2

2 − k2
)

(
b21 − 2k2

)2 (
b21µ2

√
k2 − a2

1

(
4k2
√
a2

2 − k2
√
b22 − k2 +

(
b22 − 2k2

)2)− b22µ1

√
a2

2 − k2
)


(2) For Re[k] ∈ [a2, b1],

(3.43)

∫ b1

a2

[lnFU(z)− lnFL(z)]
dz

z − k
= −2i

∫ b1

a2

fb(z)
dz

z − k

where

(3.44) fb(k) = arctan

[
f

(1)
b

f
(2)
b

]
1Throughout, we have used the equivalence arctan(x) = 1

2i ln
[
x−i
x+i

]
by extracting the imaginary part of the integrand

of FU and FL and rewriting it as 1/Im[F ](Re[F ]/Im[F ] + i), with x = Re[F ]/Im[F ].
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with

(3.45)

f
(1)
b = b4

1

(
−16k4µ2

(
a2

1 + k2
)√

k2 − a2
2 + b6

2µ1

√
k2 − a2

1 − 4b4
2k

2µ1

√
k2 − a2

1 + 4b2
2k

4µ1

√
k2 − a2

1

)
−

− 4b2
1

(
−4a2

1k
6µ2

√
k2 − a2

2 + b6
2k

2µ1

√
k2 − a2

1 − 4b4
2k

4µ1

√
k2 − a2

1 + 4b2
2k

6µ1

√
k2 − a2

1

)
+

+ 4b2
2k

4µ1

(
−4a2

1

√
k2 − a2

2

√
b2

1 − k2

√
b2

2 − k2 + b4
2

√
k2 − a2

1 − 4b2
2k

2
√
k2 − a2

1 + 4k4
√
k2 − a2

1+

+ 4k2
√
k2 − a2

2

√
b2

1 − k2

√
b2

2 − k2

)
+ b10

1 µ2

√
k2 − a2

2 − 8b8
1k

2µ2

√
k2 − a2

2 + 24b6
1k

4µ2

√
k2 − a2

2

(3.46) f
(2)
b = 4b2

2k
2µ1

(
−b4

1

√
k2 − a2

1

√
k2 − a2

2

√
b2

2 − k2 + k2

(
4b2

1

√
k2 − a2

1

√
k2 − a2

2

√
b2

2 − k2−

− 4k2
√
k2 − a2

1

√
k2 − a2

2

√
b2

2 − k2 + b4
2

√
b2

1 − k2 − 4b2
2k

2
√
b2

1 − k2 + 4k4
√
b2

1 − k2

)
− a2

1

√
b2

1 − k2
(
b2

2 − 2k2
)2
)

(3) For Re[k] ∈ [b1, b2],

(3.47)

∫ b2

b1

[lnFU(z)− lnFL(z)]
dz

z − k
= −2i

∫ b2

b1

fc(z)
dz

z − k

(3.48) fc(k) = arctan
[
f (1)
c (k)

]
with

(3.49) f
(1)
c (k)=

−b21µ2
√
k2−a22

(
−4k2
√
k2−a21

√
k2−b21+b

4
1−4b21k

2+4k4
)
−b62µ1
√
k2−a21+4b42k

2µ1

√
k2−a21−4b22k

4µ1

√
k2−a21

4b22k
2µ1

√
k2−a21

√
k2−a22

√
b22−k

2

This concludes the decomposition of F+(k). An almost analogous one can be performed for F−(k) on

the Re[k] < 0, where we would swap k for −k and the slownesses for −ai,−bi,−ci.

Thus, for a1 < a2 < b1 < c1 < b2 < c2 we find that:

(3.50) lnF±(k) = ∓
{

1

π

[∫ a2

a1

fa(z)
dz

z ± k
+

∫ b1

a2

fb(z)
dz

z ± k
+

∫ b2

b1

fc(z)
dz

z ± k

]
+ lnκ

}

Alternative combinations in the values of the slownesses of sound and the Rayleigh wave speeds would

render different factorisations of the FU and FL functions.
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Factorisation of G(k). The factorisation of G(k) into G±(k) is achieved through an almost analogous

procedure to that of K±(k). For a1 < a2 < b1 < c1 < b2 < c2 leads to:

(3.51) G±(k) = −S±2 (k)H±(k)

where

(3.52) S2(k) =
b2

2

µ2

β2(k)

R2(k)
, H(k) = 1 +

β1(k)R2(k)

β2(k)R1(k)

b2
1µ2

b2
2µ1

Using the same strategy described for F (k), we reach:

(3.53) S±2 (k) =
β±1 (k)b12(a2

1 − b2
1)(c1 ± k)

√
µ2D

±
1 (k)

, β±1 (k) =
√
b1 ± k

and

(3.54) lnH±(k) = ∓
{

1

π

[∫ a2

a1

ha(z)
dz

z ± k
+

∫ b1

a2

hb(z)
dz

z ± k
+

∫ b2

b1

hc(z)
dz

z ± k

]
+ ln η

}

where

(3.55) η = 1 +
b2

1µ2 (a2
2 − b2

2)

b2
2µ1 (a2

1 − b2
1)
,

(3.56) ha(k) = arctan

[
h

(1)
a

h
(2)
a

]

with

h
(1)
a =16b22k

4µ1(k2−a21)(b21−k2)
√
b22−k2+µ2(b31−2b1k2)

2√
b21−k2

(
4k2
√
a22−k2

√
b22−k2+(b22−2k2)

2
)

++(b21−2k2)
4

and

h(2)
a = 4b2

1k
2µ2

√
k2 − a2

1

(
b2

1 − k2
)(

4k2
√
a2

2 − k2

√
b2

2 − k2 +
(
b2

2 − 2k2
)2
)
,

(3.57) hb(k) = arctan

[
h

(1)
b

h
(2)
b

]
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with

h
(1)
b = 4b2

1k
4

(
4k2µ2

(√
k2 − a2

1

√
k2 − a2

2

√
b2

2 − k2 − k2
√
b2

1 − k2

)
+ 4a2

1b
2
2µ1

√
b2

2 − k2 − b4
2µ2

√
b2

1 − k2+

+4b2
2k

2

(
µ2

√
b2

1 − k2 + µ1

√
b2

2 − k2

))
− 4b4

1

(
4k4µ2

(√
k2 − a2

1

√
k2 − a2

2

√
b2

2 − k2 − k2
√
b2

1 − k2

)
−

−b4
2k

2µ2

√
b2

1 − k2 + 2b2
2k

4

(
2µ2

√
b2

1 − k2 + 3µ1

√
b2

2 − k2

))
− 16a2

1b
2
2k

6µ1

√
b2

2 − k2 − b8
1b

2
2µ1

√
b2

2 − k2+

+ b6
1

(
−b4

2µ2

√
b2

1 − k2 + 4b2
2k

2

(
µ2

√
b2

1 − k2 + 2µ1

√
b2

2 − k2

)
− 4k4µ2

√
b2

1 − k2

)

h
(2)
b =4b21k

2µ2
(
−b21

(
b42

√
k2−a21−4b22k

2
√
k2−a21+4k4

√
k2−a21+4k2

√
k2−a22

√
b21−k2
√
b22−k2

)
+

+b42k
2
√
k2−a21−4b22k

4
√
k2−a21+4k6

√
k2−a21+4k4

√
k2−a22

√
b21−k2
√
b22−k2+b41

√
k2−a22

√
b21−k2
√
b22−k2

)
,

and finally

(3.58)

hc(k) = arctan

−
√
b22 − k2

(
4b22k

2µ1

(
k2 −

√
k2 − a2

1

√
k2 − b21

)
− 4b21k

2
(
µ2

√
k2 − a2

2

√
k2 − b21 + b22µ1

)
+ b41b

2
2µ1

)
b21µ2

√
k2 − b21

(
b22 − 2k2

)2


3.1.2. Solution of the mode I and mode II problems. The product factorisations of K(k) and G(k)

enables the separation of the corresponding Wiener-Hopf equations into sectionally analytic parts and,

by extension, the solution of the problem in Laplace space. This is achieved as we detail in the sequel.

The mode I problem. The product factorisation of K(k) enables us to write eqn.3.18 as

(3.59) K+(k)K−(k)

[
Σ+(k) +

P0

k

]
= U−(k) =⇒ K+(k)Σ+(k) +K+(k)

P0

k
=
U−(k)

K−(k)

All that remains is the sum factorisation of the term

(3.60) K+(k)
P0

k

This entails a pole at k = 0, which may be eliminated requiring the residue to be zero (see [47],p.90),

leading to:

(3.61) K+(k)
P0

k
=

[
P0
K+(k)−K+(0)

k

]
+

+

[
P0
K+(0)

k

]
−
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where the first term on the left hand side is analytic on k > 0, and the second on k < 0 respectively.

Thus, we can finally write

(3.62) K+(k)Σ+(k) +

[
P0
K+(k)−K+(0)

k

]
+

=
U−(k)

Σ−(k)
−
[
P0
K+(0)

k

]
−

Invoking Liouville’s theorem, we are able to separate both branches so that

(3.63) K+(k)Σ+(k) +

[
P0
K+(k)−K+(0)

k

]
+

= 0 =⇒ Σ+(k) =
P0

k

[
K+(0)

K+(k)
− 1

]

The mode II problem. Similarly to the mode I problem, the product factorisation of G(k) enables us

to write

(3.64) G+(k)G−(k)

[
T+(k) +

Q0

k

]
= U−(k) =⇒ G+(k)T+(k) +G+(k)

Q0

k
=
U−(k)

G−(k)

Where following the same procedure as for mode I, we find an analogous form of the solution:

(3.65) T+(k) =
Q0

k

[
G+(0)

G+(k)
− 1

]

3.1.3. Inversion of the mode I and mode II Wiener-Hopf solutions. The inversion of Σ+(k) and T+(k)

is achieved using the Cagniard-de Hoop methodology[51, 52]. The procedure is analogous for both, so

in the interest of brevity here we merely outline it for Σ+(k), and quote the final result for T+(k).

We begin by inverting Σ+(k; s) in space. The spatial inversion is given by the Bromwich integral:

(3.66) σ̂+(x, s) =
1

2πi

1

s2

∫ i∞

−i∞
Σ+(k)eskxsdk =

1

2πi

1

s

∫ i∞

−i∞

P0

k

[
K+(0)

K+(k)
− 1

]
eskxdk

Invoking the Cagniard-de Hoop procedure, we distort the Bromwich contour along the imaginary axis

with a semi-circle and define a branch cut along the real axis for Re[k] < −a1 (we still assume that

a1 is the smallest slowness of sound in the bimaterial system). It is possible to close a contour of

integration with a Jordan semi-circle at infinity, that surrounds the branch cut. No pole is enclosed

by this contour, so by Cauchy’s theorem the integral along the closed contour must be zero. Equally,

the Jordan contour’s contribution vanishes as the integrand decays with e−k/k as |k|→ −∞. Thus, the
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contribution of the integral along the imaginary axis must equate that along the branch cut. Thus,

using Schwarz’s reflection principle, we have:

(3.67) σ̂+(x, s) = − 1

sπ

∫ ∞
a1

P0

k

[
K+(0)

K+(k)
− 1

]
eskxdk

If we make the variable change τ = −kx, then

(3.68) σ̂+(x, s) = − 1

sxπ

∫ ∞
a1x

Σ+

(
−τ
x

)
e−sτdτ

Therefore, by inspection we can rewrite the inversion integral as

(3.69) σ+(x, t) = − 1

πx

∫ t

a1x

Im
[
Σ+

(
−τ
x

)]
dτ

Similarly,

(3.70) t+(x, t) = − 1

πx

∫ t

a1x

Im
[
T+

(
−τ
x

)]
dτ

The tractions σ+(x, t) and t+(x, t) on their own are the solutions to the interfacial traction ahead of

mode I and mode II cracks in dissimilar media.

It is worth remarking that, as is the case with the crack running along a single medium, the interfacial

stresses can be expressed in self-similar form by changing variable to u 7→ t
x
, e.g.:

σ+(x, t) ≡ σ+ (u) = − 1

π

∫ u

a1

Im [Σ+ (−u′)] du′

3.2. Near field behaviour. We seek to investigate the near field behaviour of the crack tip’s stress

field, i.e., the behaviour as x→ 0+. This is related to the behaviour at |k|→ −∞. Following Freund[47]

and Atkinson[26], we may investigate the asymptotic behaviour of the kernels in Laplace space and then

invoke the Tauberian theorems to deduce the near field behaviour of the solution. In the |k|→ −∞

limit, the kernel function K(k) has the following behaviour:

(3.71) K(k) ∼ − i
k

(a2
1b

2
2µ1 + a2

2b
2
1µ2 − b2

1b
2
2(µ1 + µ2))

2µ1µ2 (a2
1 − b2

1) (a2
2 − b2

2)
= − i

k
Λ
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We can factorise K(k) into the product of two sectionally analytic functions, say

(3.72) K+(k) ∼
√

Λ√
k
, K−(k) =

√
Λ√
−k

From eqn.3.63 we may deduce:

(3.73) Σ+(k) ∼ P0√
k

√
ΛK+(0)

whereupon

(3.74) lim
x→0+

√
πxσ̂+(x, s) = lim

k→+∞

√
sk

1

s2
Σ+(k)

entails, invoking the Tauberian theorem

(3.75) KI(s) =
√

2P0K+(0)
√

Λ
1

s3/2
=⇒ KI(t) =

√
2P0K+(0)

√
Λ
√
t

An analogous result is found for mode II cracks. Hence, under a slipping boundary the crack displays

no oscillatory singularity and, as in the single material case (cf.[47]), it is unbounded in time. This

character is confirmed in section 3.3, where the full transient solution is examined.

3.3. Fully transient solution. Eqn.3.69 provides the fully transient solution to the bimaterial crack

along a slipping interface. Albeit slightly more cumbersome on account of the three integrals along the

[a1, b2] strip, the solution is in essence as simple as the one obtained for the crack along homogeneous

materials, where the three integrals collapse into just one along the [a1, b1] strip (see eqn.2.5.29, p.88 in

[47]). Thus, it is immediate to obtain the fully transient solution to the mode I (or mode II) crack along

a slipping boundary.

The solution can be achieved through simple numerical integration of eqn.3.54. We note that albeit

the Cauchy style integrals involved are convergent, the presence of the 1/(z + k) pole may make the

numerical integration unstable, particularly when evaluating values of k < 0. A simple way of avoiding

all problems related to this pole is to change variables via a mapping of the kind z + k 7→ e1−u. This

removes the pole and turns eqn.3.54 into three regularised integrals over the partitions u ∈ [1− ln(a1 +
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k), 1− ln(a2 +k)]∪ [1− ln(a2 +k), 1− ln(b1 +k)]∪ [1− ln(b1 +k), 1− ln(b2 +k)]. In the present work, the

integrals were solved numerically via Gauss-Kronrod quadrature. Given that both mode I and mode II

interfacial stresses display the same salient features, in the sequel we focus solely on mode I.

Figure 3 offers a representative form of the solution to the mode I interfacial normal stress, σ+(x, t),

assuming the loading is compressive. Three different time steps are shown for the case when a1 = 1/6,

a2 = 1/5, b1 = 1/3, b2 = 1/2.5, µ1/µ2 = 1.15. As may be seen, the solution may be interpreted as

consisting of four superposed wave fronts, each traveling at the corresponding speeds of sound in the

two media (respectively, cl1 , cl2 , ct1 , and ct2). For the current choice of sound speeds, before the fastest

wave front reaches point x at time t = x/a1, the interface is undisturbed by the transient part of the

loading. Once this first longitudinal front reaches a point in the interface, medium 2, the speeds of sound

of which are lower, is subjected to an intrinsically supersonic transient loading. Because no disturbance

in medium 2 can travel at cl1 , the interface resolves the ensuing supersonic mismatch by transferring

a tensile load across the interface relative to reference. The magnitude of this tensile load appears

insufficient to cause interfacial detachment. The singularity at the origin remains of 1/
√
x character,

as has been discussed in section 3.2, and is is modulated by the
√

Λ factor dependent on the different

elastic constants.

Varying the elastic constants results in wave profiles of similar characteristics, as is shown in fig.4,

which depicts the interfacial normal stress at the same time step for different combinations of elastic

constants. It is noteworthy that the relative distance between the 4 speeds of sound impacts the

qualitative response so much: if a2 � a1, then the transient relative traction is much larger, as a result

of medium 2 being subjected for longer periods of time to a supersonic load. Conversely, if b1 � b2, the

1/
√
x singular character is delayed.

4. The welded bimaterial interfacial crack

In the case of a welded boundary, the interface is able to transfer shear stress (in mode I) and normal

stress (in mode II). As was discussed in section 3, the symmetry considerations that for single materials
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Figure 3. The σ+(x, t) at three different instants in time field using a1 = 1/6, a2 = 1/5,

b1 = 1/3, b2 = 1/2.5, µ1/µ2 = 1.15. The position of the different wave fronts is marked

for the t = 0.15 case. All units are notional.

mean that the shear stress (in mode I) and normal stress (in mode II) vanish at the epicentral line of

a flat crack do not hold the moment the materials at either side of the said line change. This means

that in the presence of an interfacial crack, a fully adhered bimaterial interface will need to transfer

stress components across, and entail displacements in both directions even though the crack remains

nominally flat. Such an interface is referred to as a ‘welded interface’ [26].

In order to model the crack along a welded interface, the boundary conditions must be modified

accordingly. In the interest of generality, we consider the following boundary value problem which

includes both remote ‘shock’ shear and normal tractions; pure mode I and mode II cracks can be
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Figure 4. The σ+(x, t) at t = 0.15 for four different combinations of elastic constants.

Here (A): a1 = 1/6, a2 = 1/5, b1 = 1/3, b2 = 1/2.5, µ1/µ2 = 1.15; (B): a1 = 1/6,

a2 = 1/4, b1 = 1/3, b2 = 1/2, µ1/µ2 = 1.15; (C): a1 = 1/6, a2 = 1/5, b1 = 1/2, b2 = 1/1,

µ1/µ2 = 1.15; (D): a1 = 1/6, a2 = 1/2, b1 = 1, b2 = 1/0.5, µ1/µ2 = 1.15.

obtained by setting Q0 = 0 or P0 = 0, respectively.

σ(n)
yy (x, 0, t) = σ+(x, t)− P0H(t)H(−x) x ∈ R(4.1)

σ(n)
xy (x, 0, t) = τ+(x, t)−Q0H(t)H(−x) x ∈ R(4.2)

Juy(x, 0, t)K ≡ u(1)
y (x, 0, t)− u(2)

y (x, 0, t) = v−(x, t) x ∈ R(4.3)

Jux(x, 0, t)K ≡ u(1)
x (x, 0, t)− u(2)

x (x, 0, t) = u−(x, t) x ∈ R(4.4)

where σ+(x, t) and τ+(x, t) are now an unknown interfacial normal and shear tractions, and where

u−(x, t) and v−(x, t) are the displacement field componetns are.
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The continuity conditions across the interface are maintained, which lead to the following general

system of equations in Laplace space:

(4.5) −
1

µ1µ2R1(k)R2(k)



α1(k)b21µ2R2(k) + α2(k)b22µ1R1(k) k
[
µ1R1(k)

(
b22 − 2k2 − 2α2(k)β2(k)

)
−

− µ2R2(k)
(
b21 − 2k2 − 2α1(k)β1(k)

)]
k
[
µ1R1(k)

(
b22 − 2k2 − 2α2(k)β2(k)

)
− b21β1(k)µ2R2(k) + b22β2(k)µ1R1(k)

− µ2R2(k)
(
b21 − 2k2 − 2α1(k)β1(k)

)]


·

H+(k)

J+(k)

 =

V−(k)

U−(k)



where here Rn(k) is the secular equation for the Rayleigh waves (eqn.3.19), H+(k) = Σ+(k) − P0

k
and

J+(k) = T+(k) − Q0

k
. We have defined the stress and displacement components in Laplace space as in

eqns.3.11 and 3.22

For brevity, we denote the resulting Riemann-Hilbert problem as

(4.6) K(k)

[
Σ+(k)− 1

k
P

]
= U−(k)

where the matrix K(k), given by

(4.7)

k11 k12

k12 k22

 = −
1

µ1µ2R1(k)R2(k)



α1(k)b21µ2R2(k) + α2(k)b22µ1R1(k) −k
[
µ1R1(k)

(
b22 − 2k2 − 2α2(k)β2(k)

)
−

− µ2R2(k)
(
b21 − 2k2 − 2α1(k)β1(k)

)]
k
[
µ1R1(k)

(
b22 − 2k2 − 2α2(k)β2(k)

)
− b21β1(k)µ2R2(k) + b22β2(k)µ1R1(k)

− µ2R2(k)
(
b21 − 2k2 − 2α1(k)β1(k)

)]



is the (antisymmetric) scattering matrix, the elements of which are

k11(k) = −
[
α1(k)

R1(k)

b2
1

µ1

+
α2(k)

R2(k)

b2
2

µ2

]
(4.8)

k22(k) = −
[
β1(k)

R1(k)

b2
1

µ1

+
β2(k)

R2(k)

b2
2

µ2

]
(4.9)

k12(k) = k

[
b2

1 − 2k2 − 2α1(k)β1(k)

µ1R1(k)
− b2

2 − 2k2 − 2α2(kβ2(k)

µ2R2(k)

]
(4.10)

and

(4.11) P =

P0

Q0

 , Σ+(k) =

Σ+(k)

T+(k)

 , U−(k) =

V−(k)

U−(k)


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We assume that Σ+(k) and U−(k) are analytic and integrable over Re[k] > 0 and Re[k] < 0 respectively.

We note here that the scattering matrix used here is a subset of the one that may be found tabulated

in ch.5 of Aki and Richards[4].

4.1. Factorisation of the K(k) kernel. We would like to factorise the K(k) kernel matrix using the

following representation:

(4.12) K(k) = K−(k)K+(k)

with K±(k) regular and holomorphic over the positive (negative) half plane. Unfortunately, the branch

cuts of αn(k) and βn(k) mean that the kernel is not commutative. Abrahams[45] proposed a technique

to approximate the kernel in these cases, which we employ in the following.

If we define the product decomposition of the elements of K(k) as kij = k+
ijk
−
ij , then we can write

(4.13) K(k) =

k11 −k12

k12 k22

 =

k−12 0

0 k−12


−k11

k12
1

1 k22
k12


k+

12 0

0 k+
12

 = K−12(k)C′(k)K+
12(k)

We note here that the product factorisation of k11 ≡ K(k) = k−11 · k+
11 and k22 ≡ G(k) = k+

22k
−
22 has

already been achieved in section 3 as the kernels of, respectively, the mode I and mode II cracks along

the slipping interface. The strategy to factorise k12 = k+
12k
−
12 would be almost analogous to the one

followed to factorise k11 and k22.

Whereas the leftmost and rightmost matrices in eqn.4.13 are factorised to the desired form and are

commutative (i.e., K+
12K

−
12 = K−12K

+
12 = K12, the central matrix is not commutative, despite it can be

written in a form similar to the one considered by Khrapkov[43] and by Daniele[42]. As we argue in

the sequel, this caveat can be ameliorated by considering an Abrahams approximation of the kernel

matrix[45, 44].

4.1.1. Approximate factorisation of C(k). The Abrahams approximation is reliant on the Padé approx-

imant of one of its members. We describe this procedure in the following. For convenience, we begin by



THE ELASTODYNAMIC BIMATERIAL INTERFACE UNDER MODE I AND MODE II LOADING 27

introducing

(4.14) C′(k) =

−k11
k12

1

1 k22
k12

 =

 1 −k11
k12

k22
k12

1


0 1

1 0

 = C(k)

0 1

1 0


where the second matrix is trivially entire. Now,

(4.15) C(k) =

 1 −k11
k12

k22
k12

1

 = I +
1

k12

 0 −k11

k22 0


We may then reduce this matrix to its Daniele-Khrapkov form:

(4.16) C(k) = I +
k11f(k)

k12

 0 − 1
f(k)

f(k) 0

 = I + h(k)J(k), f(k) =

√
k22

k11

, h(k) =
k11

k12

f(k)

The matrix J(k) has the property expected of wthe Daniele-Khrapkov form:

(4.17) J2(k) = −I

However, the function f(k) is not entire, as it has a branch cut we define, in analogy with section 3, for

Re[|k|] ∈ [a1, b2], assuming again that amin = a1 and bmax = b2. Thus, a proper Daniele-Khrapkov form

cannot be reached, and an alternative strategy must be employed to reach an approximate solution to

the transient problem.

We have narrowed down the problem of the matricial factorisation of the scattering matrix to the fact

that f(k) has an unavoidable branch cut. This in principle appears to prevent the matricial factorisation

of the Wiener-Hopf problem, at least via conventional means. It is nevertheless possible to cancel the

branch cut via recursive approximation of f(k).

The strategy relies on noting that f(k) is the quotient of two functions of the same order, so that

f(k) → 1 as |k|→ ∞. It is then possible to construct an approximating function fn(k) such that

limn→∞ fn(k) = f(k) and such that it has no branch cuts. One option to do so would be to consider the

truncated Taylor series expansion of f(k), which would lend itself to a strategy similar to the conventional

Williams expansion of elastostatics (cf.[8]). Performing such expansion about |k|→ ∞ would capture
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asymptotic near field behaviour of the crack tip; in section 4.2.2 we show that the near field asymptotic

analysis actually puts the scattering kernel in Daniele-Khrapkov form. This approach has the caveat

that it fails to capture correctly the far field: the |k|→ 0 limit is inevitably misrepresented by the

truncation of the Taylor series expansion. The latter is important in capturing the wave fronts of the

transient solution and ensuring that any approximation retains causality, which is eminently desirable

in approximating a transient solution.

An alternative to the Williams expansion first offered by Abrahams[45] is to approximate f(k) not by

a truncated Taylor series, but by the function’s diagonal Padé approximant of order [n/n] (with n ∈ N),

given by

(4.18) f(k) ≈ fn(k) =
Pn(k)

Qn(k)
,

where Pn(k) and Qn(k) are two order 2n polynomials of the form:

Pn(k) = c0 + c1k
2 + c2k

4 + . . .+ cnk
2n,

Qn(k) = 1 + d1k
2 + d2k

4 + . . .+ dnk
2n(4.19)

The coefficients of the Padé approximant are found in the usual manner (see for instance [53] p.56

onwards), by matching the Taylor series expansion of f(k) about, say, k = 0 with that of fn(k) up to

order 4n on 4n regular points. This ensures the approximant retains the adequate asymptotic behaviour

at |k|→ ∞ and k → 0.

As may be deduced from eqn.4.18, fn(k) will have 2n zeroes and 2n poles, all of them simple and

symmetrically disposed lying within the branch cut Re|k|∈ [a1, b2]. However, because fn(k) is the

quotient of polynomials, which are entire functions, the Padé approximant will entail no branch cuts,

leading to the desired Daniele-Khrapkov form of C(k) in approximate manner. In effect, the Padé

approximant serves to substitute the branch cut in f(k) for infinitely many discrete poles laying in the

same interval [45]. As a Padé approximant, it has the property that fn(k) → f(k) as n → ∞, so the
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approximating solution resulting from this kernel is guaranteed to converge to the actual solution, for

sufficiently large n.

Using fn(k) instead of f(k), we can introduce the Abrahams approximating kernel:

(4.20) C(k) ≈ Cn(k) = I + h(k)Jn(k), with Jn(k) =

 0 − 1
fn(k)

fn(k) 0


With Cn(k) written in its Daniele-Khrapkov form, we can fully factorise it as explained for instance in

[42], by considering its (matrix) logarithm

(4.21) ln Cn(k) = ln [I + h(k)Jn(k)]

If we expand this in series, use J2
n(k) = −I, and then group the terms in I and Jn together, one is able

to decompose the approximant matrix Cn(k) into two sectionally analytic matrices:

(4.22) ln Cn(k) = ln C−n (k) + ln C+
n (k)

where C±n (k) is analytic in the |k|≷ 0 respectively, and given by

(4.23) C±n (k) = cos [h±(k)] I + sin [h±(k)] Jn(k)

In section 4.1.3, we discuss how to factorise h−(k)+h+(k) alongside the product factorisation of k12(k) =

k+
12(k) · k−12(k).

4.1.2. Regularisation of the discrete poles. With those two factorisations in place, there remains a prob-

lem with eqn.4.23: the matrix Cn(k) is regular everywhere except for on the 2n zeroes of Pn(k) and

Qn(k), which are carried as poles by Jn(k). We shall refer to the zeroes of Pn(k) as {±pi}ni=1, and to the

zeroes of Qn(k) as {±qi}ni=1. As we have said, these lay by construction symmetrically disposed about

the origin and fall within the branch cut Re|k|∈ [a1, b2].
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These poles must be removed to finish the factorisation. As is detailed in [54], this is typically achieved

heuristically, by introducing a regularising matrix Λ(k) of the form

(4.24) Λ(k) = diag

[∑
j

(k ± pj)−1,
∑
i

(k ± qj)−1

]

which merely denotes that the regularising matrix must cancel the poles of Cn(k) and be meromorphic.

For convenience, we shall define it such that

D−(k) = C−n (k)Λ(k)(4.25)

D+(k) = Λ−1(k)C+
n (k)(4.26)

which ensures that D−(k)D+(k) = C−(k)C+
n (k). For both analytical and subsequent convenience (see

sec.4.2, where the Wiener-Hopf problem is finally solved) it is better to consider the inverse of C+
n (k),

i.e.,

(4.27)
[
D+(k)

]−1
=
[
C+
n (k)

]−1
Λ(k)

The specific form of the regularising matrix Λ(k) is largely a matter of choice. Here, we choose the

following type, proposed by Abrahams[45]:

(4.28) Λ(k) =

1−
∑n

j=1
cj

k−pj −
∑n

j=1
dj

k+pj
−
∑n

j=1

c′j
k−pj −

∑n
j=1

d′j
k+pj∑n

j=1

v′j
k−qj +

∑n
j=1

w′j
k+qj

1 +
∑n

j=1
vj
k−qj +

∑n
j=1

wj
k+qj


where cj, c

′
j, dj, d

′
j, vj, v

′
j, wj, w

′
j are unknown coefficients to be determined so as to guarantee that the

poles in Cn(k) are cancelled.

The latter is done by requiring that the elements of the matrices D±(k) in eqns.4.26 have no poles at

k = ±pj and k = ±qj. Because there are 4 times as many unknown coefficients as there are poles, this

task becomes increasingly more protracted the higher the order of the chosen Padé approximant fn(k).

It is however immediate to identify the system of linear equations that lead to the determination of the

coefficients.
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The procedure to obtain the coefficients of the regularising matrix is as follows. Consider the elements

of D−(k):

d−11 = cosh−(k)

[
1−

n∑
j=1

cj
k − pj

−
n∑
j=1

dj
k + pj

]
− sinh−(k)

fn(k)

[
n∑
j=1

v′j
k − qj

+
n∑
j=1

w′j
k + qj

]
(4.29)

d−12 = − cosh−(k)

[
n∑
j=1

c′j
k − pj

+
n∑
j=1

d′j
k + pj

]
− sinh−(k)

fn(k)

[
1 +

n∑
j=1

vj
k − qj

+
n∑
j=1

wj
k + qj

]
(4.30)

d−21 = sinh−(k)fn(k)

[
1−

n∑
j=1

cj
k − pj

−
n∑
j=1

dj
k + pj

]
+ cosh−(k)

[
n∑
j=1

v′j
k − qj

+
n∑
j=1

w′j
k + qj

]
(4.31)

d−22 = − sinh−(k)fn(k)

[
n∑
j=1

c′j
k − pj

+
n∑
j=1

d′j
k + pj

]
+ cosh−(k)

[
1 +

n∑
j=1

vj
k − qj

+
n∑
j=1

wj
k + qj

]
(4.32)

and of [D+(k)]−1:

[
d+

11

]−1
= cosh+(k)

[
1−

n∑
j=1

cj
k − pj

−
n∑
j=1

dj
k + pj

]
+

sinh+(k)

fn(k)

[
n∑
j=1

v′j
k − qj

+
n∑
j=1

w′j
k + qj

]
(4.33)

[
d+

12

]−1
=

sinh+(k)

fn(k)

[
1 +

n∑
j=1

vj
k − qj

+
n∑
j=1

wj
k + qj

]
− cosh+(k)

[
n∑
j=1

c′j
k − pj

+
n∑
j=1

d′j
k + pj

]
(4.34)

[
d+

21

]−1
= cosh+(k)

[
n∑
j=1

v′j
k − qj

+
n∑
j=1

w′j
k + qj

]
− fn(k) sinh+(k)

[
1−

n∑
j=1

cj
k − pj

−
n∑
j=1

dj
k + pj

]
(4.35)

[
d+

22

]−1
= cosh+(k)

[
1 +

n∑
j=1

vj
k − qj

+
n∑
j=1

wj
k + qj

]
+ fn(k) sinh+(k)

[
n∑
j=1

c′j
k − pj

+
n∑
j=1

d′j
k + pj

]
(4.36)

Let us now express fn(k) in terms of its Mittag-Leffer expansion[55]:

(4.37) fn(k) = C +
n∑
j=1

γj
k2 − q2

j

,
1

fn(k)
=

1

C
+

n∑
j=1

δj
k2 − p2

j

with

(4.38) γj = 2qj
Pn(qj)

Q′n(qj)
, δj = 2pj

Qn(pj)

P ′n(pj)
, C = lim

k→∞
fn(k) ≈ 1

Consider then, say, d−1
11 , and let us examine the conditions that make this coefficient be pole-free in

Re[k] < 0:

(4.39)

cosh−(k)


1−

n∑
j=1

cj
k − pj

−
n∑
j=1

dj
k + pj

− tanh−(k)

 1

C
+

n∑
j=1

δj
(k − pj)(k + pj)

 n∑
j=1

v′j
k − qj

+

n∑
j=1

w′j
k + qj


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If we focus on the terms that bear poles at k = −pj, we find the term:

(4.40) −
n∑
j=1

1

k + pj

[
dj + tanh−(k)

δj
k − pj

[
n∑
l=1

v′l
k − ql

+
n∑
l=1

w′l
k + ql

]]

By setting, say, k = −pj, we find that the only way the pole at k = −pj vanishes is if:

(4.41) di = tanh−(−pi)
δi

2pi

[
n∑
j=1

v′j
−pi − qj

+
n∑
j=1

w′j
−pi + qj

]

Similarly with the rest of elements, we would find, for i = 1, . . . , n:

di = tanh−(−pi)
δi

2pi

[
n∑
j=1

v′j
−pi − qj

+
n∑
j=1

w′j
−pi + qj

]
(4.42)

d′i = tanh−(−pi)
δi

2pi

[
1 +

n∑
j=1

vj
−pi − qj

+
n∑
j=1

wj
qj − pi

]
(4.43)

ci = tanh+(pi)
δi

2pi

[
n∑
j=1

v′j
pi − qj

+
n∑
j=1

w′j
pi + qj

]
(4.44)

c′i = tanh+(pi)
δi

2pi

[
1 +

n∑
j=1

vj
pi − qj

+
n∑
j=1

wj
pi + qj

]
(4.45)

vi = − tanh+(qi)
γi
2qi

[
n∑
j=1

c′j
qi − pj

+
n∑
j=1

d′j
qi + pj

]
(4.46)

v′i = tanh+(qi)
γi
2qi

[
1−

n∑
j=1

cj
qi − pj

−
n∑
j=1

dj
qi + pj

]
(4.47)

wi = − tanh−(−qi)
γi
2qi

[
n∑
j=1

c′j
−qi − pj

+
n∑
j=1

d′j
pj − qi

]
(4.48)

w′i = − tanh−(−qi)
γi
2qi

[
1−

n∑
j=1

cj
−qi − pj

−
n∑
j=1

dj
pj − qi

]
(4.49)

This set of 8n relations form a linear system of equations of dimension 8n. Its solution renders the value

of the pole cancelling constants cj, c
′
j, dj, d

′
j, vj, v

′
j, wj, w

′
j, i = 1, . . . , n, and completes the factorisation.

The solution can be easily achieved through linear numerical algebra for each case.

4.1.3. Wiener-Hopf factorisation of the scalar terms. In introducing the Abrahams approximating ma-

trix, we have shown it to depend on the Wiener-Hopf factorisation of two scalar terms, namely:

k12 = k−12k
+
12, and h−(k) + h+(k). We perform these factorisations in the sequel.
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Product factorisation of k12. The term k12 (given in eqn.4.10) has a structure similar to that of

k11 ≡ K(k) and k22 ≡ G(k), the product factorisation of which was obtained in section 3.1. As before,

we shall derive the factorisation for the case a1 < a2 < b1 < c1 < b2 < c2.

For convenience, we begin by renaming the term:

(4.50) ηi(k) = b2
i − 2k2 − 2αi(k)βi(k)

and reorder the terms of k12 as follows.

(4.51) k12 = k

[
η1(k)

µ1R1(k)
− η2(k)

µ2R2(k)

]
= −k η2(k)

R2(k)µ2

[
1− η1(k)

η2(k)

R2(k)

R1(k)

µ2

µ1

]

We may now factorise each multiplying term into sectionally analytic functions, which consists of an

entire function k and the secular form of the Rayleigh function. The factorisation of which are known

(see [47, 49]). Say

(4.52) k = sign(k)k
1/2
+ k

1/2
−

where k
1/2
± has the branch cut so that it is meromorphic on the ±k > 0 plane, and

(4.53) R2(k) = R+
2 (k)R−2 (k), with R±2 (k) = 2(a2

2 − b2
2)(c2 ± k)D±2 (k)

where D2(k) is given in eqn.3.33.

The factor η2(k) has no poles, bears branch cuts on Re|k|∈ [a2, b2], and has the property that η2(k)→

−a2
2 as |k|→ ∞. We can therefore formally express its factorisation using the Plemelj formula as:

(4.54) ln η±2 (k) = ∓ 1

2πi

∫ d+i∞

d−i∞

ln η2(z)

z − k
dz

We can rewrite the integral in an analytically convenient form, by closing the Bromwich contour with a

semi circle at infinity. Thus

(4.55)

∮
C

ln η2(z)

z − k
dz =

∫ d+i∞

d−i∞
+

∫
Γ+

+

∫
Γ−

+

∫
J
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where

(4.56)

∫
J

= 2iπ ln[−a2
2]

(4.57)

∫
Γ++Γ−

=

∫ b2

a2

[
ln ηU2 (k)− ln ηL2 (k)

] dz

z − k
= 2i

∫ b2

a2

arctan

[
b2

2 − 2z2

2
√
z2 − a2

2

√
b2

2 − z2

]
dz

z − k

whereupon

(4.58)

∫ d+i∞

d−i∞
= −2iπ ln[−a2

2]− 2i

∫ b2

a2

arctan

[
b2

2 − 2z2

2
√
z2 − a2

2

√
b2

2 − z2

]
dz

z − k

(4.59) ln η±2 (k) = ±

{
ln[−a2

2] +
1

π

∫ b2

a2

arctan

[
b2

2 − 2z2

2
√
z2 − a2

2

√
b2

2 − z2

]
dz

z − k

}

Finally, we use the same strategy developed in section 3.1.1 to achieve the product factorisation of

the term

(4.60) F (k) = 1− η1(k)

η2(k)

R2(k)

R1(k)

µ2

µ1

This term has poles at ±c1; the zeroes of η2(k) are found to be

(4.61) e2 = ±i b2

2a2

√
b2

2 − 4a2
2

This means that if b2 > 2a2 the poles fall on the imaginary axis, and need not be considered, and if

b2 < 2a2 they fall on the real line, and must be considered. The latter only happens if µ2 > 2λ2 (or

ν2 < 1/6). The branch cuts are defined under the assumption that a1 < a2 < b1 < c1 < b2 < c2, for

Re|k|∈ [a1, b2].

If a1 < e2, we can proceed as we did in section 3.1.1:

(4.62) lnF±(k) = ∓ 1

2πi

∫ d+i∞

d−i∞

lnF (z)

z − k
dz

with

(4.63)

∫ d+i∞

d−i∞
+

∫
Γ+

+

∫
Γ−

+

∫
J
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Here,

(4.64)

∫
J

= iπ ln

(
1− a2

1µ2 (b2
2 − a2

2)

a2
2µ1(b2

1 − a2
1)

)

(4.65)

∫
Γ+

+

∫
Γ−

= 2i

{∫ a2

a1

arctan l1(z)
dz

z − k
+

∫ b1

a2

arctan l2(z)
dz

z − k
+

∫ b2

b1

arctan l3(z)
dz

z − k

}
where

l1(k) =

µ2(4b21(2a21k
2+k4)−8a21k

4+b61−6b41k
2)
(

4k2
√
a22−k2

√
b22−k2+(b22−2k2)

2
)

µ1(−16b21k
4(a21+k2)+16a21k

6+b81−8b61k
2+24b41k

4)
(
b22−2

(√
a22−k2

√
b22−k2+k2

)) − 1

2b2
1

√
k2 − a2

1 (b2
1 − 2k2)

√
b2

1 − k2
,

l2(k) = − l
(1)
2 (k)

2µ1 (b4
2 − 4a2

2 (b2
2 − k2)) (b8

1 − 8k2b6
1 + 24k4b4

1 − 16k4 (a2
1 + k2) b2

1 + 16a2
1k

6) l
(2)
2 (k)

with

l
(1)
2 (k)=−b22(b22µ1b81−(µ2b42+2k2(4µ1−3µ2)b22+4k4µ2)b61+(6k2µ2b42+4(k4(6µ1−9µ2)−

−
√
b21−k2
√
b22−k2
√
k2−a21

√
k2−a22µ2

)
b22+8k2µ2

(
3k4+
√
b21−k2
√
b22−k2
√
k2−a21

√
k2−a22

))
b41−

−4k2
(
k2µ2b42+

(
k4(4µ1−6µ2)−2

√
b21−k2
√
b22−k2
√
k2−a21

√
k2−a22µ2

)
b22+2a21(µ2b42+2k2(µ1−3µ2)b22+4k4µ2)+

+4k2µ2
(
k4+
√
b21−k2
√
b22−k2
√
k2−a21

√
k2−a22

))
b21+8a21k

4(µ2b42+2k2(µ1−3µ2)b22+4k4µ2)
)
−

−4a22(b22−k2)(µ1b81+2k2(µ2−4µ1)b61+12k4(2µ1−µ2)b41−8((2µ1−µ2)k6+2a21(µ1−µ2)k4)b21+16a21k
6(µ1−µ2))

l
(2)
2 (k)=b22(b22−2k2)

√
b22−k2
√
k2−a22b61−

(√
b21−k2
√
k2−a21b62+6k2

(√
b22−k2
√
k2−a22−

√
b21−k2
√
k2−a21

)
b42+

+4
((√

b21−k2
√
k2−a21−3

√
b22−k2
√
k2−a22

)
k4+2a22

√
b21−k2
√
k2−a21k2

)
b22−8a22k

4
√
b21−k2
√
k2−a21

)
b41+

+2k2
(√

b21−k2
√
k2−a21b62+

(
4
√
b22−k2
√
k2−a22a21+k2

(
2
√
b22−k2
√
k2−a22−6

√
b21−k2
√
k2−a21

))
b42+

+4k2
(
−2
√
b22−k2
√
k2−a22a21+2a22

√
b21−k2
√
k2−a21+k2

(√
b21−k2
√
k2−a21−

√
b22−k2
√
k2−a22

))
b22−

−8a22k
4
√
b21−k2
√
k2−a21

)
b21−8a21b

2
2k

4(b22−2k2)
√
b22−k2
√
k2−a22

And

l3(k) = − l
(1)
3 (k)

l
(2)
3 (k)
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with

l
(1)
3 (k)=b22

(
−2
(√

k2−a21
√
k2−b21−k2

)
(b42µ2+2b22k

2(µ1−3µ2)+4k4µ2)+b41b
2
2µ1−b21(b42µ2+2b22k

2(2µ1−3µ2)+

+4k4µ2))−4a22(b22−k2)
(
−4k2(µ1−µ2)

(√
k2−a21

√
k2−b21−k2

)
+b41µ1+2b21k

2(µ2−2µ1)
)

l
(2)
3 (k)=2b22µ1

√
k2−a22(b22−2k2)

√
b22−k2

(
2
√
k2−a21

√
k2−b21+b21−2k2

)(
−4k2
√
k2−a21

√
k2−b21+b41−

−4b21k
2+4k4)(b42−4a22(b22−k2))

Thus,

(4.66) lnF±(k) = ∓ 1

π

{
ln

(
1− a2

1µ2 (b2
2 − a2

2)

a2
2µ1(b2

1 − a2
1)

)1/2

+

+

[∫ a2

a1

arctan l1(z)
dz

z − k
+

∫ b1

a2

arctan l2(z)
dz

z − k
+

∫ b2

b1

arctan l3(z)
dz

z − k

]}

If a1 > e2, then it is best to consider a function of the following kind instead:

(4.67) F (k) =
(k2 − a2

1)

η2(k)

[
η2(k)

(k2 − a2
1)
− η1(k)

k2 − a2
1

R2(k)

R1(k)

µ2

µ1

]
=

(k2 − a2
1)

η2(k)
·H(k)

In this case, η2(k) is already factorised, and k2 − a2
1 is entire. The branch cuts for this version of F (k)

remain the same, but the poles have changed: there is a simple pole in k = ±a1, and at the k = ±c1.

Both poles fall ex hypothesis within the branch cut. This form of F (k) has the advantage that F (k)→ 0

as |k|→ ∞. In that event, we have that

(4.68)

∫
J

lnH(z)

z − k
dz = 0

and

(4.69)

∫
Γ+

+

∫
Γ−

= 2i

[∫ a2

a1

arctanm1(z)
dz

z − k
+

∫ b1

a2

arctanm2(z)
dz

z − k
+

∫ b2

b1

arctanm3(z)
dz

z − k

]

where

m1(k) =
m

(1)
1

m
(2)
1
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with

m
(1)
1 =−4b21

(
a21

(
8k4(µ1−µ2)

(√
a22−k2

√
b22−k2+k2

)
−2b42k

2µ2−4b22k
4(µ1−2µ2)

)
+

+4k6(2µ1−µ2)
(√

a22−k2
√
b22−k2+k2

)
−b42k4µ2+4b22k

6(µ2−µ1)
)

+8a21k
4
(

4k2(µ1−µ2)
(√

a22−k2
√
b22−k2+k2

)
+

+b42(−µ2)−2b22k
2(µ1−2µ2))+b81µ1

(
2
(√

a22−k2
√
b22−k2+k2

)
−b22

)
+b61

(
−4k2(4µ1−µ2)

(√
a22−k2

√
b22−k2+k2

)
+

+b42µ2+4b22k
2(2µ1−µ2))+6b41

(
4k4(2µ1−µ2)

(√
a22−k2

√
b22−k2+k2

)
+b42(−k2)µ2+4b22k

4(µ2−µ1)
)

m
(2)
1 = b2

1µ2

√
k2 − a2

1

(
b2

1 − 2k2
)√

b2
1 − k2

(
4

(
k2
√
a2

2 − k2

√
b2

2 − k2 + k4

)
+ b4

2 − 4b2
2k

2

)
,

and

m2(k) =
m

(1)
2

m
(2)
2

m
(1)
2 =(b22−2k2)µ1

√
k2−a21b81−(b22−2k2)

√
k2−a21(µ2b22+k2(8µ1−2µ2))b61+

+2k2
(

3µ2
√
k2−a21b42+12k2(µ1−µ2)

√
k2−a21b22−4k2

√
b21−k2
√
b22−k2
√
k2−a22µ2+

+12k4(µ2−2µ1)
√
k2−a21+4a21µ2

√
b21−k2
√
b22−k2
√
k2−a22

)
b41+4

(
−4
√
k2−a21µ2k8+8µ1

√
k2−a21k8+

+4b22(µ2−µ1)
√
k2−a21k6+4µ2

√
b21−k2
√
b22−k2
√
k2−a22k6−b42

√
k2−a21µ2k4+

+a21

(
8(µ1−µ2)

√
k2−a21k6−4

√
b21−k2
√
b22−k2
√
k2−a22µ2k4−4b22(µ1−2µ2)

√
k2−a21k4−2b42

√
k2−a21µ2k2

))
b21+

+8a21k
4(b22−2k2)(µ2b22+2k2(µ1−µ2))

√
k2−a21
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m
(2)
2 =2

(
µ1
√
b22−k2
√
k2−a21

√
k2−a22b81+2k2(µ2−4µ1)

√
b22−k2
√
k2−a21

√
k2−a22b61+

+
(
−4
√
b21−k2µ2k6+4

(
6µ1
√
b22−k2
√
k2−a21

√
k2−a22+

+µ2
(√

b21−k2a21+b22

√
b21−k2−3

√
b22−k2
√
k2−a21

√
k2−a22

))
k4−b22(4a21+b22)

√
b21−k2µ2k2+a21b

4
2µ2
√
b21−k2

)
b41−

−2
(
−4
√
b21−k2µ2k8+4

(
µ2
√
b21−k2b22−

√
b22−k2
√
k2−a21

√
k2−a22µ2+2µ1

√
b22−k2
√
k2−a21

√
k2−a22

)
k6−

−b42µ2
√
b21−k2k4+a21

(
4µ2
√
b21−k2k6+

(
−4
√
b21−k2µ2b22−8

√
b22−k2
√
k2−a21

√
k2−a22µ2+

+8µ1
√
b22−k2
√
k2−a21

√
k2−a22

)
k4+b42µ2

√
b21−k2k2

))
b21+16a21k

6(µ1−µ2)
√
b22−k2
√
k2−a21

√
k2−a22

)

and

m3(k) =
m

(1)
3 (k)

m
(2)
3 (k)

with

m
(1)
3 =

(
b2

2 − 2k2
)(

b4
1µ1

√
k2 − a2

1 − b2
1

√
k2 − a2

1

(
b2

2µ2 + k2(4µ1 − 2µ2)
)

+

+2

(
a2

1

√
k2 − b2

1 + k2

(√
k2 − a2

1 −
√
k2 − b2

1

))(
b2

2µ2 + 2k2(µ1 − µ2)
))

m
(2)
3 = 2

√
k2 − a2

2

√
b2

2 − k2

(
b4

1µ1

√
k2 − a2

1 + 2b2
1k

2
√
k2 − a2

1(µ2 − 2µ1)+

+4k2(µ1 − µ2)

(
a2

1

√
k2 − b2

1 + k2

(√
k2 − a2

1 −
√
k2 − b2

1

)))

whereupon

(4.70)

F±(k) =
(k ± a1)

η±2 (k)
exp

{
∓ 1

π

[∫ a2

a1

arctanm1(z)
dz

z − k
+

∫ b1

a2

arctanm2(z)
dz

z − k
+

∫ b2

b1

arctanm3(z)
dz

z − k

]}

Thus, we reach that the product factorisation of k±12 is:

(4.71) k±12 = −k1/2
±

η±2 (k)

R±2 (k)µ2

F±(k), k12 = k−12k
+
12
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Additive factorisation of h(k). The need to factorise h(k) into h±(k) arises from eqn.4.23, whereby

(4.72) Cn(k) = C−n (k)C+
n (k) = cos[h−(k) + h+(k)]I + sin[h−(k) + h+(k)]Jn ≡ I + h(k)Jn

Comparing both sides, we find that

(4.73) h−(k) + h+(k) = arctan [h(k)]

where

(4.74)

h(k) =
k11

k12

f(k) =
k11

k12

√
k22

k11

= −α1(k)b2
1µ2R2(k) + α2(k)b2

2µ1R1(k)

k(η2(k)µ1R1(k)− η1(k)µ2R2(k))

√
b2

1β1(k)µ2R2(k) + b2
2β2(k)µ1R1(k)

α1(k)b2
1µ2R2(k) + α2(k)b2

2µ1R1(k)

Before discussing the branch cuts of this function, we shall reduce it to a more useful form. We note

that in invoking the Plemelj formula to write the formal additive factorisation of h(k), we would have

(4.75) h±(k) = ± 1

2πi

∫ d+i∞

d−i∞

arctanh(z)

z − k
dz

where h+(k) would be holomorphic in the positive half-plane, and h−(k) in the negative one.

Due to the form of h(k), the expression above is not particularly easy to handle. However, eqn.4.75

can be reduced to a more analytically useful expression by considering the additive factorisation of h(k)

instead. Let us define

(4.76) g(k) =
1− ih(k)

1 + ih(k)

so that arctanh(k) = 1
2i

ln g(k). Then

(4.77) ln g(k) = ln g+(k) + ln g−(k) = 2i [h+(k) + h−(k)] =⇒ h±(k) =
1

2i
ln g±(k)

where g±(k) is the product factorisation of g(k). The factorisation of g±(k) can be achieved by invoking

the property that if ln g(k) = ln g+(k) + ln g−(k). Thus, by simple term-by-term differentiation:

(4.78)
d ln g(k)

dk
=
g′(k)

g(k)
≡ 2ih′(k)

1 + h2(k)
=
g′+(k)

g+(k)
+
g′−(k)

g−(k)
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and renaming
g′±(k)

g±(k)
= l±(k), we find we can avoid the branch cuts of the arctanh(k) (or, equivalently,

the ln g(k)) by performing the sum factorisation of

(4.79)
2ih′(k)

1 + h2(k)
≡ l(k) = l+(k) + l−(k)

Having achieved it, we can write h±(k) in terms of the primitive function of l±(k), to wit:

(4.80) h±(k) =
1

2i

∫
k

l±(k′)dk

We therefore seek the additive factorisation of l(k) = 2ih′(k)
1+h2(k)

, given by the Plemelj formula:

(4.81) l±(k) = ± 1

2πi

∫ d+i∞

d−i∞

2ih′(z)

1 + h2(z)

1

z − k
dz

For all subsequent purposes, we define the branch cuts due to the terms in the integrand so that they

fall within the familiar strip Re|k|∈ [a1, b2]. We need to examine the location of the poles due to this

term. Operating in terms of the kij(k) factors, we find that the denominator of l(k) entails poles when

(4.82) 2
√
k11(k)k22(k)

(√
k11(k)k22(k)− ik12(k)

)2

= 0

Thus, the integrand has simple poles at k11(k) = 0 and k22(k) = 0, which happen to be the same as those

in F (k) and G(k) discussed in section 3. Furthermore, there are also poles at
√
k11(k)k22(k) = ik12(k)

or k11k22 + k2
12 = 0. These poles are related to the Stoneley waves along the bimaterial interface (see

[56, 57]), inasmuch as k11k22 + k2
12 = 0 is the secular equation for the Stoneley waves and, therefore,

h(k) = 1 for them to exist.

Nevertheless, because l(k) does not appear in logarithmic form, the poles entailed by its denominator

are not branch points but isolated singularities and, therefore, can be dealt with individually in terms

of the residue they leave when applying the Plemelj formula over one of the two k half-spaces. Any

complex pole will have a mirror image about the real line, rendering the compounded residue 0 in a

way similar to the Rayleigh function (see [47]). The only causes for concern would be the real roots of

the denominator, if there were any. Even then, if the root falls within the branch cut then it leaves no
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residue. Say however that k = ±wj is a positive real root such that wi < a1 or wi > b2. The residue left

behind by any such root can then be computed almost immediately. Expressing l(z) as

(4.83) l(z) =
l(1)(z)

l(2)(z)
=⇒ Res[z = wj] = lim

z→wj
(z − wj)

l(1)(z)

(z − k)l(2)(z)
=

l(1)(wj)

(wj − k)l(2)(wj)

We omit a transcription of l(1)(k) and l(2)(k) as they can be immediately identified. In practice, owing

to the lengthy analytic form of the Stoneley waves, it is simpler to evaluate the wj pols numerically

and then compute the residue above if so required; the reader is directed to [56, 57] for an in-depth

discussion of the place of these roots.

The role this residue would play is that of a pre-factor in the additive factorisation. Indeed, using the

same strategy we have employed in previous sections, we would find that the Plemelj formula (eqn.4.75)

can be written as:

(4.84) 2πi
∑
j

Res[z = wj] =

∫ d+i∞

d−i∞
+

∫
Γ+

+

∫
Γ−

+

∫
J

The Jordan integral vanishes since h(z)2 is of higher order than zh′(z),

(4.85)

∫
J

2ih′(z)

1 + h2(z)

1

z − k
dz = 0

The integrals along the branch cuts can be expressed invoking Schwartz’ reflection principle. We find:

(4.86)

∫
Γ+

+

∫
Γ−

= 2i

{∫ a2

a1

Im [l1(z)]
dz

z − k
+

∫ b1

a2

Im [l2(z)]
dz

z − k
+

∫ b2

b1

Im [l3(z)]
dz

z − k

}

where l1(k) 7→ l(k) when
√
a2

1 − k2 7→ i
√
k2 − a2

1, l2(k) 7→ l(k) when
√
a2

1 − k2 7→ i
√
k2 − a2

1 and√
a2

2 − k2 7→ i
√
k2 − a2

2 and l3(k) 7→ l(k) when
√
a2

1 − k2 7→ i
√
k2 − a2

1,
√
a2

2 − k2 7→ i
√
k2 − a2

2, and√
b2

1 − k2 7→ i
√
k2 − b2

1. We omit a full transcription of these terms owing to their length.

Thus,

(4.87)

l±(k) = ± 1

π

{∫ a2

a1

Im [l1(z)]
dz

z − k
+

∫ b1

a2

Im [l2(z)]
dz

z − k
+

∫ b2

b1

Im [l3(z)]
dz

z − k

}
−
∑
j

Res[z = ±wj]
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Then, we can write that

(4.88) h±(k) =

=
1

2i

[
−
∫
k

∑
j

Res[z = ±wj](k′)dk′ ±
1

π

{∫ a2

a1

Im [l1(z)] ln(z − k)dz +

∫ b1

a2

Im [l2(z)] ln(z − k)dz+

+

∫ b2

b1

Im [l3(z)] ln(z − k)dz

}]

Note that if any pole needs to be included, their terms take the form:

∫
k

Res[z = ±wj](k′)dk′ ∝ C ln(k − wj)

This finalises the factorisation of the matricial Wiener-Hopf problem.

4.2. Solution of the matricial Wiener-Hopf problem. Having obtained the factorisation of all

terms in the matricial Wiener-Hopf problem, we may now proceed to solve it. Thus, consider the

equation:

(4.89) K−(k)K+(k)

[
Σ+(k)− 1

k
P

]
= U−(k)

where all factors have been derived in the previous section, albeit K±(k) ≈ K±n (k) is given in an

approximate form such that as n→∞, K±n (k)→ K±(k).

The presence of the 1/k term requires further care, particularly because the cancellation of the pole

via the usual procedure (see e.g.[47]), which relies on adding and subtracting K+(0) 1
k
P term to both

sides of the equation so as to cancel the k = 0 pole, will not work owing to the fact that K+(0) = ∅.

This is because the K+(k) matrix is proportional to k+
12 ∝

√
k. Thus, in reality the expected 1/k

term of 1
k
K+(k)P is a 1/

√
k term, and the pole cancellation strategy may be reworked by defining

K+(k) =
√
kL+(k), whereupon,

K+(k)Σ+(k)− 1√
k

L+(k)P =
[
K−(k)

]−1
U−(k)
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Thus, we may avoid the pole at k = 0 by adding and subtracting the term 1/
√
kL+(0) to the left side

of equation, leading to:

K+(k)Σ+(k)− 1√
k

[
L+(k)− L+(0)

]
P =

[
K−(k)

]−1
U−(k) +

[
1√
k

L+(0)

]
−

P

We may now separate the Wiener-Hopf equation into two sectionally analytic parts:

(4.90) K+(k)Σ+(k)− 1√
k

[
L+(k)− L+(0)

]
P =

[
K−(k)

]−1
U−(k) +

1√
k

[
L+(0)

]
−P ≡ E(k)

Where we have used that [K±(k)]−1 = 1√
k
L±(k). Here E(k) is, as prescribed by Liouville’s generalised

theorem, a matrix the elements of which are polynomial of a certain order. Following an almost analogous

reasoning to the one discussed in section 3, we can invoke the Tauberian theorems over the expected

asymptotic limit of the stress and displacement fields to deduce that E(k) = ∅ owing to the behaviour

of the stress and displacement fields at infinity. Here ∅ represents the null matrix.

Thus, we are able to separate the Wiener-Hopf equation into the following approximate solutions:

Σ+(k) =
1

k

[
I−

[
L+(k)

]−1
L+(0)

]
P(4.91)

U−(k) = −1

k
L−(k)

[
L+(0)

]
−P(4.92)

We note that in the Abrahams approximation the matrix K+(k) takes the form:

(4.93)

K+(k) = lim
n→∞

K+
n (k) = k+

12(k) lim
n→∞

− 1
fn(k)

sinh+(k)Λ21(k) + cosh+(k)Λ11(k)
sinh+(k)

fn(k)
Λ22(k) + cosh+(k)Λ12(k)

cosh+(k)Λ21(k)− fn(k) sinh+(k)Λ11(k) cosh+(k)Λ22(k)− fn(k) sinh+(k)Λ12(k)



=

K+
22(k) K+

12(k)

K+
21(k) K+

11(k)


and similarly for L±(k), with each component given by L+

ij(k) =
√
kK+

ij (k). Recall that the Λij(k) are

the elements of the regularising matrix Λ(k) given in eqn.4.28.
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Thus, for mode I (setting Q0 = 0) we would have that the interfacial normal traction is:

Σ+(k) =
P0

k

[
1− 1

|L+(k)|
(
L+

22(k)L+
11(0)− L+

12(k)L+
21(0)

)]
(4.94)

And for mode II (setting P0 = 0):

T+(k) =
Q0

k

[
1− 1

|L+(k)|
(
L+

11(k)L+
22(0)− L+

12(k)L+
12(0)

)]
(4.95)

It is important to remark that both the mode I and mode II cracks entail, respectively, non-vanishing

interfacial shear and normal tractions as well. The shear traction acting along the interface for the mode

I crack is given by:

(4.96) T I
+(k) =

P0

k

1

|L+(k)|
[
L+

21(k)L−21(0)
]

and the interfacial normal traction for the mode II crack is:

(4.97) ΣII
+(k) =

Q0

k

1

|L+(k)|
[
L+

12(k)L−12(0)
]

These two additional tractions exist along the welded interface because of the existing elastic mismatch

between the two medium. In mode I, the interface must be sufficiently strong as to sustain the associated

tI+(x, t) traction. We note here that if medium 1 and medium 2 were to be the same, then the solution

described here collapses to that of the standard mode I+II crack found e.g. in [47].

These equations display the oscillatory singularity at the crack tip observed in elastostastic prob-

lems even for the lowest order approximation. This is shown in section 4.3, where the equations are

solved numerically for a number of loading cases. The reasons for this singularity are shown in further

mathematical detail in section 4.2.2.

4.2.1. Inversion of the solution to the interfacial tractions of a welded bimaterial crack. The inversion of

the expressions attained in eqns.4.94 and 4.95 can be obtained via the Cagniard-de Hoop technique[51,
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52]. We perform that of Σ+(k) in eqn.4.94 as an example. If we set the spatial inversion integral first:

(4.98)

σ̂+(x; s) =
1

2πi

1

s2

∫
Br

Σ+(k)eskxsdk =
1

2πi

1

s

∫
Br

P0

k

[
1− 1

|K+(k)|
(
K+

22(k)K+
11(0)−K+

12(k)K+
21(0)

)]
eskxdk

By setting τ = −sk, we can procede as before to reach

(4.99) σ+(x, t) = − 1

πx

∫ t

a1x

Im
[
Σ+

(
−τ
x

)]
dτ

An analogous result may be quoted for the mode II crack:

(4.100) t+(x, y) = − 1

πx

∫ t

a1x

Im
[
T+

(
−τ
x

)]
dτ

All other components of stress can be obtained in the same manner. Having obtained the interfacial

tractions, the full field on the two half planes can be immediately obtained (see e.g.[4], p.39).

4.2.2. Form of the near field solution. The near field solutions (and the corresponding stress intensity

factors) for the bimaterial plane strain crack were fully characterised by Achenbach et al.[29] using a

procedure largely analogous to William’s for the elastostatic case[5]. Subsequent work by e.g., Deng

[58] or Liu et al.[33] aimed at examining higher order expansion by means of the Williams asymptotic

expansion of the Kelvin-Helmholtz potentials.

In the present work, it is possible to seek the near field solution by means of the asymptotic form in

the dual Laplace space, i.e., in the |k|→ −∞ limit. In that case, the asymptotic behaviour of the K(k)

scattering matrix can be expressed in Daniele-Khrapkov form:

K̃(k) =
1

2k

1

µ1µ2(a2
1 − b2

1)(a2
2 − b2

2)

−i |k|k ((a2
1 − b2

1)b2
2µ+ (a2

2 − b2
2)b2

1µ2) −((a2
1 − b2

1)a2
2µ1 − (a2

2 − b2
2)a2

1µ2)

(a2
1 − b2

1)a2
2µ1 − (a2

2 − b2
2)a2

1µ2 −i |k|
k

((a2
1 − b2

1)b2
2µ+ (a2

2 − b2
2)b2

1µ2)



=
|k|
2k2

−i((a2
1 − b2

1)b2
2µ1 + (a2

2 − b2
2)b2

1µ2)

µ1µ2(a2
1 − b2

1)(a2
2 − b2

2)

I +
i((a2

1 − b2
1)a2

2µ1 − (a2
2 − b2

2)a2
1µ2)

((a2
1 − b2

1)b2
2µ1 + (a2

2 − b2
2)b2

1µ2)

|k|
k

0 −1

1 0




= a(k)I + b(k)J

(4.101)
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where here

(4.102)

a(k) =
|k|
2k2

−i((a2
1 − b2

1)b2
2µ1 + (a2

2 − b2
2)b2

1µ2)

µ1µ2(a2
1 − b2

1)(a2
2 − b2

2)
, b(k) =

1

2k

(a2
1 − b2

1)a2
2µ1 − (a2

2 − b2
2)a2

1µ2

µ1µ2(a2
1 − b2

1)(a2
2 − b2

2)
, J =

0 −1

1 0


We use k/|k| to emphasise the importance of the sign of k in the procedure.

The treatment we offer here relies on examining the near-field Daniele-Khrapkov factors, which are[42]:

(4.103) K̃±(k) = b±(k) [cos a±(k)I + sin a±(k)J]

so that

(4.104) K̃(k) = K̃−(k)K̃+(k) = b−(k)b+(k) [cos (a−(k) + a+(k)) I + sin (a−(k) + a+(k)) J]

whereupon

b−(k)b+(k) cos (a−(k) + a+(k)) = b(k)(4.105)

b−(k)b+(k) sin (a−(k) + a+(k)) = a(k)(4.106)

From here we deduce that

(4.107) a−(k) + a+(k) = arctan

[
a(k)

b(k)

]
= arctan

[
−i (b2

2µ1 (a2
1 − b2

1) + b2
1µ2 (a2

2 − b2
2))

a2
2µ1 (a2

1 − b2
1)− a2

1µ2 (a2
2 − b2

2)

|k|
k

]

and

(4.108)

b−(k)b+(k) =
√
a2(k) + b2(k) =

1

2|k|µ1µ2

√
(a2

1(µ1 − µ2)− b2
1(µ1 + µ2)) (a2

2(µ1 − µ2) + b2
2(µ1 + µ2))

(a2
1 − b2

1) (a2
2 − b2

2)
≡ |k|−1Λ

These two factorisations can be achieved heuristically.

The product factorisation of b−(k)b+(k) would be immediate, say:

(4.109) b+(k) = k
−1/2
+ , b−(k) = k

−1/2
− Λ
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where k
−1/2
+ has its branch cut defined so that the function is meromorphic in the positive half-plane,

and k
−1/2
− in the negative half plane.

The sum factorisation of a(k) is also simple owing to the presence of the |k|/k factor. We merely need

express

(4.110) a(k) = arctan

[
−i (b2

2µ1 (a2
1 − b2

1) + b2
1µ2 (a2

2 − b2
2))

a2
2µ1 (a2

1 − b2
1)− a2

1µ2 (a2
2 − b2

2)

]
Arg[k]

π

where Arg[k] is the argument of k, which is defined so that it has its branch cut for Re[k] > 0. Thus we

need only separate the argument function into two analytic branches. Now, by definition

(4.111) Arg[k] = −i ln
|k|
k

which has the same branch cuts.

Thus, we can write

(4.112) a±(k) = ∓i arctan

[
−i (b2

2µ1 (a2
1 − b2

1) + b2
1µ2 (a2

2 − b2
2))

a2
2µ1 (a2

1 − b2
1)− a2

1µ2 (a2
2 − b2

2)

]
ln
|k|
k

With this in place, we note that

arctan

[
−i (b2

2µ1 (a2
1 − b2

1) + b2
1µ2 (a2

2 − b2
2))

a2
2µ1 (a2

1 − b2
1)− a2

1µ2 (a2
2 − b2

2)

]
= arctanh

[
− b

2
2µ1 (a2

1 − b2
1) + b2

1µ2 (a2
2 − b2

2)

a2
2µ1 (a2

1 − b2
1)− a2

1µ2 (a2
2 − b2

2)

]
= −1

2
i ln

[
1 + β

1− β

]
≡ −iπε(4.113)

where we define

(4.114) β =
(b2

2µ1 (a2
1 − b2

1) + b2
1µ2 (a2

2 − b2
2))

a2
2µ1 (a2

1 − b2
1)− a2

1µ2 (a2
2 − b2

2)

Having separated both a(k) and b(k) into sectionally analytic functions, we have the asymptotic

scattering matrix separated, and can employ eqn.4.94 to find that in the near field,

(4.115) Σ+(k) ∼ P0k
−1/2 cos

[
1

2π
ln

[
1 + β

1− β

]
ln

(
|k|
k

)]
∼ P0k

−1/2−iε
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Upon inverting this, we find that, as expected, if one introduces an arbitrary length parameter r0

(4.116) σ+(x; s) ∼ P0√
|x|

(
|x|
r0

)−iε
1

s3/2

which renders the usual logarithmic singularity, as usual makes the asymptotic solution unbounded in

time with
√
t growth. An almost analogous oscillatory singularity would be found for mode II.

We note here that the near field approximation can also be obtained by taking the |k|→ ∞ limit

in the approximate form that was given in e.g., eqns. 4.94 and 4.95. The Padé approximant fn(k)

has by construction the property that fn(k) → 1 as |k|→ ∞ for all values of n. This means that in

the asymptotic limit, K±n (k) takes a mathematically analogous form to K̃(k). In particular, given that

h(k) ∼ a(k), in the asymptotic limit of eqn.4.93 we would find that for any n, the dominant terms in

the asymptotic expansion allow us to write the K±n (k) matrix as

K+
n (k) ∼ K̃+

n (k) =
1

k
1/2
+

√
1

µ1µ2(a2
1 − b2

1)(a2
2 − b2

2)

cos a+(k) − sin a+(k)

sin a+(k) cos a+(k)

(4.117)

and the rest of the decomposition would follow naturally to reach eqn.4.116.

The presence of this oscillatory singularity in both the nominal Wiener-Hopf problem and the approx-

imating one is not a core result of this work, but rather serves to verify that the results matches in this

article match the expected behaviour observed in the elastostatic case. The presence of the logarithmic

singularity ought to regarded undesirable because it entails interpenetration of the crack faces about

the crack tip. Because this region, in case of existing, would be spatially localised about the region

immediately surrounding the tip, the transient solution away from it would largely remain the same,

and hence the transient solution would remain valid away from the crack tip. Nevertheless, it is possible

to relax the boundary conditions in such a way that the oscillatory singularity disappears. As we have

seen in section 3, relaxing the shear stress transfer condition along the interface cancels the oscillation

altogether; thus, in interface where in the immediate area surrounding the crack tip the interface were

allowed to slip would not display such oscillation whilst maintaining the
√
t/
√
x singularity. This would

resemble Comminou’s contact zone solution[14, 30] for the elastostatic bimaterial crack. Alternatively,
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Figure 5. The σ+(x, t) using a1 = 1/6, a2 = 1/5, b1 = 1/3, b2 = 1/2.5, µ1/µ2 = 1.15.

The position of the different wave fronts is marked for the t = 0.15 case. All units are

notional.

a single material intervening layer[18] would also cancel the oscillation, albeit the crack tip would in

this case be subjected to continuous rarefaction waves diffracted by the boundaries between this layer

and the bulk materials, the magnitude of which would be dependent on the width of an artificial layer,

an undesirable situation unless the layer itself could be proven to have a physically motivated width.

Conceivably, Sinclair’s suggestion[17, 59, 60] that the crack tip geometry also affects the oscillatory

nature of the singularity is also extensible to the elastodynamic case.

4.3. The transient solution. The formalism leading to eqns.4.94 and 4.95 (and their inverted coun-

terparts, eqns.4.99 and 4.100) are a core result of this work. Their significance is that they enable a

fast and simple treatment of the far field, and can be employed to obtain the full transient solution to

arbitrary accuracy. This is particularly important for dynamic applications where multiple interacting

cracks may be present, as is the case of fragmentation of composite materials or the interaction between

faults in multilayered geophysical systems.
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Figure 6. The σ+(x, t) using a1 = 1/6, a2 = 1/2, b1 = 1/0.5, b2 = 1/0.25, µ1/µ2 = 1.15.

The position of the different wave fronts is marked for the t = 0.15 case. All units are

notional.

Eqns.4.99 and 4.100 render the normal and shear field radiated away by a bimaterial crack under the

action of remote normal and tangential loading respectively. Both equations may be solved numerically

with relative simplicity, following a procedure very similar to that outlined in section 3 for the slipping

interface. The salient features of these solutions are shown in figs.5 and 6, which display the numerical

solution to the transient bimaterial crack fields under varied material conditions and for increasing

accuracy of the Padé approximant.

In both figures, we observe two common features. First, an oscillatory singularity at the crack tip,

the nature of which has been explained in detail in section 4.2.2; this oscillation is marked in figs.5

and 6. Second, a far field displaying the characteristic wavefronts due to the two longitudinal and two

transverse waves that make up the dissimilar elastic medium. Fig.5 shows the solution with increasing

level of accuracy at time t = 0.15 using a1 = 1/6, a2 = 1/5, b1 = 1/3, b2 = 1/2.5, µ1/µ2 = 1.15

(i.e., relatively similar materials). As in the slipping boundary’s case (see fig.3), the first longitudinal
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wavefronts mildly disturb the interface, is subsequently accompanied by a sign reversal in the interfacial

traction relative to reference, which is reversed once the transverse wavefronts reach a point. The

convergence of the solution is such that by n = 12 we observe small differences other than in the width

of the peak the approximation introduces in the sign change. Fig.6 explores the same spatial situation,

for two very dissimilar elastic materials. In that case, no obvious sign reversal in the solution is observed

between the longitudinal and transverse wavefronts. The solution does reveal more clearly, even for low

order approximations, the role of the wavefronts, and it highlights the importance the Rayleigh wave

speed appears to have in triggering an oscillation in the interfacial traction about the first transverse

front. More importantly, the successive approximations are able to capture with high fidelity the average

trends in each part of the wavefront: aside from the oscillatory near field, the dissimilarity in the elastic

constants appears to induce a much faster drop in the stress, and all approximations capture this trend

irrespective of particular local details.

4.4. Final remarks and generalisations. The loading conditions we have examined in this article

concern a shock load, suddenly applied at the interface. The interest of this solution is that it can be

used as a fundamental solution to more complex loadings, whilst the salient features of all such cases

would mirror those of the solutions presented here.

If the remote loading is given by P (x, t), Q(x, t) at the interface, then the resulting interfacial tractions

p(x, t) and t(x, t) would be given by (cf.[4], ch.11)

(4.118) p(x, t) =

∫ ∞
0

∫ t

0

∂2σ+(x− x′, t− t′)
∂t∂x

P (x′, t′)dx′dt′

(4.119) t(x, t) =

∫ ∞
0

∫ t

0

∂2t+(x− x′, t− t′)
∂t∂x

P (x′, t′)dx′dt′

where σ+(x, t) and t+(x, t) are the interfacial tractions due to the shock load that has been derived in

this work, whether for the slipping or welded boundaries.

Furthermore, the solution in this case has focused on a quiescent crack, i.e., a crack that does not

propagate. The solutions we have achieved here can be readily adapted to solve the problem of a
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uniformly moving crack. If the crack tip moves at a constant speed v = 1/d, this can be imagined to

modify the support of boundary conditions to the the region where H(x− vt). This leads to swapping

the 1/kP term with 1/(k− d)P in all its occurrences (for a similar remark, see e.g.[61]). The treatment

of the pole this entails will be largely analogous too. In particular, in the solution to the matricial

Wiener-Hopf problem we would find that

(4.120) Σ+(k) =
1

k − d

[
I−

[
L+(k)

]−1
L+(d)

]
P

Under such circumstances, the crack tip’s speed v = 1/d may cause the solution to diverge when L+(d)

does. In this study, we have identified several instances when this happens: if the crack tip were to travel

at the Rayleigh wave speeds of any of the two media, or if the crack tip were to travel at the Stoneley

wave speeds of the interface under some circumstances, the scattering kernel would become divergent

when k = d. These barriers are prompted by the fact the loading is remote; they do not necessarily

entail that intersonic crack motion be impossible, provided that the elastic mismatch between the two

media is large as we have seen in section 4.3; this is found to be in agreement with empirical observations

by Rosakis and coworkers [33, 40, 62]. Furthermore, as with the case of crystallographic dislocations[63],

it is not necessarily clear either that non-uniform acceleration across such barriers be impossible when

considering other effects that may be dominant at the crack tip (e.g., discreteness and trapping, or other

non-linearities); such effects, missed in their entirety by linear elasticity, may facilitate the motion across

these barriers.

5. Conclusions

In this article, we have solved the transient problem of a mode I (or mode II) plane strain bimaterial

interface subjected to transient loading. The first part of the article shows that when the bimaterial

interface lies along a slipping boundary (i.e., an interface unable to transfer shear stress), its fields can be

solved analytically in full using the Wiener-Hopf technique. This article has fully derived this solution,

and used it to study the most important features of the fully transient state. The slipping boundary fields
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display a characteristic four-wave front: two longitudinal waves and two shear waves, each propagating

at the corresponding longitudinal and transverse speeds of sound of the media, combine to form the full

solution. As has been explained, in the far field, sign reversals (relative to reference) of the interfacial

tractions are possible, and result from the fact that in the region loaded by the fastest wavefront alone,

the second medium, the speeds of sounds of which are by definition lower than those of the first, is

being loaded at a supersonic speed. The interface accommodates this by prompting a transient sign

reversal, which is significant as it could prompt the transient detachment of the interface, and is a source

of unexpected vibrations that appear only in the transient. The near field solution has been shown to

display a 1/
√
x singularity: relaxing the ability of the interface to carry on interfacial shear (in mode

I) or normal tractions (in mode II) avoids the formation of oscillatory singularities about the tip. In

mode I, the slipping interface is a solution to the Hertzian contact problem along a bimaterial system.

In mode II (i.e., when the interface cannot transfer normal loads), it may be regarded as a deformation

kernel for coupled dynamic contact problems.

The article has then focused on solving the problem for the fully transient crack along a welded

boundary, i.e., a bimaterial crack along an interface able to transfer both normal and shear tractions.

The subsequent mathematical problem is of much greater complexity than the slipping boundary’s.

It results in a matricial Wiener-Hopf problem dominated by a scattering kernel matrix that cannot

be obviously separated into sectionally analytic parts via the usual Daniele-Khrapkov decomposition.

Rather than performing a near field Williams expansion of the matricial problem, which is only useful

to study the near field, but renders the study of the far field transients more difficult, here we have

advocated using an Abrahams expansion of the scattering matrix instead, thereby retaining the right

asymptotics for both near and far field, and converges quickly to an acceptable approximation. The

thus obtained far-field solution displays similar features to the one in the slipping boundary, with a four

wavefront structure, and sign inversions related to the relative speed with which the two media are being

loaded; in this case, the presence of interfacial Stoneley waves is also noted. Furthermore, the solution
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also captures an oscillatory 1/
√
x singularity at the crack tip, which we derive fully from the near field

asymptotics of the scattering kernel, familiar from the solution to the equivalent elastostatic problem.

The oscillations of the stress field about the crack tip revealed here for the elastodynamic solution

are a well-known feature of the static solutions. Because the oscillation is highly localised about the

immediacy of the crack tip, the transient solution derived here for the far field remains unaffected by

it, and hence the inasmuch as the far field is concerned, no further mathematical considerations are

needed to remedy the presence of the oscillatory singularity via any of the strategies that have been

proposed for the elastostatic case. In the elastodynamic case this article is concerned with, we have

regarded the traditional ‘intervening layer’ solution to the oscillatory singularity as undesirable owing

to the expected elastic wave scattering at the boundaries of the said layer, the width of which would

have to be physically motivated to justify allowing for such a scattering to interfere with the crack tip

itself. Other alternatives reliant on the relaxation of the boundary conditions about the crack tip may

be more suitable for the elastodynamic case, e.g., via Comminou’s proposal of contact zones about the

crack tip[14], or by allowing the crack tip to slip freely or with friction, or altering the crack tip geometry

as suggested by Sinclair[59, 60].

The far field of the solution we have achieved for the welded interface displays the same general char-

acteristics irrespective of the order of the Padé approximant employed: a slow uptake in the interfacial

traction upon the first longitudinal wavefront reaching a point, with a sign reversal of the interfacial

stress field that is cancelled once the shear waves reach the same point. The trends observed in all

approximate solutions were the same irrespective of local detail; the latter included the presence of

peaks of stress preceding the arrival of the shear waves, and oscillations in the solution due to Stoneley

wavefronts.

Comparing a welded and a slipping interface has further revealed that inherent role the nature of the

interface plays in dominating the near and the far field response of the crack. For instance, Stoneley

waves do not appear to play any role in the motion of the crack along the slipping interface, nor would
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they do so if only the area immediately surrounding the crack tip along a welded interface were allowed

to slip, in which case the oscillatory singularity would also cancel. However, in relative terms, interfacial

tractions appear to drop faster in the far field for welded boundaries, and the magnitude of the sign

reversals, if present, can also be smaller.

Irrespective of the solution chosen, this article offers a self-contained hierarchy to solve the bimaterial

interface problem in transient elastodynamics. We have shown the method developed in this article is

able to study the transient solution in its entirety, both in the near field about the crack tip and in the

far field, with solutions the mathematical complexity of which is comparable to that of the well-known

single material solutions. Therefore, solutions and method developed in this work will serve as the basis

for further studies of the transient behaviour of interfaces in layered media. For both the slipping and

welded interfaces, the solutions we have derived in this article have a vast array of applications. On

the one hand, they provide an easily implementable analytical formula with which to study the far field

signals radiated or diffracted by a bimaterial interface. This is significant in geological materials, where

seismological signals are often triggered by the sliding or fracturing at bimaterial interfaces[4]; the models

derived in this article offer a pathway with which to study those signals in the far field. Furthermore,

they provide a physical rationale with which to understand instabilities in the motion of the interface

(e.g., at the speeds of sound, or the Stoneley wave speeds). On the other hand, the solutions achieved

here will find wide use in the study of fast delamination in composite materials, and in the study of

the near field and the far field of cracks in layered media. In these cases, we have provided closed form

solutions to determine the crack tips’ stress field, one of the key ingredients to determine whether or

not the crack will propagate, and at which rate. Our solutions enable the modelling of these crack’s

propagation as convolution kernels. Finally, the solutions presented here pave the way for the analytic

study of the bimaterial contact problem in the presence of friction, which can now be achieved using an

approach similar to that discussed in[64, 48]. Consequently, this article offers an analytic treatment for a
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problem of significance both in geophysics and materials science: elastic wave scattering by a bimaterial

interface.
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