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THE 2-MINIMAL SUBGROUPS OF SYMPLECTIC GROUPS

CHRIS PARKER AND PETER ROWLEY

Abstract. For a finite group G, a subgroup P of G is 2-minimal if B < P , where B = NG(S) for
some Sylow 2-subgroup S of G, and B is contained in a unique maximal subgroup of P . Here we
give a detailed and explicit description of all the 2-minimal subgroups for finite symplectic groups
defined over a field of odd characteristic.

1. Introduction

In [10] the 2-minimal subgroups of linear and unitary groups are classified – it is the purpose
of this paper to classify such subgroups for the finite symplectic groups. If the symplectic groups
are defined in characteristic 2, then their 2-minimal subgroups are the well-known (and well un-
derstood) minimal parabolic subgroups. Thus we only consider the odd characteristic case here.
We shall continue to use the notation introduced in [10], and also refer the reader to Section 1 of
[10] for a wider discussion on p-minimal subgroups, p a prime. Before stating our main theorem
we give a quick review of some of the frequently used definitions and notation, beginning with
the definition of a p-minimal subgroup. Suppose that G is a finite group. Let p be a prime, S a
Sylow p-subgroup of G and B = NG(S). A subgroup P of G which properly contains B is called
a p-minimal subgroup of G (with respect to B) if B is contained in a unique maximal subgroup of
P . Put

M(G,B) = {P | B < P ≤ G and P is p-minimal}.
It turns out, provided G 6= B, that G is generated by its p-minimal subgroups. It is the setM(G,B)
that we shall study when p = 2. As is the case for the linear and unitary groups, here 2-minimal
subgroups of monomial groups in their various guises contribute subgroups to M(G,B). So we
must say a few words about monomial groups and their 2-minimal subgroups. Those of principal
interest are wreath products H = E o X where E is cyclic of odd order and X ∼= Sym(n), the
symmetric group of degree n. Let T ∈ Syl2(H) and let F denote the base group of H. Then
M(H,NH(T )) comprises of three different types of 2-minimal subgroups, namely the toral, linker
and fuser 2-minimal subgroups. These three sets of 2-minimal subgroups are denoted, respectively,
by T (H,NH(T )),L(H,NH(T )) and F(H,NH(T )). All of these groups depend on the action of T
on Ω (where X = Sym(Ω)) with the toral 2-minimal subgroups also having in-put data relating
to |E| and the action of T on F . We also note that the images of the groups in L(H,NH(T )),
respectively F(H,NH(T )), in the symmetric group H/F are just the linkers, respectively, fusers
in Sym(n) (see [7]). On the other hand, the toral 2-minimal subgroups are of the form TR where
R is a subgroup of F . The definition of these groups may be found in Section 2, and Theorems 4.5
and 2.8 provide the monomial type 2-minimal subgroups which we require. They are described in
Definitions 2.4, 2.7 giving the sets of 2-minimal subgroups L(G,B), F(G,B) and T (G,B).

As in [10], the fact that p-minimal subgroups behave well with respect to direct products and
quotients is important here. Indeed, in Lemma 4.10, we see that this controlled behaviour even
extends to certain wreath products.

It is well known that Sp2(q) ∼= SL2(q), and the 2-minimal subgroups of these groups are given
in Theorem 4.1. The description of these 2-minimal subgroups fractures into a myriad of subcases
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depending on various congruence conditions on q. Some of this complexity feeds through to the
general Spn(q) situation, courtesy of the set X2 which consists of certain 2-minimal subgroups
of Sp2(q). This set and its companion X4, via which Sp4(q) also leaves its mark, are introduced
in Definitions 4.12 and 4.13. These subsets spawn sets of 2-minimal MX2(G,B) and MX4(G,B)
defined in Definitions 4.12 and 4.13.

Our main theorem can now be stated as follows.

Theorem 1.1. Suppose that q = pa is odd, n ≥ 2 is even and G = Spn(q). Let S ∈ Syl2(G),
B = NG(S). Then

M(G,B) = F(G,B) ∪ L(G,B) ∪ T (G,B) ∪MX2(G,B) ∪MX4(G,B).

We emphasize that in all cases the structure of P in Theorem 1.1 is known, and in fact explicit
matrices can be written down to describe these groups. The use of equal signs in our results is
meant to highlight this point via the explicit decomposition of the group action on the natural
symplectic space.

We now summarize the contents of this paper. Apart from two general results on p-minimal sub-
groups at the end of the section, Section 2 is primarily concerned with the 2-minimal subgroups of
the monomial groups mentioned earlier. Thus we begin with a discussion of Sylow 2-subgroups and
2-minimal subgroups of symmetric groups. This leads to the main result on 2-minimal subgroups
of monomial groups, stated as Theorem 2.5. Building on this theorem an analogous result is proved
in Theorem 2.8 for wreath products of dihedral groups with symmetric groups. Section 3, distils
the results of Kantor [5], Liebeck and Saxl [8] and Maslova [9] so as to list (up to conjugacy) the
maximal subgroups of Spn(q) of odd index. It is in these subgroups, of course, where the proper
2-minimal subgroups are to be found. Then a subgroup Lk = Spn/k(q) o Sym(k) for Spn(q) is intro-
duced, followed by Lemma 3.2 which gives the structure of the normalizer of a Sylow 2-subgroup
of Spn(q). Section 4 begins with Theorem 4.1 and then the remainder of the section is devoted to
the proof of Theorem 1.1. After examining the case of Sp4(q) in Lemma 4.2, we define C which,
depending on the congruence of q, is either a direct product of quaternion groups of order 8, or is a
homocyclic group of odd order. We then see in Lemma 4.7 that, for P ∈M(G,B), where P acts ir-
reducibly on the natural symplectic module, either P ≤ NG(C) or P ≤ Lk for some k. We note that
NG(C) is a monomial type subgroup of G. In factM(NG(C), B) = F(G,B)∪L(G,B)∪T (G,B).
Employing Lemma 4.10, in Lemma 4.11 the possibilities for P ∈ M(G,B) \ M(NG(C), B) are
now laid bare, from which Theorem 1.1 follows. By way of illustrating Theorem 1.1, in Section 5
we display in detail the 2-minimal subgroups for Sp10(q) for all odd q.

Our group theoretic notation is standard as given, for example in [1].
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2. Preliminary results on 2-minimal subgroups

Just as in [10] we shall encounter 2-minimal subgroups contained in monomial groups. The type
of monomial groups which appear are not just isomorphic to wreath products E o Sym(n) where
E is a cyclic group of odd order but also groups D o Sym(n) where D is a dihedral group of order
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2|E|. Setting X = Sym(Ω) where Ω = {1, . . . , n}, we first describe a Sylow 2-subgroup T of X
following [4, Satz 15.3, p. 378]. Write

n = 2n1 + 2n2 + · · ·+ 2nr where n1 > n2 > · · · > nr ≥ 0

and put I = {1, . . . , r}. Then T has r orbits on Ω, Ω1, . . . ,Ωr with |Ωi| = 2ni , i ∈ I. We set

notation so that Ω1 = {1, . . . , 2n1}, then Ωi = {mi, . . . ,
∑i

j=1 2nj} where m1 = 1 and, for i ≥ 2,

mi = 1 +
∑i−1

j=1 2nj is the minimal integer in Ωi. Further, we have

T = Tn1 × Tn2 × · · · × Tnr

where, for i ∈ I, Tni
∈ Syl2(Sym(Ωi)) is the iterated wreath product of ni copies of T1 the cyclic

group of order 2. We next introduce two types of subgroups of X. Let i ∈ I. For j ∈ {1, . . . , ni−1},
let Σni;j be the collection of T -invariant block systems of Ωi consisting of sets of size 2k where
k ∈ {0, . . . , ni} \ {j}, and define

X(ni; j) = StabSym(Ωi)(Σni;j)× (
∏

`∈I\{i}

Tn`
).

For i, j ∈ I, with i < j (so nj < ni) set Λni+nj
= Ωi∪Ωj. Let Γi be the collection of all T -invariant

block systems on Ωi and Γj the collection of all T -invariant block systems on Ωj. We define Σni+nj

to be the collection of T -invariant systems of subsets of Λni+nj
which are the union of one block

system from Γi and one from Γj with the proviso that the blocks of the two chosen block systems
have equal numbers of elements. Then, the second type of subgroup that we require is

X(ni + nj) = StabSym(Λni+nj )(Σni+nj
)× (

∏
k∈I\{i,j}

Tnk
).

Notice that StabSym(Λni+nj )(Σni+nj
) ∼= Tnj

o Sym(2ni−nj + 1). These subgroups contain T = NX(T )

and in [7, Theorem 1.1], it is shown that

Theorem 2.1. Suppose that X = Sym(Ω) and T ∈ Syl2(X). Then

M(X,T ) = {X(ni; j), X(nk + n`) | i, k, ` ∈ I, k < ` and j ∈ {1, . . . ni − 1}}.

Now we look at H = E o Sym(n) = E oX, where E is cyclic of odd order. Taking F to be the
base group of H, we have that F is isomorphic to a direct product of n copies of E and so we write

F = 〈e1, . . . , en〉
with X permuting the generators of F naturally. Let j ∈ I. Then we define

Dnj
= 〈ei | i ∈ Ωj〉,

Znj
= CDnj

(Tnj
) = 〈

∏
`∈Ωj

e`〉

and note that T normalizes Dnj
and centralizes Znj

. We have

CF (T ) =
∏
j∈I

Znj
and NH(T ) = TCF (T ).

Definition 2.2. For i ∈ I and j ∈ {1, . . . , ni − 1},
P (ni; j) = X(ni; j)CF (T ).

And for i, k ∈ I with i < k,

P (ni + nk) = X(ni + nk)〈CF (T )X(ni+nk)〉.
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Plainly P (ni; j) and P (ni + nk) are subgroups of H which contain NH(T ).
Let Π(|E|) be the set of all prime powers, excluding 1, which divide |E|. Take s ∈ Π(|E|) a prime,

let sb be the largest power of s in Π(|E|) and put s̄ = |E|/sb. Then, for α ∈ Ω and sc ∈ Π(|E|), set

uα = es̄α, and wα = us
b−c

α

and note that 〈uα | α ∈ Ω〉 ∈ Syls(F ) and wα has order sc.
For j ∈ I, sc ∈ Π(|E|), 1 ≤ k ≤ nj

U(nj; s
c; k) = 〈(

mj+2nj−k∑
i=mj

wi − w2nj−k+i)
t | t ∈ Tnj

〉

= 〈(
mj+2nj−k∑
i=mj

wi − w2nj−k+i)
t | t ∈ T 〉.

Notice that U(nj; s
c; k) ≤ Dnj

and is normalized by T .

Definition 2.3. For j ∈ I, sc ∈ Π(|E|) and 1 ≤ k ≤ nj,

T (nj; s
c; k) = U(nj; s

c; k)NH(T ).

Finally we describe the toral, linker and fuser 2-minimal subgroups of H.

Definition 2.4.

(i) F(H,NH(T )) = {P (ni + nj) | i, j ∈ I, i < j};
(ii) L(H,NH(T )) = {P (ni; j) | i ∈ I, j ∈ {1, . . . , ni − 1}} and

(iii) T (H,NH(T )) = {T (ni; s
c; j) | i ∈ I, sc ∈ Π(|E|) and 1 ≤ j ≤ ni}.

In [10, Section 4] explicit examples are presented of these subgroups of H. See also Section 5 of
this paper. One of the main theorems from [10] is as follows.

Theorem 2.5. Suppose that H = E o Sym(n) where n ≥ 2 and E is a cyclic group of odd order.
Then

M(H,NH(T )) = F(H,NH(T )) ∪ L(H,NH(T )) ∪ T (H,NH(T )).

Proof. See [10, Theorem 4.12]. �

One of our applications of Theorem 2.5 is to wreath products of dihedral groups with a symmetric
group. Here to make the notation match up, the symmetric group we need is Sym(n/2) for n even.
We start with the following technical observation.

Lemma 2.6. Suppose that D is a dihedral group of twice odd order, and let E be the cyclic group
of index 2 in D. Assume that n is even, Y = Sym(n/2) and T1 is the cyclic group of order 2. Let
X1 = T1 o Y identified as a subgroup of X = Sym(n), W = E oX1 ≤ E oX, F be the base group of
W and J be the base group of X1. Then D o Y ∼= [F, J ]X1.

Proof. Recall, if H, K and L are groups and φ : H → K is a homomorphism, then φ can be used to
define a homomorphism φ̂ : H oL→ K oL. Hence we first show that E oT1 maps homomorphically
onto D. For this we let e be a generator of E and D = 〈e, s〉 for some involution s ∈ D. A typical
element of E o T1 can be written as (ej, ek)t` where t ∈ T1 and j, k, ` are integers. We let θ map
(ej, ek)t` to ej−ks`. Since

(ej, ek)t`(ep, eq)tr = (ej, ek)(ep, eq)t
`

t`+r =

{
(ej+p, ek+q)t`+r ` = 0

(ej+q, ek+p)t`+r ` = 1

this map is a homomorphism and it is plainly onto.
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From θ we construct θ̂ : W → D oY . The kernel of θ̂ = CF (J). Moreover, as W = CF (J)[F, J ]X1

and CF (J) ∩ [F, J ]X1 = 1, we have D o Y ∼= [F, J ]X1. This proves the lemma. �

Letting L = D o X and identifying L with [F, J ]X1, we now list a collection of subgroup of
[F, J ]X1 which contain T ∈ Syl2(L)(⊆ Syl2(X1)) where X1 is identified as a subgroup of X.

Definition 2.7.

F(L, T ) = {X(ni + nj) | i, j ∈ I, i < j};
L(L, T ) = {X(ni; j) | i ∈ I, j ∈ {2, . . . , ni − 1}} and

T (L, T ) = {U(ni; s
c;ni)T | i ∈ I, and sc ∈ Π(|E|)}.

Note that |T (L, T )| = r|Π(|E|)|.

Theorem 2.8. Suppose that D is a dihedral group of twice odd order. Let L = D o Sym(n/2),
T ∈ Syl2(L) and identify L with [F, J ]X1. Then T = NL(T ) and

M(L, T ) = F(L, T ) ∪ L(L, T ) ∪ T (L, T ).

Proof. We have X1 = T1 o Sym(n/2) ≤ X with notation chosen so that T ≤ X1. We identify
L = [F, J ]X1 ≤ H where H = E oX. Since CF (T ) ≤ CF (J) and CF (J) ∩ [F, J ] = 1, we have

NL(T ) = NH(T ) ∩ L = CF (T )T ∩ L = T.

Suppose that P ∈M(L, T ). Then, by Lemma 2.10, either P ≤ [F, J ]T or PF/F ∈M(LF/F, TF/F ).
In the former case, P centralizes CF (T ) and PCF (T ) ∈M(H,NH(T )). Thus PCF (T ) ∈ T (H,NH(T ))
and so PCF (T ) = U(ni; s

c; k)CF (T )T for some i ∈ I, sc ∈ Π(|E|) and 1 ≤ k ≤ ni by Theorem 2.5. If
k 6= ni, then J centralizes U(ni; s

c; k) and so P ≤ CF (J)T which means that P ≤ CF (J)T ∩L = T ,
a contradiction. Hence

P = U(ni; s
c;ni)TCF (T ).

Because T acts irreducibly on U(ni; s
c;ni)/Φ(U(ni; s

c;ni)) by [10, Lemma 4.1 (iv)], we have

U(ni; s
c;ni) ≤ [F, J ] ≤ L.

Using the Dedekind modular law gives

P = P (L ∩ CF (T )) = L ∩ (PCF (T ))

= L ∩ (U(ni; s
c;ni)TCF (T )) = U(ni; s

c;ni)T (L ∩ CF (T ))

= U(ni; s
c;ni)T.

Thus P ∈ T (L, T ).
Assume now that PF/F ∈M(LF/F, TF/F ). Then

PF/F ∼= P/(P ∩ F ) = P/(P ∩ [F, J ]) ∼= P [F, J ]/[F, J ] ≤ L/[F, J ].

Since L normalizes [F, J ]J and J ≤ P , P = NP (J)(P∩F ). Because T (P∩[F, J ]) < P , the fact that
P is 2-minimal implies P = NP (J). Now C[F,J ](J) = 1, so we know P ≤ NL(J) = X1. Therefore
P ∈M(X1, T ) and the result follows from Theorem 2.1 as P ≤ 2 o Sym(n/2). �

For the final two lemmas of this section, G is a finite group, p is a prime, S ∈ Sylp(G) and
B = NG(S).

Lemma 2.9. Suppose G = KL where K and L are normal subgroups of G with K ∩ L = 1 and
let P ∈ M(G,B). Assume that neither K nor L is p-closed. Then either P ∩K ∈ M(K,B ∩K)
or P ∩ L ∈M(L,B ∩ L).

Proof. See Lemma 3.13 of [10]. �

Lemma 2.10. Suppose that K is a normal subgroup of G and P ∈M(G,B). Then either
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(i) P ∈M(BK,B); or
(ii) PK/K ∈M(G/K,BK/K) and P ∈M(NG(S ∩K), B).

In particular, M(G,B) =M(BK,B) ∪M(NG(S ∩K), B).

Proof. See Lemma 3.8 of [10]. �

3. Symplectic groups

We begin this section with a description of the maximal subgroups of odd index in symplectic
groups.

Theorem 3.1. Suppose that G = Spn(q) where n ≥ 4 and q = pa, p a prime, is odd. Let V be the
natural symplectic GF(q)-module. If H is a maximal subgroup of G of odd index, then one of the
following holds.

(i) H ∼= Spn(q0) where qc0 = q and c is an odd prime.
(ii) H is the stabilizer of a non-degenerate proper subspace of V .

(iii) H is the stabilizer of an orthogonal decomposition of V =
⊕

Vi into an orthogonal sum of
isometric non-degenerate subspaces Vi of dimension ` where ` = 2b ≥ 2.

(iv) n = 4, q = p ≡ 3, 5 (mod 8) and H ∼ 21+4
− .Alt(5).

Furthermore, in cases (i) and (iv) there is a unique conjugacy class of such subgroups.

Proof. See [5], [8] or [9] (note that the possibility q = p ≡ 5 (mod 8) is missing in (iv) from case
(21) of Theorem 1 of [9], see [2]). �

For k ≥ 2 even and dividing n as in case (iii) of Theorem 3.1, we write m = n/k and decompose
V into an orthogonal sum of m non-degenerate subspaces each of dimension k. Thus

V = V1 ⊥ · · · ⊥ Vm

with dimVi = k. For 1 ≤ i ≤ m, we define Ki = Sp(Vi) and put

Fk = K1 × · · · ×Km.

We define Lk to be the subgroup of G which preserves the decomposition of V while permuting
the factors. This gives

Lk = Sp(V1) o Sym(m)

and Fk is the base group of Lk. We next examine some properties of the Sylow 2-subgroups of
Spn(q) that we shall need.

Lemma 3.2. Suppose that G = Spn(q) where q is odd and write n = 2n1 + 2n2 + · · · + 2nr with
n1 > n2 > · · · > nr > 0. Let S ∈ Syl2(G) and B = NG(S). Then

(i) when q ≡ 1, 7 (mod 8), B = S;
(ii) when q ≡ 3, 5 (mod 8), B/S is elementary abelian of order 3r; and

(iii) we may choose S so that

S ≤ B ≤ L2 = SL2(q) o Sym(n/2).

Proof. For part (i) and (ii) see [6] and for (iii) consult [3].
�

Because of Lemma 3.2(ii), the case k = 2 is of special interest. Write n = 2n1 + 2n2 + · · · + 2nr

with n1 > n2 > · · · > nr > 0, and let T ∈ Syl2(Sym(n/2)), where we take Sym(n/2) to be the
permutation matrix which permutes the non-degenerate 2-spaces V1, . . . , Vn/2 used to define L2.
Then

T = Tn1−1 × Tn2−1 × · · · × Tnr−1
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where T` ∈ Syl2(Sym(2`)). This leads to a corresponding decomposition B = Bn1−1×Bn2−1×· · ·×
Bnr−1. (Such decompositions occur in [10] - see Sections 1 and 5 there.)

4. The 2-minimal subgroups of Symplectic Groups

Throughout this section we have G = Spn(q), where n is even and q = pa is odd. We continue to
write the 2-adic decomposition of n as n = 2n1 + 2n2 + · · ·+ 2nr . Let V be the natural symplectic
module for G. Also we fix S ∈ Syl2(G) and set B = NG(S).

In Theorem 4.1, the superscript [2] indicates that there are two G-conjugacy classes of the given
group. Also, if ` is a positive integer, `2 will denote the largest 2-power dividing `, `2′ = `/`2 and,
we recall, Π(`) is the set of all odd prime powers greater than 1 which divide `. We remark that
in the next theorem all the described extensions have quaternion Sylow 2-subgroups.

Theorem 4.1. Suppose that G = Sp2(q) with q = pa odd.

(i) If q ≡ 3, 5 (mod 8) and p 6= 3, 5, then one of the following holds:
(a) q ≡ ±11,±19 (mod 40) and

M(G,B) = {2.Alt(5)[2], Sp2(ps
t

) | st ∈ Π(a)}; or

(b) q 6≡ ±11,±19 (mod 40) and

M(G,B) = {Sp2(ps
t

) | st ∈ Π(a) ∪ {1}}.
(ii) If q ≡ 3, 5 (mod 8) and p = 3, then

M(G,B) = {Sp2(3s
t

) | st ∈ Π(a)}.
(iii) If q ≡ 3, 5 (mod 8) and p = 5, then

M(G,B) = {Sp2(5s
t

) | st ∈ Π(a) ∪ {1}}.
(iv) If q ≡ 1 (mod 8), then one of the following holds:

(a) a2 > 2 or a2 = 2 and q ≡ 1 (mod 16),

M(G,B) =M(2.Dih(q − 1), B) ∪ {2.PGL2(pa2/2)[2]};
(b) p = 5, a2 = 2 and

M(G,B) =M(2.Dih(q − 1), B) ∪ {2.Sym(5)[2]} ∪ {2.Sym(4)[2]};
(c) p = 3, a2 = 2 and

M(G,B) = {2.PGL2(3)[2]};
(d) a2 = 2 and q ≡ 9 (mod 16) with p > 5,

M(G,B) =M(2.Dih(q − 1), B) ∪ {2.Sym(4)[2]};
(e) q ≡ 1 (mod 16), a2 = 1,

M(G,B) =M(2.Dih(q − 1), B) ∪ {Sp2(p)}; or

(f) q ≡ 9 (mod 16), a2 = 1,

M(G,B) =M(2.Dih(q − 1), B) ∪ {2.Sym(4)[2]}.
(v) If q ≡ 7 (mod 8), then one of the following holds:

(a) q ≡ 7 (mod 16),

M(G,B) =M(2.Dih(q + 1), B) ∪ {2.Sym(4)[2]}; or
(b) q ≡ 15 (mod 16),

M(G,B) =M(2.Dih(q + 1), B) ∪ {Sp2(p)}.
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In particular, O2′(P ) = P for all 2-minimal subgroups P of G.

Proof. Since Sp2(q) ∼= SL2(q), this is just [10, Theorem 13.2]. �

We next consider the 2-minimal subgroups of Sp4(q) as they appear explicitly in the general
picture for all the symplectic groups just as n = 4 does in the case of GLεn(q).

Lemma 4.2. Suppose that G ∼= Sp4(q). If P ∈M(G,B), then either

(i) P is contained in Sp2(q) o2 which preserves a decomposition of V into a perpendicular sum
of two non-degenerate subspaces; or

(ii) q ≡ 3, 5 (mod 8) and P has shape 21+4
− .Alt(5) and is unique up to conjugacy containing

B; or
(iii) q ≡ 1, 7 (mod 8) and P = Sp4(pa2) and is unique up to conjugacy containing B.

In particular, in cases (ii) and (iii), O2′(P ) = P .

Proof. Recall that, if Y1, Y2 are subgroups of G which both contain B, then either Y1 = Y2 or Y1

and Y2 are not G-conjugate. By Theorem 3.1, B is contained in a maximal subgroup M of G with
M = Sp2(q) o 2.

Suppose that G is 2-minimal. Then, as B ≤M , Theorem 3.1 (i) forces G = Sp4(pa2). Moreover,
if q ≡ 3, 5 (mod 8), then |B| = 27.3 and B is contained in a subgroup of shape 21+4

− .Alt(5)
by Theorem 3.1 (iv) and this subgroup is not contained in M . This contradicts G ∈ M(G,B).
Therefore, if P = G, then G ∼= Sp4(pa2) and p ≡ 1, 7 (mod 8). Conversely, if these conditions hold,
then Theorem 3.1 implies that M is the unique maximal subgroup of G which contains M .

Now suppose that P ∈M(G,B) and assume that a is chosen minimally such that the statement
of the lemma does not hold. If P = G, then case (iii) holds, a contradiction. Hence P < G. Let
K be a maximal subgroup of G that contains P . Then K 6= Sp2(pa/c) with c an odd prime and
K 6= M . Since S acts irreducibly on the natural symplectic space, the only other possibility is that
q = p and K ∼ 21+4

−
.Alt(5), but then B is maximal in K and so P = K, a contradiction. �

We now define a subgroup of G which will play a similar role to that played by A in the
investigation of the linear and unitary groups, see Section 5 of [10]. Recall, from Lemma 3.2 (ii)
that L2 ≤ G and we may assume

S ≤ B ≤ L2 = SL2(q) o Sym(n/2).

Put S0 = F2∩S. Also let C be the Thompson subgroup of S0 generated by maximal order abelian
subgroups of S0. Then either q ≡ 3, 5 (mod 8) and C = S0 is a direct product of n/2 quaternion
groups Q8 or q ≡ 1, 7 (mod 8) and C is a homocyclic subgroup of S0 of exponent (q± 1)2 ≥ 8. We
write C = C1× · · · ×Cn/2 where, for 1 ≤ i ≤ n/2, Ci is a cyclic group of order (q± 1)2 of order at
least 8 or is a quaternion group of order 8 with Ci contained in the ith factor of the base group of
L2.

Just as in the proof of Lemma 5.2 in [10] we may prove the following lemma.

Lemma 4.3. The following hold:

(i) if q ≡ 1 (mod 8), then NG(C)/C ∼= Dih(2(q − 1)2′) o Sym(n/2);
(ii) if q ≡ 7 (mod 8), then NG(C)/C ∼= Dih(2(q + 1)2′) o Sym(n/2); and

(iii) if q ≡ 3, 5 (mod 8), then NG(C)/C ∼= 3 o Sym(n/2).

Proof. Set Wi = [V,Ci] for 1 ≤ i ≤ n/2. Then dimWi = 2 and we have an orthogonal decomposi-
tion

V = [V,C] = W1 ⊕ · · · ⊕Wn/2.

These 2-dimensional spaces are permuted naturally by Sym(n/2). Since the Ci are the maximal
subgroups of C with 2-dimensional commutators, we infer that NG(C) is as described. �
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Lemma 4.4. Suppose that C ≤ R ≤ S. Then C is weakly closed in S and NG(R) ≤ NG(C).

Proof. Again set Wi = [V,Ci] for 1 ≤ i ≤ n/2. Then, as in Lemma 4.3, dimWi = 2 and

V = [V,C] = W1 ⊕ · · · ⊕Wn/2

permuted naturally by Sym(n/2).
Suppose that g ∈ G and Cg ≤ S and Cg 6= C. Then, without loss, Y = Cg

1 6≤ C. If Y ∩ F2 6= 1,
then, as [V, Y ∩F2] = [V,Cg

i ] has dimension 2, we have Y ∩F2 ≤ Kj = Sp(Wj) for some 1 ≤ j ≤ n/2.
Since Wk = [V, Y ∩ F2] = [V, Y ], we deduce that Y ≤ F2 and thus Y ≤ Kj. But then Y ≤ C.
Hence Y ∩ F2 = 1. Let y ∈ Y have order 4. Then y transitively permutes four of the subgroups
Ki, 1 ≤ i ≤ n/2. This means dim[V, y] ≥ 6, which is a contradiction. This proves that C is weakly
closed in S and the lemma follows from this. �

Our next lemma describes all the 2-minimal subgroups of NG(C). Because of Lemma 4.3, the
description of these subgroups fluctuate with the congruence of q modulo 8. From the structure
of NG(C) given in Lemma 4.3, we have NG(C)/C ∼= D o Sym(n/2) where D is a dihedral group
of order 2(q − 1)2′ if q ≡ 1 (mod 8), 2(q + 1)2′ if q ≡ 7 (mod 8) and otherwise has order 3 by
Lemma 4.3. Using Theorem 2.5 when q ≡ 3, 5 (mod 8) and Theorem 2.8 when q ≡ ±1 (mod 8),
we obtain

Theorem 4.5. The 2-minimal subgroups of NG(C) are

M(NG(C), B) = T (NG(C), B) ∪ F(NG(C), B) ∪ L(NG(C), B).

Observe that when q ≡ 3, 5 (mod 8), the structure of the members of T (NG(C), B) is consider-
ably different to the case when q ≡ ±1 (mod 8). Because of Theorem 4.5 the emphasis is now to
discover the 2-minimal subgroups which are not contained in NG(C).

For the next two lemmas we assume that n ≥ 6.

Lemma 4.6. Suppose that P ∈M(G,B). Then one of the following holds.

(i) P ∈M(Sp(U)×Sp(U⊥), B) for U a B-invariant non-degenerate subspaces of V such that
V = U ⊕ U⊥.

(ii) n = 2bm for some m ≥ 1 and P ∈M(L2b , B).

Proof. This follows from Theorem 3.1, as n ≥ 6 the 2-minimal subgroups contained in a subfield
subgroup are already accounted for in (i) and (ii). �

Lemma 4.7. Assume that P ∈M(G,B) and P acts irreducibly on V . Then either

(i) P ∈M(NG(C), B); or
(ii) P ∈M(F2bTm, B) where n = 2m+b.

Proof. By Lemma 4.6, P ∈ M(L2b , B) for some b ≥ 1. It follows from Lemma 2.10 that either
P ∈ M(F2bB,B) or P = NP (S ∩ F2b). Since S ∩ F2b contains C, in the latter case (i) holds by
Lemma 4.4. Thus we may suppose that P ≤ F2bB. Now the fact that P operates irreducibly on V
and F2bB = F2bS together imply that n/2b is a power of 2. Thus (ii) holds. �

The next definition and the two following lemmas are needed in Lemma 4.11 to analyse the
wreath product subgroup case.

Definition 4.8. Let r be a prime, A be a group which acts on the group J , R ∈ Sylr(J) and
P ∈ M(J,NJ(R)). Then P is A-immutable provided that for all α ∈ A, Pα ∈ M(J,NJ(R))
implies Pα = P . We say that J is A-immutable provided all the members of M(J,NJ(R)) are
A-immutable.
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Lemma 4.9. Suppose that W is a non-degenerate subspace of V and assume that K,L ≤ G satisfy
W = [V,K] = [V, L]. Then L and K are G-conjugate if and only if they are Sp(W )-conjugate where
Sp(W ) is considered as a subgroup of G.

Proof. Let g ∈ G be such that Kg = L. Then

W = [V, L] = [V,Kg] = [V,K]g = W g,

and so g ∈ NG(W ). Since W is non-degenerate, NG(W ) = NG(W⊥) = Sp(W )× Sp(W⊥). Because
K and L centralize W⊥, we deduce that K,L ≤ Sp(W ) and then that they are conjugate in
Sp(W ). �

Lemma 4.10. Assume that dimV = n = 2a. If 1 ≤ b ≤ a − 1, and P ∈ M(F2bS,B), then there
exists Q ∈M(K1, NK1(S ∩K1)) such that P = 〈O2′(Q), B〉. Furthermore, if Q ∈M(K1, NK1(S ∩
K1)), then P = 〈O2′(Q), B〉 ∈ M(F2bS,B).

Proof. Let m = 2a−b and, as usual, write

F2b = K1 × · · · ×Km.

Then S acts transitively on {K1, . . . , Km}. The main step is to show that K1 is NB(K1)-immutable.
First of all note that, from the decomposition of V which defines Fk, V1 = [V,K1] and, as dimV1 =
2b, V1 = [V, S ∩K1]. Now let g ∈ NB(K1) and Y ∈M(K1, NK1(S ∩K1)), then

[V, Y ] = [V, S ∩K1] = [V, Y g].

Since V1 = [V,K1] = [V, S ∩K1] is a non-degenerate subspace of V , applying Lemma 4.9 yields Y
and Y g are conjugate in K1. Since Y ∈ M(K1, NK1(S ∩K1)), we have Y = Y g. Therefore K1 is
NB(K1)-immutable. Let Y ∈ M(K1, NK1(S ∩K1)) and let π1 be the projection map from Fk to
K1. Since π1(B ∩ Fk) = NK1(S ∩K1), the lemma follows from [10, Lemma 3.15]. �

Lemma 4.11. Suppose that P ∈M(G,B). Then one of the following holds.

(i) P ∈M(NG(C), B);
(ii) there exists i ∈ {1, . . . , r} with ni ≥ 1 such that

P ∈M(Sp2(q) o Tni−1 ×
∏
j 6=i

Bnj−1, B)

and a 2-minimal subgroup Q of Sp2(q) such that P = 〈Q,B〉 ∼= Q o Tni−1 ×
∏

j 6=iBnj−1; or

(iii) there exists i ∈ {1, . . . , r} with ni ≥ 2 such that

P ∈M(Sp4(q) o Tni−2 ×
∏
j 6=i

Bnj−1, B)

and a 2-minimal subgroup Q of Sp4(q) such that P = 〈Q,B〉 ∼= Q o Tni−2 ×
∏

j 6=iBnj−1.

Proof. We argue by induction on dimV . The result certainly is true if n ≤ 4 as then either (ii) or
(iii) holds by Lemma 4.2. So we may suppose n ≥ 6. Assume that P 6∈ M(NG(C), B). Suppose
that P does not act irreducibly on V . Then P ∈ M(Sp(U) × Sp(U⊥), B) for some proper B-
invariant subspace U of V . Let L = Sp(U) and K = Sp(U⊥). Then by Lemma 2.9 we may as well
suppose that, P = (P ∩K) × (B ∩ L) with P ∩K ∈ M(K,B ∩K). The lemma then follows by
induction. Hence we may now assume that P acts irreducibly on V . Lemma 4.7 implies that either
(i) holds or P is contained inM(Sp2b(q)oTn/2b , B). Suppose the latter possibility holds and choose b

minimal subject to this containment. Applying Lemma 4.10 we get that P = 〈O2′(Q), B〉 for some
2-minimal subgroup Q in Sp2b(q). Using the minimality of b and the fact that P 6∈ M(NG(C), B),
Lemma 4.6 and then 4.7 indicate that b ≤ 2. Finally, we note that for 2-minimal subgroups Q
of Sp2(q) and Sp4(q), Theorem 4.1 and Lemma 4.2, give Q = O2′(Q) and so we conclude that
P = 〈Q,B〉. This proves the lemma. �
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Because of Lemma 4.11, to complete the inventory of 2-minimal subgroups of G we just need
to know the candidates for Q. These have been presented in Theorem 4.1 and Lemma 4.2 and we
list them here again in a more convenient way.

Definition 4.12. The set X2 consists of 2-minimal subgroups of Sp2(q) which are not toral. Its
members are describe in Table 1 and

MX2(G,B) = {Q o Tni−1 ×
∏

j∈I\{i}

Bnj−1 | i ∈ I,Q ∈ X2}.

X2 conditions on q
q ≡ 3, 5 (mod 8)

{2.Alt(5)[2], Sp2(ps
t
) | st ∈ Π(a)} q ≡ ±11,±19 (mod 40)

{Sp2(ps
t
) | st ∈ Π(a) ∪ {1}} q ≡ ±3,±5,±13 (mod 40), p 6= 3, 5

{Sp2(3s
t
) | st ∈ Π(a)} p = 3, a2 = 1

{Sp2(5s
t
) | st ∈ Π(a) ∪ {1}} p = 5, a2 = 1

q ≡ 1 (mod 8)
{2.PGL2(pa2/2)[2]} a2 > 2
{2.PGL2(pa2/2)[2]} a2 = 2 and q ≡ 1 (mod 16)

{2.PGL2(5)[2], 2.Sym(4)[2]} a2 = 2 and p = 5
{2.PGL2(3)[2]} a2 = 2 and p = 3
{2.Sym(4)[2]} a2 = 2 and q ≡ 9 (mod 16), p > 5
{Sp2(p)} a2 = 1 and q ≡ 1 (mod 16)
{2.Sym(4)[2]} a2 = 1 and q ≡ 9 (mod 16)

q ≡ 7 (mod 8)
{2.Sym(4)[2]} q ≡ 7 (mod 16)
{Sp2(p)} q ≡ 15 (mod 16)

Table 1: The description of X2

Definition 4.13.

X4 =

{
{Sp4(pa2)} q ≡ 1, 7 (mod 8)

{21+4
− .Alt(5)} q ≡ 3, 5 (mod 8)

and
MX4(G,B) = {Q o Tni−2 ×

∏
j∈I\{i}

Bnj−1 | i ∈ I, ni ≥ 2, Q ∈ X4}.

Finally, we set F(G,B) = F(NG(C), B), L(G,B) = L(NG(C), B) and T (G,B) = T (NG(C), B).
Then applying Lemma 4.11 provides a complete description of the 2-minimal subgroups in the
symplectic groups, and have now proved Theorem 1.1.

5. An Example

In the following example, if X is a group with a given name, we shall use Xn to denote the
direct product of n ≥ 2 copies of X.

Example 5.1. Suppose that G ∼= Sp10(q) where q = pa is odd.

Case q ≡ 3,5 mod 8.
In this case we have

B ∼= (Q8 ×Q8 ×Q8 ×Q8).(3× T2)×Q8.(3× T0)
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where we recall that T0 is the trivial group (we have included this in the first instance to illus-
trate the more general situation). In this case C = Q5

8 and then, by Theorem 2.5 applied with
NG(C)/C ∼= 3 o Sym(5),

L(NG(C), B) =
{

Q5
8:(3× Sym(4)× 3)

}
;

F(NG(C), B) =
{

Q5
8:35 : Sym(5)

}
and

T (NG(C), B) = {Q5
8:(3× 32 × 3)(T2 × T0),Q5

8:(3× 3− × 3)(T2 × T0)}
where 3− indicates a group of order 3 inverted by T2. We define MX2(G,B) as in Table 2 and

MX4(G,B) = {21+4
− .Alt(5) o T1 ×Q8 : 3}.

Conditions MX2(G,B)
q ≡ ±11,±19 (mod 40) (2.Alt(5) o T2 ×Q8 : 3)[2]

st ∈ Π(a) Sp2(ps
t
) o T2 ×Q8 : 3

(Q4
8 : (3× T2)× 2.Alt(5))[2]

Q4
8 : (3× T2)× Sp2(ps

t
)

q ± 3,±5,±13 (mod 40) Sp2(ps
t
) o T2 ×Q8 : 3

p 6∈ {3, 5}, st ∈ Π(a) ∪ {1} Q4
8 : (3× T2)× Sp2(ps

t
)

p = 3 and a2 = 1 Sp2(3s
t
) o T2 ×Q8 : 3

st ∈ Π(a) Q4
8 : (3× T2)× Sp2(3s

t
)

p = 5 and a2 = 1 Sp2(5s
t
) o T2 ×Q8 : 3

st ∈ Π(a) ∪ {1} Q4
8 : (3× T2)× Sp2(5s

t
)

Table 2: Definition of MX2(G,B), q ≡ 3, 5 (mod 8)

Then we have

M(G,B) = L(NG(C), B) ∪ F(NG(C), B) ∪ T (NG(C), B) ∪MX2(G,B) ∪MX4(G,B).

Case q ≡ 1,7 mod 8.
In this situation C is a homocyclic group with 10/2 = 5 direct factors of order m and NG(C)/C ∼=

Dih(2`) o Sym(5) where

m = (q − 1)2, ` = (q − 1)2′ if q ≡ 1 (mod 8); and

m = (q + 1)2, ` = (q + 1)2′ if q ≡ 7 (mod 8).

The Sylow 2-subgroups of Sp2(q) are quaternion of order 2m ≥ 16 and we denote such groups by
Q2m. We have

B = m4.T3 ×m.T1 = Q2m o T2 ×Q2m o T0.

where L.M denotes a non-split extension of L by M . From Theorem 2.8 applied to Dih(2`)oSym(5),
we have

L(NG(C), B) =
{

(m4 ×m).(2 o Sym(4)× 2) = Q4
2m o Sym(4)×Q2m

}
;

F(NG(C), B) =
{
m5.(2 o Sym(5)) = Q5

2m o Sym(5)
}

; and

T (NG(C), B) = {m5.(U(3, sc, 3)T3 × T1),m5.(T3 × (U(1, sc, 1)T1)) | sc ∈ Π(`)}.

We define MX2(G,B) as in Table 3 and

MX4(G,B) = {(Sp4(pa2) o T1)×Q2m}.
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Conditions MX2(G,B)
q ≡ 1 (mod 8) (2.PGL2(pa2/2) o T2 ×Q2m)[2]

a2 > 2 or a2 = 2 and q ≡ 1 (mod 16) (Q4
2m : T2 × 2.PGL2(pa2/2))[2]

q ≡ 1 (mod 8) (2.PGL2(5) o T2 ×Q16)[2]

a2 = 2 and p = 5 (2.Sym(4) o T2 ×Q16)[2]

(Q4
16 : T2 × 2.PGL2(5))[2]

(Q4
16 : T2 × 2.Sym(4))[2]

q ≡ 1 (mod 8) (2.PGL2(3) o T2 ×Q16)[2]

a2 = 2 and p = 3 (Q4
16 : T2 × 2.PGL2(3))[2]

q ≡ 1 (mod 8) (2.Sym(4) o T2 ×Q16)[2]

a2 = 2 and q ≡ 9 (mod 16), p > 5; or (Q4
16 : T2 × 2.Sym(4))[2]

a2 = 1 and q ≡ 9 (mod 16)
q ≡ 1 (mod 8) Sp2(p) o T2 ×Q2m

a2 = 1 and q ≡ 1 (mod 16) Q4
2m : T2 × Sp2(p)

q ≡ 7 (mod 8) (2.Sym(4) o T2 ×Q16)[2]

and q ≡ 7 (mod 16) (Q4
16 : T2 × 2.Sym(4))[2]

q ≡ 7 (mod 8) Sp2(p) o T2 ×Q2m

and q ≡ 15 (mod 16) Q4
2m : T2 × Sp2(p)

Table 3: Definition of MX2(G,B), q ≡ 1, 7 (mod 8)

Then

M(G,B) = L(NG(C), B) ∪ F(NG(C), B) ∪ T (NG(C), B) ∪MX2(G,B) ∪MX4(G,B).
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