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Abstract. Numerical simulations of violent bubble dynamics are often associated

with numerical instabilities at the end of collapse, when a shock wave is emitted.

Based on the Keller–Miksis equation, we show that this is caused by two time scales

associated with the phenomenon. Nonsingular equations are thus formed based on

asymptotic expansion theory and the time derivatives of the bubble radius are shown

to have algebraic singularities in the Mach number. The period of oscillation is shown

to divide into two asymptotic layers: a long and short time scale. The short time

scale, on which significant acoustic radiation is emitted from the bubble, has been

determined to be R̄max
(
[p̄∞ − p̄v]/ρc2

)1/(3κ)
/c, where c is the speed of sound in the

liquid, R̄max the maximum bubble radius, ρ the liquid density, p̄∞ the hydrostatic

pressure of the liquid, p̄v the vapour pressure of the liquid and κ the polytropic index

of the bubble gas. Using the scalings for this short time scale, the radiated acoustic

pressure scale has been deduced to be ρc2R̄max
(
[p̄∞ − p̄v]/ρc2

)1/(3κ)
/R, where R is

the radial distance from the bubble centre to the point of measurement. The results

are validated by comparison with experimental results.

Keywords: Bubble dynamics, Acoustic radiation, Scaling
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1. Introduction

Inertial collapse of bubbles is associated with cavitation damage to pumps, turbines and

propellers (Brennen 2013, Lauterborn & Kurz 2010, Leighton 1994), and the damage of

an underwater explosion (Cole 1948, Klaseboer et al. 2005, Wang 2013). Inertial collapse

of bubbles driven by ultrasound has wide applications in medical ultrasound (Coussios &

Roy 2008, Klaseboer et al. 2007, Calvisi et al. 2008, Curtiss et al. 2013, Wang et al. 2015),

sonochemistry (Suslick 1990) and ultrasonic cleaning (Ohl et al. 2006).

In this article, the bubble oscillation in a compressible liquid is analyzed based on

the Keller–Miksis equation (Keller & Miksis 1980) using asymptotic expansions. The

most important contribution of this article is to the understanding and interpretation

of the Keller–Miksis equation. The full equation conceals the different physical balances

which hold over the end of the collapse and the beginning of the expansion. The

asymptotic analysis reveals precisely which balances hold and quantifies the Mach

number singularity. Furthermore, we are rewarded with two explicit parameter

dependencies for the short time scale associated with acoustic radiation and the radiated

acoustic pressure scale.

Compressible effects in bubble dynamics are negligible for most of time but become

significant for a short time period at the end of collapse, when strongly nonlinear

waves or shock waves are emitted (Philipp & Lauterborn 1998, Wang 2013, Wang &

Manmi 2014, Wang 2016). This happens even when the associated Mach numbers

are small. The emission of shock waves and associated multiple scales in time

cause numerical instabilities of the bubble dynamics at the end of collapse (Zhang

et al. 2001, Lind & Phillips 2010, Lind & Phillips 2013). This also results in a challenge

to predict the energy loss due to the emission of shockwaves using computational fluid

dynamics (Lechner et al. 2017). Consequently, the numerical models were combined

with some empirical adjustments in order to simulate multiple oscillations (Gonzalez-

Avila et al. 2020). A basic question on this phenomenon is thus how long is the duration

of this short time period. The short acoustic time scale obtained from the present theory

can be used for setting varied time steps for the numerical simulations for non-spherical

bubble dynamics.

The nonlinear oscillations of the Keller–Miksis equation are also of great interest

from a mathematical perspective. The loss of energy due to acoustic radiation takes

place on a much shorter time scale than the period of oscillation (Wang 2016). If this

loss of energy is substantial over each cycle, then multi-layer asymptotic expansions are

required to describe the oscillations of the bubble radius. This is depicted by an order

one reduction in the dimensionless bubble radius between the first and second maxima

in Figure 1. However, if this loss of energy is small over each cycle of oscillation,

then a multi-scaled perturbation method will average the small loss of energy over the

period of oscillation (Smith & Wang 2018). This is shown by a small reduction in

the dimensionless bubble radius between the second and third maxima in Figure 1.

If the former holds, then a region described by multi-layer asymptotic expansions
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Figure 1. A schematic of the general asymptotic structure of nonlinear oscillations for

the Keller–Miksis equation (5) with the dimensionless bubble radius R as a function

of dimensionless time t. The multi-layer method is required when the bubble radius

reduces by order one between oscillations, whereas a multi-scaled method is required

when the bubble radius reduces by less than order one.

typically precedes a region described by the multi-scaled perturbation method (Smith

et al. 1999). In practice, the region of multi-layer asymptotic expansions and the

multi-scaled approach have an overlap in which both techniques may be applied with

reasonable accuracy. Therefore, the present work extends our previous research on the

multi-scaled method to more violent collapses.

The remainder of the paper is organized as follows. The mathematical model

for the radiative decay of bubble oscillations is described in section 2. In section 3,

nonlinear oscillations are studied with the application of multi-layer asymptotic

expansions to the Keller–Miksis equation. In section 4, the theoretical solutions are

firstly compared quantitatively with experimental observations which also provides

quantitative validation of the acoustic radiation time scale and the bubble radius scale.

The dimensional acoustic radiation time and pressure scales are then identified and

compared qualitatively with experimental observations. Finally, in section 5, the results

are briefly summarized.

2. Mathematical model

The radial dynamics of spherical bubbles in compressible fluids have been studied

extensively for many decades. This problem was first considered in connection with

an underwater explosion (Herring 1941). Keller & Kolodner (1956) and Keller & Miksis

(1980) later formulated the Keller-Miksis equation for a spherical bubble using the wave
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equation and the incompressible Bernoulli equation. Prosperetti & Lezzi (1986) studied

the problem using the method of matched asymptotic expansions to the second order in

terms of the bubble-wall Mach number. They provided a rational proof of the Keller-

Miksis equation. The Keller–Miksis equation for a spherical gas bubble in a compressible

liquid reads (Keller & Miksis 1980)(
1− 1

c

dR̄

dt̄

)
R̄

d2R̄

dt̄2
+

3

2

(
dR̄

dt̄

)2(
1− 1

3c

dR̄

dt̄

)
=

(
1 +

1

c

dR̄

dt̄

)
p̄l
ρ

+
R̄

ρc

dp̄l
dt̄
, (1)

where p̄l is the pressure of liquid at the bubble surface and is given as follows under

adiabatic conditions

p̄l = p̄g0

(
R̄max

R̄

)3κ

− 2σ

R̄
− (p̄∞ − p̄v)−

4µ

R̄

dR̄

dt̄
,

in which R̄(t̄) is the spherical bubble radius at time t̄, c the speed of sound in the

liquid, R̄max the initial maximum bubble radius, ρ the liquid density, p̄∞ the hydrostatic

pressure of the liquid, p̄v the vapour pressure of the liquid, p̄g0 the initial pressure of

the bubble gases, κ > 1 the polytropic index, σ the surface tension and µ the liquid

viscosity. The thermal processes typically absorb a relatively small portion of the overall

energy (Akhatov et al. 2001, Szeri et al. 2003). The initial conditions are chosen when

the bubble is at its maximum radius, that is

R̄(0) = R̄max,
dR̄

dt̄
(0) = 0. (2)

Dowling & Ffowcs Williams (1983) and Brennen (2013) derived an expression for

the pressure in the far field. The radiated acoustic pressure from an oscillating bubble

is given by

ρ

4πR
d2V̄

dt̄2

(
t̄− r̄

c

)
, (3)

where the radial distance, r̄, from the bubble centre to the point of measurement is R
(R � R̄max) and V̄ (t̄) is the time-dependent volume of the bubble.

We scale (1) using R̄ = R̄maxR and t̄ = R̄maxt/U , in which

∆ = p̄∞ − p̄v, U =

√
∆

ρ
, (4)

where ∆ is the characteristic pressure of the liquid and U is a reference velocity. The

dimensionless Keller–Miksis equation becomes(
1− εdR

dt

)
R

d2R

dt2
+

3

2

(
dR

dt

)2(
1− ε

3

dR

dt

)
=

(
1 + ε

dR

dt

)
pl + εR

dpl
dt
,(5)

where

pl =
pg0
R3κ
− 2

WeR
− 1− 4

ReR

dR

dt
, (6)

in which

Re =
ρUR̄max

µ
, We =

R̄max∆

σ
, pg0 =

p̄g0
∆

< 1, ε =
U

c
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Figure 2. A schematic of the asymptotic structure of nonlinear oscillations for the

Keller–Miksis equation (5), having layers I and II repeated with the time scales of O(1)

and O(ε1+2/(3κ)), respectively.

are the Reynolds number, the Weber number, the dimensionless initial pressure of

the bubble gases and the Mach number, respectively. We define the dimensionless

equilibrium radius by Req = R̄eq/R̄max, where R̄eq is the dimensional equilibrium radius

which is more easily measured in experiments than the dimensionless initial pressure of

the bubble gases pg0. If the equilibrium radius is known, we may evaluate pg0 via the

equation

pg0 = R3κ
eq

{
1 +

2

WeReq

}
.

The initial conditions are

R(0) = 1,
dR

dt
(0) = 0. (7)

Henceforth, we assume that the restrictions 1/Re� 1 and ε� 1 hold.

3. Multi-layer asymptotic expansions

We now describe the underlying physical structure of the nonlinear oscillations with

significant acoustic radiation. The asymptotic structure consists of two layers in each

period as shown in Figure 2.

3.1. Layer I: t = O(1)

Firstly, we consider layer I in which t = O(1) and R = O(1). We introduce the expansion

R = R0 +O(ε) as ε→ 0. The radius satisfies the equation

R0
d2R0

dt2
+

3

2

(
dR0

dt

)2

=
pg0
R3κ

0

− 2

WeR0

− 1. (8)
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Layer I remains valid until the leading-order balance changes at the end of the collapse;

namely, when

ε

∣∣∣∣dRdt
∣∣∣∣ = O(1). (9)

This criterion corresponds to the compressibility terms growing to violate the leading-

order balance.

3.2. Layer II: t = tm + ε1+2/(3κ)t2

Secondly, we consider layer II. The determination of the time scale on which

compressibility effects are significant (at leading order) requires the notion of a

distinguished limit. In our case, the distinguished limit corresponds to a balance between

inertial terms, compressibility effects and the terms for the partial pressure of the bubble

gases. This balance occurs for a unique choice of the time scale and the bubble radius

scale. Therefore, this limit is distinguished from all others. We find the distinguished

limit by considering the scalings t = tm + εαt2 and R = εβR̂, where tm is a time shift

and α and β are to be determined. Using (5), we obtain(
1− ε1+β−αdR̂

dt2

)
ε2(β−α)R̂

d2R̂

dt22
+

3

2
ε2(β−α)

(
dR̂

dt2

)2(
1− ε1+β−α

3

dR̂

dt2

)

=

(
1 + ε1+β−α

dR̂

dt2

)
pl + ε1+β−αR̂

dpl
dt2

,

in which

pl = ε−3κβ
pg0

R̂3κ
− ε−β 2

WeR̂
− 1.

The compressibility terms have now entered the leading-order physical balance,

compressibility being less significant in layer I. The balance between compressibility

and inertial terms requires that 1 +β−α = 0. As the bubble radius decreases, only the

terms for the partial pressure of the bubble gases remain in the leading-order physical

balance from pl, because they increase faster than surface tension effects. The balance

between inertial effects and the terms for the partial pressure of the bubble gases requires

that 2(β − α) = −3κβ. Hence, we solve these two simultaneous equations to find

α = 1 + 2/(3κ) and β = 2/(3κ).

We adopt the scalings t = tm + ε1+2/(3κ)t2 and R = ε2/(3κ)R̂ corresponding to the

distinguished limit. We obtain the equation(
1− dR̂

dt2

)
R̂

d2R̂

dt22
+

3

2

(
dR̂

dt2

)2(
1− 1

3

dR̂

dt2

)
=

(
1 +

dR̂

dt2

)
p̂l + R̂

dp̂l
dt2

,

in which

p̂l =
pg0

R̂3κ
− ε2−2/(3κ) 2

WeR̂
− ε2.
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We introduce the expansion R̂ = R̂0 +O(ε2−2/(3κ)) as ε→ 0 to give a new leading-

order balance in (5)(
1− dR̂0

dt2

)
R̂0

d2R̂0

dt22
+

3

2

(
dR̂0

dt2

)2(
1− 1

3

dR̂0

dt2

)
=

(
1 +

dR̂0

dt2

)
pg0

R̂3κ
0

+R̂0
d

dt2

(
pg0

R̂3κ
0

)
.(10)

Layer II remains valid until the leading-order balance changes during the bubble

expansion phase; namely, when R = O(1). Equation (10) is as difficult to solve

analytically as the Keller–Miksis equation (5). Matching of the asymptotic expansions

in the two layers has also not been possible.

As illustrated by the following leading-order expressions

dR

dt
∼ 1

ε

dR̂0

dt2
,

d2R

dt2
∼ 1

ε2+2/(3κ)

d2R̂0

dt22
, (11)

the time derivatives of R have algebraic singularities in the Mach number ε. The Mach

number dependence of the bubble radius has been determined in layer II and the Mach

number singularity in the Keller–Miksis equation (5) has been removed by considering

equation (10).

If the collapse is very intense, then new damping mechanisms must emerge in the

physical situation to counter the rapid increase in the bubble velocity and acceleration

revealed in (11). These new damping mechanisms are not present in the Keller–Miksis

equation (5). Therefore, the Keller-Miksis equation is valid for Mach numbers ε in a

range εKM � ε � 1, where εKM is a constant Mach number. Although this limitation

of the Keller–Miksis equation for the most intense collapse has been widely discussed in

the literature, the evidence provided by (11) is new and compelling.

4. Numerical results

4.1. Validation

Equation (10) is a simplified model for the final stages of the bubble collapse and

rebound. In order to validate the simplifications in (10), comparisons with experimental

observations are sought. Our approach is to solve the Keller–Miksis equation (5) with

the fourth order Runge–Kutta method in layer I. The choice of the Keller–Miksis

equation (5) rather than (8) is equivalent to solving the problem in layer I to all orders

in ε. We continue as described until criterion (9) applies in the form

ε

∣∣∣∣dRdt
∣∣∣∣ > 0.1. (12)

Our solution approach is to use patching based on the criterion (12); that is, the values

of radius and its first derivative from layer I are used as the initial conditions for layer II.

The layer II equation (10) is then solved with the fourth order Runge–Kutta method

until the condition (12) no longer holds. This procedure may be repeated on the second

oscillation if necessary.
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Figure 3. Comparison of the time histories of a spherical bubble using asymptotic

expansions for the Keller–Miksis equation (5)-(6), experimental results (Kröninger

et al. 2010) and full numerical solution of the Keller–Miksis equation (5)-(6). In

this experiment, short pulses of laser light were focussed into water. The asymptotic

expansions employs the solution to (10) and the criterion (12). The parameter values

used in the calculations are the Reynolds number Re ≈ 7.5× 103, the Weber number

We ≈ 1.04× 103, pg0 ≈ 7.44× 10−5 and the Mach number ε ≈ 0.00667.

We consider the evolution of (nearly) spherical bubbles obtained by focussing short

pulses of laser light into water (see Figure 5 of Kröninger et al. (2010)). The following

values are adopted following the experimental conditions ∆ = 1.01× 105kgm−1s−2, σ =

0.0725Nm−1, κ = 1.33, µ = 0.001Pas, c = 1500ms−1, ρ = 998kgm−3, R̄max = 747µm

and R̄eq = 69µm. From the above parameters, we deduce that the Reynolds number

Re ≈ 7.5 × 103, the Weber number We ≈ 1.04 × 103, the Mach number ε ≈ 0.00667

and pg0 ≈ 7.44× 10−5. In order to validate the analysis of the final stages of the bubble

collapse and rebound in layer II, a numerical solution is obtained for these parameter

values. We note that there are no unknown parameters to fit with the experimental

results. Figure 3 compares the asymptotic solution for the bubble radius with the

experimental results and the full numerical solution, the agreement being remarkable.

The condition (12) is satisfied during the first minimum in Figure 3, but not the second

or subsequent minima.

Experimental observations of the final stages of the collapse phase and rebound

of the bubble have been captured using high-speed photography (see Figure 29 of

Lauterborn & Kurz (2010)). These experimental results allow a direct comparison

with the analysis in layer II. The experimental conditions are identical to Figure 5 of

Kröninger et al. (2010) except that R̄max = 1.1mm and R̄eq is not specified. With the

above parameters, we deduce that the Reynolds number Re ≈ 1.1 × 104, the Weber

number We ≈ 1.5 × 103 and the Mach number ε ≈ 0.00667. The dimensionless initial

pressure of the bubble gases pg0 ≈ 1.5 × 10−4 is chosen to fit with the experimental
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Figure 4. Comparison of the time histories of a spherical bubble in the neighbourhood

of the minimum using the two layers for the Keller–Miksis equation (5)-(6),

experimental results (Lauterborn & Kurz 2010) and full numerical solution of the

Keller–Miksis equation (5)-(6). In this experiment, the bubble collapse was captured

using high-speed photography. The asymptotic expansions employs the solution to (10)

and the criterion (12). The parameter values used in the calculations are the Reynolds

number Re ≈ 1.1× 104, the Weber number We ≈ 1.5× 103, pg0 ≈ 1.5× 10−4 and the

Mach number ε ≈ 0.00667.

results. In this comparison, we follow Lauterborn & Kurz (2010) and take the initial

conditions to be R(t0) = 180µm and Ṙ(t0) = −96.2ms−1 with t0 = −788ns in order to

move the bubble collapse to the origin. These initial conditions start in layer I shortly

before the condition (12) is satisfied. Figure 4 compares the bubble radius obtained from

the asymptotic solution with the experimental results and the full numerical solution,

the agreement being excellent. In Figure 4, layer II begins at −379ns during the collapse

and ends at 119ns during the expansion. The errors made in layer II, which are of the

order of ε2−2/(3κ), may not be discerned.

4.2. Acoustic radiation time scale

The dimensional acoustic radiation time scale, t̄a , is the time scale on which the

compressibility effects are significant at leading order; that is, the time scale in layer II.

Using the analysis in layer II, we obtain

t̄a =
R̄max

U
ε1+2/(3κ) =

R̄max

c

(
[p̄∞ − p̄v]

ρc2

)1/(3κ)

. (13)

This acoustic time scale is compatible with numerical solutions in layer II and the

experimental results. Therefore, Figures 3 and 4 have already provided quantitative

validation for this acoustic time scale. For the experimental results plotted in Figures 3

and 4, the acoustic time scales are 40ns and 60ns, respectively.
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Figure 5. Variations with depth h of (a) the acoustic time scale using (13) and (b) the

radiated acoustic pressure scale (14). The data correspond to κ = 1.25, c = 1500ms−1,

ρ = 998kgm−3, R = 10m and R̄max = 0.47m.

Figure 67 of Lauterborn & Kurz (2010) plots the experimental results for the

width (full width at half maximum) of the first collapse pressure pulse as a function

of the maximum bubble radius (Rmax). The dependence is linear for smaller bubbles as

predicted by (13), but the growth slows for larger bubbles.

4.3. Radiated acoustic pressure scale

The dimensional radiated acoustic pressure scale, p̄a, may be deduced by using the

expression (3) and the time scale and bubble radius scale in layer II. We obtain

p̄a =
ρc2R̄max

R

(
[p̄∞ − p̄v]

ρc2

)1/(3κ)

. (14)

Figures 3 and 4 have already provided quantitative validation for the scales used in

calculating the acoustic pressure scale. The experiments in Figure 6 of Isselin et al.

(1998) and Figure 66 of Lauterborn & Kurz (2010) have previously found a linear

dependence of the first collapse pressure on the maximum bubble radius R̄max.

We next consider a tetryl charge of 0.249kg detonated 91.44m below the water

surface (Cole 1948). The following values for gas bubbles in water are adopted following

the experimental conditions κ = 1.25, c = 1500ms−1, ρ = 998kgm−3 and R̄max = 0.47m.

With the above parameters and the radial distance from the bubble centre to the point
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of measurement isR = 10m, we predict the acoustic time scale and the radiated acoustic

pressure scale as a function of depth in Figure 5.

5. Summary and conclusions

In summary, a theoretical study has been carried out to investigate the acoustic decay

of nonlinear oscillations of a spherical bubble in a compressible inviscid fluid, using the

Keller–Miksis equation. The acoustic radiation is essential only during the short period

at the end of the collapse and at the beginning of the expansion. The Keller–Miksis

equation is shown to have an algebraic singularity in the Mach number during this short

period. Two important results have been obtained: the short time scale associated with

acoustic radiation and the radiated acoustic pressure scale. We note that the dependence

of both the acoustic radiation time and pressure scales on the hydrostatic pressure of the

liquid should be of great interest in deep water applications. The present theory has the

potential to be developed for nonspherical bubbles. This will be valuable to overcome

the numerical instabilities associated the violent collapse of nonspherical bubbles.
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