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H I G H L I G H T S

• Commercially available PV-battery system is installed in mid-sized UK home.

• PV generation and household electricity demand recorded for one year.

• More than fifty long-term ageing experiments on commercial batteries undertaken.

• Comprehensive battery degradation model based on long-term ageing data validated.

• PV-Battery system is shown not be economically viable.

A R T I C L E I N F O
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A B S T R A C T

Rooftop photovoltaic systems integrated with lithium-ion battery storage are a promising route for the dec-
arbonisation of the UK’s power sector. From a consumer perspective, the financial benefits of lower utility costs
and the potential of a financial return through providing grid services is a strong incentive to invest in PV-battery
systems. Although battery storage is generally considered an effective means for reducing the energy mismatch
between photovoltaic supply and building demand, it remains unclear when and under which conditions battery
storage can be profitably operated within residential photovoltaic systems. This fact is particularly pertinent
when battery degradation is considered within the decision framework. In this work, a commercially available
coupled photovoltaic lithium-ion battery system is installed within a mid-sized UK family home. Photovoltaic
energy generation and household electricity demand is recorded for more than one year. A comprehensive
battery degradation model based on long-term ageing data collected from more than fifty long-term degradation
experiments on commercial Lithium-ion batteries is developed. The comprehensive model accounts for all es-
tablished modes of degradation including calendar ageing, capacity throughput, ambient temperature, state of
charge, depth of discharge and current rate. The model is validated using cycling data and exhibited an average
maximum transient error of 7.4% in capacity loss estimates and 7.3% in resistance rise estimates for over a year
of cycling. The battery ageing model is used to estimate the cost of battery degradation associated with cycling
the battery according to the power profile logged from the residential property. A detailed cost-benefit analysis
using the data collected from the property and the battery degradation model shows that, in terms of utility
savings and export revenue, the integration of a battery yields no added benefit. This result was, in-part, at-
tributed to the relatively basic control strategy and efficiency of the system. Furthermore, when the cost of
battery degradation is included, the homeowner is subject to a significant financial loss.

1. Introduction

The United Kingdom (UK) Government set a carbon dioxide (CO2)
emission reduction target of at least 80% by 2050 from 1990 levels [1]

which became legally binding through The Climate Change Act [2].
Given that the UK power sector accounts for one-fifth of the total final
energy demand, contributing 35% of total CO2 emissions [3], with
demand projected to increase under many scenarios [4] it is identified
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as the single most important route for decarbonisation [3]. Since 55%
of electricity, within the UK, is generated from fossil fuels (with 21%
Nuclear and 25% renewable) [5], the obvious route to decarbonisation
is by reducing energy consumption. However, the possible negative
impacts on economic growth and living standards arising from cutting
back energy demand, means that many authors advocate the greater
deployment of more environmentally clean alternative energy re-
sources [6].

Renewable energy technologies are expected to play a major role in
the decarbonisation of the UK power sector [7], while contributing to
domestic energy security. Among the many options available, solar
photovoltaic (PV) power is found to have substantial potential for
electricity generation [8]. A challenge with PV generated electrical
power is the flexibility needed to match demand and supply such that
supply needs to match at each time point [9]. Electrical energy storage
is one option to mitigate the supply/demand mismatches.

Recent developments that reduce the cost of solar PV panels [10,11]
combined with a 59–70% (per kWh) reduction in the cost of lithium ion
batteries in the last decade [12,13] have acted as catalysts in stimu-
lating interest in solar home systems (SHS). Significant uptake of
combined PV-battery units is now increasingly seen as a possible future,
which would lead to increased decentralised generation and higher self-
consumption levels [14]. If current battery cost reduction trends persist,
it is predicted that these systems could ultimately disconnect from the
grid and lead to autonomous homes or micro-grids [14].

In assessing the economic viability of solar home systems, PV-bat-
tery storage systems were shown to be profitable for small residential
PV systems in Germany [8], although the assumption for battery costs
in that study were deemed to be extremely ambitions (EUR 171/kWh).
Other studies, also focussing on the German market, found that the
profitability of PV-battery systems are dependent on significant reduc-
tions in battery price and the favourable German regulatory framework
[15]. Corroborating the results of Ref. [15], Truong et al. [16] conclude
that the viability of SHS is dependent on both an increasing retail price
of electricity and financial subsidies. Such subsidies include, for ex-
ample, feed-in-tariffs, green certificates or favourable net metering
schemes [17]. The economic benefits of SHS is also correlated with the
increased usage of on-site solar energy within the home, a practice
termed self-consumption [14–16].

A limitation of such previous studies however, is that their assess-
ment of economic viability did not consider the impact of battery de-
gradation. Within the context of this study, battery degradation is
characterised by a reduction in the useable energy capacity of the
battery (e.g. capacity fade) and a reduction in the ability of the battery
to deliver sustained power (e.g. power fade) resulting from an increase
in battery impedance. For example, although studies such as [8] con-
sidered numerous forward-looking electricity pricing scenarios and the
impact of subsidies, their work neglected the cost associated with bat-
tery degradation. Given that the daily capacity throughput for a battery
in an SHS is almost twice the battery rated capacity [14] – approxi-
mately ten times larger than a typical electric vehicle, assuming daily
recharging [18] – the impact of battery degradation is expected to be
significant [19–21].

In this work therefore, we address the economic viability of solar
home systems within the UK considering battery degradation. For this,
we develop and employ a comprehensive battery degradation model
based on long-term ageing data collected from more than fifty de-
gradation experiments conducted on commercially available lithium
ion batteries. This comprehensive model accounts for all established
modes of degradation including calendar ageing, capacity throughput,
ambient temperature T( ), state of charge SoC( ), depth of discharge
DoD( ) and the applied current (I ) [21]. The model is validated using
highly transient real-world usage cycles for various environmental
conditions corresponding to different geographical regions of the UK.

Original data for PV generation and electricity consumption in an
occupied UK family home is collected for an entire year. Previous

studies which have reported consumption data have either been syn-
thetic, i.e., modelled consumption estimates [22] or did not consider
on-site generation [23–26]. Using this typical domestic electricity
profile for a household in the UK and the detailed battery degradation
model, the economic viability for PV battery systems in the UK is ad-
dressed.

This paper is outlined as follows: In Section 2, the PV-battery system
is introduced and electricity profiles for an occupied family home is
presented. The development and validation of the battery degradation
model is presented in Section 3. Cost benefit analysis of SHS, con-
sidering battery degradation, is presented in Section 4. Analysis and
discussion including the impact of future policy and pricing scenarios
are presented in Section 5. Finally, conclusion and further work is
presented in Section 6.

2. PV generation and electricity demand for a mid-size UK family
household

2.1. Data collection

The domestic property explored here is based in Loughborough,
Leicestershire, UK and is a three bedroomed, detached property in a
domestic district of the town. Occupancy is a young family of four, with
two children under the age of six and an approximate building size of
83 m2. A number of low carbon and energy saving measures are in-
stalled in the property, including LED lighting, solar PV, battery storage
and the family also own an electric vehicle (EV) which is regularly
charged at the property. Based on the properties Energy Performance
Certificate (EPC – which is an assessment of key items such as loft in-
sulation, and the operating efficiency of household appliances, such as:
the domestic boiler, hot water tank, radiators and windows, etc. The
assessment provides a single number for the rating of energy efficiency,
and a recommended value of the potential for improvement) the house
is placed in band C, with an efficiency rating of 69–80% which is above
the England and Wales average of band D [27]. The specifications for
the commercially available PV and battery storage system installed in
the property are given in Table 1 and a system schematic for the
property is given in Fig. 1. Data collection has a 5-min sample period for
all of the systems installed in the property, with the EV demand in-
cluded in the total building demand value which is measured by a
current sensor integrated within the supply meter.

2.2. Electricity demand and PV generation

The average annual electricity consumption for UK domestic prop-
erties is 3100 kWh for standard customers and 4300 kWh for customers
on an Economy 7 tariff [28,29] (which is a differential tariff provided

Table 1
Technology and data collection specification for the domestic property in Loughborough.

Item Specification Data collected Units Frequency

PV array 4 kW monocrystalline PV
array (20.4% efficiency,
327 W nominal power
rating)

Solar generation kWh 5-min
Solar export to
the grid
House import
House usage

Battery
storage

2 kWh rated (1.6 kWh
actual); 400 W inverter;
lithium-ion battery

SoC over time
Energy flow in/
out

%
kWh

5-min

Electric
vehicle

2015 Nissan Leaf; 24 kWh
lithium-ion battery

N/A N/A N/A

Building
demand

Energy flow in/
out

kWh 5-min

Charge
point

13 Amp plug Included as part
of building
energy demand

kWh 5-min
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by UK electricity suppliers that uses base load generation to provide
cheap off-peak electricity during the night). The annual electricity
consumption of the domestic property evaluated in this work was
4142 kWh for 2016, with the five-minute demand profile in Fig. 2
matching those generated by the CREST demand model [30]. The total
electricity generated by the PV panels for the year was 3691 kWh and
the grid imported electricity was 2771 kWh, therefore, only 33% of the
PV generated electricity is consumed within the home and 2344 kWh is
exported out. The energy generated through the PV cells are used to
charge up the battery and support the buildings energy demand, with
excess PV supply exported to the grid. As shown in Fig. 2, battery
storage is used to distribute some of the PV generation to a period in the
day when demand exceeds generation, for example during the evening.

The 24-h profile presented in Fig. 2 is relatively regular over
a month. There are certain peaks in demand during the day, seen in
Fig. 2, where demand exceeds PV production. Even if the battery has
sufficient charge to support this demand, because the basic control al-
gorithm adopted by the manufacturer is set based on the previous day’s
operation, such peaks are not reinforced. Given the regularity of the
daily demand profiles across the year, it is noteworthy, that losses due
to this control algorithm limitation are deemed to be negligible.

The half-hourly power throughput for an entire year (from the be-
ginning of April 2016 to the end of March 2017) for the battery system
is presented in Fig. 3. For a typical day, the capacity throughput is

160% of the batteries rated capacity, i.e., 80% of the battery’s state of
charge (SoC) is depleted (from 100% SoC to 20% SoC) in supporting the
building’s electricity load, which is subsequently replaced through the
PV supply the following day. An 80% depth of discharge ( SoCΔ ) is
significant. Continuous cycling of =SoCΔ 80% is known to lead to a
large, non-negligible volumetric change in the electrode due to lithium
intercalation [31] leading to contact loss between the electrode active
material and the current collector and hence an increase in cell im-
pedance due to the decrease in electron conducting pathways [21]. In
addition, the formation of large intercalation gradients will cause the
disordering of crystal structures and hence particle cracking [32]. If
persistent, this degradation mode will lead to the isolation of electrode
material and a partial loss of cell capacity [33].

3. Battery degradation model

It is well established within the academic literature that lithium ion
batteries are subject to degradation [34–41]. This degradation is gen-
erally governed by the age of the battery and the frequency of use. In
addition, battery degradation is accelerated by elevated temperature,
high states of charge, large swings in state of charge during cycling and
the use of high current charge/discharge rates [19,21]. These factors
are collectively referred to as ageing stress factors. In many applica-
tions, these ageing stress factors are convoluted and result in non-linear

Fig. 1. System schematic for domestic property with static
storage and PV. The Solid lines indicate Live connections
while the dashed lines indicate Neutral connections.

Fig. 2. Stacked bar chart showing the 5-min resolution breakdown of the total energy demand and the total PV supply for a typical day in April 2016. Positive values show the breakdown
of total PV supply usage while negative values show the breakdown of how the buildings total demand is met.
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accelerated degradation of the battery. In this section, the development
of a lithium-ion battery ageing model (degradation model) is presented.
In what follows, the details of the battery ageing model development
are presented. This commences with the ageing tests carried out to
parametrise the ageing model, a discussion on the model structure and
finally the validation of the model.

3.1. Lithium-ion cell used in ageing tests

Within this study, 45 commercially available 3 A h 18650-type cells
were used [54]. Each cell comprises of a LiC6 negative electrode, Li-
NiCoAlO2 positive electrode, separated by a polyethylene separator,
sandwiched between an aluminium current collector at the cathode
and a copper current collector at the anode, all immersed within an
electrolyte solution. The manufacturers recommended maximum con-
tinuous charge and discharge current rates are defined as 1.2 C and
0.3 C respectively. The maximum instantaneous charge and discharge
current rates are defined as 5 C and 1.5 C respectively. The nominal
internal resistance at °25 C and 50% SoC is stated as 36 mΩ.

3.2. Ageing tests

The ageing tests are divided into two groups: storage and cycling.
Storage tests entailed storing the cells at different SoC and temperature
combinations. To adjust the SoC to the required level, the cells were
first discharged at a 1 C constant current discharge rate to a cut-off
voltage of 2.5 V using a commercial cell cycler (Bitrode MCV 16-100-5).
Subsequently, the cells were allowed to rest for 3 h before being fully
recharged according to the manufacturer’s recommended charge pro-
tocol of constant current charge of 1 C until 4.2 V is measured and then
a constant voltage of 4.2 V until the current fell below 0.15 A.
Following the completion of charge, the cells were again allowed to rest
for 3 h prior to being discharged at 1 C constant current for 6 min s,
30 min or 48 min which brought the cells to 90%, 50% or 20% SoC
respectively. To control cell temperature, the cells were placed in
a Vötsch thermal chamber at either ° ° °10 C, 25 C or 45 C. The nine
combinations of temperature and SoC were studied in this work, with
three cells tested per combination [54].

Cycling tests were all carried out at °25 C with one of two depths of
discharge 30% or 80% and one of three discharging rates 0.4 C, 0.8 C or
1.2 C. All cycling tests were limited to a charging rate of 0.3 C for safety
(i.e., to within manufacturers limit for continuous charging). Cell cy-
cling was achieved using a commercial cell cycler (Bitrode MCV 16-
100-5) and the ambient temperature was controlled using an Espec
thermal chamber. Again, three cells are tested for each depth of dis-
charge and discharging rate combination [54].

3.3. Ageing characterisation tests

Ageing stress factors lead to the activation or enhancement of var-
ious degradation modes and mechanism [19,21]. The resulting physical
effects are typically quantified by energy storage systems engineers
using two metrics: capacity fade that affects the amount of capacity a
battery can hold and power fade, which is the increase in the internal
resistance or impedance of the cell and limits the power capability of
the system and decreases the efficiency of the battery. To quantify ca-
pacity fade, a retained capacity measurement at a temperature of 25 °C
for a constant discharge current of 1 C is undertaken. To estimate re-
sistance rise, power pulse tests were employed, where the voltage re-
sponse of each cell is measured for a 10 s current pulse at 20%, 40%,
60%, 80% and 100% of the manufacturers recommended maximum
continuous charge and discharge current. Pulses are applied to each cell
when preconditioned to a SOC of 90%, 50% and 20% respectively, with
all tests conducted at an ambient temperature of 25 °C.

3.4. Ageing degradation results

Capacity loss (from an initial 3 A h at 25 °C and resistance rise (from
an initial 36 mΩ at 25 °C and 50% SoC) for storage and cycling tests are
presented in Fig. 4 for 550 days of storage and 3800 A h of cycling.
Results show that storing at progressively higher temperatures cause
higher capacity fade and resistance rise. Resistance rise was highest for
high SoC storage, although storing at 50% SoC was found to be better
than at 20%. Despite higher discharge rates and =DoD SoC( Δ ) globally
exhibiting more degradation, the almost flat surfaces for cycle ageing
capacity loss and resistance rise suggests that capacity loss and re-
sistance rise are indifferent to (or lacks strong correlation with) the
discharge current rate and DoD. For a more detailed discussion on de-
gradation mechanism, readers are directed to Ref. [19].

3.5. Battery ageing model

An equivalent circuit model (ECM), shown in Fig. 5, of the form
used in Ref. [20] is adopted for this work. Such models are well es-
tablished in the field of battery modelling [43–45]. The Open Circuit
Voltage (VOC) represents the equilibrium potential of the system, i.e.,
the potential difference between the negative and positive electrodes
when no current is applied and the system is at rest. The pure Ohmic
resistance R0 represents the electronic resistances of the battery and
corresponds to the instantaneous voltage drop when a battery is con-
nected to a load. The parallel resistor-capacitor (RC) network connected
in series with R0 represents the charge transfer process which is at-
tributed to the charge transfer reaction at the electrode/electrolyte

Fig. 3. Showing half-hourly electricity data for the battery which is operating to displace the building’s electricity demand of a typical April day. Positive values (green) indicates battery
is charging from the PV supply while negative values (red) show the battery discharging to support the buildings electricity demand. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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interface with an associated resistance RCT and the double layer capa-
citance CDL. The resistance elements, as well as the cell capacity Q( ) are
dependent on the varying time history of T t( ), SoC t( ), DoD t I t( ) and ( ).
The parameters of the ECM, namely the cell capacity and the sum of
Ohmic resistance and charge-transfer resistance +R RCT0 are therefore
updated using results presented in Fig. 4 as the cell ages. To predict the
evolution of the temperature under load, a bulk thermal model is em-
ployed:

+ − = −mc d
dt

T t hA T t T I V V( ) ( ( ) ) ( )p amb OC (1)

where Tamb is the ambient temperature, m is the cell mass, cp is the heat
capacity of the cell, A is the surface area of the cell, h is the heat
transfer coefficient of the cell to the environment and −I V V( )OC re-
presents irreversible joule heating caused by Li-ion transport under
cycling, where V is the terminal voltage. The performance of the ECM
for a highly transient load in cold climates ( =T 0amb ) is illustrated in

Fig. 6, which shows very good agreement between predicted and si-
mulated voltage. Under high current loads and low ambient tempera-
tures, the lithium ion battery displays nonlinear characteristics. The
maximum transient difference between the simulated and measured
voltage and temperature presented in Fig. 6 is 6% and 11% respec-
tively, which is considered to be low and therefore appropriate for use
within this study [42–44]. In-fact, the difference between simulated and
measured temperature rise is below the accuracy of the T-type ther-
mocouples used to make temperature measurements.

The battery ageing model is validated with highly dynamic annual
charge/discharge usage cycles, akin to an automotive battery connected
to the electricity grid. Such a highly dynamic usage cycle was chosen
for validation because under these circumstances, the battery is highly
stressed and therefore the model is exercised at its operational
boundary. The ambient conditions chosen for the validation cycles
correspond to London (18 °C), Durham (10 °C) and the mountain peaks
in Cairngorm National Park in the Eastern Highlands of Scotland (1.

°1 C). The ambient temperatures therefore capture the breadth of cli-
mates within the UK. The 30-min resolution temperature profiles were
controlled within the laboratory using commercially available LAUDA
heating and cooling units. The load profiles for each validation cycle is
unique and corresponds to a weekly capacity throughput of 12.8 A h,
7.3 A h and 5.2 A h for London, Durham and Cairngorm, respectively.

The validation results are summarised in Table 2. The estimated
degradation corresponding to Durham exhibited least deviation from
the measured degradation, while for Cairngorm it was the highest. This
result is attributed to the ambient temperature for Durham that corre-
sponds directly with a temperature point used for parametrisation while

Fig. 4. Showing decrease in capacity (A h) and increase in cell resistance (mΩ) for storage (top panel) and cycling (bottom panel) ageing tests. Interpolation between data points is
achieved using fractional polynomials of the form = ± αY Y Xβ0 where Y is either capacity or resistance, Y0 is the corresponding initial value, X is either cell age or capacity-throughout,
and α and β are fitting parameters.

Fig. 5. Equivalent Circuit Model for a lithium Ion battery.
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the ambient temperature for Cairngorm is considerably different from
temperatures considered for parametrisation (c.f., Section 3.2). In ad-
dition to these three ambient conditions, validation cycles were also
carried out at temperatures of °27 C, °32 C, and °37 C, with weekly

capacity throughputs of 12.8 A h, 10.3 A h and 10.6 A h, respectively.
The corresponding error in CF and PF were −3.82% and 5.85%; 7.26%
and 7.79% and, −2.62% and −3.36%, respectively. The maximum
error for capacity and power fade is below 7.8%, which is lower than

Fig. 6. Showing simulated (orange) and measured
(blue) voltage (top panel) and temperature
(bottom panel) for a dynamic current cycle. The
ECM simulation ran for 2.5 h. (For interpretation
of the references to colour in this figure legend, the
reader is referred to the web version of this ar-
ticle.)

Table 2
Capacity fade and resistance rise validation results for the ageing model after 1 year of cycling. Note, the errors are calculated using discrepancies in absolute capacity and resistance
values and not change in capacity and resistance values. Also, the cycling capacity throughput for each validation cycle is different because the weekly throughput is different.

Initial 69 A h 128 A h 252 A h 376 A h

London
South East England
Mean annual temp. 18 °C
Weekly throughput 10.7 A h

Capacity loss measured (A h) 0 0.201 0.243 0.279 0.310
Capacity loss estimated (A h) 0 0.213 0.265 0.338 0.386
Error in total capacity estimate (%) 0 −0.40 −0.73 −1.97 −2.53
Resistance rise estimated (mΩ) 0 6.79 7.83 10.07 12.09
Resistance rise measured (mΩ) 0 7.79 10.43 12.42 14.73
Error in total resistance estimate (%) 0 −2.78 −7.22 −6.53 −7.33

Initial 46 A h 89 A h 172 A h 254 A h

Durham
North East England
Mean annual temp. 10 °C
Weekly throughput 7.3 A h

Capacity loss measured (A h) 0 0.228 0.261 0.294 0.324
Capacity loss estimated (A h) 0 0.180 0.220 0.273 0.316
Error in total capacity estimate (%) 0 1.60 1.37 0.70 0.27
Resistance rise estimated (mΩ) 0 5.33 6.68 9.13 11.13
Resistance rise measured (mΩ) 0 4.33 6.35 8.73 10.27
Error in total resistance estimate (%) 0 1.43 0.43 −0.77 −1.43

Initial 35 A h 91 A h 148 A h 177 A h

Cairngorm (mt. peaks)
Eastern Highlands, Scotland
Mean annual temp. 1.1 °C
Weekly throughput 5.2 A h

Capacity loss measured (Ah) 0 0.412 0.467 0.499 0.504
Capacity loss estimated (Ah) 0 0.188 0.247 0.285 0.302
Error in total capacity estimate (%) 0 7.47 7.33 7.13 6.73
Resistance rise estimated (mΩ) 0 13.73 17.66 21.12 21.66
Resistance rise measured (mΩ) 0 15.17 19.46 21.78 22.99
Error in total resistance estimate (%) 0 1.43 0.43 −0.77 −1.43
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the established and well reputed model reported within [40].

4. Cost benefit analysis of electrical storage

4.1. Calculating cost savings due to battery storage

Energy cost savings as a result of the battery storage operation are
calculated based on the total energy imported with and without the
battery and the export Feed-In Tariff paid to the homeowner for PV
export. In the UK, a Feed-In Tariff is a rate of money paid by the gov-
ernment to homeowners, business and organisations to generate their
own electricity through small-scale sustainable energy installations
such as solar panels. Under the scheme, homeowners can receive up to
£1000 a year. One can receive feed-in tariffs for both the generation of
electricity (a generation tariff) and for giving unused generated elec-
tricity back to the National Grid (an export tariff). The level of payment
depends upon the technology employed and whether it is being fitted to
an existing home, or installed as part of a new build. The reduction in
imported electricity ( EΔ [kWh ]) due to integrating battery storage
with the PV system is given by:

= −− +E E EΔ batt batt (2)

where −E batt is the electricity exported without battery storage and
+E batt is the electricity exported with battery storage. The income paid

for energy export without battery storage ( −G [£]batt
ex ) is a product of

−E batt and the export tariff Cex [£/kWh]:

= ×− −G E C(£)batt
ex

batt
ex (3)

while the export income with battery storage ( +G [£]batt
ex ) is given by:

= ×+ +G E C(£)batt
ex

batt
ex (4)

The cost savings as a result of battery storage S (£) is therefore:

= × − − = −− +S E C G G E C CΔ ( ) Δ ( )im
batt

ex
batt

ex im ex (5)

where C [£/kWh]im is the electricity import price.

4.2. Cost benefit analysis

Using the annual usage data presented in Section 2 and the battery
degradation model presented in Section 3, the capacity fade (CF) and
power fade (PF) was estimated (see Fig. 7), where CF and PF are de-
fined as:

= −
−

−
CF

Q μ Q
Q μ Q

1 CF rated
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where Qrated is the rated capacity of the battery, μCF is the factor of the
cells rated capacity at which point the battery is considered not fit for
purpose (taken to be zero for this work) and μPF is the factor of the cells
total resistance at which point the battery is considered not fit for
purpose (taken to be 2 in this work, although this is arbitrary in the case
of SHS applications).

The estimated battery degradation (Fig. 7) shows that the battery
resistance almost doubled (100% PF) over five years while in the same
time 20% of the initial battery capacity was lost. Although for the au-
tomotive industry the end of life of a lithium-ion battery is defined as
20% CF and a doubling of PF, for SHS applications there is no
equivalent standard. According to the manufacturer of the commercial
SHS installed in the home considered in this study, the battery end of
life is defined by a CF of 30%. Given that the logged usage of the battery
system installed in the property (Section 2.2) showed a daily

=SoCΔ 80%, arguably, a more appropriate definition for end of life is a
CF of 20% since a capacity fade of more than 20% would noticeably
impact daily usage.

Estimated annual revenue from installing a PV-battery unit into a
typical UK home is summarised in Table 3. The estimates assume that
the annual electricity generation and usage remains the same over five
years. The savings from utility bills amounted to £193 annually, given a
fixed rate with a unit electricity cost of £0.1374/kWh. The generation
and export income was £533 annually based on a generation tariff of
£0.1339/kWh and an export tariff of £0.0485/kWh. This remained
constant over five years, because the manufacturers of the installed PV-
battery system limited SoC to 20%. Since SoC is estimated by the
control system via coulomb counting (rather than matching open circuit
voltage with SoC), as long as CF is below 20%, there is no noticeable
operational effect because the CF acts to erode the 20% ‘buffer.’ Beyond
a CF of 20%, there is a tangible loss in electricity generation and export
revenue due to CF. Furthermore, with the addition of the battery op-
eration, the export income is reduced as more energy is used within the
home. Without battery storage, the sum of utility savings and electricity
export profits is £727, meaning the battery costs the home owner £1/
annum. When the cost of battery degradation is included, the annual
loss to the home owner is significant as per Table 3 and the economic
viability of SHS with electricity storage using lithium ion batteries is
totally diminished.

The cost of battery degradation is taken to be governed by capacity
fade, this is because there is no industry standard for defining a PF
threshold that renders the battery not fit for purpose. Given that the

Fig. 7. Showing capacity fade (blue-diamonds) and power fade (red-stars)
for 5 years of cycling under the measured residential load profile shown in
Fig. 3. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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current replacement cost (Rb) of a 2 kWh battery is circa: £1000 (ac-
cording to the manufacturer) and the battery is defined, by the manu-
facturer, to be not fit for purpose when CF is 30%, the cost of degradation
(Gdeg) is defined as ×R CF/0.3b . Although the trend of Gdeg is mono-
tonically falling, in line with CF trends, lithium-ion batteries can exhibit
rapid CF in the latter portion of its operational life as was shown in an
accelerated life study by Waldmann et al. [47]. The present study chose
not to go past 20% CF, because this is beyond the range of model
parametrisation. However, the likelihood of recovering the cost of in-
stalling an electricity storage system is, in the opinion of the authors,
extremely unlikely given the expected trajectory of CF under

=SoCΔ 80% cycling conditions.
The evolution of annual CO2 savings, even though the generation is

assumed to be constant (3.33 MWh) over five years, reflects changes in
electricity generation in the UK. For every kWh of electricity generated
from on-site renewables in the UK in 2016, according to the Department
of Energy and Climate Change (DECC), there is an equivalent saving of
0.412 kg of CO2 [48]. This conversion factor fell by 11% from 2015
which is attributed to a significant decrease in coal generation, and an
increase in gas and renewables generation in 2014. According to the
DECC’s projections, the equivalent CO2 savings for years: 2017, 2018,
2019 and 2020 is 0.354, 0.299, 0.296 and 0.244 kgCO2 per kWh of
renewable electricity generated [49].

The annual CO2 savings presented in Table 3 are related to installing
a PV system. Assuming the energy mix of the electricity grid remains
constant throughout the day, the integration of a lithium ion battery
into a PV system only acts to reduce this CO2 saving given that the
efficiency of the battery system is less than 100%. In addition, if the
environmental impact of the entire life cycle of the battery is con-
sidered, the CO2 saving are further reduced. A study into the economic
and environmental impact of using lead-acid batteries in domestic PV
systems by McKenna et. al. [50] found the overall environmental im-
pact of lead-acid batteries to be negative. A detailed life cycle assess-
ment for lithium ion batteries found that the major contributor to the
environmental burden is the supply of copper and aluminium required
for the production of the current collectors for the anode and the
cathode [51]. Since the integration of a lithium ion battery into a PV
system only acts to reduce the CO2 savings, the environmental benefit
of battery storage systems is, in the authors view, presently unclear.

4.3. Sensitivity analysis of cost benefit analysis

The pricing tariffs used within the cost benefit analysis are specific
to the property evaluated within the paper and as such, it is useful to
understand how a change in pricing structure could affect the overall
payback of the results. In addition, the size of the battery has an impact
upon the payback period for the battery and therefore four key ele-
ments have a major impact upon the cost benefit of the system; battery
price, FiT export tariff, electricity price and battery size.

The impact of the export income and electricity price are shown in
Table 4, which indicates a very small change in the overall savings
offered by the battery when degradation is not considered. The price of

the battery has a linear relationship with the overall payback since
≡ ×G R CF/0.3deg b , such that a 20% decrease in battery cost decreases

the estimated cost of battery degradation by 20%.
Increasing the battery size by 20% to 2.4 kWh causes capacity fade

to fall by 9.5% over 5-years (the year-on-year CF shown in Table 5).
Following the manufacturers guide for battery cost, £500/kWh, the
impact of a lower CF is reversed by an increased battery replacement
cost R( )b such that over 5-years the cost associated with battery de-
gradation increases by a total of £59 (c.f., Tables 3 and 5). This de-
monstrates that the optimisation of battery size versus battery cost –
considering battery degradation – requires more investigation.

5. Discussion

An assessment of the potential role of energy storage needs a robust
analysis of costs verses benefits. The results presented show that battery
degradation is a key factor and we present a validated model that can
be used to calculate how these costs change over the lifetime of the
battery. In this section, we further discuss the results and possible im-
plications which will be explored in more detail in future research.

Our results show that for the commercially available battery system
operated within a domestic property, the degradation costs are sig-
nificant, reducing the gains from the PV generation by over a half in the
first year. This large drop in storage capacity after the first year reduces
the potential for the owner to make savings or earn revenue in sub-
sequent years when it is likely that the value of storage will increase.
The degradation is such that the battery would need to be replaced
every five years in order to maintain the operational profile.

Even without including the cost of battery degradation, we find no
economic benefit from integrating electrical energy storage with solar

Table 3
Summarising the cost benefits of SHS in a typical UK home. The Year 1 CO2 savings estimate assumes the 2016 conversion factor; Year 2 assumes the 2017 DECC projection and so on
[46].

Year Electricity
generation and
export revenue
without battery

Electricity
generation and
export revenue
with battery

Savings on
electricity
without battery

Savings on
electricity with
battery

Estimated battery
degradation cost
Gdeg

Effective
profit without
battery

Effective
profit with
battery

Net benefit of
electricity
storage

Avoided CO2

emissions from
clean generation
(kgCO2-e)

1 £542 £533 £185 £193 £399 £727 £327 −£400 1372
2 £542 £533 £185 £193 £107 £727 £619 −£108 1179
3 £542 £533 £185 £193 £77 £727 £649 −£78 996
4 £542 £533 £185 £193 £61 £727 £665 −£62 986
5 £542 £533 £185 £193 £44 £727 £682 −£45 813

Table 4
Demonstrates the impact of changing export income and electricity price on the battery
savings before the battery degradation costs are added.

Change in price Savings

+20% 0% −20%

Export income £2.87 £1.00 −£0.87
Electricity price −£0.67 £1.00 £2.67

Table 5
Impact of increasing battery size by 20% on Capacity Fade and therefore the cost of
degradation.

Year Fall in CF (change in
CF) due to increase in
battery size

Estimated battery
degradation cost Gdeg

Battery degradation cost
saving due to increase in
battery size

1 0.84% (−7%) £445 −£46
2 1.11% (−7.3%) £118 −£11
3 1.54% (−8.8%) £75 £2
4 1.72% (−8.9%) £66 −£5
5 1.96% (−9.5%) £43 £1
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PV. Technologically, the benefit of installing static battery storage has
not been fully utilised within the commercial system installed due to: (i)
the operation of the battery being relatively limited, i.e., the battery
system cannot operate and respond to the building demand in real-time.
Instead, a plan is set based on the previous days operation, meaning
operation is not based on current demand of the building; (ii) the in-
verter rate in the battery unit is fixed at 400 W, meaning, when the
building demand is less than 400 W and the battery is set to its dis-
charge cycle, a portion of the energy is lost to the grid. As this is not
paid by a Feed-In Tariff, this is lost income to the homeowner. Still,
analysis of the data shows a relatively regular domestic electricity de-
mand profile and trivial losses in revenue due to a fixed inverter rate.

Consumers should be aware of these ‘hidden’ costs, as it will have a
material impact on how their batteries are most effectively used. Our
results imply that providing ancillary services to the grid, with a lower
depth of discharge, could lead to less battery degradation and extend
the useful life of the device. To balance the full costs of battery own-
ership and operation will need more sophisticated control systems and a
means of accumulating the split benefits of energy storage [53] that
would accrue to the grid, distribution network and suppliers.

In many markets, small-scale generation from solar PV has in-
creased rapidly, driven by cost reductions and subsidies [14,16]. Yet
there has been little thought given to capturing the potential system
benefits of such distributed generation. Rather, there is a risk that in-
creased distributed generation introduces problems for electricity net-
works, with reverse flows out of the control of suppliers, or system
operators. Because the peak times of solar generation and system de-
mand tend not to coincide, there is a potential role for distributed
electrical storage alongside PV to help manage the grid. Teng and
Stbrac [52] have shown the value of storage (i) to reduce the peak load
met by marginal thermal plant quite significantly; (ii) to increase the
utilisation of existing distribution networks, avoiding costly upgrades
that may be induced in order to meet peak supply or demand; and (iii)
providing ancillary services.

In the case presented in this work, which would be typical of a
consumer’s behaviour when electricity prices and feed-in tariffs are
non-time varying; the storage owner benefits from reduced import
during the day when the PV panels are generating. This is only when
the home system charges the battery rather than exports and the elec-
tricity is stored until the evening to meet domestic demand.

More appreciably, the lack of economic benefit from integrating
electrical energy storage with solar PV is due to the potential value of
battery storage not being recognised under the current market frame-
work. Price signals that reflect network constraints and the system
scarcity would incentivise export at peak times, reducing costs from
both network infrastructure and central electricity generation fuel.
With increasing capacity from variable renewables, greater variability
in prices would also be expected if the market allowed, and so open the
opportunities for storage. However, even if this value could be cap-
tured, it would need to outweigh the system costs, and it is often the
capital costs that are most significant.

6. Conclusion

The techno-economic viability of integrated PV-battery storage
systems has been studied. In this work, we first developed a compre-
hensive battery degradation model which enhances previous work. For
this, we carried out over 50 long-term ageing experiments on com-
mercially available LiNiCoAlO2/C6 18650-type cells. The data ac-
counted for all established modes of degradation including calendar
ageing (> 500 days), capacity throughput (> 4000 A h), temperature

° ⩽ ⩽ °T(10 C 45 C), state of charge ⩽ ⩽SoC(5% 95%), depth of dis-
charge ⩽DoD( 80%) and current ( ⩽I Imax) for battery charge and dis-
charge. This model was then validated with six operationally diverse
annual usage cycles. The maximum transient error between the mod-
elled and experientially measured capacity fade and power fade, over a

simulation time of 1 year, was less than 8%, significantly better than
existing battery ageing models employed within the literature and often
used within comparable studies.

To characterise electricity usage in a typical UK household, a
commercially available PV and battery storage system was installed in a
3-bedroom property in Leicestershire. PV generation and household
demand data was collected for more than a year. Based on this data and
the battery degradation model, a cost benefit analysis for SHS was
undertaken. The results show that even without including the cost of
battery degradation, there is no economic benefit from integrating
electrical energy storage with solar PV. When the cost of battery de-
gradation is considered within the analysis, the annual loss to the home
owner is significant.

This significant degradation is most likely to be caused by high
frequency cycling with an SoC swing of 80%. This is reflective of the
relatively small battery, 2 kWh, which is cycled at its operational limit.
Thus, the use of a battery with a larger energy capacity rating, may
significantly reduce the economic impact of battery degradation by
lowering SoCΔ . However, this possible benefit must be balanced with
the increased capital cost and negative impact within the home of using
a more expensive and physically larger battery installation.

In addition to battery degradation, the battery system control
strategy (intelligent control), the capacity of the battery storage system
and the current market framework were identified as additional factors
effecting the viability of SHS in the UK. As for the former, an adequate
control strategy which operates in real-time could be developed to
manage an optimum flow of energy. As such, these areas compel further
research; analysis of the sensitivity of the CBA results to such para-
meters are also warranted. This forms a part of the authors’ ongoing
future work.
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