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Summary

Structurally intact tropical forests sequestered ~50% of global terrestrial carbon uptake over
the 1990s and early 2000s, removing ~15% of anthropogenic CO emissions' 3. Climate-driven
vegetation models typically predict that this tropical forest ‘carbon sink’ will continue for
decades*®. Here, we assess trends in the carbon sink using 244 structurally intact African
tropical forests spanning 11 countries, we compare them with 321 published plots from
Amazonia and investigate the underlying drivers of the trends. The carbon sink in live
aboveground biomassin intact African tropical forests has been stable for the three decades to
2015, at 0.66 Mg C ha?l yr! (95% CI:0.53-0.79), in contrast to the long-term decline in
Amazonian forests’. Thus, the carbon sink responses of Earth’s two largest expanses of
tropical forest have diverged. The difference is largely driven by carbon losses from tree
mortality, with no detectable multi-decadal trend in Africa and a long-term increase in
Amazonia. Both continents show increasing tree growth, consistent with the expected net effect
of rising atmospheric CO, and air temperature’™®. Despite the past stability of the African
carbon sink, our data suggest a post-2010 increase in carbon losses, delayed compared to
Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical
model including CO», temperature, drought and forest dynamics accounts for the observed
trends and indicates a long-term future decline in the African sink, while the Amazonian sink
continues to rapidly weaken. Overall, the uptake of carbon into Earth’s intact tropical forests
peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size,
observationsindicating greater recent carbon uptake into the Northern hemisphere landmass*®
reinforce our conclusion that the intact tropical forest carbon sink has already saturated. This
tropical forest sink saturation and ongoing decline has consequences for policies to stabilise

Earth’s climate.
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Main text

Tropical forests account for approximately ah@d of Earth’s terrestrial Gross Primary Productivity
and onehalf of Earth’s carbon stored in terrestrial vegetatiodh. Thus, small biome-wide changes in
tree growth and mortality can have global impacts, eithdfering or exacerbating the increase in
atmospheric CO,. Model€4°>712 ground-based observatid#i®, airborne atmospheric GO
measurements®, inferences from remotely sensed d4tand synthetic approaciés®each suggest
that, after accounting for land-use change, remainingctsirally intact tropical forests (i.e. not
impacted by direct anthropogenic impacts such as loggimg)nareasing in carbon stocks. This
structurally intact tropical forest carbon sink is estedaat ~12 Pg C yr* over 1990-2007 using
scaled inventory plot measurement¥et, despite its policy relevance, changes in this kelyorar

sink remain highly uncertait?

Globally the terrestrial carbon sink is increadih?fl. Between 1990 and 2017 the land surface
sequestered ~30% of all anthropogenic carbon dioxide emis3loRising CQ concentrations are
thought to have boosted photosynthesis more than rising aietatares have enhanced respiration,
resulting in an increasing global terrestrial carboiksi”8?L, Yet, for Amazonia, recent results from
repeated censuses of intact forest inventory plots shqwogressive two-decade decline in sink
strength primarily due to an increase of carbon losses free mortalit§. It is unclear if this simply
reflects region-specific drought impa@$> or potentially chronic pan-tropical impacts of either
heat-related tree mortalf§?° or internal forest dynamics resulting from past inaesaim carbon
gains leaving the systéfn A more recent deceleration of the rate of incréasearbon gains from
tree growth is also contributing to the declining Amazon SiAain, it is not known if this is a
result of either pan-tropical GCertilisation saturation, or rising air temperatures,jsomerely a

regional drought impact. To address these uncertainties) wealyze an unprecedented long-term
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inventory dataset from Africa, (ii) pool the new Africandaexisting Amazonian records to
investigate the putative environmental drivers of changéiseirtropical forest carbon sink, and (iii)

project its likely future evolution.

We collected, compiled and analysed data from structuraifctinold-growth forests from the
African Tropical Rainforest Observation Netwérk217 plots) and other sources (27 plots) spanning
the period 1968 to 2015 (Extended Data Figure 1; Supplementary Tabteeagh plot (mean size,
1.1 ha), all trees >100 mm in stem diameter were identified, mapped and measured at least twice
using standardised methods (135,625 trees monitored). Live $8ocaabon stocks were estimated
for each census date, with carbon gains and lossesataltiibr each interval (Extended Data Figure

2).

Continental Carbon Sink Trends

We detect no long-term trend in the per unit area Africapical forest carbon sink over three
decades to 2015 (Figure 1). The aboveground live biomass sinkjedéd&6 Mg C hayr?! (95%
Cl: 0.53-0.79; n=244and was significantly greater than zero for every yesresl1990 (Figure 1).
While very similar to past reports (0.63 Mg Cha™)!3, this first estimate of the temporal trend in
Africa contrasts with the declining Amazonian trégBigure 1). A linear mixed effect model shows
a significant difference in the slopes of the sink teefat the two continents over the common time
window (pooled data from both continents, common time wind®83-2011.5; p=0.017). Thus, the
per unit area sink strength of the two largest expanse®pital forest on Earth diverged in the

1990s and 2000s

The proximal cause of the divergent sink patterns igrafisant increase in carbon losses (from tree

mortality, i.e. the loss of carbon from the live bessa pool) in Amazonian forests, with no
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detectable trend over three decades in African foregiar@i). A linear mixed effects model using
pooled data shows a significant difference in slopes of oddsses between the two continents over
the common 1983-2011.5 time window (p=0.027). Long-term trendsrboregains (from tree
growth and newly recruited trees) on both continents s$igmificant increases (Figure 1), and we
could detect no difference in slopes between the contilprf348; carbon gains from tree growth
alone also show no continental difference in longateends, p=0.322). However, an assessment of
how underlying environmental drivers affect carbon gains andddsseeeded to understand the

ultimate causes of the divergent sink patterns.

Under standing the Carbon Sink Trends

We first investigate environmental drivers exhibiting longrtechange that impact theory-driven
models of photosynthesis and respiration: atmospherigc d@@centration, surface air temperature,
and water availability. A linear mixed effects model of carlgains, with censuses nested within
plots, and pooling the new African and published Amazonian d&hi@ys a significant positive
relationship with C@, and significant negative relationships with mean anteraperature (MAT)
and drought (measured as the Maximum Climatological WatdiciDeMCWD*, Figure 2;
Extended Data Table 1). These results are consistentawibsitive CQ fertilisation effect, and
negative effects of higher temperatures and drought ongtmeth, consistent with temperature-
dependent increases in autotrophic respiration, and temperandedrought-dependent reductions
in carbon assimilation. By contrast, the equivalentiehdor carbon losses (i.e. tree mortality) shows

no significant relationships with GOMAT or MCWD (Figure 2; Extended Data Table 1)

We further investigate the responses of carbon gainsoaedd (for which the above analysis has no
explanatory power) by expanding our potential explanataryakiles to additionally include the

change in environmental conditions (&ange, MAT-change, MCWD-change, see Extended Data
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Figure 3 for calculation details), and two attributes oé$ts that may influence their response to the
same environmental change: plot mean wood density (whictdigrowth forests correlates with
below-ground resource availabiffy?®, and the plot carbon residence time (which measuras ho
long fixed carbon remains in the system, hence dictetes past increases in carbon gains leave the

system as elevated carbon log3es

The minimum adequate carbon gain model using our expanded a&xpiamariables (best ranked
model using multimodel inference) has a positive relationshtp ®0O,-change, and negative
relationships with MAT, MAT-change, MCWD, and wood dengitgble 2; model-average results
are similar, see Methods and Supplementary Tables 2-4)ré&thntion of both MAT and MAT-
change suggests that higher temperatures correspond to tl@eegrowth, and that trees only
partially acclimate to recently rising temperatures, whichhérr reduces growth, consistent with
warming experiment$ and observatiofsThe inclusion of higher wood density, and it being related
to lower carbon gains (Extended Data Figure 4), alongside npotaimtrends in wood density
(Extended Data Figure b¥uggests that old-growth forests with denser-wooded tree commsuni
typically have fewer available lmi-ground resources, or such patterns may also emerge from

disturbance regimes lacking large-scale exogenous egentsstent with prior studié%?8:32

The minimum adequate carbon gain model using our expandedatquiavariables also highlights
continental differences. Between 2000 and 2015 African fordion gains increased by 3.1%
compared with a 0.1% decline in Amazonia over the samevait@ able 2) In Africa, from 2000 to
2015, the increase was composed of &dritrease from C&change, partially offset by increasing
droughts depleting gains by 0.5%, and oalslight decline in gains of 0.1% resulting from
temperature increases (Table 2), because the rate pératre change (MAT-change) decelerated

over this time window (Extended Data Figure 5). For Amazdh@&asame 3% increase due to GO

11



277 change was seen, while increasing droughiigl these forests’ greater sensitivity to drought—
278 reduced gains by 2.7% (five times the impact in Africa), @maperature increases at the same rat
279 as in the past (i.e. MAT-change is zero) further reduceasday 1.1% (ten times the impact in
280 Africa), leaving a net change in gains slightly below zerab{@ 2). Thus, the recent stalling of
281 carbon gain increases in Amazdnia a response to drought and temperature and not due to an
282 unexpected saturation of GQ@ertilisation. Overall, the larger modelled increase imgan Africa
283 relative to Amazonia appear to be driven by slower warnfewer or less extreme droughts, lower
284  forest sensitivity to droughts, and overall lower temperat(i®drican forests are on average ~1.1°C
285 cooler than Amazonian forests, as they typically grow2®0 m higher elevation). Other continental
286 differences may also be influencing the results, inowcigher nitrogen deposition in African
287 tropical forests due to the seasonal burning of nearby savamnasbiogeographic history resulting
288 in differing contemporary species pools and resultingtional attribute¥*>®

289

290 The minimum adequate carbon loss model using our expandeghatqly variables shows higher
291 losses with C@change and MAT-change, and lower losses with MCWD anadhson residence
292 time (CRT; Table 2). Thus, changes in carbon losses afipbarlargely a function of carbon gains.
293  First, the greater losses in forests with shorter CRT conform to a ‘high-gain highioss’ forest
294 dynamics pattefi. Second, wetter plots have a longer growing season aravechiyher gains and
295 correspondingly higher losses, explaining the negatefationship with MCWD. Third, as
296 increasingCO; levels result in additional carbon gains, after soime these additional past gains
297 leave the system resulting in greater carbon lossedaieig the positive relationship with GO
298 change. Finally, in addition to these relationships witban gains, the inclusion of MAT-change
299 (p<0.001) indicates heat- or vapour pressure deficit-inddiessl mortality®. Overall, our results

300 imply that chronic long-term environmental change factiersperature and GQrather than simply

12
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the direct effects of drought, underlie longer-term tremdgapical forest tree mortality, although

other changes such as rising liana infestation ratesrs@anazonid®3’ cannot be excluded.

The minimum adequate carbon loss model using our expandeghatqrly variables replicates the
continental trends (Figure 3). The overall lower logsegan Africa reflect thie longer CRT (69 yrs,
95% CI, 66-72), compared with Amazonian forests (56 yrs, 95%64659) while over the 2000-
2015 window the much smaller increase in loss rates in Adoogpared to Amazonia results fran
slower increase in warming and a staBRT in Africa compared to continued warming at previous
rates and a shortening CRT in Amazonian forests (Extebad¢a Figure 5). Furthermore, given that
losses appear to lag behind gains they should relate to th¢elon CRT of plots. This is what we
find: the longer the CRT the smaller the increase inasahbsses, with no increase in losses for plots
with CRT >77 years (Extended Data Figure 6). Consequently, due to the typically longer residence
times of African forests, increasing losses in Afmeaght to appear 10-15 years after the increase in
Amazon losses began.]995). Strikingly, in Africa the most intensely monitored pkuggest that
losses began increasing from2010 (Extended Data Figure 7), and plots with shorter CRT are
driving the increase (Extended Data Figure 8). Thus, a rtgrtlmiminated African carbon sink

decline appears to have begun very recently.

Future of the Tropical Forest Carbon Sink

Our carbon gain and loss models (Table@&)be used to make a tentative estimate of the future size
of the per unit area intact forest carbon sink (Figur&girapolations of the changes in the predictor
variables from 1983-2015 forward to 2040 (Extended Data Figure 5) shoiwedeirl the sink on
both continents (Figure 3). By 2030 the carbon sink in apousd live biomass in intact African
tropical forest is predicted to decline by 14% from the measR010-15 mean, to 0.57 Mg Cha-

! (26 range, 0.16-0.96; Figure 3). The Amazon sink continues to declinehireg zero in 2035 @

13
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range, 2011-2089; Figure 3). Our estimated sink strength on betiherats in the 2020s and 2030s
is sensitive to future COemissions pathways (G@hange3, resulting temperature increase (MAT,
MAT-change) and hydrological changes (MCWD), plus chamgdsrest dynamics (CRT), but the
sink is always lower than levels seen in the 2000sN&thods and Supplementary Table 5). Thus,
the carbon sink strength tfe world’s two most extensive tropical forests have now saturated, albeit

asynchronously.

Scaling Resultsto the Pan-tropics

Scaling our estimated mean sink strength by forest areadoln continent signifies that Earth
recently passed the point of peak carbon sequestrationintact tropical forests (Table 1). The
continental sink in Amazonia peaked in the 1990s, followed by Endedriven by sink strength
peaking in the 1990s and a continued decline in forest areée(Tha In Africa the per unit area sink
strength peaked later in the 2000-2010 period, but the contientzan sink peaked in the 1990s,
due to the decline in forest area in the 2000s outpacing the gemallnit area increase in sink
strength. Including the modest uptake in the much smaller afeintact Asian tropical forest
indicates that total pan-tropical carbon uptake peaked ihd®@s (Table 1). From peak pan-tropical
intact forest uptake of 1.26 Pg Clyin the 1990s, we project a continued decline reaching just 0.29
Pg C yr! in the 2030s (multi-decade decline of ~0.24 Pg-E€dgcad#), driven by (i) reduced mean
pan-tropical sink strength decline of 0.1 Mg Ctlya! decadé and (ii) ongoing forest area losses of
~13.5 million ha y* (see Extended Data Table 2 for forest area details)cally, climate-driven
vegetation model simulations have not predicted that peakambbn uptake into intact tropical

forests has already been pagded
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Discussion

Our method of scaling to arrive at a pan-tropical sink estéim@t common with other studies using
similar dataset$'3— is limited. Yet, pervasive net carbon uptake is expected dghatnwe find a
strong and ongoing CCertilisation effect. Using our CQresponse in Table 2, we find an increase
in aboveground carbon stocks of 10.8+3.7 Mg & b0 ppm' CO;, or 6.5+2.2% (+SE; using an
area-weighted pan-tropical mean aboveground C stock of 165 Mg}y comparable to the
5.0+1.2% increase in tropical forest C stocks 100 p@®. derived from a recent synthesis of £O
fertilisation experiments, despite a lack of data froature tropical foresgd. Our result is within the
range of climate-driven vegetation modé|salthough it is greater than a number of recently-
published models that include potential nutrient constraiepgrted as 5.9+4.7 Mg C ha 00 ppmt
CO: (Ref?9). We find that the C@fertilisation uptake is currently only partially offset byet
negative impacts of similarly widespread rising air temperat(#2.0+0.4 Mg C ha °C?, from
Table 2), consistent with modélslimited experiment® and independent observati®nglus
negative responses to droujit Long-term and extensive increases in satellite-demvednness

in tropical regions not experiencing major changes in laedraanagemeht*® particularly in
central Africa in the past decddeindicate increases in tropical forest net primargdpictivity,

providing further evidence that the sink is a widespreadgrhenor’.

Nonetheless, our analyses show that this pervasive trdgieat sink in live biomass is in long-term
decline, first saturating in Amazonia, and more recemtlpwWwed by African forests, explaining the
prior Africa-Amazon carbon sink divergence as part obrgér-term pattern of asynchronous
saturation and decline. From an atmospheric perspecev@lihimpacts of the contribution to the
saturation of the sink from slowing carbon gains are expeed immediately, but the contribution
from rising carbon losses is delayed because dead treesotdalecompose instantaneously.

Decomposition of this dead tree mass is ~50% in 4 yrs, and #8%@oyrs, thus rising carbon losses

15



374 result in delayed carbon additions to the atmospherence, from an atmospheric perspective the
375 intact tropical forest biomass carbon sink likely peakeeayfears later than our plot data indicate
376 and the full impacts are not yet realised. The pan-tabgiarbon sink in live biomass reduced by
377 0.27 Pg C yt between the 1990s and 2000s (Table 1), but accounting for dead wood
378 decompositiof? shows a smaller 0.17 Pg Clyreduction from an atmospheric perspective (see
379 Methods).

380

381 Given that the global terrestrial carbon sink is iasieg, a weakening intact tropical forest sink
382 implies that the extra-tropical carbon sink has in@dasver the past two decades. Independent
383 observations of inter-hemispheric atmospheric; €@ncentration indicates that carbon uptake into
384 the Northern hemisphere landmass has increased attargiaa than the global terrestrial carbon
385 sink since the 1990s, with a further disproportionate iseréa the 20008, The inter-hemispheric
386 analysis suggests a weakening of the tropical forest sink by ¢0@ W' between the 1990s and
387 20002° which is similar to the 0.17 Pg C*ymweakening over the same time period that we find.
388 This reinforces our conclusion that the intact tropicedst carbon sink has already saturated.

389

390 In summary, our results indicate that while intacpical forests remain major stores of carbon and
391 are key centres of biodiversity their ability to sequester additional carbon is waninghén1990s
392 intact forests removed 17% of anthropogenic; @@issions. This has declined to 6% in the 2010s,
393 because thpan-tropical weighted average per unit area sink strengtimeldy 33%, forest area
394 decreased by 19%, and e€@missions increased by 46%. Although tropical forests aee m
395 immediately threatened by deforestatfoand degradatidi, and the future carbon balance will also
396 depend on secondary forest dynarffiesmd forest restoration pldfisour analyses show that they are
397 also impacted by atmospheric chemistry and cleneltanges. Given that the intact tropical forest

398 carbon sink is set to end sooner than even the most p&Essiolimate-driven vegetation models
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predict®, our analyses suggest that climate change impacts inotsies may become more severe
than predicted. Furthermore, the carbon balance agtittopical forests will only stabilise once €0

concentrations and the climate stabilises.

Continued on-theround monitoring of the world’s remaining intact tropical forests will be required

to test our prediction that the intact tropical foresboa sink will continue to decline. Such direct
ground-based measurements also provide a constrainttioratésy the size and location of the
terrestrial carbon sink. In addition, our conclusior thee mortality and internal forest dynamics are
important controls on the future of the tropical foreatbon sink, may assist in improving the
vegetation components of future Earth System M&@dalsd contribute to reducing terrestrial carbon
cycle feedback uncertaiify?® Our findings also have policy implications. At the couravel:
given intact tropical forests are a carbon sink, butdike is changing, national greenhouse gas
reporting will require careful forest monitoring. At theemational-level: given tropical forests are
likely to sequester less carbon in the future than Eaigte$ Models predict, an earlier date to reach
net zero anthropogenic greenhouse gas emissions will bieec@o meet any given commitment to

limit the global heating of Earth.
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Figure 1. Long-term carbon dynamics of structurally intact tropical forests in Africa (blue)
and Amazonia (brown). Trends in net aboveground live biomass carbon sahkcarbon gains to
the system from wood productiob)( and carbon losses from the system from tree tigr(a),
measured in 244 African inventory plots (blue lines) andtresting publisheti Amazonian
inventory data (brown lines; 321 plots). Shading correspontiset®5% CI, with less transparent
shading indicating a greater number of plots monitoredah ybar (most transparent: minimum 25
plots monitored). The CI for the Amazonian dataset igtechfor clarity, but can be seen in Figure

3. Slopes and p-values are from linear mixed effects mgskdsMethods)
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686 Figure 2. Potential environmental drivers of carbon gains and losses in structurally intact old-
687 growth African and Amazonian tropical forests. Aboveground carbon gains, from woody
688 producton (a-c), and aboveground carbon losses, from tree mortalif), (presented as time-
689 weighted mean values for each plot, i.e. each censhswaitplot is weighted by its length, against
690 the corresponding values of atmospheric carbon dioxateentration (C@, mean annual air
691 temperature (MAT) and drought (as Maximum Climatological &&eficit, MCWD), for African
692 (blue) and Amazonian (brown) inventory ploEach data point therefore represents an inventory
693 plot, for visual clarity, and the level of transparemepresents the total monitoring length, with
694 empty cirdes corresponding to plots monitored for < 5 years and solid circles for plots monitored for
695 >20 years. Solid lines show significant trends, dashed linessigaificant trends calculated using
696 linear mixed effect models with census intervals (n=1566)edestithin plots (n=565), using an
697 empirically derived weighting based on interval length and alea, on the untransformed pooled
698 Africa and Amazon dataset (see Methods). Slopes and psvaheefrom the same linear mixed
699 effects modelsCarbon loss data and models are presented untransformembrfgparison with
700 carbon gains, but transformation is needed to fit norynatisumptions; linear mixed effects models
701 ontransformed carbon loss dataedmot change the significance of the results, nor dodsdimg

702 all three parameters and transformed data in a moaeEfdended Data Tablg.1
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Figure 3. Modelled past and future carbon dynamics of structurally intact tropical forests in
Africa and Amazonia. Predictions of net aboveground live biomass carbon siol, (carbon gains
(b,e), and carbon losses,{), for African (left panels) and Amazonian (right pangit inventory
networks, based on G&@hange, Mean Annual Temperature, Mean Annual Temperaehange,
drought (as Maximum Climatological Water Deficit), plot wood dgnsnd plot carbon residence
time, using observations in Africa until 2014 and Amazonia @6ti1.5, and extrapolations of prior
trends to 2040. Model predictions are in blue (Africa) andwhr¢gAmazon), with solid lines
spanning the window when >75% of plots were monitored to show model consistency with the
observed trends, and shading showing upper and lower confidaterwals accounting for
uncertainties in the model (both fixed and random effeatg) uncertainties in the predictor
variables. Light grey lines and grey shading are the medr®9a% CI of the observations from the

African and Amazonian plot networks
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716 Main Tables

717

718 Table 1. Carbon sink in intact forestsin Africa, Amazonia and the pan-tropics. 1980-2015 and
719 predictions to 2040. Mean values in bold, future predictions in italics, ungetyain parentheses,

720 95% bootstrapped confidence intervals for 19805, and 2c for the predictions (2010-2040).

Period No. Per unit area aboveground live biomass C sink Total Csnk *
plots (MgChaltyr?) (PgCyr?)
Af. Am. Africa Amazon Pan-tropicst Africa Amazon Pan-tr opicsf

1980-199C 45 73 0.33(0.06-0.63) 0.35(0.06-0.59) 0.35(0.07-0.62) 0.28(0.05-0.53] 0.49 (0.08-0.82) 0.87 (0.16-1.52)
1990-200C 96 172 0.67(0.43-0.89) 0.53(0.42-0.65) 0.57(0.39-0.74) 0.50(0.32-0.66, 0.68 (0.54-0.83) 1.26 (0.88-1.63)
2000-201C 194 291 0.70(0.55-0.84) 0.38(0.26-0.48) 0.50(0.35-0.64) 0.46 (0.37-0.56) 0.45(0.31-0.57) 0.99 (0.70-1.25)

2010-201t 184 172 0.66(0.40-0.91) 0.24 (0.00-0.47) 0.40(0.15-0.65) 0.40(0.24-0.56) 0.27 (0.00-0.52) 0.73(0.25-1.18)

2010-2020; - -  0.63(0.36-0.89) 0.23 (-0.050.50) 0.38(0.11-0.65) 0.37 (0.21-0.53) 0.25 (-0.05-0.54) 0.68 (0.17-1.16)
2020-2030; - -  0.59(0.24-0.93) 0.12(-0.29-0.51)0.30 (-0.08-0.67 0.31(0.13-0.49) 0.12 (-0.29-0.52) 0.47 (-0.15-1.07)
2030-2040; - -  0.55(0.08-0.99) 0.00 (-0.54-0.49)0.21 (-0.29-0.67 0.26 (0.04-0.47) 0.00 (-0.50-0.46) 0.29 (-0.46-0.97)

721 * Total Continental C sink is the per unit area abovegrousthiCmultiplied by intact forest area for
722 1990-2010 (from ref, see Extended Data Table 2) and continent specific eXitaps to 2040.
723 Total Continental C sink includes continent-specific esten of trees <100 mm DBH, lianas and
724  roots (see Methods).

725 1 Pan-tropical aboveground live biomass C sink is the area-waightean of African, Amazonian
726 and Southeast Asian sink values. Southeast Asian valuesfiwen published per unit area carbon
727  sink datd® (n=49 plots) for 1990-2015, with 1980-1990 assumed to be the saf®9a-2000 due
728 very low sample sizes. Pan-tropical total C sink isghen of African, Amazonian and Southeast
729 Asian total continental carbon sink values. The continesitk in Southeast Asigs a modest and
730 declining contribution to the pan-tropical sink, due to they wenall area of intact forest remainjng
731 at0.11, 0.08, 0.07 and 0.06 Pg C ym the 1980s, 1990s, 2000s and 2010s, hence uncertainty in the
732  Southeast Asian sink cannot reverse the pan-tropichhuohecsink trend.

733 i Pea unit area total C sink for 2010-2020, 2020-2030 and 2030-2040 was predictpparsimeters
734 from Table 2, except for the 2010-2020 sink in Africa whichhés hean of the measured sink from
735 2010-2015 and the modelled sink from 2015-2020. For the Asian sink weeaktherparameters as
736 for Africa, as Asian forest median CRT is 61 yearsselto African median, 63 years.

737
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Table 2. Minimum adequate models to predict carbon gains and losses in African and
Amazonian tropical forests. These are the best ranked gains and loss models. Where continental
values differ, those for Africa are reported first, daled by Amazonian values.

Carbon gains, Mg C ha' yr*

Predictor variable Parameter  Standard t-value p-value 2000-2015 changein gains
value Error %) *
(Intercept) 5.255]5.395 0.603 | 0.618.7 | 8.8 <0.001 -
COx-change (ppm y9) T 0.238 0.096 2.5 0.013 3.69% | 3.71%
MAT (°C) -0.083 0.025 -3.3 0.001 -0.67% | -1.07%
MAT-change (°C y*) § -1.243 0.233 5.3 <0.001 0.58% | 0.0098
MCWD (mm x1000)  -0.405 | -1.390.381 ] 0.24-1.1 | -5.¢0.289 | <0.00 -0.52% | -2.73%
WD (g cm®) -1.295 0.530 -2.4 0.015 0.05% | 0.00%
Carbon losses, Mg C ha'yr™ |
Predictor variable Parameter  Standard t-value p-value 2000-2015 changein losses
value Error %) *
(Intercept) 1.216 0.086 14.1 <0.001 -
COx-change (ppm ¥ ¥ 0.130 0.059 2.2 0.026 11.38% | 14.81%
MAT-change (°C yt) 0.766 0.162 4.7 <0.001 -1.56% | 0.00%
MCWD (mm x10000)f -0.232 0.107 2.2 0.030 -1.21% | -2.42%
CRT (yr) -0.003 0.001 -6.1 <0.001 -0.57% | 1.39%

* The 2000-2015 change in gains/losses for each predictobleawas estimated allowing only the
focal predictor to vary; this change was then expressedpascentage of the annual gains/losses in
the year 2000 allowing all predictors to vary.

+ Change over the past 56 years.

T Change over the past 5 years.

8 A positive value for Africa indicates that MAT incredsmore slowly over 2000-2015 compared
to the mean increase over 1983-2015, therefore contributingihcraase in gains; a zero value fpr
Amazonia indicates that the rate of MAT increase wasstime over 2000-2015 as the mean
increase over 1983-2015.

| Carbon loss values were normalized via power-law transfarma= 0.361.
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Online Methods

Plot Selection

Closed canopy (i.e. not woody savanna) old-growth mixedfagst inventory plots were selected
using commonly used critefi&?* free of fire and industrial logging; all trees with dister at
reference height >100 mm measured at least twice; >0.2 ha area; <1500 m.a.s.l. altitude; MAT
>20.0°C>%; annual precipitation >1000 mm®°%; located >50 m from anthropogenic forest edges. Of the

244 plots included in the study, 217 contribute to the Africaopi€al Rainforest Observatory

Network (AfriTRON; [www.afritron.orgy), with data curated [at wwwrEstPlots.ngt>3 These

include plots from Sierra Leone, Liberia, Ghana, Nigetiameroon, Gabon, Republic of Congo,
Democratic Republic of Congo (DRC), Uganda and Tan2atigExtended Data Figure 1). Fifteen
plots are part of the TEAM network, from Cameroon, Repuifli€ongo, Tanzania, and Ugaftia
57 Nine plots contribute to the ForestGEO network, from Gaoreand DRE® (9 plots from DRC,
codes SNG, contribute to both AfrfiTRON and ForestGEO networiduded above in the
AfriTRON total). Finally, three plots from Central AfricaRepublic are part of the CIRAD
network®®% The large majority of plots are sited in terra firrforests and have mixed species
composition, although four are in seasonally flooded foaesl 14 plots are in Gilbertiodendron
dewevrei monodominant forest, a locally common forege tyn Africa (Supplementary Table 1).
The 244 plots have a mean size of 1.1 ha (median, 1 ha)awdtal plot area of 277.9 ha. The
dataset comprises 391,968 diameter measurements on 135,625 stewisclof89.9% were
identified to species, 97.5% to genus and 97.8% to family. Mean totatamogiperiod is 11.8
years, mean census length 5.7 years, with a total of 3,2¢danga of monitoring. The 321 Amazon
plots are published and were selected using the same éiexdapt in the African selection criteria

we specified a minimum anthropogenic edge distance and addedaum temperature threshold.
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Plot Inventory and Tree Biomass Carbon Estimation

Tree-level aboveground biomass carbon is estimated asirgjlometric equation with parameters
for tree diameter, tree height and wood mass déhsithe calculation of each is discussed in turn.
All calculations were performed using the R statisticatfpten, version 3.2.1 (réf) using the

BiomasaFP R package, version 0.2.1 {fef.

Tree Diameter: In all plotsll woody stems with >100 mm diameter at 1.3 m from the base of the
stem (‘diameter at breast height’, DBH), or 0.5 m above deformities or buttresses, were measured,
mapped and identified using standard forest inventory methdd3he height of the point of
measurement (POM) was marked on the trees and recordedit sbelsame POM is used at the
subsequent forest census. For stems developing deformitibsittbesses over time that could
potentially disturb the initial POM, the POM was raised appnakely 500 mm above the deformity.
Estimates of the diameter growth of trees with chdi@®M used the ratio of new and old POMs, to
create a single trajectory of growth from the seriedimmeters at two POM heights$®°. We used
standardised protocols to assess typographical errors and gitemtioneous diameter values (e.g.
trees shrinking by >5 mm), missing values, failures to firel dhiginal POM, and other issues.
Where necessary we estimated the likely value via inktipn or extrapolation from other
measurements of that tree, or when this was not possiblsedethe median growth rate of trees in
the same plot, census and size-class, defined as DBH-£3B0m, or 200-399 mm, or >400 fin
We interpolated measurements for 1.3% of diameters, ekited 0.9%, and used median growth

rates for 1.5%.

Tree height: Height of individuals from ground to the top leafediter H, was measured in 204
plots, using a laser hypsometer (Nikon forestry Pro) frainectly below the crown (most plots), a

laser or ultrasonic distance device with an electrotticsénsor, a manual clinometer, or by direct
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measurement, i.e. tree climbing. Only trees where the topvigiade were selectéél In most plots,
tree selection was similar: the 10 largest trees were neshsiogether with 10 randomly selected
trees per diameter from five classes: 100-199 mm, 200-299 mm, 30@wB9200-499 mm, and
500+ mm trees, following standard proto&lsVe measured actual height of 24,270 individual trees

from 204 plots. We used these data and the local.heightSdorin R package BiomasafRo fit 3-

parameter Weibull relationshipsi=a x (1-e(t® * (®BH10F)) ) (gquation 1). We chose the Weibull
model as it is known to be robust when a large number ezfsurements are availatté’. We
parameterised separate-BPBH relationship for four different combinations of edaplucest type
and biogeographical region: (i) terra firme forest in Wafgica, (ii) terra firme forest in Lower
Guinea and Western Congo Basin, (iii) terra firme fonedEastern Congo Basin and East Africa,
(iv) seasonally flooded forest from Lower Guinea and Westerng&oBasin (there were no
seasonally flooded forest plots in the other biogeographetabns). The parameters are: (i) terra
firme forest in West Africa, a=56.0; b=0.0401; c=0.744; (iyadirme forest in Lower Guinea and
Western Congo Basin, a=47.6; b=0.0536; c¢=0.755; (ii)) ternaefiforest in Eastern Congo Basin
and East Africa, a=50.8; b=0.0499; c=0.706; and finally (iv) sedgdi@oded forest from Lower
Guinea and Western Congo Basin, a=38.2; b=0.0605; c=0.760. Fook#tese combinations of
forest type and bioregion, the local.heights functiombines all height measurements from all plots
belonging to that forest type/bioregion and fits the Weilmdbel parameters using non-linear least
squares (nls function in R with default settings), veithrting values of a = 25, b = 0.05 and 0.7
chosen as they led to regular model convergence. We fitiesk tmodels either treating each
observation equally or with case weights proportional to each trees’ basal area. These weights give
more importance to large trees during model fitting. Wectetl the best fitting of these models,
determining this as the model that minimised prediction @fretand biomass when calculated with
estimated heights or observed heights. The parametersusedeto estimate :Hrom DBH for all

tree DBH measurements for input into the allometric eqonatlean measured individual total tree
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height is 20.5 m; the height range is 1.5 to 72.5 m. The reahrsquared error (RMSE) between the
full dataset of measured heights and the predicted Iseight.7 m, which is 8.0% of the total range.
Furthermore, RMSE is 5.3 m in terra firme forest in WAsfsica (7.5% of the range; n=9771 trees);
RMSE is 6.4 m in terra firme forest in Lower Guinea andsi&ien Congo Basin (8.7% of the range;
n=10,838 trees); RMSE is 4.8 m in terra firme forest int&asCongo Basin and East Africa (8.8%
of the range; n=3269 trees); and RMSE is 4.1 m in seasdioaltjed forest from Lower Guinea and

Western Congo Basin (12.5% of the range; n=392 trees).

Wood Density Dry wood density (p) measurements were compiled for 730 African species from

published sources and storedwmvw.ForestPlots.ngtmost were sourced from the Global Wood

Density Database on the Dryad digital repositpwyv{v.datadryad.or§®®% Each individual in the

tree inventory database was matched to a species-speedic wood density value. Species in both

the tree inventory and wood density databases were starethridir orthography and synonymy

using the African Plants Databagewiw.ville-ge.ch/cjb/bd/africd/ to maximize matchéd For

incompletely identified individuals or for individuabelonging to species not in the p database, we
used the mean p value for the next higher known taxonomic category (genus or family, as
appropriate). For unidentified individuals, we used the mean wieodity value of all individual

trees in the pld#>2

Allometric equation: For each tree we used a published allometrictiafiato estimate
aboveground biomass. We then converted this to carbamisgsthat aboveground carbon (AGC)
is 45.6% of aboveground biomdss Thus: AGG=0.456x(0.0673x(px(DBH/10)>xH;)%°7%/1000

(equation 2), with DBH in mm, dry wood density, p, in g cm™, and total tree height,(Hn m (ref®%).
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Aboveground Carbon (AGC, in Mg C fain living biomass for each plot at each census date was

estimated as the sum of the AGC of each living stewell by plot area (in hectares).

Carbon Gain and Carbon L oss estimation
Net Carbon Sink (in Mg C hayr?) is estimated as carbon gains minus carbon lossesul@tion

details are explained below.

Carbon Gains (in Mg C Hayr) are the sum of the aboveground live biomass carbotiauklfrom

the growth of surviving stems and the addition of newlyruited stems, divided by the census
length (in years) and plot area (in hectar€®r each stem that survived a census interval, carbon
additions from its growth (Mg C Hayr) were calculated as the difference between its AG@Beat
end census of the interval and its AGC at the beginninguseof the interval. For each stem that
recruited during the censusgterval (i.e. reaching DBH>100 mm), carbon additions were calculated

in the same way, assuming DBH=0 mm at the start of thevaite Carbon Losss(in Mg C hat yr-

1y are estimated as the sum of aboveground biomassncidso all stems that died during a census
interval, divided by the census length (in years) and pld &n hectares). Both carbon gains and
carbon losses are calculated using standard méhindiiding a census interval bias correction,

using the SummaryAGWP function of R-package BiomaS¥#£S

As carbon gains are affected by a census interval biistlve underestimate increasing with census
length, we corrected this bias by accounting for (i) thbaamdditions from trees that grew before
they died within an interval (unobserved growth) and @ tarbon additions from trees that

recruited and then died within the same interval (ueotesi recruitmenf§-’%
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Component (i), the unobserved growth of a stem that diediglaricensus interval, is estimated as
the difference between AGC at death and AGC at theddténe census. These are calculated using
equation 2, from respectively DBk and DBHuw.e The latter is part of the data, the first can be
estimated as: DBidath= DBHstart X G X Ymean Where G is the pl-level median diameter growth rate
(mm yr?) of the size class the tree was in at the start oéénsus interval (size classes are defined
as D <200 mm, 400 mm > D > 200 mm and D > 400 mm) and Y meaniS the mean number of years
trees survived in the census interval before dyingsa¥s calculated from the number of trees that
are expected to have died in each year of the censusaintethich is derived from the plot-level

per-capita mortality rate ({n% dead trees ¥ calculated following equation 5 in réf.

Component (i), growth of recruits that were not obsgrbecause they died during the census
interval, is estimated by calculating the number of seoled recruits and diameter at death for each
unobserved recruit. The number of unobserved reqstigsns ha yr?) is estimated as: N = Ra —
PsurvX Ra, Where R(recruited stems hayr™) is the per area annual recruitment calculated fafigw
equation 11 in ref* and Ry is the probability of each recruit surviving until the negnsus: R =
(1-my)T, where T is the number of years remaining in theuirgerval. Summing I\ for each year

in a census interval gives the total number of unobservediteein that census interval. We then
estimate diameter at death for each unobserved reshidh is given in mm by DBktath,u.= 100 +
(Gs X Ymean-e}, Where Gis the plot-level median diameter growth rate (mn) yf the smallest size
class (i.e. D < 200 mm) andm¥anredS the mean life-span of unobserved recruits calculasethe
mean life-span of recruits in a given year, weightetNby The mean life-span of recruits in a given
year is calculated from the number of recruits thatl din that year, which is derived from the plot-
level per-capita mortality rate ¢ dead trees y). Growth of each unobserved recruit (mr)yis

then calculate@ds DBHgeath,u.rdivided by Ynean-ree
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The census interval bias correction (components i atabether) typically add <3% to plot-level
carbon gains. Carbon Losses are affected by the samasceterval bias, hence we corrected this
bias by accounting for (i) the additional carbon lodses the trees that were recruited and then
died within the same interval, and (ii) the additioralbon losses resulting from the growth of the
trees that died in the interfaP® These two components are calculated in the same svégra

Carbon gains and typically add <3% to plot-level carbon fosse

Carbon gains include both gains from the growth of surviving stemad new recruits. Separating
carbon gains from tree growth of surviving stems and nesdsuited stems, shows that carbon gains
from recruitment are small overall, and are significaftilyer in Africa than in the Amazon, likely
due to the lower stem turnover rates and longer carbatteres time (Africa: 0.17 Mg C Hayr™;

Cl: 0.16-0.18 versus Amazon: 0.27 Mg Cthal; CI: 0.25-0.28, p<0.001; two-way Wilcoxon test),
but this is compensated by carbon gains from survivors bgndicantly larger in Africa (2.33 Mg

C hat yrt; Cl: 2.27-2.39) than in the Amazon (2.13 Mg Ctha?; CI: 2.09-2.17, p=0.014).
Therefore, gains overall (sum of gains from surviving stemd newly recruited stems) are
indistinguishable between the continents (Africa: 2.57 Mg&yn; Cl: 2.51-2.67 vs Amazon: 2.46

Mg C hatyr?; Cl: 2.41-2.50, p=0.460; two-way Wilcoxon test).

Long-term Gain, Lossand Net Carbon Sink Trend Estimation, 1983-2014

The estimated mean and uncertainty in carbon gains, rcdmbsees and the net carbon sink of the
African plots from 1983-2014 (Figure 1, Extended Data Figure 7 atehfiad Data Figure 8) were
calculated following ref.to allow direct comparison with published Amazonian resultst,Feach
census interval value was interpolated for each 0.1-yoghewithin the census interval. Then, for

each 0.1-yr period between 1983 and 2014, we calculated a weigéaedodnall plots monitored at
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that time, using the square root of plot area as a weggfaaiof. Confidence intervals for each 0.1-

yr period were bootstrapped.

Trends in carbon gains, losses and the net carbon simkioeewere assessed using linear mixed
effects models (Imer function in R, Ime4 pack@peproviding the linear slopes reported in Figure 1.
These models regress the mid-point of each censusahsgainst the value of the response variable
for that census interval. Plot identity was included esndom effect, i.e. assuming that the intercept
can vary randomly among plots. We did not include slope ssndom effect, consistent with
previously published Amazon analy&dsecause models did not converge due to some plots having
too few census intervals. Observations were weighted by g®et and census interval length.
Weightings were derived empirically, by assuming a priori thatre is no significant relation
between the net carbon sink and census interval lengtlobsipé, following ref3. The following
weighting removes all pattern in the residuals: Weightengthine + “\plotsize -1 (equation 3),
where length is the length of the census interval, in years. Sigmifie was assessed by regressing

the residuals of the net carbon sink model against the t8gigh0.702).

Differences in long-term slopes between the two centm for carbon gains, carbon losses and net
carbon sink, reported in the main text, were also asdessing linear mixed effects models, as
described above, but performed on the combined African and Awaazdatasets and limited to
their common time window, 1983 to 2011.5. For these three testeqooled data we included an
additional interaction term between census interval datd continent, where a significant
interaction would indicate that the slopes differ betweontinents. The statistical significance of
continental differences in slope were assessed using-ttatistic (Anova function in R, car
packagé’). Shortening the common time window to the 20 years when dhtinents are best-

sampled, 1991.5 to 2011.5, gave very similar results, includingeegéint continental sink (p=0.04).
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949

950 Continental and Pan-Tropical Carbon Sink Estimates

951 The per unit area total net carbon sink (in Mg C #&l) for each time period in Table (Bach
952 decade between 1980 and 2010; and 2010-2015) is the sum of three cdmp@henfirst
953 component is the per unit area abovegrot#tton sink from living trees and lianas with DBH>100
954 mm For Africa we use the per unit area net carbon sink vgwesented in this paper. For
955 Amazonia, we use data in fefFor Southeast Asia, we use inventory data collected usimitars
956 standardised methods from 49 plots in'feffor each time window, we use all plots for which
957 census dates overlap the period, weighted by the square rplut @frea, as for the solid lines in
958 Figure 1. The second component is the per unit area abovefyoarbon sink from living trees and
959 lianas with DBH<100 mm. This is calculated as 5.19%, 9.40% &&¥&of the first component (i.e.
960 aboveground carbon of large living trees) in Africa, Amazamd Southeast Asia respectivél{t
961 The third component is the per unit area belowground carb&rirsiive biomass, i.e. roots. This is
962 calculated as 25%, 37% and 17% of the aboveground carbonngf freeswith DBH>100 mm in
963 Africa'®, Amazonid and Southeast ASirespectively

964

965 For each time period in Table 1 we calculated the continentdé total carbon sink (Pg CYrby
966 multiplying the per unit area total net carbon sink descréiede by the area of intact forest on each
967 continent at that time interval (in ha) reported indfxied Data Table 2. Decades are calculated from
968 1990.01 to 1999.99. For comparability with previous continental-gsllts, we used continental
969 values of intact forest area for 1990, 2000 and 2010 as published!,n.eefotal forest area minus
970 forest regrowth. We used the 1990-2010 data to fit an expohenatitel for each continent and used
971 this model to estimate intact forest area for 1980 and 2015.

972

973 Finally, in the main text we calculated the proportidranthropogenic C@emissions removed biyarth’s
974 intact tropical forests, as the total pan-tropical carbimk from Table 1 divided by the total anthropogenic
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CO; emissions. Total anthropogenic £€missions are calculated as the sum of emissions from fosis#rid
land-use change and are estimated at 7.6 Pgt @ yhe 1990s, 9.0 Pg C¥in the 2000s, and 11.1 Pg C'yr
in the 2010s (ref, assuming 1.7% growth in fossil fuel emissions in 2018 and 2019nead 2010-2017

land-use change emissions for 2018 and 2019)

Carbon Sink from an Atmospheric Perspective

To estimate the evolution of the carbon sink from @mmoapheric perspective, we assumed that the
contribution to the atmosphere from carbon gains are riexped immediately, while the
contribution to the atmosphere from carbon losses talstinto account the delay in decomposition
of dead trees. We did this by calculating total forest cadbss (Mg C ha yr?) for each year
between 1950-2015, using the mean 1983-2015 records from Figure 1 amihgssonstant losses
prior to 1983 (1.9 and 1.5 Mg C har* for Africa and Amazonia respectively). Then, for eaatafo
year between 1950-2015, we calculated how much carbon waseklemathe atmosphere in the
subsequent years as=yxo x €21t xy x @217t where x is the total forest carbon loss of the
focal year; yis the carbon released to the atmosphere at t yeardtfacal year; and -0.17¥is

a constant decomposition rate calculated for tropicastsrin the Amazda For example, carbon
loss was 1.95 Mg C Hain 1990 in African forests (Figure 1), from which 0.31 Mg C! heas
released to the atmosphere in 1991; 0.26 Mg €ind 992; 0.22 Mg C hain 1993; 0.07 Mg C ha

in 2000 and 0.01 Mg C Hain 2010. Hence, of the full 1.95 Mg C-hdead tree biomass from 1990,
~50% was released to the atmosphere after 4 yrs, ~85% aftgs,18nd ~97% after 20 years.
Finally, for each year between 1983 and 2015, the total contribtdithe atmosphere from carbon
losses was calculated as the sum of all carbonibatitms released at that year, from all total yearly
forest carbon loss pools of the previous years. We ¢hkmlated decadal-scale mean contributions

to the atmosphere from carbon losses, reported in thetexd.
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Predictor Variable Estimates, 1983-2014

For each census interval of each plot, we examined patenéidictor variables that may explain the
long-term trends in carbon gains and carbon lossesrteebin Extended Data Table 1 and main text
Table 2. First, the environmental conditions during thesegrnterval; second the rate of change of
these parameters; and third forest attributes that megtdfow different forests respond to the same
environmental change. The predictor variable estimatesdoln census need to avoid bias due to
seasonal variation, for example the intra-annualatdity in atmospheric C®concentration. We
therefore applied the following procedure to avoid seasarahility impacts on long-term trends:
(i) the length of each focal census interval was roundd¢te nearest complete year (e.g. a 1.1 year
interval became a 1 year interval); (i) we computeceslahat minimised the difference between
actual fieldwork dates and complete-year census dates, ehdering that subsequent census
intervals of a plot do not overlap. The resulting sequeriagon-overlapping census intervals was
used to calculate interval-specific means for each envirom@ming@nedictor variable to remove
seasonal effects. The mean difference between thela@tldwork dates and the complete-year

census dates is 0.01 decimal years.

The first group of potential predictor variables, estimdtedeach census interval of each plot, are
theory-driven choices: atmospheric £&ncentration (Cg), mean annual temperature (MAT), and

drought intensity, which we quantified as maximum climatologiger deficit (MCWD§420:7677,

Atmospheric CQ concentration (Cg) in ppm) is estimated as the mean of the monthly melres
from the Mauna Loa recoffiover the census interval. While atmospheric.@0ncentration is
highly correlated with time (R2=0.98), carbon gains are djigbetter correlated with CO

(Rag?=0.0027) than with timéRag2=0.0025).
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Mean Annual Temperature (MAT, in °C) was derived from the teallyoresolved (1901-2015)
dataset of monthly mean temperature from the Climatie&ehk Unit (CRU TS version 4.03; ~3025
km? resolutionreleased 15 May 2019; https://crudata.uea.ac.uk/cru/data’hiyd downscaled the
datato ~1 knt resolution using the WorldClim datadet], by subtracting the difference in mean
monthly temperature, and applying this monthly correction tmatith$®. We then calculated MAT

for each census interval of each plot using the dowrgcatethly CRU record.

Maximum Climatological Water Deficit (MCWD, in mm) was derived from th8025 km?
resolution Global Precipitation Climatology Centre data(GPCCversion 6.0) that includes many
more rain gauges than CRU in tropical Aff£. As GPCC ends in 2013 we combined it with
satellite-based Tropical Rainfall Measurement Missiota @@RMM 3B43 V7 product, ~757 km?
resolution§*. The fit for the overlapping time period (1998-2013) was used ri@ciothe systematic
difference between GPCC and TRMM: GPCC’ = a+b*GPCC, with GPCC’ the adjusted GPCC
record and a and b different parameters for each mohtthe year and for each continent.
Precipitation was then downscaled to ~1 kasolution using the WorldClim dataget’, by dividing

by the ratio in mean monthly rainfall, and applying this rhtyntorrection to all mont8& For each
census interval we extraxt monthly precipitation values and estimated evapotrangpiréET) to
calculate monthly Climatological Water Deficit (CWD),cammonly used metric of dry season
intensity for tropical forest4’%’”. Monthly CWD values were calculated for each subsequesiatss
of 12 months (complete yeaf§)Monthly CWD estimation begins with the wettest mooitthe first
year in the interval, and is calculated as 100 mm pethmevapotranspiration (ET) minus monthly
precipitation (P). Then, CWD values for the subseqidénimonths were calculated recursively as:
CWDi= ET - P + CWDi.1, where negative CWDvalues were set to zeéfg(no drought conditions).
This procedure was repeated for each subsequent completnitZ&smiNe then calculated the annual

MCWD as the largest monthly CWD value for every compietar within the census interval, with
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the MCWD of a census interval being the mean of the arM@WD values within the census

interval. Larger MCWD indicates more severe water dsfici

We assuméT is 100 mm month on both continents, based on measurements from Ama%6hia
more limited measurements from West Africa summarizedfitr, predictive skiff’, and use in past
studies on both continerAt$”. MCWD therefore represents a precipitation-driven égssn deficit,
as ET remains constant. An alternative assessmeng, aislata-driven ET prodi#&£° gave a mean
ET of 95 and 98 mm monthfor the African and Amazonian plot networks respectivelyingthese

values did not affect the results.

To calculate the environmental change of potential predivariables,CO,-change (in ppnyr?),
MAT-change (in °C y*) and MCWD-change (in mmr?), we selected an optimum period over
which to calculate the change, derived empirically byssing the correlation of carbon gains (all
plots, all censuses) with the change in each envirormheariable, using linear mixed effects
models (Imer function in R, Ime4 packafe The annualised change in the environmental variable
was calculated as the change between the focal intan¢hla prior interval (termed the baseline
period) with a lengthening time window ranging from 1 year uftoto 80 years prior to the focal
interval (i.e. 80 linear mixed effects models per variablég calculated AIC for each model and
selected the interval length with the lowest AIC. Thi#AT-change (in°C yrl) = (MAT-
MAT p)/(date-date), where MAT is the MAT over the focal census interval calculatetigishe
procedure described abQWAT , is the MAT over a baseline period prior to the foctdnval, date

is the mid-date of the focal census interval andwdathe mid-date of the baseline period. The Imer
results show that the baseline period for MAT-change iséisyand folCO,-change it is 56 years,
while MCWD showed no clear trend, so MCWD-change was not indludethe models (see

Extended Data Figure 3). All three results conform to a priworetical expectationgor CQ a
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maximum response to an integrated 56 years of change istexkpeecause forest stands will
respond most strongly to GQvhen most individuals have grown under the new rapidly ahgng
condition, which should be at its maximum at a time axprately equivalent to the carbon
residence time of a forest stdhé’ (mean of 62 years in this dataset). For MAT, 5 yeacsiisistent
with experiments showing temperature acclimation of leafd plant-level photosynthetic and
respiration processes over half-decadal timestalesMCWD has no overall trend suggesting that
once a drought ends, its impact on tree growth fadedlyapis seen in other studié®. Also in the
moist tropics wet-season rainfall is expectedréecharge soil water, hence lagged impacts of

droughts are not expected.

We calculated estimates of two forest attributes that aitay responses to environmental change as
potential predictor variables: Wood Density (WD) and Carbesid®ence Time (CRT). In intact old-
growth forests, mean WD (in g ¢inis inversely related to resource availabffit}?®*, as is seen in
our dataset (carbon gains and plot-level mean WD areinelyatorrelated, Extended Data Figure
4). WD is calculated for each census interval in the dataseéhe mean WD of all trees alive at the
end of the census interval, to be consistent with theiqare Amazon analysis Carbon residence
time (CRT, in yrs) is a measure of the time thatdixarbon stays in the system. CRT is a potential
correlate of the impact of past carbon gains on lesebon losse€. To avoid circularity in the
models, the equation used to calculate CRT differed depemdintdpe response variablé. the
response variable is carbon loss, the CRT equationsedban gains: CRT=AGC/gains, with AGC
for each interval based on AGC at the end of thevateand the gains for each interval calculated
as the mean of the gains in the interval and the pusviotervals (i.e. long-term gains). If the
response variable is carbon gains, the CRT equationsisdban losses: CRT=AGC/losses. The
eguation employed for use in the carbon loss model dbaiseains) is the standard formula used to

calculate CRT and is retained in the minimum adequatdeh{see below and Table 2). The non-
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standard CRT equation (based on losses) used in the cgatommodel is not retained in the

minimum adequate model (see below).

Statistical modelling of the Carbon Gain, Lossand Sink Trends

We first construetd two models including those environmental drivers exhibitimgdterm change
that impact theory-driven models of photosynthesis and reggpi as predictor variable€O,
MAT, and MCWD. One model had carbon gains as the respaarsgble, the other had carbon
losses as the response variable (both in Mg€yhd). Models were fitted using the Ime function in
R, with maximum likelihood (NLME packad®. All census intervals within all plots were used,
weighted by plot size and census length (using equatiorodpbPlot identity was included as a
random effect, i.e. assuming that the intercept can vamgomly among plots. All predictor
variables in the models were scaled without centering ($uatgion in R, RASTER packaf®.
Carbon gain values were normally distributed but carbos kalues required a power-law
transformation (A= 0.361) to meet normality criteria. Multi-parameter models are: carbon gains
intcp + axCO, + bxMAT + ¢cxMCWD (model 1); carbon losses = intcp +C&s + bxMAT +
cxMCWD (model 2; where intcp is the estimated model intercept, and andb,caare model
parameters giving the slope of relationships with environahepredictor variables. For multi-

parameter model outputs see Extended Data Table 1, foe-piagdmeter relationshipsSigure 2.

The second pair of models include the same environmentatimesd(CQ, MAT, MCWD), plus
their rate of change (G&hange, MAT-change, but not MCWD-change as explained abawnd)
forest attributes that may alter how forests respond (WRT), as described above. We also
evaluated the possible inclusion of a differentialtcmmt effect of each variable in the full model.
We first construatd models with only a single predictor variable, and a#ldwlifferent slopes in

each continent. Next, if removal of the continent-gpeslope (using stepAIC function in R, MASS
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packag®) decreased model Akaike Information Criterion (AIC) tha continent-specific slope
was not included in the full model for that variable. Only MC\iidwed a significant differential
continent-specific slope. This implies that forests othlzontinents have common responseS @,
COx-change, MAT, MAT-change, WD and CRT, but respond diffdyetat differences in MCWD.
This is likely because wet-adapted species are much rafdrica than in Amazonia as a result of
large differences in past climate variafitbnLastly, we allowed different intercepts for the two
continents to potentially account for differing biogeograghocather continent-specific factors. For
the carbon loss model, we applied the same continentfispeftects for slope as for the carbon gain
model. Garbon loss values were transformed using a pdwertransformation (A= 0.361) to meet

normality criteria.

For both carbon gains and losses we parameterized a glaimel including the significant
continent-specific effect of MCWD, selecting the mostgraonious simplified model using all-
subsets regressitht® To do so, we first generated a set of models with abipte combinations
(subsets) of fixed effect terms in the global model udiegdredge function of the MuMiIn package
in R%. We then chose the best-ranked simplified model basédeoAlCc criterion, hereafter called
“minimum adequate carbon gain/loss mddadported in Table 2. The minimum adequate models
are: carbon gains = intcpxcontinent + CiX-change + bxMAT + cxMAT-change +
dxMCWDxcontinent + eW/D (model 3); carbon losses = intcp +G3-change + bxMAT-change
+ cxMCWD + d>CRT (model 4). WD was retained in the carbon gain model, liketyause growth
is primarily impacted by resource availability, while CRT watsired in the carbon loss model,

likely because losses are primarily impacted by how long fixdsboas retained in the system

Table 2 presents model coefficients of thestibanked gain model and best-ranked loss model

selected using all-subsets regression. These best-rankeanglaloss models have weights of 0.310
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and 0.132 respectively, which is almost double the weighteotécond ranked models (0.152 and
0.075 respectively). In Supplementary Table 2 we also usechddel.avg function of the MuMIn
package to calculate a weighted mean of the coefficiehttheo best-ranked models together
representing a cumulative weight-sum of 0.95 (i.e. a 958kdance subset). Supplementary Table 2
(model-averaged) and main text Table 2 (best-ranked) mode@mpters are very similar.
Supplementary Tables 3 and 4 report the complete setsrledncgains and loss models that

contribute to the model average results.

The model-average results show the same contineiffatetices in sensitivity to environmental
variables as the best-ranked models. From 2000 to 2015, carlbgnrgaeased due to G©@©hange
(+3.7% in both the averaged and the best-ranked modelscbatinents), while temperature rises
led to a decline in gains, which especially had an effect ilAthazon (-1.14% and -1.07% due to
MAT and MAT-change together in the averaged and best-damiazlel respectively). Finally, both
models result in similar predictions of the net carbok siver the 1983-2040 period: the future net
sink trend in Africa is -0.004 and -0.003 in the best-rankedaaedaged models respectively; in
Amazonia the future net sink trend is -0.013 and -0.011 in teeraeked and averaged models
respectively. The Amazon sink reaches zero in 2041 using moeleleged parameters compared to

2035 using the best-ranked models.

Estimating Future Predictor Variablesto 2040
To calculate future modelled trends in carbon gains arsgd@Bigure 3), we first estimated annual
records of the predictor variable€@,-change, MAT, MAT-change, MCWD, WD and CRT) to

2040 (Extended Data Figure 5).
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To do so we first calculated annual records for the geobthe observed trends for each plot
location (i.e. from 1983-2014 in Africa and 1983-2011.5 in Amazorka). CQ-change, MAT,

MAT-change and MCWD we extracted monthly records as thestin section Predictor Variable
Estimates (above). For WD and CRT we interpolated td.g0period within each census interval
(as in Figure 1). Then, we calculated the mean annual eéleach predictor variable from the 244
plot locations in Africa, and separately the mean anualle of each predictor variable from the
321 plot locations in Amazonia (i.e. solid lines in ED Figure F9r each predictor variable, we
calculated annual records of upper and lower confidence aiselw respectively adding and

subtracting 2¢ to the mean of each annual value (shaded area in ED Figure 5).

Secondly, for each predictor variable we parameteridetear model for each continent using the
annual records for the period of the observed trends. fDnexach predictor variable, the continent-
specific linear regression models were used to estimatecfmedariables for each plot location
from 2014 to 2040 in Africa and from 2011.5 to 2040 in the Amazon (dotteglilinextended Data
Figure 5). For each predictor variable, we calculated amegalds of upper and lower confidence
intervals by respectively adding and subtracting 2¢ to the slope of each linear model (shaded area

around dotted lines in ED Figure 5).

Estimating Future Carbon Gain, Loss and Net Carbon Sink

We used the minimum adequate models (Table 2) to prediabhrecords of carbon gain, carbon
loss and the carbon sink for the plot networks in Africdh Amazonia over the period 1983 through
to 2040 (Figure 3). We extracted fitted carbon gain and lls®s using the mean annual records for
each predictor variable (predictSE.Ime function, AlCdam packag€®. Upper and lower
confidence intervals were calculated accounting for ntacgies in the model (both fixed and

random effects) and predictor variables usig2c upper and lower confidence interval for each
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predictor variable (using predictSE.Ime). Finally the reebon sink was calculated by subtracting
the losses from the gains. To obtain sink values irfuhwe in Table l1annual per unit area sink
predictions, from Figure 3, were averaged over each decadmaltiplied by the future forest area,

as described above

To test the sensitivity of the future predictions in F&gg8r we reran the analysis by modifying future
trajectories of predictor variables one at a time, wkeleping all others the same, to assess the mean
C sink over 2010-15 and 2030 (averaging at 2030 is not necessagnds in MAT-change and
MCWD, which largely drive modelled inter-annual variabilitye @&stimated as smooth trends in the
future). For each predictor variable, we explored poteimipécts of the likely bounds of possibility,

(i) by taking the steepest slope of either contineninftbe extrapolated trends, doubling this slope
and applying it on both continents; and (ii) by taking the stteglepe of either continent from the
extrapolated trends, taking the opposite of this slope aptyiag it on both continents. These
bounds represent deviations of >2 sigma from observedstr&ithnge in MAT also alters MAT-

change, so we present the sensitivity of both parametgesher.

Additionally, for CQ-change and MAT, we also calculated future slopes under tiuteee
Representative Concentration Pathway (RCP) scefd@nigth different radiative forcing in 2100:
RCP2.6, 4.5, and 8.5. Future RCP &fhange slopes (ppm 3 were calculated using RCP €0
concentration data for the years between 2015 and 2030 vrcldsiture RCP MAT and MAT-
change slopes were obtained from plot-specific MAT \alerdracted from downscaled 30 seconds
resolution data for curréftand futuré! climate from WorldClim, and averaged over 19 CMIP5
models. We subtraced the mean 2040-2060 climate MAT (i.e. 2050) from the mean 1970-2000
climate MAT (i.e. 1985), divided by 65 years to give the annualafathange. We then calculated a

mean slope over all plots per continent. Finally, toidiwnismatches between RCP-derived values of
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CO; and MAT and the observed records we removed any differenttercept between the RCP
trends and observed trends, so the RCP trends wereiauetion of the end-point of the observed
trajectory in 2015. We did not estimate the sensitivity @WD under the RCP scenarios, because
the CMIP5 model means do not show drought trends for our fol@shetworks, unlike rain gauge
data for the recent past, and thus would show little orensitsvity to MCWD. For each modified
slope, Supplementary Table 5 reports the absolute declitigeisink in each continent in 2030
compared to the 2010-15 mean sink. This shows that the futkestsength is sensitive to future
environmental conditions, but within both RCP scenarias @ur bounds of possibility we show a

decline in the sink strength in both continents ove20#0s.

Data and Code Availability
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Extended Data Figure 1. Map showing the locations of the 244 plots included in this study.

Dark green represents all lowland closed-canopy forsstsnontane forests and forest-agriculture

mosaics; light green shows swamp forests and mandgfdvetue circles represent plot clusters,

referred to by three-letter codes (see Supplementary Tatalethe full list of plots). Clusters <50

km apart are shown as one point for display only, with dinclesize corresponding to sampling

effort in terms of hectares monitored.
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1386 Extended Data Figure 2. Long-term above-ground carbon dynamics of 244 African intact
1387 tropical forest inventory plots. Points in the scatterplots indicate the mid-censusvaltelate, with
1388 horizontal bars connecting the start and end date foln eansus interval for net aboveground
1389 biomass carbon change), carbon gains (from woody production from tree growtd aewly
1390 recruited stems)b), and carbon losses (from tree mortalitg). Examples of time series for three
1391 individual plots are shown in purple, yellow and gre&ssociated histograms show the distribution
1392 of the plot-level net aboveground biomass cart)n(\fith a three-parameter Weibull probability
1393 density distribution fitted in blue, showing the carbarkss significantly larger than zero; one-tail t-
1394 test: p<0.001), carbon gaing),(and carbon losse§) (
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Extended Data Figure 3. Akaike’s Information Criterion (AIC) from correlations between the
carbon gain in tropical forest inventory plots and changes in either atmospheric COo,
temperature (as MAT) or drought (as MCWD), each calculated over ever-longer prior
intervals. Panels show AIC from linear mixed effects models obe@a gains from 565 plots and
corresponding, atmospheric €Q@C0O,-change) 4), Mean Annual Temperature (MAT-chang®),(
and Maximum Climatological Water Deficit (MCWD-change). (For CQ the AIC minimum was
observed when predicting the carbon gain from the chan@®, calculated over a 56 year long
prior interval length. We use this length of time to clteiour CQ-change parameter. Such a value
is expected because forest stands will respond most strin@€ O, when most individuals have
grown under the new rapidly changing condition, which shdagdat its maximum at a time

approximately equivalent to the carbon residence timeforfest standf°° (mean of 62 years in this
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pooled African and Amazonian dataset). For MAT the AIC mininwas 5 years, which we use as
the prior interval to calculate our MAT-change paramékhis length is consistent with experiments
showing temperature acclimation of leaf- and plant-lgle@tosynthetic and respiration processes
over approximately half-decadal timescélés For MCWD the AIC minimum is not obvious, while
the slope of the correlation, shown in pand), (shows no overall trend and oscillates between
positive or negative values, meaning there is no relsiip between carbon gains and the change in
MCWD over intervals longer than 1 year; thus MCWD-chaisgeot included in our models. This
result suggests that once a drought ends, its impact emgtosvth fades rapidly, as seen in aothe
studies*2. Also in the moist tropics wet-season rainfall is expedo re-charge soil water, hence

lagged impacts of droughts are not expected.

61



1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

~©4 a slope=0 p=0.401 ~®©q b slope= -1.602 p=0.002
L;, e © "_; o

'@ O - '@ 0]

= - 3

(&) (8]

o o T

= =

2] w

£ £ o4

© ©

(=] (=]

& & o~

8 8

) ©

o o _|

100 200 300 400 0.50 0.60 0570 0.80
CRT (yr) WD (gcm )

o =1 e slope= -0.009 p<0.001 o ~1 d slope= -1.222 p=0.102
> o > o

l(ﬂ '(v

= = _ =

(&) (&) © ® @ &

g g < - 20 f\

w » 7

§ 3 o™ ®

A S o : '_
S : S o] ,

50 100 150 0.50 0.60 0.70 0.80
CRT (yr) WD (g cm™)

Extended Data Figure 4. Potential forest dynamics-related driversof carbon gainsand lossesin
structurally intact African and Amazonian tropical forest inventory plots. The aboveground
carbon gains, from woody productioalf), and aboveground carbon losses, from tree mortality (
d), are plotted against the carbon residence time (C&),wood density (WD), for African (blue)
and Amazonian (brown) inventory plots. Linear mixed effeodets were performed with census
intervals (n=1566) nested within plots (n=565) to avoid pseudlication, using an empirically
derived weighting based on interval length and plot arearethods). Significant regression lines
for the complete dataset are shown as a solid line sigprificant regressions as a dashed line. Each
dot represents a time-weighted mean plot-level value; gaaescy of the inner part of the dot
represents total monitoring length, with empty circles corresponding to plots monitored for < 5 years

and solid circles for plots monitored for >20 years. Carbss data are presented untransformed for
comparison with carbon gains; linear mixed effects modeldransformed data to fit normality
assumptions do not change the significance of the reBldts, CRT is calculated differently for the

carbon gains and losses models (see methods).
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Extended Data Figure 5. Trends in predictor variables used to estimate long-term trends in
above-ground carbon gains, carbon losses and the resulting net carbon sink in African and
Amazonian intact tropical forest plot networks. Mean annualCO,-change &), MAT (b), MAT-
change ¢), MCWD (d), CRT (e), and WD {) for African plot locations in blue, and corresponding
Amazon plots locations in browrg{). Solid lines forCO.-change, MAT, MAT-change, MCWD
represent obervational data, and solid lines @&®T and WD represent plot means and a time
window where >75% of the plots were monitored, long-dashed &ne plot means were <75% of
plots were monitored. Dotted lines are future values ewthfrom linear trends on the 1983-2014
(Africa) or 1983-2011 (Amazon) data (slope and p-value regpantecach panel), see methods for
details. Upper and lower confidence intervals (shaded dogajhe past (Africa: 1983-2014;
Amazonia: 1983-2011) are calculatedrbypectively adding and subtracting 26 to the mean of each
annual value. Upper and lower confidence intervals for therdutvere estimated by adding and

subtracting 2¢ from the slope of the regression model
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Extended Data Figure 6. The change in carbon losses versus carbon residence time (CRT) of
inventory plots in Africa and Amazonia. For plots with two census intervals, we calculated the
change in carbon losses (Alosses, in Mg C ha® yrt yr?) as the carbon losses (Mg Cha™) of the
second interval minus the carbon losses of the fitetval, divided by the difference in mid-interval
dates. For plots with more than two intervals, we cateul the change in carbon losses for each pair
of subsequent intervals, then calculated the plot-levean over all pairs, weighted by the time
length between mid-interval dates. This analysis inclemdsplots with at least two census intervals
and monitored for20 years (i.e. roughly one-third of the mean CRT of thelgobdfrican and
Amazon dataset; n = 116). Breakpoint regression was used &8s abseCRT length below which
forest carbon losses begin to increase. Plots with €RTyears show a recent long-term increase in
carbon losses, longer CRT plots do not. Blue pointsAfiean plots, brown points are Amazonian

plots.
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Extended Data Figure 7. Trends in African tropical forest net aboveground live biomass
carbon, carbon gains and carbon losses, calculated for the last 15 years of the twentieth
century (left panels a-c) and the first 15 years of the twenty-first century (right panels d-f).
Plots were selected from the full dataset if their aenistervals cover at least 50% of the respective
time windows, i.e. they are intensely monitored (n=56spfot 1985-2000, and n=134 plots for
2000-2015, respectively). Solid lines show mean values, shadingsponds to the 95% CI, as
calculated in Figure 1. Dashed lines, slopes and p-valedsaan linear mixed effects models, as in
Figure 1 The data shows a difference compared to Figure 1, notablynthelecline after ~2010
driven by rising carbon losses. This is because in Fijune include all available plots over the
1983-2015 window, which includes clusters of plots monitored only iR@tOs that had low carbon

loss and high carbon sink values.
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1476

1477 Extended Data Figure 8. Twenty-first century trends in aboveground biomass carbon losses
1478 from African tropical forest inventory plotswith either long (Ieft panels) or short (right panels)

1479 carbon residence time. Upper panels include all plots, i.e. as in Figure 1, bu ispd a long-CRT
1480 group @), and a short-CRT groupp), each containing half the 244 plots. Lower panels regtiots
1481 to those spanning >50% of the time window, i.e. intensely mauitpiots, as in Extended Data
1482 Figure 7, but split into a long-CRT grougp),(and a short-CRT groupl), each containing half the
1483 134 plots. Solid lines indicate mean values, shading the 95%s@or Figure 1. Dashed lines, slopes
1484 and p-values are from linear mixed-effects models, aBifpre 1. Carbon losses increase at a higher
1485 rate in the short-CRT than the long-CRT group offqlat both datasets, although this increase is not
1486 statistically significant.
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1490 Extended Data Tables

1491

1492 Extended Data Table 1. Models to predict carbon gains and losses in African and Ameazo
1493 tropical forests, including only environmental variablespvahg long-term trends that impact

1494 theory-driven models of photosynthesis and respiraSagnificant values in bold.

Carbon gains, Mg C ha' yr'

Predictor variable Parameter value Standard Error t-value p-value
(Intercept) 4.694 0.739 6.354 0.000
CO; (ppm) 0.005 0.001 3.196 0.001
MAT (°C) -0.143 0.021 -6.844 0.000
MCWD (mm x1000) -1.232 0.210 -5.878 0.000
Carbon losses, Mg C ha™ yr' *
Predictor variable Parameter value Standard Error t-value p-value
(Intercept) 0.926 1.854 0.500 0.617
CO; (ppm) 0.004 0.004 0.947 0.344
MAT (°C) -0.011 0.044 -0.249 0.804
MCWD (mm x1000) -0.498 0.505 -0.985 0.325
1495 * carbon loss values were normalized via power-law transformation, A= 0.361.

1496

1497 Extended Data Table 2. Forest area estimates used to calculate total contirfiergat sink.

Period intact forest area (Mha)*
Africa Amazon Southeast Asia Pan-tropics

1980 671.5 958.3 233.6 1863.4
1985 634.3 921.1 207.4 1762.8
1990 600.2 885.2 190.6 1676.0
1995 565.9 851.1 163.5 1580.5
2000 531.8 817.2 136.9 1485.9
2005 504.8 784.5 129.2 1418.5
2010 477.8 756.3 118.4 1352.5
2015 450.5 726.7 101.5 1278.7
2020 425.5 698.5 90.1 1214.2
2025 402.0 671.5 80.0 1153.4
2030 379.7 645.4 71.0 1096.1
2035 358.6 620.4 63.0 10421
2040 338.8 596.4 56.0 991.1

* Intact forest area for 1990, 2000 and 2007 is published in ref.1 (i.e. the total forest area minus
forest regrowth). To estimate intact forest area for the other years in this table, we fitted
1498 exponential models for each continent using the published data.
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