

University of Birmingham

Quantitative verification of Kalman filters
Evangelidis, Alexandros; Parker, David

DOI:
10.1007/s00165-020-00529-w

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Evangelidis, A & Parker, D 2021, 'Quantitative verification of Kalman filters', Formal Aspects of Computing, vol.
33, no. 4-5, pp. 669-693. https://doi.org/10.1007/s00165-020-00529-w

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is a post-peer-review, pre-copyedit version of an article published in [insert journal title]. The final authenticated version is available
online at: https://doi.org/10.1007/s00165-020-00529-w

This document is subject to the Springer Nature terms of reuse:
https://www.springer.com/gp/open-access/publication-policies/aam-terms-of-use

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1007/s00165-020-00529-w
https://doi.org/10.1007/s00165-020-00529-w
https://birmingham.elsevierpure.com/en/publications/9930fe09-a187-42f3-8b1b-08a6f5faab9f

Under consideration for publication in Formal Aspects of Computing

Quantitative Verification
of Kalman Filters
Alexandros Evangelidis and David Parker
School of Computer Science, University of Birmingham

Birmingham, United Kingdom

Abstract. Kalman filters are widely used for estimating the state of a system based on noisy or inaccurate
sensor readings, for example in the control and navigation of vehicles or robots. However, numerical instability
or modelling errors may lead to divergence of the filter, leading to erroneous estimations. Establishing
robustness against such issues can be challenging. We propose novel formal verification techniques and
software to perform a rigorous quantitative analysis of the effectiveness of Kalman filters. We present a
general framework for modelling Kalman filter implementations operating on linear discrete-time stochastic
systems, and techniques to systematically construct a Markov model of the filter’s operation using truncation
and discretisation of the stochastic noise model. Numerical stability and divergence properties are then
verified using probabilistic model checking. We evaluate the scalability and accuracy of our approach on two
distinct probabilistic kinematic models and four Kalman filter implementations.

1. Introduction

Estimating the state of a continuously changing system based on uncertain information about its dynamics
is a crucial task in many application domains ranging from control systems to econometrics. One of the most
popular algorithms for tackling this problem is the Kalman filter [Kal60], which essentially computes an
optimal state estimate of a noisy linear discrete-time system, under certain assumptions, with the optimality
criterion being defined as the minimisation of the mean squared estimation error.

However, despite the robust mathematical foundations underpinning the Kalman filter, developing an
operational filter in practice is considered a very hard task since it requires a significant amount of engineering
expertise [May82a]. This is because the underlying theory makes assumptions which are not necessarily met
in practice, such as there being precise knowledge of the system and the noise models, and that infinite
precision arithmetic is used [GA14, Sim06]. Avoidance of numerical problems such as round-off errors also
remains a prominent issue in filter implementations [Gib11, GA14, Sim06, ZM15]. Finally, tuning a filter in
order to compensate for modelling errors provides a further challenge for practical applications. Our goal in
this paper is to develop formal verification techniques that allow the detection of possible failures in specific
Kalman filter implementations arising from such issues.

The Kalman filter repeatedly performs two steps. The first occurs before the next measurements are
available and relies on prior information. This is called the time update (or prediction step) and propagates
the “current” state estimate forward in time, along with the uncertainty associated with it. These variables are
defined as the a priori state estimate x̂− and estimation-error covariance matrix P−, respectively. The second

Correspondence and offprint requests to: Alexandros Evangelidis, e-mail: a.evangelidis@cs.bham.ac.uk

2 A. Evangelidis and D. Parker

step is called the measurement update (or correction step) and occurs when the next state measurements are
available. The Kalman filter then uses the newly obtained information to update the a priori x̂− and P− to
their a posteriori counterparts, denoted x̂+ and P+, which are adjusted using the so-called optimal Kalman
gain matrix K.

The part of the filter that could hinder its numerical stability, and so cause it to produce erroneous
results, is the propagation of the estimation-error covariance matrix P in the time and measurement updates
[BSL01, GA14, May82a]. This is because the computation of the Kalman gain depends upon the correct
computation of P and round-off or computational errors could accumulate in its computation, causing
the filter either to diverge or slow its convergence [GA14]. While, from a mathematical point of view, the
estimation-error covariance matrix P should maintain certain properties such as its symmetry and positive
semidefiniteness to be considered valid, subtle numerical problems can destroy those properties resulting in a
covariance matrix which is theoretically impossible [KBS71]. Out of the two steps in which the filter operates,
the covariance update in the measurement update is considered to be the “most troublesome” [May82a]. In
fact, the covariance update can be implemented using three different but algebraically equivalent forms, and
all of them can result in numerical problems [BSL01].

To address the aforementioned challenges, we present a general framework for modelling and verifying
different filter implementations operating on linear discrete-time stochastic systems. It consists of a modelling
abstraction which maps the system model whose state is to be estimated and a filter implementation to a
discrete-time Markov chain (DTMC). This framework is general enough to handle the creation of various
different filter variants. The filter implementation to be verified is specified in a mainstream programming
language (we use Java) since it needs access to linear algebra data types and operations.

Once the DTMC has been constructed, we verify numerical stability properties of the Kalman filter being
modelled using properties expressed in a reward-based extension [FKNP11] of the temporal logic PCTL
(probabilistic computation tree logic) [HJ94]. This requires generation of non-trivial reward structures for
the DTMC computed using linear algebra computations on the matrices and vectors used in the execution
of the Kalman filter implementation. The latter is of more general interest in terms of the applicability of
our approach to analyse complex numerical properties via probabilistic model checking.

We have implemented this framework within a software tool called VerFilter, built on top of the proba-
bilistic model checker PRISM [KNP11]. The tool takes the filter implementation, a description of the system
model being estimated and several extra parameters: the maximum time the model will run, the number of
intervals the noise distribution will be truncated into, and the numerical precision, in terms of the number of
decimal places, to which the floating-point numbers which are used throughout the model will be rounded.

The decision to let the user specify these parameters is particularly important in the modelling and
verification of stochastic linear dynamical systems, where the states of the model, which comprise of floating-
point numbers, as well as the labelling of the states, are the result of complex numerical linear algebra
operations. Lowering the numerical precision usually means faster execution times at the possible cost of
affecting the accuracy of the verification result. This decision is further motivated by the fact that many
filter implementations run on embedded systems with stringent computational requirements [Sim06], and
being able to produce performance guarantees is crucial.

We demonstrate the applicability of our approach by verifying four distinct filter implementations: the
conventional Kalman filter, the Carlson-Schmidt square-root filter, the Bierman-Thornton U-D filter and
the steady-state Kalman filter. This allows us to evaluate the trade-offs between different variants. For the
system models, we use kinematic state models, since they are used extensively in the areas of navigation
and tracking [BSL01, LJ03]. We evaluate our approach with two distinct models. We demonstrate that our
approach can successfully analyse a range of useful properties relating to the numerical stability of Kalman
filters, and we evaluate the scalability and accuracy of the techniques.

This paper is an extension of the conference paper [EP19]. Here, we: provide a more thorough treatment
of the probabilistic model constructed for verification; expand the scope of our analysis, studying a new class
of properties (modelling errors); and evaluate two new implementations (the U-D and steady-state filters).

Related Work. Studies of Kalman filter numerical stability outside of formal verification are discussed
above and in more detail in the next section. To the best of our knowledge, there is no prior work applying
probabilistic model checking to the verification of Kalman filters. Perhaps the closest is the use of non-
probabilistic model checking on a variant of the filter algorithm in the work of [MGB03], which applied
model checking to target estimation algorithms in the context of anti-missile interception. In general, applying

Quantitative Verification of Kalman Filters 3

formal methods to state estimation programs is an issue which has concerned researchers over the years. For
example, [RVWL03, WS04] combined program synthesis with property verification in order to automate the
generation of Kalman filter code based on a given specification, along with proofs about specific properties
in the code. Other work relevant to the above includes [RG03], which used the language ACL2 to verify the
loop invariant of a specific instance of the Kalman filter algorithm.

2. Preliminaries

We start with background material on Kalman filters, including the difficulties that arise when implementing
them and some of the variants that have been proposed to address them. We also briefly discuss probabilistic
model checking and PRISM.

2.1. The Kalman filter

The Kalman filter tracks the state of a linear stochastic discrete-time system of the following form:

xk+1 = Fkxk + wk zk = Hkxk + vk (1)

where xk is the (n×1) system state vector at discrete time instant k and Fk is a square (n×n) state transition
matrix, which relates the system state vector xk between successive time steps in the absence of noise. In
addition, zk is the (m × 1) measurement vector and Hk is the (m × n) measurement matrix, which relates
the measurement with the state vector. Finally, wk and vk represent the process and measurement noises,
with covariance matrices Qk and Rk, respectively. Given the above system and under certain assumptions,
the Kalman filter is an optimal estimator in terms of minimising the mean squared estimation error.

Below, we explain the working of the filter in more detail. The notation x̂−k stands for the a priori
state estimate at time step k, with the “hat” symbol denoting the estimate, and the minus superscript
denoting that the measurements at time k have not been processed yet. Mathematically, it can be written
as E[xk | z1, z2, z3, . . . , zk−1], which is the conditional expectation of the random variable xk given the
measurements up to and including time step k − 1. Analogously, x̂+k denotes the a posteriori state estimate
at time k, meaning that in this case the measurements at time step k have been taken into account in the
estimation of xk, and can be written as E[xk | z1, z2, z3, . . . , zk].

An important variable in the Kalman filter is the so-called Kalman gain matrix Kk. In the scalar case,
this can be thought of as a weighting factor whose entries take values in the interval [0, 1] and which adjusts
the a priori state estimate according to how much “trust” or “belief” is placed on the newly obtained
measurements. For example, if the Kalman gain is zero, this would indicate that there is no uncertainty
associated with the a priori estimate x̂−k and so the a posteriori state estimate x̂+k would be identical.

The task of the Kalman filter is to find the optimal Kalman gain matrix in terms of minimising the
sum of estimation error variances or the mean squared estimation error. These can be obtained by summing
the elements of the main diagonal (trace) of the a posteriori estimation-error covariance matrix P+

k . Now,

in order to solve for the optimal Kalman gain at time k, we differentiate the trace of P+
k with respect

to Kk and then set its derivative equal to zero, to obtain the following Kalman gain equation: Kk =
P−k H

T
k (HkP

−
k H

T
k +Rk)−1. In this equation, the computation inside the parenthesis is the covariance of the

innovation (or measurement residual), which represents the difference between the actual and the predicted
system measurement. This innovation covariance matrix is usually referred to in the literature as S, and is
typically calculated as a separate step before the Kalman gain computation.

The conventional Kalman filter estimation process begins by initialising:

x̂+0 = E[x0] P+
0 = E[(x0 − x̂+0)(x0 − x̂+0)T] (2)

It then proceeds by iterating between two steps. The time update is given as:

x̂−k+1 = Fkx̂
+
k P−k+1 = FkP

+
k F

T
k +Qk (3)

4 A. Evangelidis and D. Parker

The measurement update is given as:

yk+1 = zk+1 −Hk+1x̂
−
k+1 Sk+1 = Hk+1P

−
k+1H

T
k+1 +Rk+1 (4)

Kk+1 = P−k+1H
T
k+1S

−1
k+1 (5)

x̂+k+1 = x̂−k+1 +Kk+1yk+1 P+
k+1 = (I −Kk+1Hk+1)P−k+1 (6)

2.2. Divergence of Kalman Filters

Even though, from a theoretical point of view, the Kalman filter may give the impression that it will produce
an optimal estimate, this might not be the case when applied to realistic situations. The reason is that the
theory behind the Kalman filter often makes assumptions which could not be met in practice, such as the
assumption that there is precise knowledge of the system and noise matrices, or that the numbers can be
represented with infinite precision [Sim06]. Specifically, it is assumed that the representation of the model
used in the Kalman filter algorithm corresponds exactly to the system being modelled [Gib11]. As a result,
the approximation of the actual process which is expressed by the state space equations might lead to a
phenomenon known as divergence [May82a] where the calculated state estimate from the Kalman filter does
not represent the actual state of the process accurately.

Consequently, there is a high potential for the estimated error covariance to be inconsistent with the actual
error covariance [BN76], and as a result the accumulated estimation errors will hinder the effectiveness and
accuracy of the estimation procedure. As an aside, it should be pointed out that model approximations of the
actual process are not necessarily the result of an erroneous analysis, but they can also arise in a deliberate
manner as a way to restrict the computational requirements of the Kalman filter [Jaz70] (e.g., reducing the
order of the model), and as a result it becomes quite significant to quantitatively analyse this “degree of
suboptimality”[BH12]. The precise identification of the conditions which could result in divergence is not
a straightforward task, mainly because the whole concept of divergence is considered somewhat nebulous,
encompassing a whole spectrum of errors and is regarded more or less as a qualitative concept [AM12].

The causes of divergence are mostly attributed to either modelling or numerical errors [BSL01, BH12].
This is because the process of developing the Kalman filter in a computer implicitly means to “transfer”
the rich mathematical theory which surrounds the Kalman filter to the computer’s digital representation.
As a result, when the outcome of this process is erroneous, it is either because the constraints imposed
on us by the computer (e.g., finite-precision arithmetic) and the “digital” behaviour of the Kalman filter
does not match the “theoretical” behaviour or because errors have been introduced during the modelling
phase [CG74]. In particular, divergence because of numerical instability of the numerical algorithms used
and because of modelling errors, started to become apparent once the Kalman filter was gaining popularity
in a growing number of engineering applications [VD86]. In the next sections, we describe what is actually
meant by numerical instability and modelling errors in the context of the Kalman filter.

2.3. Numerical Instability of the Kalman filter

In order for P to be statistically valid it must be (symmetric) positive definite. Briefly, this means that all of
its eigenvalues are positive real numbers. This is for two reasons. First, from a modelling perspective, if its
eigenvalues were zero, this would translate to a filter which completely trusts its estimates and consequently
would avoid taking into account the subsequent measurements, placing all of its “belief” in the system model
[BSL01]. Second, from a numerical stability perspective, it does not suffice for the eigenvalues of P to be
greater than zero, because if they are in close proximity to zero, then round-off errors could cause them to
become negative, rendering it totally invalid [AM12, GA14, Kai80].

In fact, the three equivalent forms to express the covariance measurement update are all susceptible to
numerical errors [BSL01] and cannot guarantee the numerical stability of P . For example, the covariance
update P+

k = (I−KkHk)P−k is generally not preferred because it is too sensitive to round-off errors [BSL01],
which means neither the symmetry nor the positive definiteness of Pk can be guaranteed. That is because
this update takes the product of nonsymmetric and symmetric matrices, a form which has been characterised
as undesirable [May82a].

Alternatively, changing the covariance measurement update equation to P+
k = P−k − KkSkK

T
k could

Quantitative Verification of Kalman Filters 5

potentially pose a “serious numerical problem” [May82a], such as Pk losing positive definiteness. Finally,
while Joseph’s stabilised form [BJ68], given by P+

k = (I −KkHk)P−k (I −KkHk)T +KkRkK
T
k , is considered

to preserve the numerical robustness of P+, it is also not totally insensitive to numerical errors [BSL01]. An
additional disadvantage is the high computational complexity, which is O(n3) [GA14, May82a], since the
number of arithmetic operations such as additions and multiplications is considerably higher compared to
the simpler form.

To ameliorate these numerical problems, an alternative form of expressing the covariance time and mea-
surement updates is using so-called square-root filters. These are generally considered superior to conventional
filter implementations mainly because of their ability to increase the numerical stability of the propagation
of the estimation-error covariance matrix P , and have often been described as outstanding [KBS71, May82a].
It should be noted that the term square-root filter is mostly used to refer to the measurement update of the
Kalman filter algorithm, since it is this part that can cause numerical problems [Gib11]. They were motivated
by the need for increased numerical precision because of word lengths of limited size in the 1960s [Sim06]
and by the concern with respect to the numerical accuracy of P in the measurement update of the Kalman
filter equations [Gib11]. Potter [Bat64] proposed the idea of square-root filters and this idea has evolved ever
since. The idea, which was limited to noiseless systems, is that P is factored into its square root C, such
that P = CCT , and as a result C is propagated through the measurement update equations, instead of P .
Replacing P with its square-root factor C has the effect of doubling the numerical precision of the filter,
thus making it particularly suitable for matrices which are not well-conditioned or when increased precision
cannot be obtained from the hardware [Gib11, GA14, May82a, Sim06].

2.4. Divergence Due to Modelling Errors

Divergence detection falls under the wider scope of estimation theory, and more specifically to what is often
referred to as consistency evaluation of estimators. An estimator is said to be consistent when its estimates
will converge to the true value as the sample size increases [BSL01], or informally when its estimates become
increasingly accurate over time. Also, it is important to consider the context under which the Kalman filter
operates. For example, the consistency tests that can be applied to a Kalman filter operating in a simulation-
based environment cannot be applied to the situation where the Kalman filter operates in real-time, and
processes real-time data [BSL01]. This is because devising statistical tests based on the actual estimation
errors to assess the consistency of a Kalman filter is only applicable in simulations, where the true state of
the system is known.

A popular way to deal with divergence problems, once they are detected, is called filter tuning. This
works by adjusting the process noise covariance matrix Q, which the Kalman filter uses to represent the
unknown effects affecting the system whose state is to be estimated. This can be thought of as injecting
“pseudo-noise” and is considered one of the hardest and most challenging tasks in developing an operational
filter [ACCK93, GSDW16, CD16], because it encompasses all the unknown effects that perturb the process
model of interest.

It can also be thought of as a modelling error compensation technique [May82b, BSL01, BH12, Sim10,
Jaz70, AM12], and can be applied to a self-adaptive context, where it is sometimes referred to as self-tuning
[May82a]. This context is often referred to as adaptive filtering which means that the Kalman filter adjusts
its noise levels dynamically according to some performance criterion. Furthermore, filter tuning can also
happen in the design phase, e.g., using a simulation-based environment and an iterative search to select
parameter values that will achieve the best possible estimation result [May82a].

In this work, we instead focus on a quantitative analysis of the innovation (or measurement residual),
which represents the difference between the actual and the predicted system measurement. This is considered
a “prime indicator” of filter divergence [AM12]. The consistency criterion of the innovation sequence we
consider is that its computed covariance from the Kalman filter (e.g., actual statistics) is consistent with
the design statistics [AM12]. In other words, we want to verify that the actual statistical properties are
consistent with the theoretical statistical properties.

6 A. Evangelidis and D. Parker

2.5. Kalman Filter Variants

In this paper, we analyse the conventional Kalman filter and three other variants: the Carlson-Schmidt filter,
the Bierman-Thornton U-D Filter and the steady-state Kalman filter.

The Carlson-Schmidt filter. This is a form of a square-root filter which relies on the decomposition of P
into its Cholesky factors in the time and measurement update equations. The Carlson part of the filtering
algorithm, originally given by Carlson [Car73], corresponds to the measurement update, while the Schmidt
part corresponds to the time update of the Kalman filter equations. Carlson’s algorithm is capable of handling
noise and, like Potter’s algorithm, processes measurements as scalars. It factors P into the product of an
upper-triangular Cholesky factor and its transpose such that P = CCT .

Unlike Potter’s initial square-root filter where the factor C is not required to be triangular, in Carlson’s
square-root implementation, the Cholesky factor C is an upper-triangular matrix. Maintaining C in upper-
triangular form has been shown to provide several advantages in terms of storage and computational speed
compared to Potter’s algorithm [Car73, May82a]. While the choice between a lower and upper-triangular
Cholesky factor C is arbitrary [May82a], Carlson motivated the preference to choose an upper-triangular
Cholesky factor by the fact that in the time update part of the algorithm, fewer retriangularisation oper-
ations are required especially when someone designs a filter to be applied in a tracking or in a navigation
problem [Car73].

The Bierman-Thornton U-D Filter. Known as the U-D filter for short, this is one of the most widely used
Kalman filter variants [DZ18], which despite its appearance in the early 1970s, due to its numerical accuracy,
stability and computational efficiency is “still the dominant type of factored filter algorithm” [Gib11]. It is
worth noting that in the literature there seems to be some ambiguity whether the U-D filter is considered
a square-root filter or not, since there are authors who classify it under the broader category of square-root
filters and others who do not [GA14, Sim06]. Specifically, the “Bierman” part of the filtering algorithm,
originally given by Bierman [Bie75] corresponds to the observational update, while the “Thornton” part
given by Thornton [Tho76] corresponds to the time update of the Kalman filter equations.

Bierman’s covariance update, the “actual” U-D filter relies on the decomposition of P into the following
matrix product: P = UDUT , where U is a unit upper-triangular and D is a diagonal matrix, respectively
[Bie77], a procedure which is often referred to as a modified Cholesky decomposition and the U , D factors as
modified Cholesky factors [GA14]. Unlike Carlson’s method it does not require computing scalar square roots
for every incorporated measurement [May82a, Bie77, Tho76], thus making it rather suitable for problems
where the number of variables comprising the state space is large [GA14]. Furthermore, Bierman’s algorithm
in a manner similar to Carlson’s method promotes the use of upper-triangular matrices for the same reasons of
computational efficiency. Thornton’s algorithm provides an alternative for the conventional Kalman filter’s
time-update equations as it propagates the U and D factors, instead of P , forward in time, using the
numerically stable Modified Weighted Gram-Schmidt (MWGS) orthogonalisation algorithm [Tho76].

The steady-state Kalman filter. In the steady-state Kalman filter, the time-varying variables of the
conventional filter, such as the a priori estimation-error covariance and the Kalman gain, are replaced with
their steady-state counterparts. As a clarification, the term “steady-state” refers to the Kalman gain that
is in steady state [Sim06]. It turns out that, in order to compute the steady-state Kalman gain, the steady-
state solution of the a priori error covariance must be found, since the Kalman gain depends on it. This
limiting solution can be expressed as the discrete-time algebraic Riccati equation, and the first step before
any attempt is made to solve it, is to verify that the necessary conditions hold.

In particular, one can employ the so-called observability and controllability tests, which rely on certain
theorems, and provide a way of identifying whether a solution exists or not. The first test states that the
matrix pair F,H must be completely observable, which means that the observability matrix M must be of
full rank (i.e., ρ(M) = n). Once the observability test passes, the controllability test takes place, which seeks
to evaluate whether the matrix pair F,C is completely controllable. The procedure followed is relatively
similar to the previous case, with the only difference being the extra computation needed for the C matrix,
which is a Cholesky factor of the process noise covariance matrix Q.

Pre-computing the steady-state gains results in faster computations. On the other hand, using fixed
Kalman gains implies transforming the Kalman filter from a time-varying filter to a time-invariant one,
which could hinder the accuracy of the estimates produced.

Quantitative Verification of Kalman Filters 7

2.6. Probabilistic Model Checking and PRISM

Our Kalman filter analysis technique is based on probabilistic model checking, which is an automated quanti-
tative verification technique that seeks to establish quantitative properties which relate to the specification of
a probabilistic system, with some degree of mathematical certainty [Kwi07]. In order to perform probabilistic
model checking, two inputs are required: i) a probabilistic model, which is a representation of a stochastic
system; and ii) a specification, usually expressed in probabilistic temporal logic [KNP07]. Therefore, quan-
titative verification, and probabilistic model checking in particular, can be thought of as a generalisation of
conventional model checking techniques.

PRISM [KNP11] is a probabilistic model checking tool which supports the construction and formal
quantitative analysis of various probabilistic models, including discrete-time Markov chains, continuous-time
Markov chains and Markov decision processes. In our work, for the verification of Kalman filters, we use
discrete-time Markov chains, which are well suited to modelling systems whose states evolve probabilistically,
but without any nondeterminism or external control. They are therefore appropriate here, where we want
to verify Kalman filter executions, whose outcomes are probabilistic.

Formally, a discrete-time Markov chain is defined as follows.

Definition 2.1. A discrete-time Markov chain is a tuple M =
〈
S,P,AP,L

〉
where:

• S is a finite set of states;

• P : S × S → [0, 1] is a transition probability matrix;

• AP is a finite set of atomic propositions;

• L: S → 2AP is a labelling function.

Each element P (s, s′) of the transition probability matrix gives the probability of moving from state s
to s′. We require that

∑
s′∈S P (s, s′) = 1 for all states s ∈ S. If we denote the state of the Markov chain

at a particular time step k by Xk, then the transition probabilities can be defined as Pr(Xk+1 = s′ | Xk =
s) = P (s, s′) for any s, s′ ∈ S. The set of atomic propositions AP describes properties of interest which can
be either true or false in the Markov chain’s states, and the labelling function L maps states to the atomic
propositions in the set AP .

Properties of discrete-time Markov chains are specified in PRISM using an extension [FKNP11] of the
temporal logic PCTL (probabilistic computation tree logic) [HJ94]. A typical property is P./ p[ψ], where
./∈{≤, <,>,≥} and p ∈ [0, 1], which asserts that the probability of event ψ occurring meets the bound ./p.
Events are specified using temporal operators, e.g., FΦ means that along a path state formula Φ eventually
holds and GΦ means that formula Φ always holds in every state of the path.

The states of probabilistic models can also be annotated with rewards (or costs). A reward structure is a
labelling function which assigns a non-negative rational value to a state, and model checking a reward-based
property usually refers to the computation of its expected value [KNP07]. Such properties are specified using
the reward operator R. For example, a state s satisfies a reward-based property of the form Rr./ q[C

≤k] if from
state s, the expected reward r cumulated after k time steps satisfies the bound ./ q. Moreover, a state s
satisfies a property of the form Rr./ q[I

=k] if, from state s, the expected instantaneous reward r at time step
k meets the bound ./ q. Finally, the property Rr./ q[FΦ] is true in a state s if the expected cumulated reward
r before reaching a state in which the formula Φ holds meets the bound ./q [KNP07].

In addition, PRISM supports numerical properties such as P=?[F fail], which means “what is the proba-
bility for the system to eventually reach a state labelled with fail?”. PRISM also allows a wide range of other
such properties to be specified and analysed. See, e.g., [FKNP11] for full details of the syntax and semantics
of the PRISM property specification language.

3. Quantitative Verification of Kalman Filters

In this section, we describe our approach to modelling and verifying Kalman filter implementations. This
is based on the construction and analysis of a probabilistic model, a discrete-time Markov chain (DTMC),
representing the behaviour of a particular Kalman filter executing in the context of estimating the state of
a linear stochastic discrete-time system. The probabilistic model is automatically constructed based on a
specification of the filter and the system whose state it is trying to estimate. System properties required to

8 A. Evangelidis and D. Parker

k

system

system

measure

measure

measure

measure

k+1
filter

k+1
filter

k+1
filter

k+1
filter

Fig. 1. Illustration of the evolution of the DTMC from time step k to k+1.

analyse numerical stability or modelling errors are then verified using probabilistic model checking queries.
We describe each of these phases in the following sections.

3.1. Constructing Probabilistic Models of Kalman Filter Execution

We define a high-level modelling abstraction which can be instantiated to construct models of various different
Kalman filter implementations. The modelling abstraction comprises three components: the first and second
correspond to the system and measurement models along with their associated noise distributions; the third
is the Kalman filter implementation itself used to estimate the state of the system model in the presence of
uncertainty. The first two of these are defined mathematically along the lines described in Section 2.1. The
third is specified in detail using a mainstream programming language, since it requires linear algebra data
types and operations. Our implementation (see Section 4) uses Java and associated numerical libraries.

DTMC states and transitions. The DTMC represents the dynamic evolution of these components and
the interactions that occur between them, imitating a real-time tracking scenario. The variables which define
the DTMC’s states correspond to the system, measurement and filter models. More precisely, each state of
the Markov chain takes the form (k, x, z, x̂, f). The first element k is the time step. The next two elements
are: x, the true state of the system model (i.e., the system whose state is being estimated); and z, the
measured state of the system. The remaining two elements represent the state of the Kalman filter: x̂ is the
current a posteriori estimate of the system state; and f comprises any others variables used by the filter
to keep track of its estimate (for example, for the conventional Kalman filter, this is the estimation-error
covariance matrix P ; for the U-D filter, these are the two matrices U and D). Typically, the Kalman filters
make use of several other auxiliary variables to compute each successive state estimate, but these do not
need to be stored in the DTMC.

Each transition of the DTMC represents a single discrete-time step comprising the evolution of the system
model and its measurement, perturbed by different noise values and the corresponding updates to the filter.
Moving from time step k to time step k + 1, we have three intermediate updates:

• xk+1 := system(xk)

• zk+1 := measure(xk+1)

• (x̂k+1, fk+1) := filter(x̂k, fk, zk+1)

The first two functions, system and measure, correspond to Equation (1) in Section 2.1. Each are sub-
ject to noise and so this represents a probabilistic state update. The third function, filter, captures the
behaviour of the Kalman filter and will differ for each implementation considered. Notice that filter uses
the previous state (x̂k, fk) of the filter and the newly measured system state zk+1, but it does not have access
to the “true” state of the system model xk+1. Unlike the first two functions, the update of the filter state is
deterministic.

For the conventional Kalman filter, f comprises the estimation-error covariance matrix P . The function
filter corresponds to the equations in Section 2.1 used to define x̂+k+1 and P+

k+1. Intermediate variables,

such as y and P−, are used in these computations but not stored in the DTMC state since their values
are not needed in subsequent time steps. These variables will differ for other types of filter and for specific

Quantitative Verification of Kalman Filters 9

Table 1. Intervals according to the granularity level.

gLevel Intervals

2 [−∞, µ], [µ,+∞]

3 [−∞,−2σ], [−2σ,+2σ], [+2σ,+∞]

4 [−∞,−2σ], [−2σ, µ], [µ,+2σ], [+2σ,+∞]

5 [−∞,−2σ], [−2σ,−σ], [−σ,+σ], [+σ,+2σ], [+2σ,+∞]

6 [−∞,−2σ], [−2σ,−σ], [−σ, µ], [µ,+σ], [+σ,+2σ], [+2σ,+∞]

implementations. For example, in a square root filter implementation, P+ can be either reconstructed from
the Cholesky factor C+, or not by propagating C+ in each time step. We show an example of the DTMC
for the conventional Kalman filter later in this section.

Figure 1 illustrates how the state of the DTMC evolves in a single time step; when we construct the
model, we do so over a finite horizon for a specified number of time steps. The grey circles are states of
the DTMC, from time step k on the left-hand side to time step k+1 on the right-hand side. The white
circles are intermediate states which we create when constructing the Markov chain but then collapse to
save storage. The intermediate transitions between these states correspond to the three updates explained
above, and are labelled with the corresponding functions system, measure and filter. Notice that there
are no cyclic dependencies in these updates, so the DTMC takes the form of a directed acyclic graph. As
mentioned above, the filter update is deterministic, so is represented by a single transition in Figure 1.
The transitions labelled with system and measure represent the result of stochastic noise, with the different
possible outcomes represented by the branches of the DTMC. These are discretised into a finite number of
possible values, which we now describe in more detail.

Noise discretisation. The number of outgoing transitions and their probability values are determined by a
granularity level of the noise, which we denote gLevel. The Gaussian distribution of the noise is discretised
into gLevel disjoint intervals. The intervals used for each granularity level are shown in Table 1.

The measure used to determine these intervals is the standard deviation σ, which is a common practice
in statistical contexts; see for example the so-called 68 − 95 − 99.7 rule, which states that, assuming the
data are normally distributed, then 68%, 95% and 99.7% of them will fall between one, two and three
standard deviations of the mean, respectively. This statement can be expressed probabilistically as well by
computing the cumulative distribution function (CDF) of a normally distributed random variable X, usually
by converting it to its standard counterpart and using the so-called standard normal tables. While computing
the probability that a noise value will fall inside an interval is relatively easy, the computation of its expected
value is slightly more difficult. This is because we can choose to either truncate the distribution to intervals
which contain the mean value of the distribution, which is the easier case, or to intervals which do not.

Usually, for those cases, one might use a simple heuristic such as dividing the sum of the two endpoints of
the interval by two, which is actually quite common. However, this might not be representative of the actual
expected value since it does not weigh the values lying inside the interval according to the corresponding
value of the density correctly. In other words, since the mean is also interpreted as the “centre of gravity”
of the distribution [BT08], in the case of truncated intervals which do not contain the mean, more accurate
techniques are needed.

The probabilities of the Markov chain for a given granularity level are computed by first standardising the
random variable, the noise in our case, and then evaluating its CDF at the two endpoints of the corresponding
interval. Then, by subtracting them, we obtain the probability that it will fall within a certain interval.

Once the probabilities have been computed, it remains to find the expected value of the random variable
for the corresponding intervals. In order to avoid the situation described earlier, and obtain the mean in a
more accurate way, we have used the truncated normal distribution to compute the mean for the respective
intervals. Formally, if a random variable X is normally distributed and lies within an interval [a, b], where
−∞ ≤ a ≤ b ≤ +∞, then X conditioned on a < X < b has a truncated normal distribution. The probability
density function (PDF) of a normal truncated random variable X is characterised by four parameters: (i-ii)
the mean µ and standard deviation σ of the original distribution and (iii-iv) the lower and upper truncation
points, a and b. Compactly, the mean value of the noise for a corresponding interval can be expressed as the

10 A. Evangelidis and D. Parker

conditional mean, E[X|a < X < b], given by the following formula [JKB94]:

E[X|a < X < b] = µ+ σ
φ(a−µσ)− φ(b−µσ)

Φ(b−µσ)− Φ(a−µσ)
(7)

Note that in the expression above, φ and Φ denote the PDF and CDF of the standard normal distribution,
respectively. Also note that the denominator has already been computed in the previous step, when the
transition probabilities were computed. As a result, the computation of the transition probabilities and the
conditional mean values for each of the corresponding intervals can be done in a unified manner.

Example. We illustrate the DTMC modelling of a conventional Kalman filter with an example. For this, we
use a kinematic system model which is currently 5 metres away from the origin, moving with a velocity of 5
metres per second, and which is perturbed by noise having a normal distribution with µ = 0 and σ2 = 0.025.
The sensor, which is assumed to be more accurate, is also perturbed by normally distributed noise with µ = 0
and σ2 = 0.01. The task of the Kalman filter is to estimate the system model’s state vector, comprising both
its position and velocity. It only directly observes (measures) the position, but will also be able to derive an
estimate of the velocity.

In order to construct the Markov chain, assuming a granularity level of gLevel=3 and the noise values
for µ and σ2 defined earlier, the first step is to compute the transition probabilities for the given gLevel
value, as has been described above. For example, for the interval [−2σ,+2σ], the probability that a random
variable (e.g., noise), denoted by X, will fall inside this interval is computed as follows:

P (−2σ ≤ X ≤ +2σ) = Φ(X < +2σ)− Φ(X < −2σ) ≈ 0.9545 (8)

Similarly, the probabilities for the other two intervals ([−∞,−2σ] and [+2σ,+∞]) are both approximately
0.02275, since P (X ≤ −2σ) = P (X ≥ +2σ). Next, we consider the computation of the mean noise value,
which denotes the amount of noise by which the system model is perturbed. For the interval [−2σ,+2σ],
this is already known to us (it is 0), because the mean is contained in the interval considered. However, for
the sake of this example it is also computed. This is expressed as the conditional mean of X given that it
can only take values inside this interval, using Equation 7:

E[X|a < X < b] = µ+ σ
φ(a−µσ)− φ(b−µσ)

Φ(b−µσ)− Φ(a−µσ)
= 0 + 0.158

0.05− 0.05

0.977− 0.022
= 0 (9)

The mean noise values of the other two intervals are computed in a similar manner.
Figure 2 shows a fragment of the DTMC modelling this Kalman filter. For clarity, we use the same

format as Figure 1, including intermediate states, shown in white, which are later removed, leaving only the
grey states. As described above, each state of the Markov chain is of the form (k, x, z, x̂, f). More precisely,
in this example: x̂ is x̂+k , the a posteriori state estimation vector at time k; and f , which represents any
variables needed by the Kalman filter, is just the a posteriori estimation-error covariance matrix P+

k . In the
initial state, at time step k = 0, we have: a system state (position and velocity) of x = [5 5]T ; z = 0 and
x̂ = x̂+k = [0 0]T , since no measurement has yet occurred; and f = P+

k = 10 · I, since there is no information
about the correlation between state variables.

From this initial state, there are gLevel=3 transitions, representing the system updates described earlier.
This updates x according to the left part of Equation (1), i.e.:

x1 = Fx0 + w =

[
1 1
0 1

]
[5 5]T + w (10)

The three transitions are labelled with the probabilities 0.02275, 0.9545 and 0.02275, representing the cases
where the process noise w is−0.375, 0 and +0.375, respectively, as computed above. Next, there are gLevel=3
transitions for the measure updates, setting z according to the right part of Equation (1):

z1 = Hx1 + v = [1 0] x1 + v (11)

The transition probabilities are as for the first step, but represent now the possible values for measurement
noise v: −0.237, 0 and +0.237.

Lastly, the (deterministic) filter steps occurs, which update x̂+ and P+ as described in Equations (2)
to (6) in Section 2.1. At this point, the innovation yk and the innovation covariance Sk are computed.

Quantitative Verification of Kalman Filters 11

k = 0

x =

[
5
5

]
z = 0

x̂ =

[
0
0

]
P =

[
10 0
0 10

]

k = 0

x =

[
10.375
5.375

]
z = 0

x̂ =

[
0
0

]
P =

[
10 0
0 10

]

k = 0

x =

[
10
5

]
z = 0

x̂ =

[
0
0

]
P =

[
10 0
0 10

]

k = 0

x =

[
9.625
4.625

]
z = 0

x̂ =

[
0
0

]
P =

[
10 0
0 10

]

k = 0

x =

[
10
5

]
z = 10.237

x̂ =

[
0
0

]
P =

[
10 0
0 10

]

k = 0

x =

[
10
5

]
z = 10

x̂ =

[
0
0

]
P =

[
10 0
0 10

]

k = 0

x =

[
10
5

]
z = 9.763

x̂ =

[
0
0

]
P =

[
10 0
0 10

]

k = 1

x =

[
10
5

]
z = 10.237

x̂ =

[
10.2319
5.1202

]
P =

[
0.0100 0.0050
0.0050 5.0171

]

k = 1

x =

[
10
5

]
z = 10

x̂ =

[
9.995
5.0017

]
P =

[
0.0100 0.0050
0.0050 5.0171

]

k = 1

x =

[
10
5

]
z = 9.763

x̂ =

[
9.7581
4.8831

]
P =

[
0.0100 0.0050
0.0050 5.0171

]

0.02275

0.9545

0.02275

0.02275

0.02275

0.9545

1

1

1

Fig. 2. Illustration of the construction of the DTMC modelling a conventional Kalman filter.

These variables will be needed for the computation of the Kalman gain Kk. The a priori estimation-error
covariance matrix P−k is also computed and used here. The measurement noise covariance matrix Rk, also
used to compute Kk, is here the scalar 0.01 since we assume normally perturbed noise with σ2 = 0.01.

For the three example transitions shown in the right-hand part of Figure 2, the innovation y1 is the same
as the measurement z1, since the filter’s a priori state estimate x̂−1 is zero; both take the value 10 since the
measurement had zero noise on this branch. Consider the transition to the middle of the three grey states.
The a posteriori state estimate is computed as follows:

x̂+1 = x̂−1 +K1y1 =

[
0
0

]
+

[
0.99950
0.50017

]
[10] =

[
9.995
5.0017

]
(12)

and the a posteriori estimation-error covariance matrix is:

P+
1 = (I −K1H)P−1 =

([1 0
0 1

]
−
[
0.99950
0.50017

]
[1 0]

) [20.0083 10.0125
10.0125 10.0250

]
=

[
0.0100 0.0050
0.0050 5.0171

]
(13)

12 A. Evangelidis and D. Parker

3.2. Verification of Numerical Stability

Next, we discuss how to capture numerical stability properties for our Kalman filter models (see the
earlier summary in Section 2.3) using the probabilistic temporal logic [FKNP11] of the PRISM model
checker [KNP11]. See Section 2.6 for a description of the logic and [FKNP11] for full details.

Verifying positive definiteness. In order to analyse this property, we perform an eigenvalue-eigenvector
decomposition of P+ into the matrices [V,D]. The eigenvalues are obtained from the diagonal matrix D,
and their positivity is determined and used to label each state of the Markov chain accordingly: we use an
atomic proposition isPD for states in which P+ is positive definite. We can then specify the probability that
the matrix remains positive definite for the duration of execution of the filter using the formula P=?[G isPD].

Examining the condition number of the estimation-error covariance matrix. The verification of
certain numerical properties, such as those related to positive definiteness, is a challenging task and should
be treated with caution. This is because, while convenient, focusing the verification on whether an event
will occur or not, might not capture inherent numerical difficulties related to the numerical stability of state
estimation algorithms. In other words, it does not suffice to check whether P+ is positive definite or not by
checking its eigenvalues because, as mentioned earlier, if they are in close proximity to zero, then round-off
errors could cause them to become negative [GA14].

For example, it is often the case that estimation practitioners want to detect matrices that are close to
becoming singular, a concept which is often referred to as “detecting near singularity” [Bie77]. In other words,
since a positive definite matrix is nonsingular, one wants to determine the “goodness” of P+ in terms of its
“closeness” to singularity, within some level of tolerance, usually the machine precision [GA14]. A matrix
is said to be well-conditioned if it is “far” from singularity, while ill-conditioned describes the opposite. In
order to quantify the goodness of P+, we use the so-called condition number, which is a concept used in
numerical linear algebra to provide an indication of the sensitivity of the solution of a linear equation (e.g.,
Ax = b), [GA14, May82a]. In our case, this concept is used to obtain a measure of the goodness of P+.

The condition number of P+ is given as κ(P+) = σmax/σmin, where σmax and σmin are the maximum and
minimum singular values, respectively [Gib11, May82a]. These can be obtained by performing the singular
value decomposition (SVD) of P+. A “small” condition number indicates that the matrix is well-conditioned
and nonsingular, while a “large” condition number indicates the exact opposite. Note that the smallest
condition number is 1, when σmax = σmin.

We express this property as the formula Rcond=? [I=k], which gives the expected value of the condition
number after k time steps. We assign the condition number to each state of the DTMC using a reward
function cond and we set k to be maxTime, the period of time for which we verify the filter.

Providing bounds on numerical errors. Another useful aspect of the condition number is that it can be
used to obtain an estimate of the precision loss that numerical computations could cause to P+. For instance,
for a single-precision and a double-precision floating-point number format, the precision is about 7 and 16
decimal digits, respectively. Since our computations take place in the decimal number system, the logarithm
of the condition number (e.g., log10(κ(P+))), gives us the ability to define more concretely when a condition
number will be considered “large” or “small” [BS87, May82a, Sim06]. For example, log10(κ(P+)) > 6 and
log10(κ(P+)) > 15 could indicate possible numerical problems in the estimation-error covariance computation
and render P+ ill-conditioned when implemented in a single and a double precision floating-point number
format, respectively.

So, to verify this property we construct a closed interval whose endpoints will be based on the appropriate
values of the numerical quantity of log10(κ(P+)). This lets us label states whose value of log10(κ(P+)) will
fall within “acceptable” values in the interval, when, for instance, double precision is used. We then use the
property P=?[G isCondWithin], in a similar fashion to the first property above, where isCondWithin labels
the “acceptable” states. A probability value of less than 1 should raise an alarm that numerical errors may
be encountered.

3.3. Verification of Modelling Error Compensation Techniques

In this section, we discuss how to to quantitatively analyse a second aspect of the effectiveness of Kalman
filters: the detection of filter divergence in the presence of modelling errors (see the earlier discussion in

Quantitative Verification of Kalman Filters 13

Section 2.4). Quantitative verification is used to verify consistency properties of Kalman filters. This can
be used to drive the so-called filter tuning process, which optimises parameters of the filter, and produce
guarantees on the chosen parameter values.

Verifying that the innovation is bounded by its variance. We consider two statistical tests. In the
first, we verify that the fraction of times that the innovations (see Section 2.1) fall within two standard
deviations (≈ 1.96

√
S) of the mean is at least 95%. In order to express this property as a temporal logic

formula, we use a reward function inRange, which assigns a reward of 1 to the states in which the value of
the innovation yk falls within two standard deviations, and 0 otherwise.

Then, the reward-based property used to verify that 95% of the times the inRange reward falls within two
standard deviations, is expressed as a formula of the form the RinRange

=? [C≤maxTime]. The result of the reward
is then compared to a bound, which is determined upon the maximum time the model runs. This bound is
computed as the product of 0.95 with the maxTime variable, taking into consideration that measurements
are processed as scalars. For instance, if the model runs for 20 time steps, the bound on the reward will be
19 (0.95× 20), since 19/20 ≈ 95%.

In our case, we assume that there are no measurements available during the first two time steps. The
reason is due to the way we index time, starting from 0, since the first two states are used in the initialisation
of the Markov chain. This means that when the model runs for 20 time steps (i.e. maxTime=20), the bound
which should be exceeded by the result of the inRange reward, is ≈ 17. As a result, if the result of the
formula is a value less than 17, then this is an indication that the Kalman filter is inconsistent.

Verifying that the magnitude of the innovations is proportionate to the covariance. The second
statistical test we consider revolves around the concept of hypothesis testing, in which the null hypothesis H0

describes the status quo or the default theory [Was10], and the alternative hypothesis H1 the exact opposite.
The overall concept of hypothesis testing is to test H0 against H1 and decide whether to reject H0, based
on the “amount” of evidence we acquire from the data, which in our case corresponds to the measurements
emitted at each time step. It is important to note that there does not exist any symmetry between H0 and
H1, meaning that failure to obtain the required evidence, does not imply that H0 is true, rather than the fact
that enough evidence has not been acquired to reject it. In our context, the null hypothesis H0 states that
the Kalman filter is consistent, or more specifically that the magnitude of the innovations yk is proportionate
to the covariance computed by the Kalman filter. Furthermore, the alternative hypothesis, H1, describes the
hypothesis that the Kalman filter is inconsistent.

The statistic that we structure the statistical test around is the so-called normalised innovation squared
(NIS) [BSL01], given as: ε2yk = yTk S

−1yk. Formally, a statistic is a function of the data, and since it is a

random variable it has a certain distribution [Was10]. Note that ε2yk conforms totally to the formal definition

of a statistic, since ε2yk is a random variable, it can be expanded to:

ε2yk =
(
zk −Hx̂−k

)T [
HP−k H

T +Rk
] (
zk −Hx̂−k

)
(14)

and it follows a χ2 distribution. However, since the information at a particular time instant k might not be
sufficient to draw reliable conclusions, [BSL01] proposed that the average of K time steps should be taken
into account. Therefore, the statistic we consider is the time-average normalised innovation squared, given

by ε̄2yk = 1
K

∑K
i=1 ε

2
yk

.
Under the assumption that H0 has been retained, or in other words that there is no sufficient evidence

to declare the Kalman filter as inconsistent, Kε̄2yk is χ2 distributed with Kn degrees of freedom, where n is
the dimension of the measurement vector [BSL01, Rei01]. Note that the χ2 distribution, unlike the Gaussian
distribution, is indexed by one integer parameter, the degrees of freedom. We fail to reject H0 as long as
ε̄2yk ∈ [r1, r2], where the confidence region is defined as Pr

{
ε̄2yk ∈ [r1, r2] | H0

}
= 1−α, and the significance

level α is set to 0.05 as before. In general, a confidence region, or a confidence interval for the univariate
case, of a level 1 − α where α = 0.05, defines a 95% interval in which we expect the unknown value of the
parameter we try to estimate, in this case the NIS, to fall within this interval with probability at least 95%.

In other words, α = 0.05 represents the probability of making a type I error (a false positive decision), by
rejecting the null hypothesis when it is true. A type I error in our case means that we incorrectly declare the
Kalman filter as inconsistent, and a level α = 0.05 defines an upper bound on the probability of committing
such an error. For example, assuming 40 time steps (K = 40) and a one-dimensional measurement vector, the
two-sided confidence region for the χ2

40 variable is [χ2
40(0.025), χ2

40(0.975)], which is defined as [24.433, 59.342].

14 A. Evangelidis and D. Parker

Table 2. User inputs for each of the models

Input Description Used in Type

x̂+0 A posteriori state estimate vector Filter RealVector

P+
0 A posteriori estimation-error covariance matrix Filter RealMatrix
x State vector System RealVector
w Process noise vector System RealVector
v Measurement noise vector System RealVector
F State transition matrix Shared RealMatrix
Q Process noise covariance matrix Filter RealMatrix
H Measurement matrix Shared RealMatrix
R Measurement noise covariance matrix Shared RealMatrix
gLevel Granularity of the noise Shared int
decPlaces Number of decimal places Shared int
maxTime Maximum time the model will run Shared int
filterType Type of filter variant Shared int

Then, since we want to test whether the time-average normalised innovation squared statistic falls within
the interval we divide the lower (r1) and upper (r2) endpoints by the number of time steps, in this case
K = 40, to obtain the following interval: [0.6108, 1.4835]. For instance, if ε̄2yk = 0.85, hypothesis H0 is not
rejected (i.e., H0 is retained), and if it falls outside of the above region (e.g., ε̄2yk = 2.67), H0 is rejected.

The aforementioned statistical test is constructed by specifying a formula of the form R
nis avg
=? [C≤maxTime].

First, a formula nis is used which calculates the normalised innovation squared statistic. Then, we define a
reward function nis avg which divides the accumulated result obtained from the previous formula, nis, by
the maximum time the model runs, and assigns the result to the states of the model. In each transition the
cumulative reward is updated and when it reaches the terminal state, the time-average normalised innovation
squared statistic (nis avg) is obtained. The terminal state of the model is defined by the predicate t=maxTime.
Note that the time-average normalised squared value is obtained by dividing by (maxTime - 2), rather than
by maxTime. This is because we do not want to take into account in the computation the values of the initial
states of the model (when t = 0 or when t = 1). The value of (maxTime - 2) essentially defines the degrees
of freedom of the χ2 distribution, which means that when maxTime=20, the lower and upper bounds are
computed for 18 degrees of freedom.

4. Tool Support: VerFilter

Next, we provide some details about the tool, VerFilter, which is the software implementation of the frame-
work defined in Section 3. The VerFilter tool is written in the Java programming language in order to
be seamlessly integrated with the PRISM libraries, which are also mostly written in Java. The tool and
supporting files for the results in the next section are available from [Sup].

VerFilter Inputs. In Table 2 we show the user inputs available to VerFilter, distinguishing which of those
refer to the system and measurement model, which refer specifically to the filter models and which are shared
between them. The RealVector and RealMatrix shown in Table 2 are implemented as one-dimensional and
two-dimensional arrays of type double, respectively. VerFilter also takes as inputs four extra parameters:
(i) gLevel, which takes an integer between 2 and 6, and has been discussed in Section 3.1; (ii) decPlaces,
which allows the user to specify an integer between 2 and 15, the number of decimal places to which the
numerical values used in the computations will be rounded; (iii) maxTime, which is an integer and determines
the maximum time the model will run; and (iv) filterType, which is the type of filter to be executed.

VerFilter Algorithms. In this paper, we focus on four filter variants: the conventional Kalman filter
(CKFilter), the Carlson-Schmidt square-root filter (SRFilter), the Bierman-Thornton U-D filter (UDFilter)
and the steady-state Kalman filter (SSFilter). In VerFilter, several of the numerical linear algebra com-
putations for implementing Kalman filters are done using the Apache Commons Math library [apa], while
other parts have been manually implemented. In CKFilter, for example, the library is used for “basic”
matrix operations and for the eigen and singular value decomposition of P . For SRFilter, algorithms im-

Quantitative Verification of Kalman Filters 15

plemented manually include the upper-triangular Cholesky factorisation and Carlson’s measurement update
with Schmidt’s time update using Householder transformations.

5. Experimental Results

We now illustrate results from the implementation of our techniques on the four filters mentioned above.
For the system models in our experiments, we use two distinct kinematic state models which describe the
motion of objects as a function of time. For the first, the discrete white noise acceleration model (DWNA),
the initial estimation-error covariance matrix P+

0 is defined as 10·I. Defining P+
0 as a diagonal matrix is quite

common, since it is initially unknown whether the state variables are correlated to each other. The process
noise covariance matrix is given by Q = Γσ2

wΓT where the noise gain matrix Γ = [12∆t2 ∆t]T is initialised by

setting the sampling interval ∆t to 1, which results in Γ = [0.5 1]T . The variance σ2
w is set to 0.001 initially.

For the second model, the continuous white noise acceleration model (CWNA), σ2
w is initially set to 0.001.

Note that each of these models results in a different process noise covariance matrix Q. For more details on
these models, see [Sup]. Apart from the experiments described in Section 5.3, where we investigate efficiency
and scalability, we fix the noise discretisation granularity at gLevel=2.

5.1. Verification of Numerical Stability

Condition numbers. In the first set of experiments, results for which are shown in Figure 3, we analyse
the condition numbers of P+ for the conventional (CKFilter) and U-D (UDFilter) filters, and C+ for the
square-root filter (SRFilter). This is in order to verify that P+, or the matrices which constitute P+, remain
well-conditioned in terms of maintaining their nonsingularity as they are being propagated forward in time
(as discussed in Section 3.2). Note that, for the U-D filter, we verify the reconstructed matrix P+ at a
specific time step, while for the square-root filter, we use the Cholesky factor C+. We check this property
while varying two parameters. The first is the numerical precision in terms of the number of decimal places,
which we vary from 3 to 6 inclusive. The second is the time horizon of the model, which in our case is
measured in discrete time steps and is varied from 2 to 20.

Our goal is twofold. Firstly, we examine whether an increase in numerical precision has a meaningful effect
on how accurately the condition number is computed. This is important since, as we show in Section 5.3,
a decrease in the numerical precision usually makes verification more efficient. Being able to consider an
appropriate threshold above which an increase in the numerical precision will not have an effect on the
property to be verified can determine the applicability of these verification mechanisms in realistic settings.
Secondly, we examine whether letting the model evolve for a greater amount of time could have an impact
on the property that is being verified.

The first observation for the CKFilter as shown in Figures 3a and 3b is that the increased numerical
precision actually affects the verification result. For example, we note that for maxTime values in the range of
4−20, when the input to our model for the numerical precision is 3 decimal places, the instantaneous reward
jumps to infinity. An infinite reward in this case means that the condition number of P+ is ≈ 1.009e+16,
which practically means that P+ is “computationally” singular and consequently positive definiteness is
not being preserved. This is in contrast to the result obtained for both the SRFilter and UDFilter, where
positive definiteness is preserved, irrespective of the numerical precision and the value of maxTime used. For
the SRFilter, as shown in Figures 3c and 3d, the highest reward value is ≈ 70, while for the UDFilter,
Figures 3e and 3f, it is ≈ 5000. This means that the positive definiteness property of P+ is maintained
throughout the execution of these two types of filters, and the increase in the numerical precision did not
have any significant effect on the propagated matrix P+.

On the other hand, for the CKFilter, positive definiteness is preserved when we increase the numerical
precision to a value > 4, and the instantaneous reward assigned to the states fluctuates around small values
close to zero. Another interesting observation is that, for the three filters considered, the instantaneous
rewards stabilise to a value of ≈ 2, irrespective of whether the numerical precision is 4, 5 or 6. In fact,
for the three filter variants, the actual absolute difference of the rewards over the states in which positive
definiteness is preserved between a numerical precision of 5 and 6 decimal places, is ≈ 0.1.

Filter tuning. In the second set of experiments, we consider CKFilter and SRFilter, while the system

16 A. Evangelidis and D. Parker

0

5000

R
{"

c
o

n
d

"}
=

?
 [

I=
m

a
x
T

im
e

]

CKFilter

0 2 4 6 8 10 12 14 16 18 20

Time horizon(maxTime)

(a) 3 decimal places

0

1000

2000

3000

4000

5000

R
{"

c
o

n
d
"}

=
?

 [
I=

m
a
x
T

im
e

]

CKFilter

0 2 4 6 8 10 12 14 16 18 20

Time horizon(maxTime)

(b) 4 - 6 decimal places

0

70

100

R
{"

c
o

n
d

"}
=

?
 [

I=
m

a
x
T

im
e

]

SRFilter

0 2 4 6 8 10 12 14 16 18 20

Time horizon(maxTime)

(c) 3 decimal places

0

70

100

R
{"

c
o
n
d
"}

=
?
 [
I=

m
a
x
T

im
e
]

SRFilter

0 2 4 6 8 10 12 14 16 18 20

Time horizon(maxTime)

(d) 4 - 6 decimal places

0

5000

R
{"

c
o

n
d

"}
=

?
 [

I=
m

a
x
T

im
e

]

UDFilter

0 2 4 6 8 10 12 14 16 18 20

Time horizon(maxTime)

(e) 3 decimal places

0

5000

R
{"

c
o

n
d

"}
=

?
 [

I=
m

a
x
T

im
e

]

UDFilter

0 2 4 6 8 10 12 14 16 18 20

Time horizon(maxTime)

(f) 4 - 6 decimal places

Fig. 3. Condition number of P+ over time under various degrees of precision.

Quantitative Verification of Kalman Filters 17

0 0.2 0.4 0.6 0.8 1 1.2 1.4

2

w

10 2

10 3

R
{"

c
o

n
d

"}
=

?
 [

I=
2

0
]

CKFilter

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

2

w

10

15

20

25

30

R
{"

c
o

n
d

"}
=

?
 [

I=
2

0
]

SRFilter

(b)
Fig. 4. Verifying the goodness of P+

model is a continuous white noise acceleration kinematic model. Our goal is to examine how VerFilter can
be used to examine heuristic-based approaches and ad-hoc methods such as artificial noise injection in terms
of their usefulness in correcting potential numerical problems in P+. This is also helpful in situations where
it is challenging to determine the elements of Q, by performing an automatic search over those values which
will produce an optimal performance, in this case in terms of the numerical robustness of P .

To this end, we verify whether P+ will remain well-conditioned or not, by varying the elements of Q.
Similar to the first set of experiments we verify C+ directly. For both of the filters, the noise variance σ2

w,
which determines the elements of Q, is the input to our model, P+ (and C+) is being verified against. We
do not vary the maximum time; rather, we let the Markov chain evolve to a fixed maxTime= 20 time steps,
which corresponds to ≈ 1× 106 states. Also, the numerical precision is fixed to 3 decimal places.

Figure 4 shows the effects of increasing the variance of the noise by small increments, which is then
multiplied with the elements of Q, for the CKFilter and the SRFilter, respectively. The first point of the
plot (0.1, 1000) in Figure 4a, means that for a value of σ2

w = 0.1, the corresponding instantaneous reward
which corresponds to the condition number of P+ in a set of states where maxTime=20, is 1000. Similarly,
the first point of the plot (0.1, 70) in Figure 4b, implies that the corresponding instantaneous reward for
C+ for a maxTime=20 is ≈ 70. For both of the filter types, a similar trend is observed. As we increase σ2

w,
the reward values decrease which implies an increase on the “quality” of P+s. In the end, the reward values
reach a condition number of ≈ 43 and ≈ 1.94 for the two filters, respectively.

For this specific case, the optimal value is σ2
w = 1.3 for both filters. For CKFilter in particular, it is

important to check, when performing verification on Markov chains whose trajectories evolve over multiple
states, that the positive definiteness of P+ is not destroyed between successive states (i.e., successive time
steps). To this end, it is advisable to use a property of the form P=?[G isPD] and reject models in which this
is not satisfied with probability one.

Filter comparison. In Table 3, we compare three of the Kalman filter variants available in VerFilter:
CKFilter, SRFilter and UDFilter. In this set of experiments, the setup is similar to the first one in terms
of the system model and the filter parameters used. First, our purpose is to demonstrate the correctness
of our approach by comparing the condition numbers of P+ and C+ between the three filter types. For
instance, when the positive definiteness property is not violated, and as the reward values begin to converge
to certain values, then the difference of the condition number of P+ between CKFilter and UDFilter should
be small. The same can also be said for the difference between the condition number of P+ of CKFilter
(and UDFilter), and the squared value of the condition number of C+ of SRFilter. For example, one can
quickly observe in Table 3 that the reward values of CKFilter are nearly the same as the respective values
of UDFilter. In particular, as the time horizon increases, the values of these two filters become equal to each
other. Similarly, one can observe that the squared reward values of SRFilter are approximately the same
as the reward values obtained for the other two filters. For instance, for a numerical precision of 6 decimal
places and a maxTime value of 10, the reward value for SRFilter is RcondI=10 = 1.966205. Squaring this gives
1.9662052 ≈ 3.866, which is a very close approximation to the reward values of the other two filters.

18 A. Evangelidis and D. Parker

Table 3. Performance comparison between three filter variants.

decPlaces CKFilter SRFilter UDFilter CKFilter SRFilter UDFilter

P=?[G isPD] P=?[G isPD] P=?[G isPD] Rcond=? [I=maxTime] Rcond=? [I=maxTime] Rcond=? [I=maxTime]

3,maxTIme=2 1 1 1 5001 69.875 5000
3,maxTIme=3 1 1 1 6.854102 2.479506 3.472570
3,maxTIme=4 0 1 1 +∞ 2.016643 2.370931
3,maxTIme=5 0 1 1 +∞ 1.943289 2.200921
3,maxTIme=6 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=7 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=8 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=9 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=10 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=11 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=12 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=13 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=14 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=15 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=16 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=17 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=18 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=19 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=20 0 1 1 +∞ 1.943289 2.192302

4,maxTIme=2 1 1 1 5001 70.768988 5000.800100
4,maxTIme=3 1 1 1 6.376508 2.505185 6.784395
4,maxTIme=4 1 1 1 3.439411 2.040158 4.519086
4,maxTIme=5 1 1 1 3.614225 1.939357 3.907120
4,maxTIme=6 1 1 1 3.614225 1.951946 3.866359
4,maxTIme=7 1 1 1 3.614225 1.964276 3.866359
4,maxTIme=8 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=9 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=10 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=11 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=12 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=13 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=14 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=15 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=16 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=17 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=18 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=19 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=20 1 1 1 3.614225 1.962769 3.866359

5,maxTIme=2 1 1 1 5001.060113 70.722645 5000.810100
5,maxTIme=3 1 1 1 6.307259 2.507737 6.322909
5,maxTIme=4 1 1 1 4.164446 2.031345 4.116405
5,maxTIme=5 1 1 1 3.758763 1.932001 3.801081
5,maxTIme=6 1 1 1 3.866359 1.954296 3.852360
5,maxTIme=7 1 1 1 3.866359 1.966188 3.866359
5,maxTIme=8 1 1 1 3.866359 1.966978 3.866359
5,maxTIme=9 1 1 1 3.866359 1.966224 3.866359
5,maxTIme=10 1 1 1 3.866359 1.966224 3.866359
5,maxTIme=11 1 1 1 3.866359 1.966224 3.866359
5,maxTIme=12 1 1 1 3.866359 1.962769 3.866359
5,maxTIme=13 1 1 1 3.866359 1.962769 3.866359
5,maxTIme=14 1 1 1 3.866359 1.962769 3.866359
5,maxTIme=15 1 1 1 3.866359 1.962769 3.866359
5,maxTIme=16 1 1 1 3.866359 1.962769 3.866359
5,maxTIme=17 1 1 1 3.866359 1.962769 3.866359
5,maxTIme=18 1 1 1 3.866359 1.962769 3.866359
5,maxTIme=19 1 1 1 3.866359 1.962769 3.866359
5,maxTIme=20 1 1 1 3.866359 1.962769 3.866359

6,maxTIme=2 1 1 1 5001.062113 70.720408 5000.812100
6,maxTIme=3 1 1 1 6.292646 2.507687 6.283849
6,maxTIme=4 1 1 1 4.129379 2.031178 4.125259
6,maxTIme=5 1 1 1 3.735914 1.931918 3.732897
6,maxTIme=6 1 1 1 3.831732 1.954872 3.820638
6,maxTIme=7 1 1 1 3.874810 1.966389 3.868675
6,maxTIme=8 1 1 1 3.866359 1.966605 3.867762
6,maxTIme=9 1 1 1 3.866359 1.966262 3.866359
6,maxTIme=10 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=11 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=12 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=13 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=14 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=15 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=16 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=17 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=18 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=19 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=20 1 1 1 3.866359 1.966205 3.866359

Quantitative Verification of Kalman Filters 19

The superiority of SRFilter and of UDFilter compared to CKFilter is demonstrated when the numerical
precision is 3 decimal places and mainly from the fact that, for the same set of parameters, the numerical
robustness of P+ is preserved. This can be seen by comparing the computed results of the reward-based
properties as shown in the fifth, sixth and seventh columns of Table 3. We note that, for a numerical precision
of 3 decimal places, when choosing CKFilter, the reward value shoots up to +∞, representing a covariance
matrix in which the positive definiteness property is destroyed, while in the SRFilter and UDFilter cases, the
corresponding reward values settle around the small values of 1.94 and 2.20, respectively. This is also evident
by observing the second, third and fourth columns of Table 3, which tell us whether the isPD invariant will
be maintained in all states of the model. Notably, the positive definiteness property in CKFilter does not
hold for every state, in fact the probability is zero, while for SRFilter the positive definiteness property
holds for every state with probability one.

Moreover, when the numerical precision is increased in the range of 4−6 decimal places, the performance
of the three filters in terms of the numerical stability of P+ is roughly the same, and the positive definiteness
property of P+ is maintained in every state considered. One can also note that the reward values of CKFilter
and of SRFilter converge to the same value for a numerical precision ≥ 5 decimal places.

5.2. Verification of Consistency Properties

In this section, we focus on verifying the so-called consistency of the conventional (CKFilter) and of the
steady-state Kalman filters. The consistency criteria of these two different Kalman filter variants are verified
under a wide range of different process noise covariance matrices. These criteria are specified in the form of
properties, and have been described in Section 3.3. The system model is defined as a continuous white noise

acceleration kinematic model, and its noise covariance matrix is initially defined as Q =

[
1
3∆t3 1

2∆t2
1
2∆t2 ∆t

]
σ2
w.

The sampling interval, ∆t, is set to 1, and the measurement noise variance R to 10.
Alternatively, our goal can be described as verifying the process noise covariance matrix tuning, as an

effective filter tuning technique for finding “optimal” noise covariance matrices in terms of satisfying the
respective consistency criteria. In particular, we analyse by how much the elements of the process noise
covariance matrix should be scaled. Before each one of the Kalman filter variants is passed as an input
to VerFilter, to handle the creation of the probabilistic model, their process noise covariance matrices are
multiplied by the variance of noise that perturbs the system model (i.e., σ2

w). Then, we vary σ2
w over a range

of values verify certain consistency properties.
In our experiments, we vary σ2

w between 0.001 and 5.5 inclusive. From 0.001 to 0.1 and from 0.1 to 5.5,
the σ2

w value is increased in increments of 0.001 and 0.1, respectively. This results in 135 different process
noise covariance matrices that the conventional and the steady-state Kalman filters are verified against.
Furthermore, since the impact of the numerical precision, in terms of the number of decimal places, on the
verification result is also of interest, the decPlaces value is also varied between 3 and 6 inclusive. It is
important to state again the two important preconditions of controllability and observability, which have to
be satisfied before the verification of the steady-state Kalman filter can begin.

We first present our verification results for the conventional and steady-state Kalman filters. In the first
set of experiments, we verify the consistency of these two filter types, for noise variance (σ2

w) values in the
range [0.001, 0.1]. The first property we verify is whether the magnitude of innovation is bounded by its
variance 95% of the time. Figure 5 shows the expected number of states, for the two filter variants, in which
the value of the innovation falls between two standard deviations of the mean, for different σ2

w values. This
illustrates the impact of tuning the process noise covariance matrix on the “quality” of the filters considered.
The parameters decPlaces and maxTime are set to 3 and 20, respectively. As explained in Section 3.3, for
maxTime= 20, the value of the 95% lower bound we are seeking is 17.

Looking at the results, we note that, for the minimum noise variance value considered, σ2
w = 0.001, the

expected value of the inRange reward is 7 (i.e., ≈ 39%) and 4 (i.e., ≈ 22%) for the conventional and the
steady-state Kalman filters, respectively. However, these values fall far from the 95% bound we are seeking
to satisfy. Moreover, as noise, in increments of 0.001, is injected in the two filters, the inRange reward
values steadily increase, and reach a value of 8 and 7 for the conventional and steady-state Kalman filter,
respectively. This happens when the process noise covariance matrices are constructed by setting a maximum
value of σ2

w, for this set of experiments, that is 0.1. The inRange reward values computed for the two filter
variants tell us that the number of times the value of the innovations falls within ±2

√
Sk, between a σ2

w

20 A. Evangelidis and D. Parker

0 0.02 0.04 0.06 0.08 0.1

2

w

6.5

7

7.5

8

8.5

R
{"

in
R

a
n

g
e

"}
=

?
 [

C
<

=
m

a
x
T

im
e

] CKFilter

(a)

0 0.02 0.04 0.06 0.08 0.1

2

w

3

4

5

6

7

R
{"

in
R

a
n

g
e

"}
=

?
 [

C
<

=
m

a
x
T

im
e

] Steady-state Kalman filter

(b)

Fig. 5. Expected number of states in which the innovation falls between two standard deviations of the mean.

0 0.02 0.04 0.06 0.08 0.1

2

w

0

5

10

15

20

25

R
{"

n
is

_
a

v
g

"}
=

?
 [

C
<

=
m

a
x
T

im
e

]

CKFilter

(a)

0 0.02 0.04 0.06 0.08 0.1

2

w

0

10

20

30

40

50

60

R
{"

n
is

_
a

v
g

"}
=

?
 [

C
<

=
m

a
x
T

im
e

]
Steady-state Kalman filter

(b)

Fig. 6. Time-average normalised innovation squared statistic.

of 0.001 and 0.1, has increased by 5.4% and by 17% for the two filters, approximately. The increase on
the computed reward values of 17% for the steady-state Kalman filter indicates that the effect of artificial
noise injection is more prominent, compared to the equivalent increase of 5.4% for CKFilter. However, the
≈ 44.4% and ≈ 39% values for CKFilter and the steady-state filter, when σ2

w = 0.1, are still significantly less
than the 95% bound which is required for the two types of filters to be considered consistent. As a result the
process noise covariance matrices, and consequently the filters constructed in this range, should be rejected.

The second property we verify, shown in Figure 6, is whether the magnitude of the innovations is pro-
portionate to the computed covariances of the conventional and of the steady-state Kalman filters. We plot
the different values of the time-average normalised innovation squared statistic, which has been computed
for different σ2

w values in the range of 0.001 to 0.1 inclusive. The goal of this experiment is to verify the
consistency of the conventional and steady-state Kalman filters under different process noise covariance ma-
trices, and pick a process noise covariance matrix which drives the aforementioned statistic to fall between
the appropriate acceptance regions. Those regions are visualised as the lower and upper red lines on the
plots, and essentially define the lower (0.46) and upper (1.75) bounds of the χ2 distribution, respectively.

For CKFilter (Figure 6a), as the value of the noise variance σ2
w increases, the nis avg values decrease,

implying that the consistency of the filter is increasing as more noise is being injected to the filter. This has

Quantitative Verification of Kalman Filters 21

0 1 2 3 4 5
2

w

8

9

10

11

12

13

14

15

16

17

R
{"

in
R

a
n

g
e

"}
=

?
 [

C
<

=
m

a
x
T

im
e

]
CKFilter

0 1 2 3 4 5
2

w

8

9

10

11

12

13

14

15

16

17

R
{"

in
R

a
n

g
e

"}
=

?
 [

C
<

=
m

a
x
T

im
e

]

Steady-state Kalman filter

Fig. 7. Expected number of states in which the innovation falls between two standard deviations of the mean.

0 1 2 3 4 5
2
w

0

2

4

6

8

R
{"

n
is

_
a
v
g
"}

=
?
 [
C

<
=

m
a
x
T

im
e
]

CKFilter

0 1 2 3 4 5
2
w

0

2

4

6

8

10

R
{"

n
is

_
a
v
g
"}

=
?
 [
C

<
=

m
a
x
T

im
e
]

Steady-state Kalman filter

Fig. 8. Time-average normalised innovation squared statistic.

been also observed in the first set of experiments. For example, for σ2
w = 0.001, the respective time-average

normalised innovation squared (nis avg) reward value is 23, approximately. On the other extreme of the
plot, when σ2

w = 0.1 the nis avg reward value becomes ≈ 9, denoting an overall decrease, in the range of the
σ2
w values considered, by a factor of 2.5.

A similar increasing trend, in terms of the improved consistency, is also observed for the steady-state
Kalman filter (Figure 6b). The nis avg reward value is ≈ 69 for the minimum value of noise variance
considered (σ2

w = 0.001). The reward value of 69 is considerably larger than the reward value of 23, computed
for CKFilter for the same input. The larger reward of the steady-state Kalman filter can be explained by the
fact that a suboptimal Kalman gain is being used in the computations at every time step. This is in contrast
to CKFilter in which the optimal Kalman gain is being used. For example, for this particular case, the
steady-state Kalman gain propagated through the Markov chain states is [0.141, 0.009]T . On the other hand,
the Kalman gain of the CKFilter, computed from the state (s = 2, t = 2), is [0.666, 0.333]T and converges
to the values of [0.183, 0.014]T at state (s = 20, t = 20). In fact, the initial difference, when σ2

w = 0.001,
between the nis avg rewards of the two filters, is 46, but falls to a value of less than 3 for 0.44 ≤ σ2

w ≤ 0.1.
The gradual decrease in the difference between the filters’ rewards indicates that, as more noise is injected,
their performance becomes similar.

In the second set of experiments, shown in Figures 7 and 8, the setup is similar to the first set of

22 A. Evangelidis and D. Parker

3 4 5 6

Decimal places

0

50

100

150

200

250

300

M
o
d
e
l
c
o
n
s
tr

u
c
ti
o
n
 t
im

e
 (

s
e
c
s
)

CKFilter

SRFilter-1

SRFilter-2

(a) Model construction time

3 4 5 6

Decimal places

0

0.5

1

1.5

2

2.5

3

3.5

M
o
d
e
l
c
h
e
c
k
in

g
 t
im

e
 (

s
e
c
s
)

CKFilter

SRFilter-1

SRFilter-2

(b) Model checking time

Fig. 9. Time comparisons between three filters.

experiments, except that the σ2
w values, in the interval [0.1, 5.5], are injected in larger increments of 0.1,

instead of 0.001. In Figure 7, we show the results for the inRange reward values, which were computed for
the specified interval, for the two filters. For CKFilter in Figure 7, the inRange reward values reach a plateau
at 16, for a value of σ2

w between 3.2 and 5.5 inclusive. Moreover, the nis avg reward values, start to reside
inside the confidence region for σ2

w values ≥ 3.5, for the specified interval. This means that on average, in 16
out of the 18 states of a particular path, the value of the innovation is expected to fall between two standard
deviations of the mean. This gives us a value of ≈ 89%, which is less than the 95% bound we seek to satisfy.
In consequence, the verification procedure of this particular consistency criterion was not successful for the
55 different conventional Kalman filters which were verified for this particular range. On the other hand, 13
out of the 55 different steady-state Kalman filters verified, satisfied this particular consistency property when
their process noise covariance matrices Q were constructed with a σ2

w value between 4.3 and 5.5 inclusive.
In Figure 8, we show the results for the inRange reward values, which were computed for the specified

interval, for the two filters. For example, the nis avg value is ≈ 1.75 when verifying a CKFilter whose
process noise covariance matrix, Q, has been constructed using a σ2

w value of 3.5. For the subsequent σ2
w

values (3.6, 3.7, ...), the nis avg values are constantly decreasing. For instance, for the maximum σ2
w value we

consider (5.5), the computed nis avg reward is 1.46. This means that the time-average normalised innovation
squared quantity starts to stabilise itself when it passes the upper bound of the confidence region (σ2

w ≥ 3.6).
This results in the non-rejection of the null hypothesis, which states that the filter is consistent. In fact, none
of the 21 different filters constructed with σ2

w values from 3.5 to 5.5 inclusive should be declared as consistent.
On the other hand, while the nis avg reward computed for the steady-state Kalman filter is initially much
larger than the conventional one, it reaches the acceptance region faster. In fact, its nis avg reward is 1.74
when it is constructed with a σ2

w = 2.5, which is ten times less than its conventional equivalent. It also
indicates that, for this particular case, the performance of the steady-state Kalman filter surpasses the
conventional filter’s one, since less noise has to be injected to satisfy the consistency criterion.

5.3. Scalability and Accuracy

Finally, we report on the scalability of our approach in terms of the model construction and model checking
time, using a model of fixed maxTime=20 time steps corresponding to ≈ 1× 106 states, across the three filter
variants. The rationale behind this section is to emphasise the careful analysis that needs to be performed
to systematically evaluate the trade-offs between the accuracy of the verification result and the speed of
the verification algorithms. In Figure 9, we show the time comparisons, for varying degrees of precision,
between a model which encodes the conventional Kalman filter (CKFilter), and two implementations of
the Carlson-Schmidt square-root filter with (SRFilter-1) and without (SRFilter-2) reconstruction of the

Quantitative Verification of Kalman Filters 23

Table 4. Assessing accuracy of results by varying gLevel

gLevel decPlaces R
nis avg
=? [C≤8] R

inRange
=? [C≤8] Construction time (secs)

2 6 3.273 3.750 0.1

4 6 3.547 3.848 12

6 6 3.917 3.866 375

estimation-error covariance matrix, respectively. The model checking time refers to the collective time it
takes to compute the first and second property of Section 5.1. These sets of experiments were run on a 16GB
RAM machine with an i7 processor at 1.80GHz, running Ubuntu 18.04.

It is apparent that the increased numerical precision affects the construction time of the models. The
average model construction time of the three filter variants increased by a factor of ≈ 3 from 3 to 6 decimal
places. Specifically, the average time is ≈ 83 seconds for 3 decimal places compared to ≈ 249 seconds, when
6 decimal places were used. Moreover, the construction of CKFilter was the fastest in all the degrees of
precision considered, however, as it was noted in Section 5.1 it produces an inaccurate verification result
when the number of decimal places is 3.

Conversely, the construction times of the two square-root filters were about the same, and it seems
that the extra computational step (P = CCT) did not have a significant effect on the performance of the
model construction. However, it should be borne in mind that these experiments were conducted on systems
represented by two-dimensional matrices. The model checking times are shown in Figure 9b and one can
observe that they follow a similar pattern with the model construction times shown earlier, in terms of the
increase in time from 3 to 6 decimal places. For instance, the average model checking time increases by a
factor of ≈ 3 when 6 decimal places are used, compared to 3.

Another observation is that the model checking time appears to be independent of the type of the filter
used. This can be seen from the limited variability the model checking time experiences between the three
filter variants, since for the degrees of precision considered, it remains at approximately the same level. This
is in contrast to the model construction time which appears to be affected by the filter type, since it is
considerably less for the CKFilter compared to its square root variants. The reason for this seems to be
the extra computational steps (e.g., Householder transformations, generation of upper triangular Cholesky
factors), which have to be performed in the time update (Schmidt part) and measurement update (Carlson
part) of the Carlson-Schmidt square-root filter. In fact, for a precision of 6 decimal places, and once CKFilter
is chosen as an input, we experience a drop in the model construction time of about 53 seconds. However,
for the same amount of precision, the time it takes to model check all the three filters is around 3 seconds.

Closely related to scalability is the issue of accuracy. In Table 4, we show the values of two results obtained
from CKFilter, by varying the granularity level of the noise, gLevel, and by setting the number of decimal
places decPlaces to 6. We choose a maxTime value of 8, since this allows a comparison of different values in
reasonable time. We assume that the highest value of gLevel considered (i.e., 6) provides the most accurate
approximation of the noise, so the differences between these values and those for gLevel= 2 and gLevel= 4
give an indication of the improvement in accuracy as gLevel increases. Conversely, as expected, higher values
of gLevel introduce an additional computational burden to the verification process. For example, for the
nis avg results, gLevel values of 2, 4 and 6 require model construction time of 0.1, 12 and 375 seconds,
respectively.

6. Conclusion

We have presented a framework for the modelling and verification of Kalman filter implementations. It is
general enough to analyse a variety of different implementations, and various system models, and to study
a range of numerical and modelling error issues which may hinder the effective deployment of the filters in
practice. We have implemented the techniques in a tool and illustrated its applicability and scalability with
a range of experiments.

In general, the evaluation of Kalman filter performance has attracted considerable attention since the
early days of their development. However, formal methods such as probabilistic model checking have not
been used for their verification. This is, to the best of our knowledge, the first work where these types of

24 A. Evangelidis and D. Parker

problems are applied to a probabilistic verification setting. Our main contribution in this work is that we
show that probabilistic verification can be a promising alternative in verifying these types of systems.

Future work includes: a more in-depth analysis of the trade-off between accuracy and scalability; extending
our techniques to work with non-linear models, potentially by incorporating a non-linear version of the
Kalman filter such as the extended Kalman filter; and expanding the verification approach to other systems
requiring non-trivial linear algebra implementations.

Acknowledgements. This work has been partially supported by an EPSRC-funded Ph.D. studentship
(award ref: 1576386), and the PRINCESS project (contract FA8750-16-C-0045) funded by the DARPA
BRASS programme.

References

[ACCK93] G. Abdelnour, S. Chand, S. Chiu, and T. Kido. On-line detection and correction of kalman filter divergence by
fuzzy logic. In 1993 American Control Conference, pages 1835–1839, June 1993.

[AM12] B.D.O. Anderson and J.B. Moore. Optimal Filtering. Dover Books on Electrical Engineering. Dover Publications,
2012.

[apa] Math - Commons-Math: The Apache Commons Mathematics Library.
[Bat64] Richard H. Battin. Astronautical guidance. Electronic sciences. McGraw-Hill, 1964.
[BH12] Robert Grover Brown and Patrick Y. C. Hwang. Introduction to Random Signals and Applied Kalman Filtering

with MATLAB Exercises, 4th Edition. Wiley Global Education, January 2012.
[Bie75] G. J. Bierman. Measurement updating using the u-d factorization. In 1975 IEEE Conference on Decision and

Control including the 14th Symposium on Adaptive Processes, pages 337–346, Dec 1975.
[Bie77] G. J. Bierman. Factorization Methods for Discrete Sequential Estimation. 1977.
[BJ68] Richard S. Bucy and Peter D. Joseph. processes with applications to guidance. Interscience Publishers New York,

1968.
[BN76] F. M. Boland and H. Nicholson. Control of divergence in kalman filters. Electronics Letters, 12(15):367–369, July

1976.
[BS87] Y. Bar-Shalom. Tracking and Data Association. Academic Press Professional, Inc., San Diego, CA, USA, 1987.
[BSL01] Yaakov Bar-Shalom and Xiao-Rong Li. Estimation with Applications to Tracking and Navigation. John Wiley &

Sons, Inc., New York, NY, USA, 2001.
[BT08] D.P. Bertsekas and J.N. Tsitsiklis. Introduction to Probability. Athena Scientific optimization and computation

series. Athena Scientific, 2008.
[Car73] Neil A. Carlson. Fast triangular formulation of the square root filter. AIAA Journal, 11(9):1259–1265, 1973.
[CD16] C-B. Chang and K-P Dunn. Applied State Estimation and Association. The MIT Press, Cambridge, Massachusetts,

2016.
[CG74] The Analytic Sciences Corporation and Arthur Gelb. Applied Optimal Estimation. The MIT Press, 1974.
[DZ18] C. D’Souza and R. Zanetti. Information formulation of the udu kalman filter. IEEE Transactions on Aerospace

and Electronic Systems, pages 1–1, 2018.
[EP19] Alexandros Evangelidis and David Parker. Quantitative verification of numerical stability for Kalman filters.

In Proc. 23rd International Symposium on Formal Methods (FM’19), volume 11800 of LNCS, pages 425–441.
Springer, 2019.

[FKNP11] V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. Automated verification techniques for probabilistic systems.
In M. Bernardo and V. Issarny, editors, Formal Methods for Eternal Networked Software Systems (SFM’11), volume
6659 of LNCS, pages 53–113. Springer, 2011.

[GA14] Mohinder S. Grewal and Angus P. Andrews. Kalman Filtering: Theory and Practice Using MATLAB. Wiley-IEEE
Press, 4th edition, 2014.

[Gib11] Bruce P Gibbs. Advanced Kalman Filtering, Least Squares and Modeling: A Practical Handbook. John Wiley &
Sons, Inc., 2011.

[GSDW16] Q. Ge, T. Shao, Z. Duan, and C. Wen. Performance analysis of the kalman filter with mismatched noise covariances.
IEEE Transactions on Automatic Control, 61(12):4014–4019, Dec 2016.

[HJ94] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects of Computing,
6(5):512–535, 1994.

[Jaz70] A.H. Jazwinski. Stochastic Processes and Filtering Theory. Mathematics in Science and Engineering. Elsevier
Science, 1970.

[JKB94] Norman Lloyd Johnson, Samuel Kotz, and N. Balakrishnan. Continuous univariate distributions. New York:
Wiley, 1994.

[Kai80] Thomas Kailath. Linear Systems. Prentice-Hall, Englewood Cliffs, N.J, 1980.
[Kal60] R. E. Kalman. A new approach to linear filtering and prediction problems. ASME Journal of Basic Engineering,

1960.
[KBS71] P. Kaminski, A. Bryson, and S. Schmidt. Discrete square root filtering: A survey of current techniques. IEEE

Transactions on Automatic Control, 16(6):727–736, December 1971.
[KNP07] Marta Kwiatkowska, Gethin Norman, and David Parker. Stochastic Model Checking. In Marco Bernardo and

Quantitative Verification of Kalman Filters 25

Jane Hillston, editors, Formal Methods for Performance Evaluation, number 4486 in Lecture Notes in Computer
Science, pages 220–270. Springer Berlin Heidelberg, May 2007.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time systems. In
G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International Conference on Computer Aided Verification
(CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011.

[Kwi07] M. Kwiatkowska. Quantitative verification: Models, techniques and tools. In Proc. 6th joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2007.

[LJ03] X. Rong Li and V. P. Jilkov. Survey of maneuvering target tracking. part i. dynamic models. IEEE Transactions
on Aerospace and Electronic Systems, 39(4):1333–1364, Oct 2003.

[May82a] Peter S Maybeck. Stochastic models, estimation, and control: Volume 1. Mathematics in science and engineering.
Elsevier Science, Burlington, MA, 1982.

[May82b] Peter S. Maybeck. Stochastic Models: Estimation and Control: Volume 2. Mathematics in Science and Engineering.
Elsevier Science, 1982.

[MGB03] Mark Moulin, Leonid Gluhovsky, and Eli Bendersky. Formal verification of maneuvering target tracking. AIAA
Guidance, Navigation, and Control Conference and Exhibit, 2003.

[Rei01] Ian Reid. Estimation ii, 2001.
[RG03] J. Van Baalen R. Gamboa, J. Cowles. On the verification of synthesized kalman filters. In 4th International

Workshop on the ACL2 Theorem Prover and Its Applications., 2003.
[RVWL03] Grigore Roşu, Ram Prasad Venkatesan, Jon Whittle, and LaurenŢiu Leuştean. Certifying Optimality of State

Estimation Programs, pages 301–314. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.
[Sim06] Dan Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley-Interscience, 2006.
[Sim10] D. Simon. Kalman filtering with state constraints: A survey of linear and nonlinear algorithms. IET Control

Theory Applications, 4(8):1303–1318, August 2010.
[Sup] Supporting material. www.prismmodelchecker.org/files/fm19kf/.
[Tho76] C. L. Thornton. Triangular Covariance Factorizations for Kalman filtering. PhD thesis, University of California

at Los Angeles, 1976.
[VD86] M. Verhaegen and P. Van Dooren. Numerical aspects of different kalman filter implementations. IEEE Transactions

on Automatic Control, 31(10):907–917, October 1986.
[Was10] Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer Publishing Company,

Incorporated, 2010.
[WS04] Jon Whittle and Johann Schumann. Automating the implementation of kalman filter algorithms. ACM Trans.

Math. Softw., 30(4):434–453, December 2004.
[ZM15] Paul Zarchan and Howard Musoff. Fundamentals of Kalman filtering : a practical approach. American Institute

of Aeronautics and Astronautics, Reston, VA, 4 edition, 2015.

http://www.prismmodelchecker.org/files/fm19kf/

	Introduction
	Preliminaries
	The Kalman filter
	Divergence of Kalman Filters
	Numerical Instability of the Kalman filter
	Divergence Due to Modelling Errors
	Kalman Filter Variants
	Probabilistic Model Checking and PRISM

	Quantitative Verification of Kalman Filters
	Constructing Probabilistic Models of Kalman Filter Execution
	Verification of Numerical Stability
	Verification of Modelling Error Compensation Techniques

	Tool Support: VerFilter
	Experimental Results
	Verification of Numerical Stability
	Verification of Consistency Properties
	Scalability and Accuracy

	Conclusion
	References

